JP2005158550A - リレー駆動回路 - Google Patents
リレー駆動回路 Download PDFInfo
- Publication number
- JP2005158550A JP2005158550A JP2003396614A JP2003396614A JP2005158550A JP 2005158550 A JP2005158550 A JP 2005158550A JP 2003396614 A JP2003396614 A JP 2003396614A JP 2003396614 A JP2003396614 A JP 2003396614A JP 2005158550 A JP2005158550 A JP 2005158550A
- Authority
- JP
- Japan
- Prior art keywords
- relay
- value
- connection path
- relay coil
- drive circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Relay Circuits (AREA)
Abstract
【課題】励磁電流切り替えのための特別な制御が必要なく、簡単な回路構成によりリレーコイルに供給する励磁電流を削減してリレーの発熱量を削減できるリレー駆動回路を提供する。
【解決手段】このリレー駆動回路は、電源ライン11とグランドGNDとの間に接続され、リレー13a,13bの並列接続されたリレーコイル15a,15bが介挿された電気接続路P1と、並列接続されたリレーコイル15a,15bと直列になるように電気接続路P1に介挿されたスイッチ回路17と、電気接続路P1における並列接続されたリレーコイル15a,15b及びスイッチ回路17の電源ライン11側(又はグランドGND側)に介挿された抵抗19と、並列接続されたリレーコイル15a,15bとスイッチ回路17との直列接続に対して並列になるように接続されたコンデンサ21とを備えている。
【選択図】図1
【解決手段】このリレー駆動回路は、電源ライン11とグランドGNDとの間に接続され、リレー13a,13bの並列接続されたリレーコイル15a,15bが介挿された電気接続路P1と、並列接続されたリレーコイル15a,15bと直列になるように電気接続路P1に介挿されたスイッチ回路17と、電気接続路P1における並列接続されたリレーコイル15a,15b及びスイッチ回路17の電源ライン11側(又はグランドGND側)に介挿された抵抗19と、並列接続されたリレーコイル15a,15bとスイッチ回路17との直列接続に対して並列になるように接続されたコンデンサ21とを備えている。
【選択図】図1
Description
本発明は、リレー駆動回路に関する。
図8は、本発明に係るリレー駆動回路の適用例の一つであるモータ駆動装置の構成を示す図である。このモータ駆動装置では、図8に示すように、交流電源1から出力される3相交流電圧をインバータ3により直流電圧に一旦変換し、その直流電圧に基づいてインバータ5が生成した3相交流電圧によってモータ7を駆動する。
このようなモータ駆動装置では、交流電源1に接続される3つの電源線のうちの2つにリレー9a,9bを介挿し、そのリレー9a,9bによって電源のオン、オフを行う場合がある(図ではリレー9a,9bのスイッチ部分のみを図示している)。この場合、リレー9a,9bには、故障時の影響を考慮してリレーコイルを励磁させないときに電源線をオフするノーマリーオフ型が一般に採用される。このため、リレー9a,9bによって電源線がオンされている間は、電源線を介して電源電流がリレー9a,9bに流れる際にリレー9a,9bのオン抵抗により生じるジュール熱と、リレーコイルに流される電流によるジュール熱とが発生することとなる。そして、このときに発生する熱量の大きさは、使用するリレー9a,9bを選択する上で重要な事項の一つとなっている。例えば、大きな発熱量に耐え得るリレー9a,9bは一般に高価であるため、リレー9a,9bの発熱量を抑制することは重要な課題の一つである。
この点に関する従来技術として、リレーをオンさせた際にリレーコイルに供給する電流を削減してリレー全体の発熱量を抑制するようにしたリレー駆動回路がある(特許文献1)。一般に、リレーコイルを励磁し、作動片を駆動して接点切り替えを行うには比較的大きな励磁電流(第1の励磁電流)が必要であるが、作動片がリレーコイルの磁気吸着力により駆動されて接点切り替えが完了した状態では、リレーコイルのコアによって形成される磁路が閉磁路となり小さな励磁電流(第2の励磁電流)により切り替え状態を保持できるようになっている。この従来のリレー駆動回路は、この点に着目し、リレーコイルに異なる励磁電流を供給するための2系統の駆動回路を備え、作動片の切り替え時と切り替え完了後の状態保持時とで、リレーコイルに電流を供給する駆動回路を切り替えることにより、リレーコイルへの供給電流の削減を図っている。すなわち、リレーをオンさせる際には、一方の駆動回路により第1の励磁電流をリレーコイルに供給して作動片を駆動し、作動片の切り替え後は、他方の駆動回路により第2の励磁電流をリレーコイルに供給して作動片の切り替え状態を保持するようになっている。
しかしながら、上記の従来技術では、リレーコイルを駆動する2系統の駆動回路が必要であり、回路構成が複雑であるとともに、リレーコイルに電流を供給する駆動回路を切り替えるための特別な制御も必要である。
そこで、本発明の解決すべき課題は、励磁電流切り替えのための特別な制御が必要なく、簡単な回路構成によりリレーコイルに供給する励磁電流を削減してリレーの発熱量を削減できるリレー駆動回路を提供することである。
前記課題を解決するための手段は、第1の電位点と第2の電位点との間に接続され、リレーのリレーコイルが介挿された電気接続路と、前記電気接続路において前記リレーコイルと直列に介挿され、前記電気接続路をオン、オフする開閉手段と、前記電気接続路において前記リレーコイル及び前記開閉手段の前記第1の電位点側又は前記第2の電位点側に介挿された抵抗と、前記リレーコイルと前記開閉手段との直列接続に対して並列に接続されたコンデンサと、を備える。
好ましくは、前記電気接続路がオンした状態において前記リレーコイルに印加される電圧は、励磁された前記リレーコイルによって前記作動片が吸着されるまでは第1の閾値以上であり、前記作動片が吸着した後は前記第1の閾値未満かつ第2の閾値以上であり、前記第1の閾値は前記作動片を前記リレーコイルの励磁によって切り替えるのに必要な電圧値であり、前記第2の閾値は前記第1の閾値よりも小さく、前記リレーコイルの励磁によって切り替えられた前記作動片を保持するのに必要な電圧値であるのがよい。
また、好ましくは、前記第1の電位点(11;GND)と前記第2の電位点(GND;11)との間の電圧値(E)は前記第1の閾値以上であり、前記抵抗の抵抗値である第1抵抗値(R1)と前記リレーコイルの抵抗値である第2抵抗値(R2)との和(R1+R2)を除数、前記電圧値を被除数とする商(E/(R1+R2))に前記第2の抵抗値を乗じた値が前記第2の閾値以上であるのがよい。
さらに、前記リレーは励磁電流を供給しない状態でオフするノーマリーオフ型であるのがよい。
請求項1に記載の発明によれば、開閉手段により電気接続路がオンに切り替えられ、リレーコイルに対する電流供給が開始される際には、充電されたコンデンサの放電により、リレーコイルには、第1及び第2の電位点の電位差に基づいて抵抗とリレーコイルの分圧に応じて印加される定常的な電圧よりも高い電圧を一時的に印加することができ、これによって、リレーの接点切り替え用の作動片を駆動して確実に切り替えることができる。そして、コンデンサの放電が進んでゆくのに伴って、リレーコイルに印加される電圧が前記定常的な電圧に落ち着いてゆき、最終的には、その定常的な電圧の印加によりリレーコイルに流れる電流によって、リレーの切り替えられた作動片の状態を保持することができる。
このため、リレーコイルの励磁電流切り替えのための特別な制御が必要なく簡単な回路構成により、リレーコイルに供給する励磁電流を削減してリレーの発熱量を削減できる。これによって、リレーをノーマル状態から駆動された状態にしたとき発生するリレー全体の発熱量を抑制することができ、発熱に対する耐性のより低い安価なリレーを選択することができる。
請求項2に記載の発明によれば、リレーコイルに印加される電圧は、作動片が吸着するまでは大きいものの、吸着した後は小さくなるので、作動片が吸着している状態での発熱量を小さくすることができる。
請求項3に記載の発明によれば、電気接続路がオフした状態でコンデンサを第1の閾値以上に充電することができるので、電気接続路がオンしてから作動片が吸着するまでの期間でのリレーコイルに与えられる電圧を第1の閾値以上にできる。また抵抗とリレーコイルとによる分圧により、作動片が吸着している状態を保持する電圧をリレーコイルに印加することができる。
請求項4に記載の発明によれば、リレーがノーマリーオフ型であるため、リレーをオンさた際にリレーに供給する励磁電流を削減でき、その結果、リレーがオンしている際にその制御対象の電流、及び励磁電流のジュール熱により発生する発熱量を全体として抑制することができる。
図1は、本発明の一実施形態に係るリレー駆動回路の回路図である。このリレー駆動回路は、図1に示すように、第1の電位点である電源ライン11と第2の電位点であるグランドGNDとの間に接続され、リレー13a,13bのリレーコイル15a,15bと、開閉手段であるスイッチ回路17と、抵抗19とが介挿された電気接続路P1と、コンデンサ21とを備えており、例えば、前述の図8のエアコン用等のモータ駆動装置等に用いられる。第1の電位点をグランドGNDとして、第2の電位点を電源ライン11としてそれぞれ捉えてもよい。
本実施形態では、リレー13a,13bとして、リレーコイル15a,15bに電流が供給されない状態でオフするノーマリオフ型のものが用いられている。また、本実施形態では、2つのリレー13a,13bのリレーコイル15a,15bが並列接続されて電気接続路P1に介挿されているが、これに限らず、3つ以上のリレーコイルを並列接続して電気接続路P1に介挿してもよく、あるいは1つのリレーコイルを電気接続路P1に介挿するようにしてもよい。
スイッチ回路17は、例えば半導体スイッチング素子23と抵抗25とを備えている。スイッチング素子23は、リレーコイル15a,15bの並列接続に対して直列になるように電気接続路P1に介挿され、例えばマイコン指令により電気接続路P1をオン、オフする。抵抗25は、スイッチング素子23を構成するNPN型トランジスタのベースとエミッタとの間に介挿されている。なお、本実施形態ではスイッチ回路17がリレーコイル15a,15bのグランドGND側に位置されているが、リレーコイル15a,15bがスイッチ回路17のグランドGND側に位置されてもよい。
抵抗19は、電気接続路P1上において、リレーコイル15a,15bとスイッチ回路17の直列接続に対して電源ライン11側又はグランドGND側に介挿される。本実施形態では、抵抗19はリレーコイル15a,15b及びスイッチ回路17の電源ライン11側に介挿されている。
コンデンサ21は、並列接続されたリレーコイル15a,15bとスイッチ回路17との直列接続に対して並列に接続されている。
次に、このリレー駆動回路の動作原理について説明する。スイッチ回路17のスイッチング素子23がオフしている(これはスイッチ回路17のオフとして把握することができる)ときは、電気接続路P1がオフされているため、リレーコイル15a,15bには電流が供給されず、リレー13a,13bはオフした状態(つまり、リレー13a,13bの作動片27a,27bがリレーコイル15a,15bに吸着されない状態)にある。また、スイッチング素子23がオフされて電気接続路P1がオフされてコンデンサ21の電極間は非導通状態とされているため、コンデンサ21の電極間には、電源ライン11とグランドGND間の電圧Eが抵抗19を介して印加され、その印加電圧に応じた電荷がコンデンサ21に充電される。
そして、スイッチング素子23がオン(これはスイッチ回路17のオンとして把握することができる)に切り替えられて電気接続路P1がオンされると、コンデンサ21の電極間がリレー13a,13b、スイッチ回路17を介して導通するため、この導通した電気接続路P1を介してコンデンサCの放電が開始される。このコンデンサCの放電は、コンデンサCの電極間電圧が放電により低下してゆき、電源ライン11とグランドGNDとの間の電圧Eによりリレーコイル15a,15bの両端間に生じる分圧Eaと等しくなるまで続く。
このため、リレーコイル15a,15bに印加される電圧Vcは、コンデンサ21の放電の進行に伴って、図2のグラフのように、コンデンサCの放電開始時tSの電圧値Eから放電終了時tEの電圧値Eaに向けて低下してゆくようになっている。すなわち、スイッチ回路17により電気接続路P1がオンされてコンデンサCの放電が開始した後は、リレーコイル15a,15bの印加電圧Vcが、電源ライン11とグランドGND間の電圧Eによりリレーコイル15a,15bに印加される分圧Ea以上になっている。
そこで、本実施形態では、スイッチ回路17のオンに伴って、コンデンサ21の放電によりリレーコイル15a,15bに一時的に印加される高電圧を利用してリレーコイル15a,15bを励磁し、リレー13a,13bの作動片27a,27bの切り替え(リレーコイル15a,15bへの吸着)を行う。そして、作動片27a,27bの切り替え完了後の状態保持は、電源ライン11とグランドGND間の電圧Eによりリレーコイル15a,15bに印加される低電圧の分圧Eaを利用し、これによって、励磁電流の削減を図っている。なお、励磁電流の供給開始からリレー13a,13bの作動片27a,27bの切り替え動作が完了するまでには所定の時間(所定所用時間)を要するため、電気接続路P1がオンされた時点tSからその所定所用時間が経過した時点t1におけるリレーコイル15a,15bの印加電圧Vcが、リレーコイル15a,15bを励磁し、作動片27a,27bを駆動して切り替えるのに必要な閾値(第1の閾値)Vt1以上に保たれている必要がある。
次に、本実施形態に係るリレー駆動回路の構成についての具体的な設定条件について説明する。
ここでは、議論を簡単化するため、図1の回路を図3に示すようにモデル化して議論を行うこととする。すなわち、図3のモデル回路では、図1の2つのリレー13a,13bの並列接続されたリレーコイル15a,15bが抵抗R2とインダクタンスLにモデル化されている。なお、スイッチ回路17のスイッチング素子23のオン抵抗は無視することとする。
まず、回路構成を決定するための各種パラメータを定義する。電源ライン11とグランドGNDとの間の電圧値をEとし、抵抗19の抵抗値をR1とし、並列接続されたリレーコイル15a,15bをモデル化した抵抗値及びインダクタンス値を上記のようにR2及びLとし、コンデンサ21の容量値をCとする。
また、リレーコイル15a,15bを励磁させてリレー13a,13bの接点切り替え用の作動片27a,27bを駆動して切り替えを行うために最低限必要なリレーコイル15a,15bに対する印加電圧に対応する第1の閾値をVt1とする。励磁されたリレーコイル15a,15bによって切り替えられた作動片27a,27bの切り替え状態を保持するために最低限必要なリレーコイル15a,15bに対する印加電圧に対応する第2の閾値をVt2とする。この第1及び第2の閾値Vt1,Vt2はリレー13a,13bの構成によって決定されるものである。例えば、本実施形態で使用するリレー13a,13bでは、第1の閾値Vt1が9.6Vとなっている。第2の閾値Vt2は周囲温度の変化によって大きく変化し、各周囲温度に対する第2の閾値Vt2の値をグラフに示すと図4のようになる。具体的には、周囲温度が−20℃から70℃まで変化するのに伴って、第2の閾値Vt2は大略的に4V程度から6.5V程度まで変化する。
また、コンデンサ21が充電された状態でスイッチ回路17により電気接続路P1がオフからオンに切り替えられてコンデンサ21の放電が開始された際において、電気接続路P1がオンに切り替えらた時点を時刻t=0とし、リレーコイル15a,15bへの通電開始から通電によるリレーコイル15a,15bの磁気吸着力によって作動片27a,27bが切り替えられるのに要する所用時間をdtとし、時刻t=0から所用時間dtが経過した時刻t=dtにおいてリレーコイル15a,15bの両端に印加されているコイル印加電圧値をVc(t=dt)とする。
続いて、パラメータ条件について説明する。結論から先に記載すると、図1のリレー駆動回路を機能させるためのパラメータ条件としては、例えば、リレー13a,13bの基本特性に関する上記の第1及び第2の閾値Vt1,Vt2、抵抗値R2、インダクタンス値L、及び所用時間dtを予め与えられた前提条件として考えた場合、上記の電圧値E、抵抗値R1及び容量値Cが、下記の式(1),(2),(3)の条件をすべて満たすように設定する。
ここで、上記の式(1)の条件は、電源ライン11の電圧値Eがリレー13a,13bの作動片27a,27bを駆動して切り替えを行い得るための条件である。
また、上記の式(2)の条件は、電気接続路P1がスイッチ回路17によりオンされ、コンデンサ21の放電が終了した後において、電源ライン11の電圧値Eの分圧によってリレーコイル15a,15bに定常的に印加される電圧値が、リレー13a,13bの切り替え状態を保持し得るための条件である。
また、上記の式(3)の条件は、スイッチ回路17によって電気接続路P1がオンされてコンデンサ21の放電が開始された時刻t=0から、リレー13a,13bの作動片27a,27bの切り替えが完了する時刻t=dtまでは、リレーコイル15a,15bの印加電圧値Vcが、リレー13a,13bの作動片27a,27bを駆動して切り替えを行う得る電圧レベルに維持されるための条件である。
続いて、パラメータ条件の具体例について説明する。ここでは、リレーコイル15a,15bの1つ当たりの直流抵抗値が160Ωで、その2つ合わせた抵抗値R2が80Ωであるとする。2つのリレーコイル15a,15bの合成インダクタンス値Lが0.5Hであるとする。リレー13a,13bの作動片27a,27bの切り替えに必要な電圧下限値に対応する第1の閾値Vt1が9.6Vであるとし、切り替え状態の保持に必要な電圧下限値に対応する第2の閾値Vt2が図4のグラフに対応する値であるとする。また、スイッチ回路17によって電気接続路P1がオンされてコンデンサ21の放電が開始された時点から、リレー13a,13bの作動片27a,27bの切り替えが完了するのに要する所用時間dtが20msであるとする。
このような前提条件に基づき、まず、電源ライン11の電圧値Eを上記式(1)の条件より、9.6V以上の値である12Vに決定する。
続いて、この電圧値E=12Vの設定条件に基づいて、電気接続路P1がスイッチ回路17によりオンされ、コンデンサ21の放電が終了した後において、電源ライン11の電圧値Eの分圧によってリレーコイル15a,15bに定常的に印加される電圧値が、上記式(2)の条件を満たすようにな値(例えば、7.5V)になるように抵抗19の抵抗値R1を決定する。すなわち、電源ライン11の電圧値Eを12V、2つのリレーコイル15a,15bの合成抵抗値を80Ωとすると、上記式(2)より、抵抗値R1が47Ωと決定される。
続いて、コンデンサ21の容量値Cを決定するため、E=12V、R1=47Ω、R2=80Ω、L=0.5H、dt=20msを上記式(3)に代入し、容量値Cとコイル印加電圧値Vc(t=20ms)との関係を求める。図5のグラフは、コンデンサ21の容量値C(横軸)を変化させた際のコイル印加電圧値Vc(t=20ms)(縦軸)の変化を示している。図5のグラフより、コイル印加電圧値Vc(t=20ms)が9.6V以上となるためいは、容量値Cが630μFであればよいことが分かる。本実施形態では、マージンを考慮して容量値Cの値を1000μFに決定する。
図6のグラフは、E=12V、R1=47Ω、R2=80Ω、L=0.5H、C=1000μFの条件の下で、コンデンサ21が充電された状態でスイッチ回路17によって電気接続路P1をオンしたときのコイル印加電圧値Vc(t)の時間経過による変化を示している。図6のグラフより、時刻t=0sで電気接続路P1がオンされてから20ms後におけるコイル印加電圧値Vcが、9.6V以上の値に保たれており、リレー13a,13bの切り替えを適切に行い得ることが分かる。そして、t=0sから約150msが経過すると、コイル印加電圧値Vcが7.5Vに安定するようになっている。なお、図7のグラフは、図6のグラフと同一条件の下で、コンデンサ21が充電された状態でスイッチ回路17によって電気接続路P1をオンしたときのリレーコイル15a,15bに流れるコイル電流値の時間経過による変化を示している。
以上のように、本実施形態によれば、リレーコイル15a,15bの励磁電流切り替えのための特別な制御が必要なく簡単な回路構成により、リレーコイル15a,15bに供給する励磁電流を削減してリレー13a,13bの発熱量を削減できる。これによって、ノーマリーオフ型であるリレー13a,13bがオンされた際に発生するリレー13a,13b全体の発熱量を抑制することができる。リレー13a,13bの定格電流は発熱量により決定されるため、本実施形態に係るリレー駆動回路によりリレー13a,13b全体の発熱量を抑制することにより、発熱量を抑制した分、同じ定格電流のリレー13a,13bに対してより大きな電流を流すことができるようになる。その結果、所定の電流のオン、オフを行うリレー13a,13bとして、定格電流が小さく安価なものを選択することができ、コスト削減が図れる。
なお、本実施形態ではリレー13a,13bにノーマリーオフ型のものを使用したが、ノーマリーオン型のものを使用してもよい。この場合であっても、リレー13a,13bをオフさせる際に供給する励磁電流を削減し、その発熱量を削減できる。
13a,13b リレー
15a,15b リレーコイル
17 スイッチ回路
19 抵抗
21 コンデンサ
15a,15b リレーコイル
17 スイッチ回路
19 抵抗
21 コンデンサ
Claims (4)
- 第1の電位点(11;GND)と第2の電位点(GND;11)との間に接続され、リレー(13a,13b)のリレーコイル(15a,15b)が介挿された電気接続路(P1)と、
前記電気接続路において前記リレーコイルと直列に介挿され、前記電気接続路をオン、オフする開閉手段(17)と、
前記電気接続路において前記リレーコイル及び前記開閉手段の前記第1の電位点側又は前記第2の電位点側に介挿された抵抗(19)と、
前記リレーコイルと前記開閉手段との直列接続に対して並列に接続されたコンデンサ(21)と、
を備える、リレー駆動回路。 - 請求項1に記載のリレー駆動回路において、
前記電気接続路がオンした状態において前記リレーコイルに印加される電圧は、
励磁された前記リレーコイルによって前記作動片が吸着されるまでは第1の閾値以上であり、
前記作動片が吸着した後は前記第1の閾値未満かつ第2の閾値以上であり、
前記第1の閾値は前記作動片を前記リレーコイルの励磁によって切り替えるのに必要な電圧値であり、
前記第2の閾値は前記第1の閾値よりも小さく、前記リレーコイルの励磁によって切り替えられた前記作動片を保持するのに必要な電圧値である、リレー駆動回路。 - 請求項2に記載のリレー駆動回路において、
前記第1の電位点(11;GND)と前記第2の電位点(GND;11)との間の電圧値(E)は前記第1の閾値以上であり、
前記抵抗の抵抗値である第1抵抗値(R1)と前記リレーコイルの抵抗値である第2抵抗値(R2)との和(R1+R2)を除数、前記電圧値を被除数とする商(E/(R1+R2))に前記第2の抵抗値を乗じた値が前記第2の閾値以上である、リレー駆動回路。 - 請求項1ないし3のいずれかに記載のリレー駆動回路において、
前記リレーは励磁電流を供給しない状態でオフするノーマリーオフ型である、リレー駆動回路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003396614A JP2005158550A (ja) | 2003-11-27 | 2003-11-27 | リレー駆動回路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003396614A JP2005158550A (ja) | 2003-11-27 | 2003-11-27 | リレー駆動回路 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005158550A true JP2005158550A (ja) | 2005-06-16 |
Family
ID=34722000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003396614A Pending JP2005158550A (ja) | 2003-11-27 | 2003-11-27 | リレー駆動回路 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005158550A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190092090A (ko) * | 2018-01-30 | 2019-08-07 | 주식회사 엘지화학 | 릴레이 구동 회로 진단 장치 |
-
2003
- 2003-11-27 JP JP2003396614A patent/JP2005158550A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190092090A (ko) * | 2018-01-30 | 2019-08-07 | 주식회사 엘지화학 | 릴레이 구동 회로 진단 장치 |
KR102301218B1 (ko) | 2018-01-30 | 2021-09-10 | 주식회사 엘지에너지솔루션 | 릴레이 구동 회로 진단 장치 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007288979A (ja) | 直流電源装置 | |
CN105656359B (zh) | 电动工具以及适用于电机的制动电路 | |
JP4283312B2 (ja) | 直流電圧駆動型マグネットコンタクタの駆動回路および電力変換装置 | |
JP2007327395A (ja) | エンジン始動装置 | |
JP2008206313A (ja) | 車両用電力変換装置の平滑コンデンサ放電装置 | |
JP2005246551A (ja) | 放電加工用電源装置 | |
JP5337685B2 (ja) | リレー励磁コイルの発熱抑制回路 | |
JP2005056728A (ja) | 電源制御装置および電源制御装置における溶着試験をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体 | |
JP2005158870A (ja) | 負荷制御装置 | |
JP2003204681A (ja) | インバータの充放電制御回路 | |
JP2005158550A (ja) | リレー駆動回路 | |
JP5266892B2 (ja) | 蓄電装置 | |
JPH077807A (ja) | 電動車制御装置 | |
JP2001281029A (ja) | 電磁流量計 | |
JP4494622B2 (ja) | 電磁リレーのコイル駆動回路 | |
JP2011032055A (ja) | エレベータの電源切り替え制御装置 | |
JP2010086872A (ja) | リレー駆動回路 | |
CN110098769B (zh) | 电路及电子系统 | |
JP2002118958A (ja) | 電源逆接続保護装置 | |
EP2764601A1 (en) | An improved battery conditioning apparatus | |
JP6054648B2 (ja) | コンプレッサ・ハウジング用プリント回路基板 | |
CN105379042B (zh) | 用于稳定机动车车载电气网络的电源电压的稳定方法和系统 | |
JPH06284571A (ja) | 突入電流防止回路 | |
JP2009261051A (ja) | 車両搭載用放電回路 | |
US9762158B2 (en) | Pulse motor driving circuit and method of driving a pulse motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20061031 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A131 | Notification of reasons for refusal |
Effective date: 20090317 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20090714 Free format text: JAPANESE INTERMEDIATE CODE: A02 |