JP5464653B2 - Non-aqueous secondary battery and manufacturing method thereof - Google Patents

Non-aqueous secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP5464653B2
JP5464653B2 JP2009270219A JP2009270219A JP5464653B2 JP 5464653 B2 JP5464653 B2 JP 5464653B2 JP 2009270219 A JP2009270219 A JP 2009270219A JP 2009270219 A JP2009270219 A JP 2009270219A JP 5464653 B2 JP5464653 B2 JP 5464653B2
Authority
JP
Japan
Prior art keywords
negative electrode
sio
secondary battery
aqueous secondary
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009270219A
Other languages
Japanese (ja)
Other versions
JP2011113862A (en
Inventor
將之 山田
章 稲葉
和伸 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2009270219A priority Critical patent/JP5464653B2/en
Publication of JP2011113862A publication Critical patent/JP2011113862A/en
Application granted granted Critical
Publication of JP5464653B2 publication Critical patent/JP5464653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、高容量の非水二次電池と、その製造方法に関するものである。   The present invention relates to a high-capacity non-aqueous secondary battery and a manufacturing method thereof.

非水二次電池は高電圧・高容量であることから、その発展に対して大きな期待が寄せられている。非水二次電池の負極材料(負極活物質)には、Li(リチウム)やLi合金の他、Liイオンを挿入および脱離可能な、天然または人造の黒鉛系炭素材料などが適用されている。   Since non-aqueous secondary batteries have high voltage and high capacity, there are great expectations for their development. In addition to Li (lithium) and Li alloys, natural or artificial graphite-based carbon materials that can insert and desorb Li ions are applied to the negative electrode material (negative electrode active material) of nonaqueous secondary batteries. .

ところが、最近では、小型化および多機能化した携帯機器用の電池について更なる高容量化が望まれており、これを受けて、低結晶性炭素、Si(シリコン)、Sn(錫)などのように、より多くのLiを収容可能な材料が負極材料(以下、「高容量負極材料」ともいう)として注目を集めている。   However, recently, there has been a demand for further higher capacity of a battery for a portable device that has been downsized and multifunctional, and in response to this, low crystalline carbon, Si (silicon), Sn (tin), etc. Thus, a material that can accommodate more Li is attracting attention as a negative electrode material (hereinafter, also referred to as “high-capacity negative electrode material”).

こうした非水二次電池用の高容量負極材料の一つとして、Siの超微粒子がSiO中に分散した構造を持つSiOが注目されている(例えば、特許文献1〜3)。この材料を負極活物質として用いると、Liと反応するSiが超微粒子であるために充放電がスムーズに行われる一方で、前記構造を有するSiO粒子自体は表面積が小さいため、負極合剤層を形成するための塗料とした際の塗料性や負極合剤層の集電体に対する接着性も良好である。 As one of such high-capacity negative electrode materials for non-aqueous secondary batteries, SiO x having a structure in which Si ultrafine particles are dispersed in SiO 2 has attracted attention (for example, Patent Documents 1 to 3). When this material is used as a negative electrode active material, since Si that reacts with Li is an ultrafine particle, charging and discharging are performed smoothly. On the other hand, the SiO x particle itself having the above structure has a small surface area, and thus the negative electrode mixture layer The coating property when forming a coating material for forming the electrode and the adhesion of the negative electrode mixture layer to the current collector are also good.

特開2004−47404号公報JP 2004-47404 A 特開2005−259697号公報Japanese Patent Laid-Open No. 2005-259697 特開2007−242590号公報JP 2007-242590 A

ところで、前記のようなSiO系の高容量負極材料は、従来の黒鉛系の負極材料と比べて導電性やイオン伝導性が低いため,これを用いた電池では、負荷特性や充放電サイクル特性などが低下する虞がある。 By the way, the high capacity negative electrode material of the SiO x type as described above has lower conductivity and ion conductivity than the conventional negative electrode material of graphite type. Therefore, in a battery using this, load characteristics and charge / discharge cycle characteristics are reduced. Etc. may be reduced.

よって、こうした問題を回避する観点から、前記の高容量負極材料を用いて電池を構成するに当たっては、その材料の導電性やイオン伝導性を高める処理が必要となる。   Therefore, from the viewpoint of avoiding such a problem, when a battery is configured using the above-described high-capacity negative electrode material, a treatment for increasing the conductivity and ionic conductivity of the material is required.

本発明は、前記事情に鑑みてなされたものであり、その目的は、高容量で、良好な電池特性を有する非水二次電池と、その製造方法を提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the nonaqueous secondary battery which has a high capacity | capacitance and a favorable battery characteristic, and its manufacturing method.

前記目的を達成し得た本発明の非水二次電池は、正極、負極および非水電解質を備えた非水二次電池であって、前記負極は、Li、SiおよびOを構成元素に含む材料を活物質として含む負極合剤層を有しており、前記材料におけるSiに対するOの原子比xが、前記材料全体では0.5≦x≦1.5であり、かつ前記材料の表面部では2.5≦x≦4.5であることを特徴とするものである。   The non-aqueous secondary battery of the present invention that can achieve the above object is a non-aqueous secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, and the negative electrode contains Li, Si, and O as constituent elements. A negative electrode mixture layer containing the material as an active material, wherein the atomic ratio x of O to Si in the material is 0.5 ≦ x ≦ 1.5 in the whole material, and the surface portion of the material Then, 2.5 ≦ x ≦ 4.5.

また、本発明の製造方法は、本発明の非水二次電池を製造する方法であって、非水二次電池の組み立て直後に、定格容量を1時間で放電できる電流値の70%以下の平均電流値で、満充電状態になるまで充電することを特徴とする。   The manufacturing method of the present invention is a method for manufacturing the non-aqueous secondary battery of the present invention, and has a rated capacity of 70% or less of the current value that can be discharged in one hour immediately after the assembly of the non-aqueous secondary battery. Charging is performed until the battery is fully charged at an average current value.

本発明によれば、高容量の非水二次電池と、その製造方法を提供することができる。また、本発明の非水二次電池では、高容量であり、かつ導電性とイオン伝導性の低いSiOの特長を生かしつつ、その低伝導性に伴う電池特性の低下を抑制できる。 ADVANTAGE OF THE INVENTION According to this invention, a high capacity | capacitance non-aqueous secondary battery and its manufacturing method can be provided. Moreover, in the non-aqueous secondary battery of the present invention, it is possible to suppress deterioration of battery characteristics due to the low conductivity while taking advantage of SiO x having high capacity and low conductivity and low ion conductivity.

本発明の非水二次電池の一例を示す模式図であり、(a)平面図、(b)断面図である。It is a schematic diagram which shows an example of the non-aqueous secondary battery of this invention, (a) Top view, (b) Cross-sectional view. 図1の斜視図である。FIG. 2 is a perspective view of FIG. 1.

本発明では、Li、SiおよびOを構成元素に含み、Siに対するOの原子比xが、全体では0.5≦x≦1.5であり、かつ表面部では2.5≦x≦4.5である材料を活物質として含む負極合剤層を有する負極を備えることで、SiOの低導電性に起因する電池特性の低下を抑制することとした。 In the present invention, Li, Si and O are included as constituent elements, and the atomic ratio x of O to Si is 0.5 ≦ x ≦ 1.5 as a whole, and 2.5 ≦ x ≦ 4. By including a negative electrode having a negative electrode mixture layer containing the material 5 as an active material, it was decided to suppress a decrease in battery characteristics due to the low conductivity of SiO x .

前記Li、SiおよびOを構成元素に含む材料(以下、「LiSiO」と表記する)は、Siに対するOの原子比が、その表面部において2.5≦x≦4.5であり、これにより電池特性を大幅に改善することができる。 The material containing Li, Si and O as constituent elements (hereinafter referred to as “Li y SiO x ”) has an atomic ratio of O to Si of 2.5 ≦ x ≦ 4.5 at the surface portion. Thus, the battery characteristics can be greatly improved.

SiとOとを含む材料(例えば、Siに対するOの原子比xが、0.5≦x≦1.5。以下、「SiO」と表記する。)は、高容量の負極材料(負極活物質)として使用可能であるが、一般に、従来の黒鉛系の負極材料と比べて導電性やイオン伝導性が低いため、これをそのまま用いた電池では、負荷特性や充放電サイクル特性などが低下する虞がある。本発明者らが鋭意検討した結果、SiOに更にLiを含有させ、表面部におけるSiに対するOの原子比xが2.5≦x≦4.5であるLiSiOとすることで、LiSiO粒子の伝導性が高まり電池特性が大幅に改善することが明らかとなった。x=2.5であるLiSiやx=3であるLiSiO、x=4であるLiSiO、更にはこれらの混合物は、良好なLiイオン伝導体であることから、それらを表面に形成することで、界面でのLiイオンの出入りがスムーズになり電池特性が改善したと考えられる。 A material containing Si and O (for example, an atomic ratio x of O to Si is 0.5 ≦ x ≦ 1.5, hereinafter referred to as “SiO x ”) is a high-capacity negative electrode material (negative electrode active material). In general, however, since the conductivity and ionic conductivity are lower than those of conventional graphite-based negative electrode materials, the load characteristics, charge / discharge cycle characteristics, and the like of the battery using the same are reduced. There is a fear. As a result of intensive studies by the present inventors, Li x is further added to SiO x and Li y SiO x in which the atomic ratio x of O to Si in the surface portion is 2.5 ≦ x ≦ 4.5, It became clear that the conductivity of the Li y SiO x particles was increased and the battery characteristics were greatly improved. Li 2 Si 2 O 5 in which x = 2.5, Li 2 SiO 3 in which x = 3 , Li 4 SiO 4 in which x = 4, and a mixture thereof is a good Li ion conductor. Therefore, it is considered that by forming them on the surface, the entry and exit of Li ions at the interface became smooth and the battery characteristics were improved.

なお、本明細書でいうLiSiOにおける「表面部のSiに対するOの原子比x」は、以下のようにして導出する。2.5Vまで放電した電池をアルゴン雰囲気中で分解し、負極を取り出して、ジエチルカーボネートに24時間浸漬する。負極を取り出しアルゴン中で十分に乾かした後、負極をアルゴン雰囲気中で集束イオンビーム加工観察装置(日立ハイテク社製「FB−2100」)に搬送し、そこで薄膜化調製したサンプルを、雰囲気遮断ホルダで走査透過型電子顕微鏡(日立ハイテク社製「HD−2700」)に真空搬送し、前記走査透過型電子顕微鏡に備え付けのEDX(エネルギー分散型X線分析)システムにより、LiSiOの表面近傍の組成分析を行って、前記原子比xを求める。ここで、表面近傍とは、最表面から50nm付近までを示す。 The “atomic ratio x of O to Si in the surface portion” in Li y SiO x referred to in this specification is derived as follows. The battery discharged to 2.5 V is decomposed in an argon atmosphere, the negative electrode is taken out, and immersed in diethyl carbonate for 24 hours. After the negative electrode is taken out and sufficiently dried in argon, the negative electrode is transferred to a focused ion beam processing observation apparatus (“FB-2100” manufactured by Hitachi High-Tech) in an argon atmosphere, and the sample prepared by thinning the sample is transferred to an atmosphere blocking holder. In the vicinity of the surface of Li y SiO x using an EDX (energy dispersive X-ray analysis) system provided in the scanning transmission electron microscope by vacuum transfer to a scanning transmission electron microscope (“HD-2700” manufactured by Hitachi High-Tech) Then, the atomic ratio x is determined. Here, the vicinity of the surface indicates from the outermost surface to the vicinity of 50 nm.

また、「全体のSiに対するOの原子比」は以下のように導出する。前記と同様に2.5Vまで放電した負極を取り出し、理学電機社製蛍光X線分析装置「ZSX100e」を用いて検量線法によりSiとOの比率を求める。   The “atomic ratio of O to the total Si” is derived as follows. The negative electrode discharged to 2.5 V is taken out in the same manner as described above, and the ratio of Si and O is determined by a calibration curve method using a fluorescent X-ray analyzer “ZSX100e” manufactured by Rigaku Corporation.

更に、放電した負極表面中にLiが存在することの確認は、X線光電子分光分析(XPS)測定により行った。   Further, the presence of Li in the discharged negative electrode surface was confirmed by X-ray photoelectron spectroscopy (XPS) measurement.

Siに対するOの原子比xが、全体では0.5≦x≦1.5であり、かつ表面部では2.5≦x≦4.5であるLiSiOは、例えば、以下の方法(1)または(2)により作製することができる。 Li y SiO x in which the atomic ratio x of O to Si is 0.5 ≦ x ≦ 1.5 as a whole and 2.5 ≦ x ≦ 4.5 at the surface portion is, for example, the following method ( It can be produced by 1) or (2).

方法(1)は、SiOを含む負極合剤層を有する負極を用いて非水二次電池の組み立て、その直後に前記非水二次電池を、充電電流の最大値が、定格容量(この非水二次電池の設計容量)を1時間で放電できる電流値(1C)の70%以下、好ましくは50%以下となる条件で、満充電状態(定格容量まで充電された状態)になるまで充電する方法であり、これにより負極合剤層中のSiOの表面にLiを含む化合物(LiSiO、LiSiO、LiSiなど)を形成して、LiSiOを得る。なお、前記充電を行う「非水二次電池の組み立て直後」とは、非水二次電池を組み立てた後、間を置かずに充電を行うことを必ずしも意味しておらず、非水二次電池の組み立て後に、前記条件での充電以外の充電を行っていない状態で、充電を行うことを意味している。 In the method (1), a non-aqueous secondary battery is assembled using a negative electrode having a negative electrode mixture layer containing SiO x, and immediately after that, the non-aqueous secondary battery is charged with a maximum charge current of a rated capacity (this Until the battery is fully charged (charged to the rated capacity) under the condition of 70% or less, preferably 50% or less of the current value (1C) that can discharge the non-aqueous secondary battery) in 1 hour. This is a method of charging, whereby a compound containing Li (Li 2 SiO 3 , Li 4 SiO 4 , Li 2 Si 2 O 5, etc.) is formed on the surface of SiO x in the negative electrode mixture layer, and Li y SiO Get x . Note that “immediately after assembling the non-aqueous secondary battery” for performing the above-mentioned charging does not necessarily mean that the non-aqueous secondary battery is charged without any gap between the non-aqueous secondary batteries. This means that after the battery is assembled, charging is performed in a state where charging other than charging under the above conditions is not performed.

また、SiOとLi金属などのLi化合物とを機械的に混合することによっても、Siに対するOの原子比xが、全体では0.5≦x≦1.5であり、かつ表面部では2.5≦x≦4.5であるLiSiOを作製することができる[方法(2)]。 Also, by mechanically mixing SiO x and a Li compound such as Li metal, the atomic ratio x of O to Si is 0.5 ≦ x ≦ 1.5 as a whole, and 2 at the surface portion. Li y SiO x satisfying 5 ≦ x ≦ 4.5 can be produced [Method (2)].

LiSiOは、Siの微結晶または非晶質相を含んでいてもよく、この場合、SiとOの原子比は、Siの微結晶または非晶質相のSiを含めた比率となる。 Li y SiO x may contain Si microcrystal or amorphous phase, and in this case, the atomic ratio of Si and O is a ratio including Si microcrystal or amorphous phase Si. .

すなわち、LiSiOには、非晶質のリチウム含有シリコン酸化物マトリックス中に、Si(例えば、微結晶Si)が分散した構造のものが含まれ、この非晶質マトリクスと、その中に分散しているSiを合わせて、前記の原子比xが0.5≦x≦1.5を満足していればよい。例えば、非晶質マトリックス中にSiが分散した構造で、LiSiOとSiのモル比が1:1の材料の場合、x=1であるので、構造式としてはLiSiOで表記される。このような構造の材料の場合、例えば、X線回折分析では、Si(微結晶Si)の存在に起因するピークが観察されない場合もあるが、透過型電子顕微鏡で観察すると、微細なSiの存在が確認できる。 That is, Li y SiO x includes a structure in which Si (for example, microcrystalline Si) is dispersed in an amorphous lithium-containing silicon oxide matrix, and the amorphous matrix and It is sufficient that the atomic ratio x satisfies 0.5 ≦ x ≦ 1.5 in combination with the dispersed Si. For example, in the case of a material in which Si is dispersed in an amorphous matrix and the material has a molar ratio of Li y SiO 2 to Si of 1: 1, since x = 1, the structural formula is expressed as Li y SiO. The In the case of a material having such a structure, for example, in X-ray diffraction analysis, a peak due to the presence of Si (microcrystalline Si) may not be observed, but when observed with a transmission electron microscope, the presence of fine Si Can be confirmed.

LiSiOは、炭素材料などの導電性材料と複合化した複合体であることが好ましく、例えば、LiSiOの表面が導電性材料(炭素材料など)で被覆されていることが望ましい。LiSiOは酸化物であり、導電性が乏しいため、これを負極活物質として用いる際には、良好な電池特性確保の観点から、導電性材料(導電助剤)を使用し、負極内におけるLiSiOと導電性材料との混合・分散を良好にして、優れた導電ネットワークを形成する必要がある。LiSiOを導電性材料と複合化した複合体であれば、例えば、単にLiSiOと導電性材料とを混合して得られた混合物を用いた場合よりも、負極における導電ネットワークが良好に形成される。 Li y SiO x is preferably a composite that is combined with a conductive material such as a carbon material. For example, it is desirable that the surface of Li y SiO x be covered with a conductive material (such as a carbon material). . Since Li y SiO x is an oxide and has poor conductivity, when using it as a negative electrode active material, a conductive material (conductive aid) is used from the viewpoint of securing good battery characteristics, Therefore, it is necessary to improve the mixing and dispersion of Li y SiO x and the conductive material in order to form an excellent conductive network. In the case of a composite in which Li y SiO x is combined with a conductive material, for example, the conductive network in the negative electrode is more than when a mixture obtained by simply mixing Li y SiO x and a conductive material is used. It is formed well.

LiSiOと導電性材料との複合体としては、前記のように、LiSiOの表面を導電性材料(好ましくは炭素材料)で被覆したものの他、LiSiOと導電性材料(好ましくは炭素材料)との造粒体などが挙げられる。 As a composite of Li y SiO x and a conductive material, as described above, the surface of Li y SiO x is covered with a conductive material (preferably a carbon material), as well as Li y SiO x and a conductive material. A granulated body with (preferably carbon material) is mentioned.

また、前記の、LiSiOの表面を導電性材料(好ましくは炭素材料)で被覆した複合体を、更に導電性材料(炭素材料など)と複合化して用いることで、負極において更に良好な導電ネットワークの形成が可能となるため、より高容量で、充放電サイクル特性に優れた非水二次電池の実現が可能となる。導電性材料で被覆されたLiSiOと導電性材料との複合体としては、例えば、導電性材料で被覆されたLiSiOと導電性材料とを含む造粒体などが挙げられる。 Further, the composite in which the surface of Li y SiO x is coated with a conductive material (preferably a carbon material) is further combined with a conductive material (such as a carbon material) to be used in a negative electrode. Since a conductive network can be formed, a non-aqueous secondary battery with higher capacity and excellent charge / discharge cycle characteristics can be realized. The complex with Li y SiO x and a conductive material coated with a conductive material, for example, granules containing a Li y SiO x and a conductive material coated with a conductive material, and the like.

また、表面が導電性材料で被覆されたLiSiOとしては、LiSiOとそれよりも比抵抗値が小さい導電性材料との複合体(例えば造粒体)、好ましくはLiSiOと炭素材料との複合体の表面が、更に炭素材料で被覆されてなるものも、好ましく用いることができる。前記造粒体内部でLiSiOと導電性材料が分散した状態であると、より良好な導電ネットワークを形成できるため、これを負極材料とする負極を有する非水二次電池において、重負荷放電特性など電池特性を更に向上させることができる。 Further, as Li y SiO x whose surface is coated with a conductive material, a composite (for example, a granulated body) of Li y SiO x and a conductive material having a smaller specific resistance value, preferably Li y SiO x. Those in which the surface of the composite of x and the carbon material is further coated with a carbon material can be preferably used. When Li y SiO x and the conductive material are dispersed in the granule, a better conductive network can be formed. Therefore, in a non-aqueous secondary battery having a negative electrode using this as a negative electrode material, a heavy load Battery characteristics such as discharge characteristics can be further improved.

LiSiOとの複合体の形成に用い得る前記導電性材料としては、例えば、低結晶性炭素、カーボンナノチューブ、気相成長炭素繊維などの炭素材料が好ましいものとして挙げられる。 Examples of the conductive material may be used in the formation of a complex between li y SiO x, for example, as low-crystalline carbon, carbon nanotube, a carbon material such as vapor-grown carbon fibers are preferred.

前記導電性材料の詳細としては、繊維状またはコイル状の炭素材料、繊維状またはコイル状の金属、カーボンブラック(アセチレンブラック、ケッチェンブラックを含む)、人造黒鉛、易黒鉛化炭素および難黒鉛化炭素よりなる群から選ばれる少なくとも1種の材料が好ましい。繊維状またはコイル状の炭素材料や、繊維状またコイル状の金属は、導電ネットワークを形成し易く、かつ表面積の大きい点において好ましい。カーボンブラック(アセチレンブラック,ケッチェンブラックを含む)、易黒鉛化炭素および難黒鉛化炭素は、高い電気伝導性、高い保液性を有しており、さらに、LiSiO粒子が膨張収縮しても、その粒子との接触を保持し易い性質を有している点において好ましい。 Details of the conductive material include a fibrous or coiled carbon material, a fibrous or coiled metal, carbon black (including acetylene black and ketjen black), artificial graphite, graphitizable carbon and non-graphitizable. At least one material selected from the group consisting of carbon is preferred. A fibrous or coiled carbon material or a fibrous or coiled metal is preferable in that it easily forms a conductive network and has a large surface area. Carbon black (including acetylene black and ketjen black), graphitizable carbon, and non-graphitizable carbon have high electrical conductivity and high liquid retention, and Li y SiO x particles expand and contract. However, it is preferable in that it has a property of easily maintaining contact with the particles.

また、黒鉛を、LiSiOと導電性材料との複合体に係る導電性材料として使用することもできる。黒鉛も、カーボンブラックなどと同様に、高い電気伝導性、高い保液性を有しており、更に、LiSiO粒子が膨張収縮しても、その粒子との接触を保持し易い性質を有しているため、LiSiOとの複合体形成に好ましく使用することができる。 Moreover, graphite can also be used as a conductive material according to a composite of Li y SiO x and a conductive material. Graphite, like carbon black, has high electrical conductivity and high liquid retention. Furthermore, even if Li y SiO x particles expand and contract, they tend to maintain contact with the particles. because they have, it can be preferably used for complex formation with Li y SiO x.

前記例示の導電性材料の中でも、LiSiOとの複合体が造粒体である場合に用いるものとしては、繊維状の炭素材料が特に好ましい。繊維状の炭素材料は、その形状が細い糸状であり柔軟性が高いためにLiSiOの膨張収縮に追従でき、また、嵩密度が大きいために、LiSiO粒子と多くの接合点を持つことができるからである。繊維状の炭素としては、例えば、ポリアクリロニトリル(PAN)系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、カーボンナノチューブなどが挙げられ、これらの何れを用いてもよい。 Among the conductive materials exemplified above, a fibrous carbon material is particularly preferable as a material used when the composite with Li y SiO x is a granulated body. Fibrous carbon material is due to the high shape a thin threadlike flexibility can follow the expansion and contraction of the Li y SiO x, In order bulk density is large, Li y SiO x particles and many junction Because you can have. Examples of the fibrous carbon include polyacrylonitrile (PAN) -based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, and carbon nanotube, and any of these may be used.

なお、繊維状の炭素材料や繊維状の金属は、例えば、LiSiO粒子や、LiSiOを形成するためのSiO粒子の表面に気相法にて形成することもできる。 Incidentally, the carbon material and fibrous metal fibrous, for example, may be formed by Li y and SiO x particles, surface gas phase SiO x particles to form a Li y SiO x.

LiSiOの比抵抗値が、通常、10〜10kΩcmであるのに対して、前記例示の導電性材料の比抵抗値は、通常、10−5〜10kΩcmである。 The specific resistance value of Li y SiO x is usually 10 3 to 10 7 kΩcm, whereas the specific resistance value of the exemplified conductive material is usually 10 −5 to 10 kΩcm.

また、LiSiOと導電性材料との複合体は、粒子表面の炭素材料被覆層を覆う材料層(難黒鉛化炭素を含む材料層)を更に有していてもよい。 The composite of Li y SiO x and the conductive material may further include a material layer (a material layer containing non-graphitizable carbon) that covers the carbon material coating layer on the particle surface.

LiSiOと導電性材料との複合体を使用する場合、LiSiOと導電性材料との比率は、導電性材料との複合化による作用を良好に発揮させる観点から、LiSiO:100質量部に対して、導電性材料が、5質量部以上であることが好ましく、10質量部以上であることがより好ましい。また、前記複合体において、LiSiOと複合化する導電性材料の比率が多すぎると、負極合剤層中のLiSiO量の低下に繋がり、高容量化の効果が小さくなる虞があることから、LiSiO:100質量部に対して、導電性材料は、95質量部以下であることが好ましく、90質量部以下であることがより好ましい。 When using a complex of Li y SiO x and a conductive material, the ratio of Li y SiO x and a conductive material, from the viewpoint of satisfactorily exhibiting the effect by compounding the conductive material, Li y SiO x : It is preferable that an electroconductive material is 5 mass parts or more with respect to 100 mass parts, and it is more preferable that it is 10 mass parts or more. In the composite, if the ratio of the conductive material to be combined with Li y SiO x is too large, the amount of Li y SiO x in the negative electrode mixture layer may be reduced, and the effect of increasing the capacity may be reduced. Therefore, with respect to Li y SiO x : 100 parts by mass, the conductive material is preferably 95 parts by mass or less, and more preferably 90 parts by mass or less.

前記のLiSiOと導電性材料との複合体は、例えば下記の方法によって得ることができる。 The composite of Li y SiO x and a conductive material can be obtained, for example, by the following method.

まず、SiOと導電性材料との複合体を形成し、その複合体に係るSiOを前記方法(1)によってLiSiOとすることで、電池内でLiSiOと導電性材料との複合体を得ることができる。 First, a composite of SiO x and a conductive material is formed, and the SiO x related to the composite is changed to Li y SiO x by the method (1), so that Li y SiO x and the conductive material are formed in the battery. And a complex can be obtained.

SiOと導電性材料との複合体は、例えば以下の手順で形成する。まず、SiOが分散媒に分散した分散液を用意し、それを噴霧し乾燥して、複数の粒子を含む複合粒子を作製する。分散媒としては、例えば、エタノールなどを用いることができる。分散液の噴霧は、通常、50〜300℃の雰囲気内で行うことが適当である。前記の方法以外にも、振動型や遊星型のボールミルやロッドミルなどを用いた機械的な方法による造粒方法においても、同様の複合粒子を作製することができる。 A composite of SiO x and a conductive material is formed by the following procedure, for example. First, a dispersion liquid in which SiO x is dispersed in a dispersion medium is prepared, and this is sprayed and dried to produce composite particles including a plurality of particles. For example, ethanol or the like can be used as the dispersion medium. It is appropriate to spray the dispersion in an atmosphere of 50 to 300 ° C. In addition to the above method, similar composite particles can be produced also by a granulation method by a mechanical method using a vibration type or planetary type ball mill or rod mill.

なお、LiSiOと、LiSiOよりも比抵抗値の小さい導電性材料との造粒体を作製する場合には、SiOが分散媒に分散した分散液中に前記導電性材料を添加し、この分散液を用いて、SiOを複合化する場合と同様の手法によってSiOと導電性材料との複合粒子(造粒体)を作製し、これを用いて前記方法(1)によってLiSiO形成すればよい。また、前記と同様の機械的な方法による造粒方法によっても、SiOと導電性材料との造粒体を作製し、これを用いてLiSiOと導電性材料との造粒体を得ることができる。 In addition, when producing a granulated body of Li y SiO x and a conductive material having a smaller specific resistance value than Li y SiO x , the conductive material is contained in a dispersion liquid in which SiO x is dispersed in a dispersion medium. It was added, with the dispersion, in the same manner as the case of composite of SiO x to produce composite particles of SiO x and a conductive material (granules), the method using this (1 ) To form Li y SiO x . In addition, a granulated body of SiO x and a conductive material is also produced by a granulation method using the same mechanical method as described above, and a granulated body of Li y SiO x and a conductive material is formed using the granulated body. Can be obtained.

そして、LiSiOの表面を炭素材料で被覆した複合体を得るには、まず、SiO粒子(SiO複合粒子、またはSiOと導電性材料との造粒体)の表面を炭素材料で被覆して複合体とする。これには、例えば、炭化水素系ガスを気相中にて加熱して、炭化水素系ガスの熱分解により生じた炭素を、SiO粒子の表面上に堆積させればよい。このように、気相成長(CVD)法によれば、炭化水素系ガスが複合粒子の隅々にまで行き渡り、粒子の表面や表面の空孔内に、導電性を有する炭素材料を含む薄くて均一な皮膜(炭素被覆層)を形成できることから、少量の炭素材料によって、SiOから形成されるLiSiO粒子に均一性よく導電性を付与できる。 In order to obtain a composite in which the surface of Li y SiO x is coated with a carbon material, first, the surface of the SiO x particles (SiO x composite particles, or a granulated body of SiO x and a conductive material) is made of a carbon material. To form a composite. For this purpose, for example, a hydrocarbon gas is heated in a gas phase, and carbon generated by thermal decomposition of the hydrocarbon gas is deposited on the surface of the SiO x particles. As described above, according to the vapor deposition (CVD) method, the hydrocarbon-based gas spreads to every corner of the composite particle, and the surface of the particle and the pores in the surface are thin and contain a conductive carbon material. because it can form a uniform film (carbon coating layer), a small amount of the carbon material, it can impart good uniformity conductivity Li y SiO x particles formed from SiO x.

炭素材料で被覆されたSiOの製造において、気相成長(CVD)法の処理温度(雰囲気温度)については、炭化水素系ガスの種類によっても異なるが、通常、600〜1200℃が適当であるが、中でも、700℃以上であることが好ましく、800℃以上であることが更に好ましい。処理温度が高い方が不純物の残存が少なく、かつ導電性の高い炭素を含む被覆層を形成できるからである。 In the production of SiO x coated with a carbon material, the processing temperature (atmosphere temperature) of the vapor deposition (CVD) method varies depending on the type of hydrocarbon gas, but usually 600 to 1200 ° C. is appropriate. However, it is preferable that it is 700 degreeC or more especially, and it is still more preferable that it is 800 degreeC or more. This is because the higher the treatment temperature, the less the remaining impurities, and the formation of a coating layer containing carbon having high conductivity.

炭化水素系ガスの液体ソースとしては、トルエン、ベンゼン、キシレン、メシチレン、ヘキサン、シクロヘキサンなどを用いることができるが、取り扱い易いトルエンが特に好ましい。これらを気化させる(例えば、窒素ガスでバブリングする)ことにより炭化水素系ガスを得ることができる。また、メタンガスやエチレンガス、アセチレンガスなどを用いることもできる。   As the liquid source of the hydrocarbon-based gas, toluene, benzene, xylene, mesitylene, hexane, cyclohexane and the like can be used, but toluene that is easy to handle is particularly preferable. A hydrocarbon-based gas can be obtained by vaporizing them (for example, bubbling with nitrogen gas). Moreover, methane gas, ethylene gas, acetylene gas, etc. can also be used.

また、気相成長(CVD)法にてSiO粒子(SiO複合粒子、またはSiOと導電性材料との造粒体)の表面を炭素材料で覆った後に、石油系ピッチ、石炭系のピッチ、熱硬化製樹脂、およびナフタレンスルホン酸塩とアルデヒド類との縮合物よりなる群から選択される少なくとも1種の有機化合物を、炭素材料を含む被覆層に付着させた後、前記有機化合物が付着した粒子を焼成してもよい。 In addition, after covering the surface of SiO x particles (SiO x composite particles, or a granulated body of SiO x and a conductive material) with a carbon material by a vapor deposition (CVD) method, petroleum pitch, coal-based After attaching at least one organic compound selected from the group consisting of pitch, thermosetting resin, and a condensate of naphthalene sulfonate and aldehydes to a coating layer containing a carbon material, the organic compound is The adhered particles may be fired.

具体的には、炭素材料で被覆されたSiO粒子(SiO複合粒子、またはSiOと導電性材料との造粒体)と、前記有機化合物とが分散媒に分散した分散液を用意し、この分散液を噴霧し乾燥して、有機化合物によって被覆された粒子を形成し、その有機化合物によって被覆された粒子を焼成する。 Specifically, a dispersion liquid in which a SiO x particle (SiO x composite particle or a granulated body of SiO x and a conductive material) coated with a carbon material and the organic compound are dispersed in a dispersion medium is prepared. The dispersion is sprayed and dried to form particles coated with the organic compound, and the particles coated with the organic compound are fired.

前記ピッチとしては等方性ピッチを、熱硬化製樹脂としてはフェノール樹脂、フラン樹脂、フルフラール樹脂などを用いることができる。ナフタレンスルホン酸塩とアルデヒド類との縮合物としては、ナフタレンスルホン酸ホルムアルデヒド縮合物を用いることができる。   An isotropic pitch can be used as the pitch, and a phenol resin, a furan resin, a furfural resin, or the like can be used as the thermosetting resin. As the condensate of naphthalene sulfonate and aldehydes, naphthalene sulfonic acid formaldehyde condensate can be used.

炭素材料で被覆されたSiO粒子と前記有機化合物を分散させるための分散媒としては、例えば、水、アルコール類(エタノールなど)を用いることができる。分散液の噴霧は、通常、50〜300℃の雰囲気内で行うことが適当である。焼成温度は、通常、600〜1200℃が適当であるが、中でも700℃以上が好ましく、800℃以上であることが更に好ましい。処理温度が高い方が不純物の残存が少なく、かつ導電性の高い良質な炭素材料を含む被覆層を形成できるからである。ただし、処理温度はSiOの融点以下であることを要する。 As a dispersion medium for dispersing the SiO x particles coated with the carbon material and the organic compound, for example, water or alcohols (ethanol or the like) can be used. It is appropriate to spray the dispersion in an atmosphere of 50 to 300 ° C. The firing temperature is usually 600 to 1200 ° C., preferably 700 ° C. or higher, and more preferably 800 ° C. or higher. This is because the higher the processing temperature, the less the remaining impurities, and the formation of a coating layer containing a high-quality carbon material with high conductivity. However, the processing temperature needs to be lower than the melting point of SiO x .

前記のようにして得られたSiOと導電性材料との複合体を含有する負極合剤層を有する負極を備えた非水二次電池を作製し、前記方法(1)によって前記複合体中のSiOからLiSiOを形成することで、電池内においてLiSiOと導電性材料との複合体を形成することができる。 A non-aqueous secondary battery including a negative electrode having a negative electrode mixture layer containing a composite of SiO x and a conductive material obtained as described above was produced, and the composite (by the method (1)) By forming Li y SiO x from SiO x , a composite of Li y SiO x and a conductive material can be formed in the battery.

また、前記のSiOと導電性材料との複合体の形成方法において、SiOに代えて、前記方法(2)により得られたLiSiOを用いることで、LiSiOと導電性材料との複合体を得ることもできる。 Further, in the method of forming a complex with said SiO x and a conductive material, instead of SiO x, wherein the method (2) by By using the obtained Li y SiO x, Li y SiO x and a conductive A composite with the material can also be obtained.

本発明の電池では、負極活物質として前記のLiSiOのみを使用してもよいが、LiSiOと共に黒鉛を負極活物質として用いてもよい。LiSiOは高容量材料である一方で、充放電に伴う体積変化が大きく、これにより、例えば電池の充放電サイクル特性が低下する虞もある。しかし、負極活物質にと共に黒鉛を使用することで、充放電に伴うLiSiOの体積変化に起因する問題の発生を抑えることができ、充放電サイクル特性のより優れた非水二次電池とすることができる。 In the battery of the present invention, only the above Li y SiO x may be used as the negative electrode active material, but graphite may be used as the negative electrode active material together with Li y SiO x . Li y SiO x is a high-capacity material, but has a large volume change due to charging / discharging, which may deteriorate the charge / discharge cycle characteristics of the battery, for example. However, by using graphite together with the negative electrode active material, it is possible to suppress the occurrence of problems due to the volume change of Li y SiO x due to charge / discharge, and a non-aqueous secondary battery with better charge / discharge cycle characteristics It can be.

LiSiOと共に負極活物質として使用する黒鉛については特に制限はなく、鱗片状黒鉛、土状黒鉛などの天然黒鉛や人造黒鉛を用いることができる。 Li y The graphite used with SiO x as the negative electrode active material is not particularly limited, and may be scaly graphite, natural graphite or artificial graphite such as earthy graphite.

本発明に係る負極は、LiSiOまたはSiO(LiSiOまたはSiOと導電性材料との複合体を含む)、バインダ(結着剤)、および必要に応じて使用される黒鉛などを含む混合物(負極合剤)に、適当な溶媒(分散媒)を加えて十分に混練して得たペースト状やスラリー状の負極合剤含有組成物を、集電体の片面または両面に塗布し、乾燥などにより溶媒(分散媒)を除去して、所定の厚みおよび密度を有する負極合剤層を形成することによって得ることができる。ただし、SiO(SiOと導電性材料との複合体を含む)を使用した場合には、得られた負極を用いて構成した電池を用い、前記方法(1)によってLiSiOを形成させて本発明に係る負極とする。なお、本発明に係る負極は、前記の製法により得られたものに限られず、他の製法で製造したものであってもよい。 The negative electrode according to the present invention includes Li y SiO x or SiO x (including a composite of Li y SiO x or SiO x and a conductive material), a binder (binder), and graphite used as necessary A paste-like or slurry-like negative electrode mixture-containing composition obtained by adding an appropriate solvent (dispersion medium) to a mixture containing the above (a negative electrode mixture) and thoroughly kneading the mixture on one or both sides of the current collector It can be obtained by applying and removing the solvent (dispersion medium) by drying or the like to form a negative electrode mixture layer having a predetermined thickness and density. However, when SiO x (including a composite of SiO x and a conductive material) is used, Li y SiO x is formed by the method (1) using a battery configured using the obtained negative electrode. Thus, the negative electrode according to the present invention is obtained. In addition, the negative electrode which concerns on this invention is not restricted to what was obtained by the said manufacturing method, The thing manufactured by the other manufacturing method may be used.

負極合剤層に使用するバインダとしては、例えば、でんぷん、ポリビニルアルコール、ポリアクリル酸、カルボキシメチルセルロース(CMC)、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロースなどの多糖類やそれらの変成体;ポリビニルクロリド、ポリビニルピロリドン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、ポリアミドイミド、ポリアミドなどの熱可塑性樹脂やそれらの変成体;ポリイミド;エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、ブタジエンゴム、ポリブタジエン、フッ素ゴム、ポリエチレンオキシドなどのゴム状弾性を有するポリマーやそれらの変成体;などが挙げられ、これらの1種または2種以上を用いることができる。   Examples of the binder used in the negative electrode mixture layer include starch, polyvinyl alcohol, polyacrylic acid, carboxymethylcellulose (CMC), hydroxypropylcellulose, regenerated cellulose, diacetylcellulose, and other polysaccharides and modified products thereof; polyvinylchloride, Thermoplastic resins such as polyvinylpyrrolidone, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, polyamideimide, polyamide and their modified products; polyimide; ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene Rubber (SBR), butadiene rubber, polybutadiene, fluororubber, polyethylene oxide and other polymers having rubbery elasticity, and modified products thereof. May be used alone or two or more al.

負極合剤層には、更に導電助剤として導電性材料を添加してもよい。このような導電性材料としては、非水二次電池内において化学変化を起こさないものであれば特に限定されず、例えば、カーボンブラック(サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラック、アセチレンブラックなど)、炭素繊維、金属粉(銅、ニッケル、アルミニウム、銀など)、金属繊維、ポリフェニレン誘導体(特開昭59−20971号公報に記載のもの)などの材料を、1種または2種以上用いることができる。これらの中でも、カーボンブラックを用いることが好ましく、ケッチェンブラックやアセチレンブラックがより好ましい。   A conductive material may be further added to the negative electrode mixture layer as a conductive aid. Such a conductive material is not particularly limited as long as it does not cause a chemical change in the non-aqueous secondary battery. For example, carbon black (thermal black, furnace black, channel black, ketjen black, acetylene black) Etc.), carbon fibers, metal powder (copper, nickel, aluminum, silver, etc.), metal fibers, polyphenylene derivatives (described in JP-A-59-20971), and the like are used alone or in combination. be able to. Among these, carbon black is preferably used, and ketjen black and acetylene black are more preferable.

導電助剤として使用する炭素材料の粒径は、例えば、後述する実施例に記載の方法により求められる平均粒径で、0.01μm以上であることが好ましく、0.02μm以上であることがより好ましく、また、10μm以下であることが好ましく、5μm以下であることがより好ましい。   The particle size of the carbon material used as the conductive auxiliary agent is, for example, an average particle size determined by the method described in Examples described later, preferably 0.01 μm or more, and more preferably 0.02 μm or more. It is preferably 10 μm or less, more preferably 5 μm or less.

なお、負極活物質としてLiSiOと黒鉛とを併用する場合には、負極合剤層において、LiSiOと黒鉛(LiSiOと導電性材料との複合体における導電性材料に黒鉛を使用した場合には、この複合体に使用した黒鉛の量を含む。LiSiOと黒鉛との比率について、以下同じ。)との合計を100質量%としたとき、LiSiOの比率を、3質量%以上とすることが好ましく、4質量%以上とすることがより好ましい。LiSiOの比率を前記のようにすることで、非水二次電池をより高容量とすることができる。また、黒鉛の使用による効果(充放電に伴うLiSiOの体積変化に起因する前記問題の抑制効果)をより良好に確保する観点からは、負極合剤層において、LiSiOと黒鉛との合計を100質量%としたとき、LiSiOの比率を、20質量%以下とすることが好ましく、18質量%以下とすることがより好ましい。 When Li y SiO x and graphite are used in combination as the negative electrode active material, in the negative electrode mixture layer, the conductive material in the composite of Li y SiO x and graphite (Li y SiO x and conductive material) is used. When graphite is used, the amount of graphite used in the composite is included. The ratio of Li y SiO x to graphite is the same hereinafter.) When the total of 100% by mass is defined as Li y SiO x The ratio is preferably 3% by mass or more, and more preferably 4% by mass or more. By setting the ratio of Li y SiO x as described above, the capacity of the non-aqueous secondary battery can be increased. Further, from the viewpoint of better ensuring the effect of using graphite (the effect of suppressing the above-mentioned problem caused by the volume change of Li y SiO x accompanying charge / discharge), in the negative electrode mixture layer, Li y SiO x and graphite The ratio of Li y SiO x is preferably 20% by mass or less, and more preferably 18% by mass or less.

また、負極合剤層においては、負極活物質の総量(LiSiOのみを使用する場合には、その量。LiSiOと黒鉛を併用する場合には、これらの合計量であり、LiSiOと導電性材料との複合体における導電性材料に黒鉛を使用した場合には、この複合体に使用した黒鉛の量を含む。)を、80〜99質量%とし、バインダの量を1〜20質量%とすることが好ましい。LiSiOとの複合体を構成するための導電性材料(好ましくは炭素材料)や、その他の導電助剤として導電性材料を使用する場合には、負極合剤層におけるこれらの導電性材料は、負極活物質の総量およびバインダ量が、前記の好適値を満足する範囲で使用することが好ましい。 Moreover, in the negative electrode mixture layer, the total amount of the negative electrode active material (when only Li y SiO x is used, the amount thereof. When Li y SiO x and graphite are used in combination, the total amount thereof, When graphite is used as the conductive material in the composite of Li y SiO x and conductive material, the amount of graphite used in this composite is included.) Is 80 to 99% by mass, and the amount of binder Is preferably 1 to 20% by mass. In the case of using a conductive material (preferably a carbon material) for forming a composite with Li y SiO x or other conductive auxiliary agent, these conductive materials in the negative electrode mixture layer Is preferably used in such a range that the total amount of the negative electrode active material and the amount of the binder satisfy the above preferred values.

負極合剤層の厚みは、例えば、10〜100μmであることが好ましい。   The thickness of the negative electrode mixture layer is preferably 10 to 100 μm, for example.

本発明の電池は、前記の負極を有していればよく、その他の構成および構造については特に制限はなく、従来から知られている非水二次電池で採用されている構成および構造を適用することができる。   The battery of the present invention only needs to have the above-described negative electrode, and there are no particular restrictions on the other configurations and structures, and the configurations and structures employed in conventionally known non-aqueous secondary batteries are applied. can do.

本発明の電池に係る正極には、例えば正極活物質、導電助剤およびバインダなどを含有する正極合剤層を、集電体の片面または両面に有する正極を使用することができる。   For the positive electrode according to the battery of the present invention, a positive electrode having, for example, a positive electrode mixture layer containing a positive electrode active material, a conductive additive and a binder on one side or both sides of the current collector can be used.

正極活物質としては、従来公知の非水二次電池に用いられている活物質、すなわち、Liイオンを吸蔵放出可能な活物質であれば特に制限はない。例えば、Li1+xMO(−0.1<x<0.1、M:Co、Ni、Mn、Al、Mgなど)で表される層状構造のリチウム含有遷移金属酸化物、LiMnやその元素の一部を他元素で置換したスピネル構造のリチウムマンガン酸化物、LiMPO(M:Co、Ni、Mn、Feなど)で表されるオリビン型化合物などを用いることが可能である。 The positive electrode active material is not particularly limited as long as it is an active material used in conventionally known non-aqueous secondary batteries, that is, an active material capable of occluding and releasing Li ions. For example, a lithium-containing transition metal oxide having a layered structure represented by Li 1 + x MO 2 (−0.1 <x <0.1, M: Co, Ni, Mn, Al, Mg, etc.), LiMn 2 O 4 , It is possible to use a spinel structure lithium manganese oxide in which part of the element is substituted with another element, an olivine type compound represented by LiMPO 4 (M: Co, Ni, Mn, Fe, etc.), or the like.

前記層状構造のリチウム含有遷移金属酸化物の具体例としては、LiCoOやLiNi1−xCox−yAl(0.1≦x≦0.3、0.01≦y≦0.2)などの他、少なくともCo、NiおよびMnを含む酸化物(LiMn1/3Ni1/3Co1/3、LiMn5/12Ni5/12Co1/6、LiMn3/5Ni1/5Co1/5など)などを例示することができる。 Specific examples of the lithium-containing transition metal oxide having a layered structure include LiCoO 2 and LiNi 1-x Co xy Al y O 2 (0.1 ≦ x ≦ 0.3, 0.01 ≦ y ≦ 0. 2) and other oxides containing at least Co, Ni and Mn (LiMn 1/3 Ni 1/3 Co 1/3 O 2 , LiMn 5/12 Ni 5/12 Co 1/6 O 2 , LiMn 3 / 5 Ni 1/5 Co 1/5 O 2 etc.).

正極は、前記の正極活物質と導電助剤とバインダとを含む混合物(正極合剤)に、適当な溶媒(分散媒)を加えて十分に混練して得たペースト状やスラリー状の正極合剤含有組成物を、集電体の片面または両面に塗布し、所定の厚みおよび密度を有する正極合剤層を形成することによって得ることができる。なお、正極は、前記の製法により得られたものに限られず、他の製法で製造したものであってもよい。   The positive electrode is a paste-like or slurry-like positive electrode mixture obtained by adding an appropriate solvent (dispersion medium) to the mixture (positive electrode mixture) containing the positive electrode active material, the conductive additive and the binder, and sufficiently kneading the mixture. The agent-containing composition can be obtained by applying on one or both sides of the current collector to form a positive electrode mixture layer having a predetermined thickness and density. The positive electrode is not limited to the one obtained by the above-described production method, and may be one produced by another production method.

正極に係るバインダとしては、負極用のものとして例示した前記の各バインダを用いることができる。また、正極に係る導電助剤についても、負極用のものとして例示した前記の各導電助剤や黒鉛(鱗片状黒鉛、土状黒鉛などの天然黒鉛や人造黒鉛など)を使用できる。   As the binder relating to the positive electrode, the above-described binders exemplified as those for the negative electrode can be used. In addition, as for the conductive auxiliary agent related to the positive electrode, the above-described conductive auxiliary agents and graphite (natural graphite such as scale-like graphite and earth-like graphite, artificial graphite, etc.) exemplified for the negative electrode can be used.

なお、前記正極に係る正極合剤層においては、正極活物質の含有量が、例えば、79.5〜99質量%であり、バインダの含有量が、例えば、0.5〜20質量%であり、導電助剤の含有量が、例えば、0.5〜20質量%であることが好ましい。また、正極合剤層の厚みは、集電体の片面あたり、15〜200μmであることが好ましい。   In the positive electrode mixture layer according to the positive electrode, the content of the positive electrode active material is, for example, 79.5 to 99% by mass, and the content of the binder is, for example, 0.5 to 20% by mass. The content of the conductive assistant is preferably, for example, 0.5 to 20% by mass. Moreover, it is preferable that the thickness of a positive mix layer is 15-200 micrometers per single side | surface of a collector.

本発明の非水二次電池で用いる非水電解質としては、下記の溶媒中に下記の無機イオン塩を溶解させることによって調製した電解液が挙げられる。   Examples of the non-aqueous electrolyte used in the non-aqueous secondary battery of the present invention include an electrolyte prepared by dissolving the following inorganic ion salt in the following solvent.

溶媒としては,例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、燐酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3−プロパンサルトンなどの非プロトン性有機溶媒を、1種または2種以上用いることができる。   Examples of the solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate, diethyl carbonate (DEC), methyl ethyl carbonate (MEC), γ-butyrolactone, 1,2-dimethoxyethane. , Tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, 3 Non-prototypes such as methyl-2-oxazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, diethyl ether, 1,3-propane sultone Sex organic solvents may be used alone or in combination.

無機イオン塩としては,Li塩、例えば、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、低級脂肪族カルボン酸Li、LiAlCl、LiCl、LiBr、LiI、クロロボランLi、四フェニルホウ酸Liなどを、1種または2種以上用いることができる。 As the inorganic ion salt, Li salt, for example, LiClO 4, LiBF 4, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, lower aliphatic carboxylic acids Li, LiAlCl 4 , LiCl, LiBr, LiI, chloroborane Li, Li tetraphenylborate, or the like can be used alone or in combination.

前記溶媒中に前記無機イオン塩が溶解された電解液の中でも、1,2−ジメトキシエタン,ジエチルカーボネートおよびメチルエチルカーボネートよりなる群から選ばれる少なくとも1種と,エチレンカーボネートまたはプロピレンカーボネートとを含む溶媒に、LiClO、LiBF、LiPF、およびLiCFSOよりなる群から選ばれる少なくとも1種の無機イオン塩を溶解した電解液が好ましい。電解液中の無機イオン塩の濃度は、例えば、0.2〜3.0mol/dmが適当である。 Among the electrolytic solutions in which the inorganic ion salt is dissolved in the solvent, a solvent containing at least one selected from the group consisting of 1,2-dimethoxyethane, diethyl carbonate, and methyl ethyl carbonate, and ethylene carbonate or propylene carbonate In addition, an electrolytic solution in which at least one inorganic ion salt selected from the group consisting of LiClO 4 , LiBF 4 , LiPF 6 , and LiCF 3 SO 3 is dissolved is preferable. An appropriate concentration of the inorganic ion salt in the electrolytic solution is, for example, 0.2 to 3.0 mol / dm 3 .

本発明の非水二次電池に係るセパレータとしては、強度が十分で、かつ電解液を多く保持できるものがよく、そのような観点から、厚さが10〜50μmで開口率が30〜70%の、ポリエチレン、ポリプロピレン、またはエチレン−プロピレン共重合体を含む微多孔フィルムや不織布などが好ましい。   As the separator according to the nonaqueous secondary battery of the present invention, a separator having sufficient strength and capable of holding a large amount of electrolyte is preferable. From such a viewpoint, the thickness is 10 to 50 μm and the aperture ratio is 30 to 70%. Of these, a microporous film or a nonwoven fabric containing polyethylene, polypropylene, or ethylene-propylene copolymer is preferable.

また、本発明の非水二次電池では、その形状などについても特に制限はない。例えば、コイン形、ボタン形、シート形、積層形、円筒形、偏平形、角形、電気自動車などに用いる大型のものなど、いずれであってもよい。   Moreover, in the non-aqueous secondary battery of this invention, there is no restriction | limiting in particular also about the shape. For example, any of a coin shape, a button shape, a sheet shape, a laminated shape, a cylindrical shape, a flat shape, a square shape, a large size used for an electric vehicle, etc. may be used.

なお、本発明の非水二次電池は、負極活物質にLiSiOと黒鉛とを併用した場合、放電状態における負極合剤層中のLiの量が、原子比率で、SiとCとの合計量の0.05〜0.5倍であることが好ましい。放電状態における負極合剤層中のLiの量が前記値にある場合には、負極活物質の利用率が高いため、高容量となる。負極合剤層におけるLiSiOと黒鉛との使用比率を前記好適値とすることで、放電状態における負極合剤層中のLiの量が前記値となる非水二次電池を構成できる。 In the non-aqueous secondary battery of the present invention, when Li y SiO x and graphite are used in combination as the negative electrode active material, the amount of Li in the negative electrode mixture layer in the discharged state is an atomic ratio of Si and C. The total amount is preferably 0.05 to 0.5 times. When the amount of Li in the negative electrode mixture layer in the discharged state is the above value, the capacity of the negative electrode active material is high, and thus the capacity is high. By setting the use ratio of Li y SiO x and graphite in the negative electrode mixture layer to the preferred value, a non-aqueous secondary battery in which the amount of Li in the negative electrode mixture layer in the discharged state is the above value can be configured.

本発明の非水二次電池は、高容量であり、かつ優れた電池特性を有していることから、これらの特性を生かして、小型で多機能な携帯機器の電源を始めとして、従来から知られている非水二次電池が適用されている各種用途に好ましく用いることができる。   Since the non-aqueous secondary battery of the present invention has a high capacity and excellent battery characteristics, taking advantage of these characteristics, a power supply for a small and multifunctional portable device has been conventionally used. It can be preferably used for various applications to which known non-aqueous secondary batteries are applied.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。なお、以下の実施例における各種粒子の平均粒径は、マイクロトラック社製「MICROTRAC HRA(Model:9320−X100)」を用いて、レーザー回折式粒度分布測定法により測定した体積平均値である。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention. In addition, the average particle diameter of the various particles in the following examples is a volume average value measured by a laser diffraction particle size distribution measurement method using “MICROTRAC HRA (Model: 9320-X100)” manufactured by Microtrack.

実施例1
SiO(平均粒径5.0μm)と黒鉛を用いて、負極用電極を作製した。前記SiOを10質量%(固形分全量中の含有量。以下同じ。)と、黒鉛84質量%と、導電助剤としてケッチェンブラック2質量%と、バインダとしてCMC2質量%とSBR2質量%、水とを混合して負極合剤含有スラリーを調製した。
Example 1
A negative electrode was prepared using SiO (average particle size: 5.0 μm) and graphite. 10% by mass of SiO (content in the total solid content; the same shall apply hereinafter), 84% by mass of graphite, 2% by mass of ketjen black as a conductive additive, 2% by mass of CMC and 2% by mass of SBR as a binder, water Were mixed to prepare a negative electrode mixture-containing slurry.

ブレードコーターを用いて、前記の負極合剤含有スラリーを厚みが10μmの銅箔からなる集電体の両面に塗布し、100℃で乾燥した後ローラープレス機により圧縮成形して、片面あたりの厚みが60μmの負極合剤層を形成した。集電体上に負極合剤層を形成した電極を、真空中100℃で15時間乾燥させた。   Using a blade coater, the negative electrode mixture-containing slurry was applied to both sides of a current collector made of copper foil having a thickness of 10 μm, dried at 100 ° C., and then compression-molded with a roller press to obtain a thickness per side. Formed a negative electrode mixture layer having a thickness of 60 μm. The electrode having the negative electrode mixture layer formed on the current collector was dried in vacuum at 100 ° C. for 15 hours.

乾燥後の電極について、更に遠赤外線ヒーターを用いて160℃で15時間熱処理を施した。熱処理後の電極では、負極合剤層と集電体との接着性は強固であり、裁断や折り曲げによっても、負極合剤層が集電体から剥離することはなかった。   The dried electrode was further heat-treated at 160 ° C. for 15 hours using a far infrared heater. In the electrode after the heat treatment, the adhesion between the negative electrode mixture layer and the current collector was strong, and the negative electrode mixture layer was not peeled off from the current collector even by cutting or bending.

その後、前記電極を幅37mmに裁断して短冊状の負極用電極を得た。   Thereafter, the electrode was cut into a width of 37 mm to obtain a strip-shaped electrode for negative electrode.

また、正極を以下のようにして作製した。まず、正極材料(正極活物質)としてLi1.0Ni0.6Mn0.2Co0.2を96質量%(固形分全量中の含有量。以下同じ。)と、導電助剤としてケッチェンブラック2質量%と、バインダとしてPVDF2質量%と、脱水NMPとを混合して得た正極合剤含有スラリーを、厚みが15μmのアルミニウム箔からなる集電体の両面に塗布し、乾燥後プレスして、片面あたりの厚みが70μmの正極合剤層を形成した。その後、これを幅36mmに裁断して短冊状の正極を得た。 Moreover, the positive electrode was produced as follows. First, 96% by mass of Li 1.0 Ni 0.6 Mn 0.2 Co 0.2 O 2 as a positive electrode material (positive electrode active material) (content in the total solid content; the same shall apply hereinafter) and a conductive auxiliary agent A positive electrode mixture-containing slurry obtained by mixing 2% by mass of ketjen black, 2% by mass of PVDF as a binder, and dehydrated NMP was applied to both sides of a current collector made of an aluminum foil having a thickness of 15 μm and dried. Post-pressing was performed to form a positive electrode mixture layer having a thickness of 70 μm per side. Thereafter, this was cut into a width of 36 mm to obtain a strip-shaped positive electrode.

次に、前記の負極用電極と前記の正極とを、微孔性ポリエチレンフィルム製のセパレータ(厚み18μm、空孔率50%)を介して重ね合わせてロール状に巻回した後、正極および負極用電極に端子を溶接し、厚み4mm、幅34mm、高さ43mm(463443型)のアルミニウム製正極缶に挿入し、蓋を溶接して取り付けた。その後、蓋の注液口よりEC:DEC=3:7(体積比)の溶媒に1molのLiPFおよび2質量%のVCを溶解させて調製した電解液(非水電解質)2.0gを容器内に注入し、密閉して、図1に示す構造で、図2に示す外観の角形非水二次電池を複数作製した。 Next, the negative electrode and the positive electrode are overlapped with a microporous polyethylene film separator (thickness 18 μm, porosity 50%) and wound into a roll, and then the positive electrode and the negative electrode A terminal was welded to the electrode for use, inserted into an aluminum positive electrode can having a thickness of 4 mm, a width of 34 mm, and a height of 43 mm (463443 type), and a lid was welded to be attached. Thereafter, 2.0 g of an electrolytic solution (nonaqueous electrolyte) prepared by dissolving 1 mol of LiPF 6 and 2% by mass of VC in a solvent of EC: DEC = 3: 7 (volume ratio) from a liquid inlet of the lid A plurality of rectangular non-aqueous secondary batteries having the structure shown in FIG. 1 and the appearance shown in FIG. 2 were produced.

その後、前記の各電池について、以下の条件で初回充放電を行った。まず、定格容量を1時間で放電できる電流値(1C)の10%の電流値(0.1C)で4.2Vまで定電流充電を行い、続いて4.2Vの定電圧で電流値が0.01Cになるまで(すなわち、満充電状態になるまで)充電を行った。その後、これらの電池を0.1Cの定電流で2.5Vまで放電させた。   Thereafter, each battery was charged and discharged for the first time under the following conditions. First, constant current charging is performed up to 4.2 V at a current value (0.1 C) of 10% of the current value (1 C) that can discharge the rated capacity in 1 hour, and then the current value is 0 at a constant voltage of 4.2 V. The battery was charged until it reached 0.01 C (that is, until it was fully charged). Then, these batteries were discharged to 2.5 V with a constant current of 0.1 C.

前記放電後の電池の一部は、アルゴン雰囲気中で分解して負極を取り出し、前記の方法で負極活物質(LiSiO)の表面近傍および全体の組成分析を行った。また、表面中のLiの存在の確認は前記のXPS測定により行った。それ以外の電池は、後記の特性評価に用いた。 A part of the battery after the discharge was decomposed in an argon atmosphere, the negative electrode was taken out, and the vicinity of the surface of the negative electrode active material (Li y SiO x ) and the entire composition were analyzed by the above method. The presence of Li in the surface was confirmed by the XPS measurement. The other batteries were used for the characteristic evaluation described later.

なお、図1および図2に示す電池について説明すると、図1の(a)は平面図、(b)はその部分断面図であって、図1(b)に示すように、正極1と負極2はセパレータ3を介して渦巻状に巻回した後、扁平状になるように加圧して扁平状の巻回電極体6として、角形(角筒形)の正極缶4に電解液(非水電解質)と共に収容されている。ただし、図1では、煩雑化を避けるため、正極1や負極2の作製にあたって使用した集電体としての金属箔や電解液などは図示していない。   The battery shown in FIGS. 1 and 2 will be described. FIG. 1A is a plan view, and FIG. 1B is a partial sectional view thereof. As shown in FIG. 2 is spirally wound through a separator 3 and then pressed to be flattened to form a flat wound electrode body 6 into a rectangular (square tube) positive electrode can 4 with an electrolyte (non-aqueous solution). It is housed together with the electrolyte. However, in FIG. 1, in order to avoid complication, a metal foil, an electrolytic solution, and the like as a current collector used for manufacturing the positive electrode 1 and the negative electrode 2 are not illustrated.

正極缶4はアルミニウム合金製で電池の外装体を構成するものであり、この正極缶4は正極端子を兼ねている。そして、正極缶4の底部にはポリエチレンシートからなる絶縁体5が配置され、正極1、負極2およびセパレータ3からなる扁平状巻回電極体6からは、正極1および負極2のそれぞれ一端に接続された正極リード体7と負極リード体8が引き出されている。また、正極缶4の開口部を封口するアルミニウム合金製の蓋(封口用蓋板)9にはポリプロピレン製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード板13が取り付けられている。   The positive electrode can 4 is made of an aluminum alloy and constitutes an outer package of the battery. The positive electrode can 4 also serves as a positive electrode terminal. An insulator 5 made of a polyethylene sheet is arranged at the bottom of the positive electrode can 4, and is connected to one end of each of the positive electrode 1 and the negative electrode 2 from the flat wound electrode body 6 made of the positive electrode 1, the negative electrode 2 and the separator 3. The positive electrode lead body 7 and the negative electrode lead body 8 thus drawn are drawn out. A stainless steel terminal 11 is attached to an aluminum alloy lid (sealing lid plate) 9 for sealing the opening of the positive electrode can 4 via a polypropylene insulating packing 10. A stainless steel lead plate 13 is attached via the body 12.

そして、この蓋9は正極缶4の開口部に挿入され、両者の接合部を溶接することによって、正極缶4の開口部が封口され、電池内部が密閉されている。また、図1の電池では、蓋9に電解液注入口14が設けられており、この電解液注入口14には、封止部材が挿入された状態で、例えばレーザー溶接などにより溶接封止されて、電池の密閉性が確保されている(従って、図1および図2の電池では、実際には、電解液注入口14は、電解液注入口と封止部材であるが、説明を容易にするために、電解液注入口14として示している)。更に、蓋9には、電池の温度が上昇した際に内部のガスを外部に排出する機構として、開裂ベント15が設けられている。   And this lid | cover 9 is inserted in the opening part of the positive electrode can 4, and the opening part of the positive electrode can 4 is sealed by welding the junction part of both, and the inside of a battery is sealed. Further, in the battery of FIG. 1, an electrolyte inlet 14 is provided in the lid 9, and the electrolyte inlet 14 is welded and sealed by, for example, laser welding in a state where a sealing member is inserted. Thus, the battery hermeticity is ensured (therefore, in the battery shown in FIGS. 1 and 2, the electrolyte inlet 14 is actually an electrolyte inlet and a sealing member. In order to do so, it is shown as an electrolyte inlet 14). Further, the lid 9 is provided with a cleavage vent 15 as a mechanism for discharging the internal gas to the outside when the battery temperature rises.

この実施例1の電池では、正極リード体7を蓋9に直接溶接することによって正極缶4と蓋9とが正極端子として機能し、負極リード体8をリード板13に溶接し、そのリード板13を介して負極リード体8と端子11とを導通させることによって端子11が負極端子として機能するようになっているが、正極缶4の材質などによっては、その正負が逆になる場合もある。   In the battery of this Example 1, the positive electrode can 4 and the lid 9 function as a positive electrode terminal by directly welding the positive electrode lead body 7 to the lid 9, and the negative electrode lead body 8 is welded to the lead plate 13. The terminal 11 functions as a negative electrode terminal by connecting the negative electrode lead body 8 and the terminal 11 via 13, but the positive / negative may be reversed depending on the material of the positive electrode can 4. .

図2は前記図1に示す電池の外観を模式的に示す斜視図であり、この図2は前記電池が角形電池であることを示すことを目的として図示されたものであって、この図1では電池を概略的に示しており、電池の構成部材のうち特定のものしか図示していない。また、図1においても、電極体の内周側の部分は断面にしていない。   FIG. 2 is a perspective view schematically showing the external appearance of the battery shown in FIG. 1. FIG. 2 is shown for the purpose of showing that the battery is a square battery. FIG. 1 schematically shows a battery, and only specific members of the battery are shown. Also in FIG. 1, the inner peripheral portion of the electrode body is not cross-sectional.

実施例2
SiO(平均粒径5.0μm)を沸騰床反応器中で約1000℃に加熱し、加熱された粒子にメタンとアルゴンガスからなる25〜30℃の混合ガスを接触させ、1000℃で60分間CVD処理を行った。このようにして前記混合ガスが熱分解して生じた炭素(以下「CVD炭素」ともいう)を複合粒子に堆積させて被覆層を形成し、負極材料(炭素被覆SiO)を得た。
Example 2
SiO (average particle size 5.0 μm) is heated to about 1000 ° C. in a boiling bed reactor, and the heated particles are contacted with a mixed gas of 25 to 30 ° C. composed of methane and argon gas, and the mixture is heated at 1000 ° C. for 60 minutes. A CVD process was performed. Thus, carbon (hereinafter also referred to as “CVD carbon”) generated by pyrolyzing the mixed gas was deposited on the composite particles to form a coating layer, and a negative electrode material (carbon-coated SiO) was obtained.

被覆層形成前後の質量変化から前記負極材料の組成を算出したところ、SiO:CVD炭素=85:15(質量比)であった。   When the composition of the negative electrode material was calculated from the mass change before and after the coating layer was formed, it was SiO: CVD carbon = 85: 15 (mass ratio).

次に、前記負極材料10質量%(固形分全量中の含有量、以下同じ)と、黒鉛84質量%と、導電助剤としてケッチェンブラック2質量%と、バインダとしてCMC2質量%とSBR2質量%、水とを混合して負極合剤含有スラリーを調製した。この負極合剤含有スラリーを負極合剤層の形成に用いた以外は、実施例1と同様にして負極用電極を作製し、この負極用電極を用いた以外は、実施例1と同様にして463443型角形非水二次電池を複数作製した。そして、これらの電池について、実施例1と同様にして初回充放電を行った後、一部の電池について、負極活物質の分析を行った。   Next, 10% by mass of the negative electrode material (content in the total solid content, the same shall apply hereinafter), 84% by mass of graphite, 2% by mass of Ketjen Black as a conductive additive, 2% by mass of CMC and 2% by mass of SBR as a binder , And water were mixed and the negative mix containing slurry was prepared. A negative electrode was prepared in the same manner as in Example 1 except that this negative electrode mixture-containing slurry was used for forming the negative electrode mixture layer. Except that this negative electrode was used, in the same manner as in Example 1. A plurality of 463443-type prismatic non-aqueous secondary batteries were produced. And about these batteries, after performing initial charge / discharge similarly to Example 1, the negative electrode active material was analyzed about some batteries.

実施例3
SiO(平均粒径1μm)と、黒鉛(平均粒径10μm)と、バインダのポリエチレン樹脂粒子を4Lのステンレス鋼製容器に入れ、更にステンレス鋼製のボールを入れて振動ミルにて3時間混合、粉砕、造粒を行った。その結果、平均粒径20μmの複合粒子(SiOと黒鉛の複合粒子)を作製できた。続いて、前記複合粒子を沸騰床反応器中で約950℃に加熱し、加熱された複合粒子にトルエンとアルゴンガスとからなる25〜30℃の混合ガスを接触させ、950℃で60分間CVD処理を行った。このようにして、前記混合ガスが熱分解して生じた炭素を前記複合粒子に堆積させて被覆層を形成し、負極材料を得た。
Example 3
SiO (average particle size 1 μm), graphite (average particle size 10 μm), and polyethylene resin particles of a binder are put into a 4 L stainless steel container, and further a stainless steel ball is added and mixed in a vibration mill for 3 hours. Grinding and granulation were performed. As a result, composite particles (composite particles of SiO and graphite) having an average particle diameter of 20 μm could be produced. Subsequently, the composite particles are heated to about 950 ° C. in a boiling bed reactor, a mixed gas of 25 to 30 ° C. composed of toluene and argon gas is brought into contact with the heated composite particles, and CVD is performed at 950 ° C. for 60 minutes. Processed. In this manner, carbon produced by the thermal decomposition of the mixed gas was deposited on the composite particles to form a coating layer, thereby obtaining a negative electrode material.

被覆層形成前後の質量変化から前記負極材料の組成を算出したところ、SiO:黒鉛:CVD炭素=10:80:10(質量比)であった。   When the composition of the negative electrode material was calculated from the mass change before and after the coating layer was formed, it was SiO: graphite: CVD carbon = 10: 80: 10 (mass ratio).

次に、この負極活物質を用いた以外は実施例1と同様にして負極用電極を作製し、この負極用電極を用いた以外は、実施例1と同様にして463443型角形非水二次電池を複数作製した。そして、これらの電池について、実施例1と同様にして初回充放電を行った後、一部の電池について、負極活物質の分析を行った。   Next, a negative electrode was prepared in the same manner as in Example 1 except that this negative electrode active material was used, and a 463443-type square non-aqueous secondary was prepared in the same manner as in Example 1 except that this negative electrode was used. A plurality of batteries were produced. And about these batteries, after performing initial charge / discharge similarly to Example 1, the negative electrode active material was analyzed about some batteries.

実施例4
負極合剤中のバインダをポリアミドイミドに変更し、更に負極合剤含有スラリーの溶媒を脱水NMPに変更した以外は、実施例2と同様にして負極用電極を作製し、この負極用電極を用いた以外は、実施例1と同様にして463443型角形非水二次電池を複数作製した。そして、これらの電池について、実施例1と同様にして初回充放電を行った後、一部の電池について、負極活物質の分析を行った。
Example 4
A negative electrode was prepared in the same manner as in Example 2 except that the binder in the negative electrode mixture was changed to polyamideimide, and the solvent of the negative electrode mixture-containing slurry was changed to dehydrated NMP. Except for the above, a plurality of 463443-type prismatic non-aqueous secondary batteries were produced in the same manner as in Example 1. And about these batteries, after performing initial charge / discharge similarly to Example 1, the negative electrode active material was analyzed about some batteries.

実施例5
負極合剤中の黒鉛を無くし,炭素被覆SiOを90質量%に,バインダをポリアミドイミド8質量%にし、ケッチェンブラック2質量%とした以外は、実施例4と同様にして負極用電極を作製し、この負極用電極を用いた以外は、実施例1と同様にして463443型角形非水二次電池を複数作製した。そして、これらの電池について、実施例1と同様にして初回充放電を行った後、一部の電池について、負極活物質の分析を行った。
Example 5
A negative electrode was prepared in the same manner as in Example 4 except that the graphite in the negative electrode mixture was eliminated, the carbon-coated SiO was 90% by mass, the binder was 8% by mass of polyamideimide, and the ketjen black was 2% by mass. A plurality of 463443-type prismatic non-aqueous secondary batteries were produced in the same manner as in Example 1 except that this negative electrode was used. And about these batteries, after performing initial charge / discharge similarly to Example 1, the negative electrode active material was analyzed about some batteries.

実施例6
正極材料(正極活物質)をLi1.02Ni0.9Co0.05Mn0.03Mg0.02に変更した以外は、実施例2と同様にして463443型角形非水二次電池を複数作製した。そして、これらの電池について、実施例1と同様にして初回充放電を行った後、一部の電池について、負極活物質の分析を行った。
Example 6
463443 square non-aqueous secondary as in Example 2 except that the positive electrode material (positive electrode active material) was changed to Li 1.02 Ni 0.9 Co 0.05 Mn 0.03 Mg 0.02 O 2 A plurality of batteries were produced. And about these batteries, after performing initial charge / discharge similarly to Example 1, the negative electrode active material was analyzed about some batteries.

実施例7
実施例2と同様にして463443型角形非水二次電池を複数作製した後、これらの電池について、定格容量を1時間で放電できる電流値(1C)の60%の電流値(0.6C)で4.2Vまで定電流充電を行い、続いて4.2Vの定電圧で電流値が0.06Cになるまで(すなわち、満充電状態になるまで)充電を行った。その後、これらの電池を0.6Cの定電流で2.5Vまで放電させた。そして、これらの電池の一部について、負極活物質の分析を行った。
Example 7
After producing a plurality of 463443-type rectangular non-aqueous secondary batteries in the same manner as in Example 2, the current value (0.6 C) of these batteries was 60% of the current value (1 C) at which the rated capacity could be discharged in one hour. Then, the battery was charged at a constant current of up to 4.2 V, and then charged at a constant voltage of 4.2 V until the current value reached 0.06 C (that is, until the battery was fully charged). Thereafter, these batteries were discharged to 2.5 V at a constant current of 0.6C. And the negative electrode active material was analyzed about some of these batteries.

実施例8
実施例2と同様にして463443型角形非水二次電池を複数作製した後、これらの電池について、定格容量を1時間で放電できる電流値(1C)の10%の電流値(0.1C)で4.0Vまで定電流充電を行い、続いて4.2Vまで0.6Cの電流値で定電流充電を行い、更に続いて4.2Vの定電圧で電流値が0.05Cになるまで(すなわち、満充電状態になるまで)充電を行った。その後、これらの電池を0.1Cの定電流で2.5Vまで放電させた。そして、これらの電池の一部について、負極活物質の分析を行った。
Example 8
After producing a plurality of 463443-type prismatic non-aqueous secondary batteries in the same manner as in Example 2, the current value (0.1 C) of these batteries was 10% of the current value (1 C) at which the rated capacity can be discharged in one hour. At a constant current charge of up to 4.0V, a constant current charge of up to 4.2V at a current value of 0.6C, and then a constant voltage of 4.2V until the current value reaches 0.05C ( That is, charging was performed until the battery was fully charged. Then, these batteries were discharged to 2.5 V with a constant current of 0.1 C. And the negative electrode active material was analyzed about some of these batteries.

実施例9
実施例1で用いたものと同じSiOと、Li金属とを、10:1(モル比)となるように密閉式の遊星ボールミル容器にアルゴンガス中で充填し、アルミナビーズとともに150rpmで1時間混合した。このようにして得られた材料をSiOに代えて用いた以外は、実施例4と同様にして負極用電極を作製し、この負極用電極を用いた以外は実施例1と同様にして463443型角形非水二次電池を複数作製した。そして、これらの電池について、実施例1と同様にして初回充放電を行った後、一部の電池について、負極活物質の分析を行った。
Example 9
The same SiO and Li metal as used in Example 1 were filled in argon gas in a sealed planetary ball mill container so as to have a molar ratio of 10: 1, and mixed with alumina beads at 150 rpm for 1 hour. did. A negative electrode was prepared in the same manner as in Example 4 except that the material thus obtained was used instead of SiO. The 463443 type was prepared in the same manner as in Example 1 except that this negative electrode was used. A plurality of prismatic non-aqueous secondary batteries were produced. And about these batteries, after performing initial charge / discharge similarly to Example 1, the negative electrode active material was analyzed about some batteries.

実施例10
実施例9と同様にして463443型角形非水二次電池を複数作製した後、これらの電池について、定格容量を1時間で放電できる電流値(1C)の100%の電流値(1C)で4.2Vまで定電流充電を行い、続いて4.2Vの定電圧で電流値が0.1Cになるまで(すなわち、満充電状態になるまで)充充電を行った。その後、これらの電池を1Cの定電流で2.5Vまで放電させた。そして、これらの電池の一部について、負極活物質の分析を行った。
Example 10
After producing a plurality of 463443-type square non-aqueous secondary batteries in the same manner as in Example 9, these batteries had a rated capacity of 4% at a current value (1C) that is 100% of the current value (1C) that can be discharged in one hour. The battery was charged at a constant current of 0.2 V, and then charged and charged at a constant voltage of 4.2 V until the current value reached 0.1 C (that is, until the battery was fully charged). Then, these batteries were discharged to 2.5 V with a constant current of 1C. And the negative electrode active material was analyzed about some of these batteries.

比較例1
実施例2と同様にして463443型角形非水二次電池を複数作製した後、これらの電池に付いて、定格容量を1時間で放電できる電流値(1C)の80%の電流値(0.8C)で4.2Vまで定電流充電を行い、続いて4.2Vで定電圧で電流値が0.08Cになるまで充電を行った。その後、これらの電池を0.8Cの定電流で2.5Vまで放電させた。そして、これらの電池の一部について、負極活物質の分析を行った。
Comparative Example 1
After producing a plurality of 463443-type prismatic non-aqueous secondary batteries in the same manner as in Example 2, the current value (0. 8C) was charged at a constant current up to 4.2V, and then charged at a constant voltage of 4.2V until the current value reached 0.08C. Then, these batteries were discharged to 2.5 V with a constant current of 0.8C. And the negative electrode active material was analyzed about some of these batteries.

比較例2
実施例2と同様にして463443型角形非水二次電池を複数作製した後、これらの電池について、定格容量を1時間で放電できる電流値(1C)の100%の電流値(1C)で4.2Vまで定電流充電を行い、続いて4.2Vの定電圧で電流値が0.1Cになるまで充電を行った。その後、これらの電池を1Cの定電流で2.5Vまで放電させた。そして、これらの電池の一部について、負極活物質の分析を行った。
Comparative Example 2
After producing a plurality of 463443-type prismatic non-aqueous secondary batteries in the same manner as in Example 2, the rated capacity of these batteries was 4 at 100% of the current value (1C) that can be discharged in 1 hour. The battery was charged at a constant current of 0.2 V, and then charged at a constant voltage of 4.2 V until the current value reached 0.1 C. Then, these batteries were discharged to 2.5 V with a constant current of 1C. And the negative electrode active material was analyzed about some of these batteries.

比較例3
実施例2と同様にして463443型角形非水二次電池を複数作製した後、これらの電池について、定格容量を1時間で放電できる電流値(1C)の100%の電流値(1C)で4.0Vまで定電流充電を行い、続いて4.2Vまで0.5Cの電流値で定電流充電を行い、更に続いて4.2Vの定電圧で電流値が0.05Cになるまで充電を行った。その後、これらの電池を0.1Cの定電流で2.5Vまで放電させた。そして、これらの電池の一部について、負極活物質の分析を行った。
Comparative Example 3
After producing a plurality of 463443-type prismatic non-aqueous secondary batteries in the same manner as in Example 2, the rated capacity of these batteries was 4 at 100% of the current value (1C) that can be discharged in 1 hour. Charge to a constant current of 0.0V, then charge to a constant current of 0.5C to 4.2V, and continue to charge at a constant voltage of 4.2V until the current value reaches 0.05C. It was. Then, these batteries were discharged to 2.5 V with a constant current of 0.1 C. And the negative electrode active material was analyzed about some of these batteries.

実施例1〜10および比較例1〜3の電池のうち、負極活物質表面の組成分析に供しなかったものについて、下記の放電容量測定、負荷特性測定および充放電サイクル特性(充放電200サイクル目の容量維持率)評価を行った。   Among the batteries of Examples 1 to 10 and Comparative Examples 1 to 3, those not subjected to composition analysis on the surface of the negative electrode active material were subjected to the following discharge capacity measurement, load characteristic measurement, and charge / discharge cycle characteristics (charge / discharge 200th cycle). Capacity retention rate) was evaluated.

電池の放電容量測定および充放電サイクル特性評価における電池の充放電は、以下の方法により行った。2サイクル目以降の充電は、電流を400mAとして定電流で行い、充電電圧が4.2Vに達した後、電流が1/10となるまで定電圧で行った。放電は、電流を400mAとして定電流で行い、放電終止電圧は2.5Vとした。前記の充電と放電の一連の操作を1サイクルとした。そして、電池の放電容量は、充放電2サイクル目の放電容量で評価した。   Charging / discharging of the battery in the measurement of the discharge capacity of the battery and evaluation of the charge / discharge cycle characteristics was performed by the following method. Charging after the second cycle was performed at a constant current with a current of 400 mA. After the charging voltage reached 4.2 V, the charging was performed at a constant voltage until the current became 1/10. The discharge was performed at a constant current with a current of 400 mA, and the discharge end voltage was 2.5V. The series of operations of charging and discharging was defined as one cycle. And the discharge capacity of the battery was evaluated by the discharge capacity at the second charge / discharge cycle.

また、200サイクル目の容量維持率は下記式により算出した。
容量維持率(%)
=(200サイクル目の放電容量/2サイクル目の放電容量)×100
Further, the capacity retention rate at the 200th cycle was calculated by the following formula.
Capacity maintenance rate (%)
= (Discharge capacity at 200th cycle / Discharge capacity at 2nd cycle) × 100

更に、負荷特性は、各電池について、放電容量測定と同じ条件で充電した後、0.2Cの電流値で放電終止電圧を2.5Vとして放電を行った場合の放電容量(0.2Cでの放電容量)と、前記と同じ条件で充電した後、2Cの電流値で放電終止電圧を2.5Vとして放電を行った場合の放電容量(2Cの放電容量)とを求め、下記式によって負荷特性を評価した。
負荷特性(%)
=(2Cでの放電容量/0.2Cでの放電容量)×100
Furthermore, the load characteristics are as follows: each battery was charged under the same conditions as the discharge capacity measurement, and then discharged at a current value of 0.2 C with a discharge end voltage of 2.5 V (discharge capacity at 0.2 C). Discharge capacity) and the discharge capacity (2C discharge capacity) when discharged at a current value of 2C and a discharge end voltage of 2.5 V after charging under the same conditions as described above. Evaluated.
Load characteristics (%)
= (Discharge capacity at 2C / Discharge capacity at 0.2C) × 100

実施例1〜10および比較例1〜3の各電池における負極用電極に使用した材料(負極活物質用材料)、初回充放電時の充電電流値(定電流充電時の電流値)、放電電流値、負極活物質表面部のSiに対するOの原子比x1、負極活物質全体のSiに対するOの原子比x2、およびXPS測定結果から得られた表面中のLiの有無を表1に、前記の評価結果を表2に、それぞれ示す。   Materials used for negative electrode in each battery of Examples 1 to 10 and Comparative Examples 1 to 3 (negative electrode active material), charge current value at the time of first charge / discharge (current value at constant current charge), discharge current Table 1 shows the values, the atomic ratio x1 of O to Si on the surface of the negative electrode active material, the atomic ratio x2 of O to Si of the whole negative electrode active material, and the presence or absence of Li in the surface obtained from the XPS measurement results. The evaluation results are shown in Table 2, respectively.

Figure 0005464653
Figure 0005464653

Figure 0005464653
Figure 0005464653

表2から明らかなように、表面組成を制御した材料を負極活物質として有する実施例1〜10の非水二次電池は、高容量で、負荷特性および充放電サイクル特性が良好である。   As is clear from Table 2, the nonaqueous secondary batteries of Examples 1 to 10 having the material whose surface composition is controlled as the negative electrode active material have a high capacity and good load characteristics and charge / discharge cycle characteristics.

これに対し、表面組成を制御していない材料を負極活物質として有する比較例1〜3の非水二次電池は、負荷特性および充放電サイクル特性が良好である。   On the other hand, the nonaqueous secondary batteries of Comparative Examples 1 to 3 having a material whose surface composition is not controlled as the negative electrode active material have good load characteristics and charge / discharge cycle characteristics.

1 正極
2 負極
3 セパレータ
1 Positive electrode 2 Negative electrode 3 Separator

Claims (10)

正極、負極および非水電解質を備えた非水二次電池であって、
前記負極は、Li、SiおよびOを構成元素に含む材料を活物質として含む負極合剤層を有しており、
前記材料におけるSiに対するOの原子比xが、前記材料全体では0.5≦x≦1.5であり、かつ前記材料の表面部では2.5≦x≦4.5であることを特徴とする非水二次電池。
A non-aqueous secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte,
The negative electrode has a negative electrode mixture layer containing, as an active material, a material containing Li, Si and O as constituent elements,
The atomic ratio x of O to Si in the material is 0.5 ≦ x ≦ 1.5 in the whole material, and 2.5 ≦ x ≦ 4.5 in the surface portion of the material, Non-aqueous secondary battery.
Li、SiおよびOを構成元素に含む材料は、その表面部に、LiSiO、LiSiOおよびLiSiのうちの少なくとも1種を含有している請求項1に記載の非水二次電池。 The material containing Li, Si, and O as constituent elements contains at least one of Li 4 SiO 4 , Li 2 SiO 3, and Li 2 Si 2 O 5 on a surface portion thereof. Non-aqueous secondary battery. 負極合剤層が、導電性材料を更に含有している請求項1または2に記載の非水二次電池。   The nonaqueous secondary battery according to claim 1, wherein the negative electrode mixture layer further contains a conductive material. 負極合剤層が、導電性材料として炭素材料を含有している請求項3に記載の非水二次電池。   The nonaqueous secondary battery according to claim 3, wherein the negative electrode mixture layer contains a carbon material as a conductive material. Li、SiおよびOを構成元素に含む材料と炭素材料とが複合体を形成している請求項4に記載の非水二次電池。   The nonaqueous secondary battery according to claim 4, wherein a material containing Li, Si, and O as constituent elements and a carbon material form a composite. 前記複合体の表面が、更に炭素材料で被覆されている請求項5に記載の非水二次電池。   The non-aqueous secondary battery according to claim 5, wherein the surface of the composite is further coated with a carbon material. 前記複合体を構成する炭素材料、および/または前記複合体の表面を被覆する炭素材料が、炭化水素系ガスを気相中で加熱した際の熱分解により生じたものである請求項4〜6のいずれかに記載の非水二次電池。   The carbon material constituting the composite and / or the carbon material covering the surface of the composite is produced by thermal decomposition when a hydrocarbon-based gas is heated in a gas phase. The nonaqueous secondary battery in any one of. 負極合剤層の含有する炭素材料が、黒鉛である請求項4〜7のいずれかに記載の非水二次電池。   The nonaqueous secondary battery according to any one of claims 4 to 7, wherein the carbon material contained in the negative electrode mixture layer is graphite. 請求項1〜8のいずれかに記載の非水二次電池を製造する方法であって、
SiとOとを構成元素に含む材料(ただし、Siに対するOの原子比xが、0.5≦x≦1.5)を含有する負極活物質を有する負極を備えた非水二次電池の組み立て直後に、充電電流の最大値が、定格容量を1時間で放電できる電流値の70%以下となる条件で、満充電状態になるまで充電することを特徴とする非水二次電池の製造方法。
A method for producing the non-aqueous secondary battery according to claim 1,
A nonaqueous secondary battery including a negative electrode having a negative electrode active material containing a material containing Si and O as constituent elements (provided that the atomic ratio x of O to Si is 0.5 ≦ x ≦ 1.5) Immediately after assembly, a non-aqueous secondary battery is manufactured, which is charged until the maximum value of the charging current is 70% or less of the current value at which the rated capacity can be discharged in one hour until the battery is fully charged. Method.
請求項1〜8のいずれかに記載の非水二次電池を製造する方法であって、A method for producing the non-aqueous secondary battery according to claim 1,
SiとOとを構成元素に含む材料(ただし、Siに対するOの原子比xが、0.5≦x≦1.5)と前記Li金属またはLi化合物とを機械的に混合して作製した前記Li、SiおよびOを構成元素に含む材料を、負極活物質として使用することを特徴とする非水二次電池の製造方法。The material prepared by mechanically mixing a material containing Si and O as constituent elements (however, the atomic ratio x of O to Si is 0.5 ≦ x ≦ 1.5) and the Li metal or Li compound A method for producing a non-aqueous secondary battery, wherein a material containing Li, Si and O as constituent elements is used as a negative electrode active material.
JP2009270219A 2009-11-27 2009-11-27 Non-aqueous secondary battery and manufacturing method thereof Active JP5464653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009270219A JP5464653B2 (en) 2009-11-27 2009-11-27 Non-aqueous secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009270219A JP5464653B2 (en) 2009-11-27 2009-11-27 Non-aqueous secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011113862A JP2011113862A (en) 2011-06-09
JP5464653B2 true JP5464653B2 (en) 2014-04-09

Family

ID=44236041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009270219A Active JP5464653B2 (en) 2009-11-27 2009-11-27 Non-aqueous secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5464653B2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5759307B2 (en) * 2010-08-24 2015-08-05 積水化学工業株式会社 Carbon particle for electrode, negative electrode material for lithium ion secondary battery, and method for producing carbon particle for electrode
JP5516529B2 (en) * 2011-07-29 2014-06-11 住友ベークライト株式会社 The manufacturing method of the carbon material for lithium ion secondary batteries, the carbon material for lithium ion secondary batteries, the negative mix for lithium ion secondary batteries, the negative electrode for lithium ion secondary batteries, and a lithium ion secondary battery.
JP2013073920A (en) * 2011-09-29 2013-04-22 Sumitomo Bakelite Co Ltd Composition, carbon composite material for lithium ion secondary battery negative electrode material, negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5639017B2 (en) * 2011-07-29 2014-12-10 住友ベークライト株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
EP2738842A4 (en) * 2011-07-29 2015-03-11 Sumitomo Bakelite Co Method for producing carbon material for lithium ion secondary batteries, carbon material for lithium ion secondary batteries, negative electrode active material for lithium ion secondary batteries, composition, carbon composite material for negative electrodes of lithium ion secondary batteries, negative electrode mixture for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP5861444B2 (en) 2011-12-20 2016-02-16 ソニー株式会社 Secondary battery active material, secondary battery and electronic equipment
EP2806488A4 (en) * 2012-02-28 2015-10-28 Lg Chemical Ltd Electrode active material for lithium secondary battery and method for manufacturing same
JP5447618B2 (en) * 2012-08-28 2014-03-19 株式会社豊田自動織機 Negative electrode material for nonaqueous electrolyte secondary battery, method for producing the same, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US20150221950A1 (en) * 2012-09-27 2015-08-06 Sanyo Electric Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery using negative electrode active material
KR101610995B1 (en) 2012-11-30 2016-04-08 주식회사 엘지화학 Silicon based composite and manufacturing method thereof
JP6128481B2 (en) * 2012-12-17 2017-05-17 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP5827977B2 (en) * 2013-07-30 2015-12-02 住友ベークライト株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN107611347A (en) 2013-08-21 2018-01-19 信越化学工业株式会社 Negative electrode active material and its material and its manufacture method, negative electrode, lithium rechargeable battery and its manufacture method
KR102227684B1 (en) 2013-10-29 2021-03-15 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material, production method for negative electrode active material, and lithium ion secondary battery
JP6269685B2 (en) * 2013-12-26 2018-01-31 三洋電機株式会社 Anode for non-aqueous electrolyte secondary battery
WO2015118849A1 (en) * 2014-02-04 2015-08-13 三井化学株式会社 Negative electrode for lithium ion secondary cell, lithium-ion secondary cell, mixture paste for negative electrode for lithium-ion secondary cell, and method for manufacturing negative electrode for lithium-ion secondary cell
JP6397262B2 (en) * 2014-02-07 2018-09-26 信越化学工業株式会社 Nonaqueous electrolyte secondary battery
JP5870129B2 (en) * 2014-02-12 2016-02-24 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode of lithium ion secondary battery and method for producing the same
CN103887482B (en) * 2014-04-08 2016-05-04 乌兰察布市大盛石墨新材料股份有限公司 The preparation method of a kind of sulphur/graphene oxide-lithium metasilicate composite negative pole material
JP6239476B2 (en) * 2014-09-25 2017-11-29 信越化学工業株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6652125B2 (en) * 2015-03-13 2020-02-19 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP6288062B2 (en) * 2015-12-18 2018-03-07 株式会社村田製作所 Active material for secondary battery, secondary battery, electronic device, electric vehicle and electric tool
KR102199028B1 (en) * 2016-01-22 2021-01-06 제이에프이 케미칼 가부시키가이샤 Negative electrode material for Li-ion secondary battery and its manufacturing method, negative electrode for Li-ion secondary battery, and Li-ion secondary battery
CN112751029A (en) * 2019-10-30 2021-05-04 贝特瑞新材料集团股份有限公司 Silica composite negative electrode material, preparation method thereof and lithium ion battery
JP7163902B2 (en) * 2019-12-09 2022-11-01 トヨタ自動車株式会社 Manufacturing method of lithium ion battery
KR20230000609A (en) * 2021-06-25 2023-01-03 주식회사 한솔케미칼 Anode active material, method for preparing the same, and rechargeable lithium battery comprising the same
KR20230000615A (en) * 2021-06-25 2023-01-03 주식회사 한솔케미칼 Anode active material, method for preparing the same, and rechargeable lithium battery comprising the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027825A1 (en) * 2000-09-28 2002-04-04 Hitachi Maxell, Ltd. Composite electrode material and method for producing the same, and electrochemical element using the same
JP2003068363A (en) * 2001-08-28 2003-03-07 Sony Corp Manufacturing method of battery
JP4193020B2 (en) * 2001-10-17 2008-12-10 株式会社ジーエス・ユアサコーポレーション Thin battery manufacturing method
JP4533822B2 (en) * 2005-08-24 2010-09-01 株式会社東芝 Nonaqueous electrolyte battery and negative electrode active material

Also Published As

Publication number Publication date
JP2011113862A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP5464653B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP5008180B2 (en) Non-aqueous secondary battery
JP5165258B2 (en) Nonaqueous electrolyte secondary battery
JP4954270B2 (en) Non-aqueous secondary battery
JP4854289B2 (en) Non-aqueous electrolyte secondary battery
US8216719B2 (en) Non-aqueous secondary battery and method for producing the same
JP5416128B2 (en) Non-aqueous secondary battery
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
WO2013098962A1 (en) Nonaqueous secondary battery
US9780357B2 (en) Silicon-based anode active material and secondary battery comprising the same
WO2012014998A1 (en) Lithium secondary battery
KR102419885B1 (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and system thereof
JP2011113863A (en) Nonaqueous secondary battery
JP6188158B2 (en) Negative electrode for lithium ion secondary battery, negative electrode slurry for lithium ion secondary battery, and lithium ion secondary battery
JP5489353B2 (en) Non-aqueous electrolyte secondary battery
JP2012169300A (en) Nonaqueous secondary battery
JP6059019B2 (en) Nonaqueous electrolyte secondary battery
JP6048407B2 (en) Negative electrode active material and method for producing the same
JP5945197B2 (en) Non-aqueous electrolyte secondary battery
JP2011233349A (en) Nonaqueous secondary battery
JP2012003997A (en) Nonaqueous electrolyte secondary cell
JP2013178913A (en) Nonaqueous electrolyte secondary battery
JP2013145669A (en) Nonaqueous electrolyte secondary battery
JP6063705B2 (en) Nonaqueous electrolyte secondary battery
WO2017188021A1 (en) Electrochemical element electrode and lithium ion secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110520

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120319

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140116

R150 Certificate of patent or registration of utility model

Ref document number: 5464653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250