JP2005155634A - ピーク及び積分イオン化電流信号を用いる内燃エンジン診断システム - Google Patents

ピーク及び積分イオン化電流信号を用いる内燃エンジン診断システム Download PDF

Info

Publication number
JP2005155634A
JP2005155634A JP2004340713A JP2004340713A JP2005155634A JP 2005155634 A JP2005155634 A JP 2005155634A JP 2004340713 A JP2004340713 A JP 2004340713A JP 2004340713 A JP2004340713 A JP 2004340713A JP 2005155634 A JP2005155634 A JP 2005155634A
Authority
JP
Japan
Prior art keywords
ionization
peak
value
threshold
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004340713A
Other languages
English (en)
Other versions
JP4044924B2 (ja
Inventor
Guoming G Zhu
ジー スー グオミン
Chao Daniels
ダニエルズ チャオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Visteon Global Technologies Inc
Original Assignee
Visteon Global Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Visteon Global Technologies Inc filed Critical Visteon Global Technologies Inc
Publication of JP2005155634A publication Critical patent/JP2005155634A/ja
Application granted granted Critical
Publication of JP4044924B2 publication Critical patent/JP4044924B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • F02P2017/125Measuring ionisation of combustion gas, e.g. by using ignition circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/045Layout of circuits for control of the dwell or anti dwell time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

【課題】 既知のエンジン診断システムと比較して少ないレートでのデータ・サンプリングを可能にすることにより、イオン化電流信号を用いた低コストのエンジン診断方法を提供すること。
【解決手段】 本発明は、エンジン診断方法及びルーチンを含むものであり、イオン化信号を用いてエンジン診断ルーチンを実施する方法は、該イオン化信号を検出し、第1のサンプリング・ウィンドウにわたって該イオン化信号を積分して第1の積分イオン化値を生成し、該第1のサンプリング・ウィンドウにわたって該イオン化信号のピークを検出して第1のピークイオン化値を生成し、第2のサンプリング・ウィンドウにわたって該イオン化信号を積分して第2の積分イオン化値を生成し、該第2のサンプリング・ウィンドウにわたって該イオン化信号のピークを検出して第2のピークイオン化値を生成し、該イオン化信号を用いてエンジンを診断するステップを含む。
【選択図】 図5

Description

本発明は内燃エンジンの診断及び制御分野に関する。より具体的には、本発明は、イオン化電流信号のピーク値及び積分値を用いてエンジン診断を行う内燃エンジン診断システムに関する。
内燃エンジンの燃焼室における空気/燃料混合物の燃焼が、検出することができるイオンを発生させる。電圧がスパーク・プラグのギャップ間に印加された場合、これらのイオンは引き付けられて、電流を生成する。この電流は、イオン化電流信号IIONと呼ばれる検出可能な信号を発生させる。イオン化電流信号IIONは、検出された後、エンジン診断及び閉ループ・エンジン燃焼制御のために、パワートレイン制御モジュール(PCM)内で処理することができる。種々の方法を用いて、内燃エンジンの燃焼室で発生したイオン化電流信号を検出し、処理することができる。
図3は、例えばアナログ・デジタル(A/D)コンバータ110を用いてイオン化電流信号を直接サンプリングし、次いで、該サンプリングされたイオン化電流信号IIONをマイクロプロセッサ120で処理するイオン化電流信号処理回路を示す。この回路は、圧縮行程及び膨張行程にわたって、分解したクランク角度ごとにイオン化電流信号をサンプリングする。この回路はまた、パワートレイン制御モジュール(PCM)のメイン・プロセッサ130ではなく、A/Dコンバータ110からのデータ・サンプリング・レートを扱うのに十分な動作速度及びメモリ140を備えていない独立したマイクロプロセッサ120で信号を処理し、エンジン診断ルーチンを実施する。増大したデータ・サンプル・レートを処理するために独立したマイクロプロセッサ120を使用することにより、製造コストが上昇する。さらに、独立したマイクロプロセッサ120は、A/Dコンバータ110からのデータ・サンプルを処理するのに十分な動作速度及びメモリを持たなければならず、製造コストがさらに上昇することになる。
以上を考慮して、本発明は、内燃エンジンの燃焼室からのイオン化電流信号を処理し、エンジン診断を実施する改善された方法に向けられる。
好ましい実施形態においては、本発明は、イオン化信号を検出し、第1のサンプリング・ウィンドウにわたって該イオン化信号を積分して第1の積分イオン化値を生成し、該第1のサンプリング・ウィンドウにわたって該イオン化信号のピークを検出して第1のピークイオン化値を生成し、第2のサンプリング・ウィンドウにわたって該イオン化信号を積分して第2の積分イオン化値を生成し、該第2のサンプリング・ウィンドウにわたって該イオン化信号のピークを検出して第2のピークイオン化値を生成し、該第1の積分イオン化値と、該第1のピークイオン化値と、該第2の積分イオン化値と、該第2のピークイオン化値のうちの少なくとも1つを用いてエンジン診断ルーチンを実施するステップを含む、イオン化信号を用いてエンジン診断を行う方法を含む。
本発明の別の実施形態においては、エンジン診断ルーチンを実施する方法は、少なくとも2つのシリンダ・バンクについて、クランク・モードの間に該エンジン診断ルーチンを実施し、正常作動モードの間に該エンジン診断ルーチンを実施することを含む。
本発明の更に別の実施形態においては、エンジン診断ルーチンを実施するためのコンピュータ・システムは、イオン化信号を検出し、第1のサンプリング・ウィンドウにわたって該イオン化信号を積分して第1の積分イオン化値を生成し、該第1のサンプリング・ウィンドウにわたって該イオン化信号のピークを検出して第1のピークイオン化値を生成し、第2のサンプリング・ウィンドウにわたって該イオン化信号を積分して第2の積分イオン化値を生成し、該第2のサンプリング・ウィンドウにわたって該イオン化信号のピークを検出して第2のピークイオン化値を生成し、該第1の積分イオン化値、該第1のピークイオン化値、該第2の積分イオン化値、及び該第2のピークイオン化値のうちの少なくとも1つを用いて該エンジン診断ルーチンを実施するステップを行うプログラムを格納しているメモリと、該プログラムを実行するためのプロセッサと、を含む。
本発明のさらにまた別の実施形態においては、コンピュータ読み取り可能媒体は、コンピュータ・システムにエンジン診断ルーチンを実施させる内容を含み、該コンピュータ・システムは、イオン化信号を検出し、第1のサンプリング・ウィンドウにわたって該イオン化信号を積分して第1の積分イオン化値を生成し、該第1のサンプリング・ウィンドウにわたって該イオン化信号のピークを検出して第1のピークイオン化値を生成し、第2のサンプリング・ウィンドウにわたって該イオン化信号を積分して第2の積分イオン化値を生成し、該第2のサンプリング・ウィンドウにわたって該イオン化信号のピークを検出して第2のピークイオン化値を生成し、該第1の積分イオン化値、該第1のピークイオン化値、該第2の積分イオン化値、及び該第2のピークイオン化値のうちの少なくとも1つを用いて該エンジン診断ルーチンを実施するステップを実行するプログラムを有する。
本発明の更なる適用可能性の範囲は、以下の詳細な説明、特許請求の範囲、及び図面から明らかとなるであろう。しかしながら、本発明の精神及び範囲内の種々の変更及び修正は当業者に明らかとなるので、詳細な説明及び特定の例示は、本発明の好ましい実施形態を示すものではあるが、単なる例示として与えられると理解されるべきである。
本発明は、以下の詳細な説明、添付の特許請求の範囲、及び添付の図面から、より完全に理解されることになるであろう。
本発明は、内燃エンジンの燃焼室で発生したイオン化電流信号を検出し、該イオン化電流信号を処理してエンジンの性能及び作動を評価する種々のエンジン診断ルーチンを実施することに関する。
本詳細な説明は、イオン化電流信号の検出及び処理に全体的に関係する多数の新規な特徴を含む。この特徴は、単独で用いても、他の説明される特徴と組み合わせて用いてもよい。
火花点火式エンジンにおいては、スパーク・プラグがエンジンの燃焼室内に延びており、検出装置として用いることができる。スパーク・プラグを検出装置として使用することにより、燃焼室内部の状態を監視するために独立したセンサを該燃焼室内に設置する必要がなくなる。
エンジン内部での燃焼の間に、火炎前面における化学反応が、様々なイオンをプラズマの中で発生させる。H3+イオン、C33 +イオン、及びCHO+イオンを含むこれらのイオンは、検出されるのに十分長く持続する励起時間を有する。スパーク・プラグのギャップ間に電圧を印加することによって、これらの自由イオンは、該スパーク・プラグのギャップ領域に引き付けられ、イオン化電流信号IION100a〜100nを発生させることができる。
図1に示されるように、イオン化信号検出システム280は、スパーク・プラグのギャップ(すなわちスパークプラグの先端)にバイアス電圧を印加するための装置を各々のコイルに含むコイル・オン・プラグ構成体281を備えている。コイル・オン・プラグ構成体281は、イオン化電流信号処理システムを含むモジュール282に取り付けられる。
イオン化電流信号IIONは、点火及び燃焼中のスパーク・プラグのギャップにおける局所伝導率を測定する。図2に示されるように、イオン化電流信号IIONは、点火及び燃焼中に変化する。(図2に示されるイオン化信号は、点火の間及び点火の後に、スパーク・プラグのギャップ間に流れる検出されたイオン化電流信号IION100a〜100nに比例する、イオン化電圧VION205であることに注意されたい。)この変化は、燃焼過程の異なる段階において検出して、エンジンのシリンダクランク角と比較することができる。
イオン化電流信号IION100a〜100nは、典型的には、点火すなわちスパークフェーズ220と、点火後すなわち燃焼フェーズ230の2つのフェーズを持つ。点火フェーズ220の間に、点火コイルが充電され、次いで放電されて、空気/燃料混合物に点火する。点火後フェーズ230では、燃焼が起っている。点火後フェーズ230は、典型的には、火炎前面フェーズと火炎後フェーズの2つのフェーズを持つ。火炎前フェーズは、燃焼炎(火炎核形成の際の火炎面の移動)がシリンダ内で発達するときに起こる。理想的な状況下では、火炎前フェーズは単一のピーク値を有する。火炎前フェーズの間に発生したイオン化電流信号IION100a〜100nは、空気/燃料比に深く関係することが示されてきた。火炎前面後フェーズは、シリンダ内で発生する温度及び圧力に関係する。以下により詳細に説明されるように、火炎前後フェーズは、ピークシリンダ圧の位置と良好に相関するピークを持つイオン化電流信号IION100a〜100nを生成する。
図2は、点火フェーズ220及び点火後フェーズ230中のイオン化電流の生成によってもたらされるイオン化電圧信号VION205のグラフを示す。バイアス電圧VBIASが、点火前フェーズ210、点火フェーズ220、及び点火後フェーズ230中に、スパーク・プラグのギャップに印加される。好ましい実施形態においては、バイアス電圧VBIASは約0.5Vである。しかしながら、当業者であれば、エンジンの作動状態に応じて、この値より大きい又は小さいバイアス電圧VBIASを用いることができることを理解するであろう。
図2は、点火フェーズ220及び点火後フェーズ230中のイオン化電流のフェーズも示す。点火フェーズ220中に、点火コイルが充電され、次いで放電されて、電流がスパーク・プラグのギャップにアークを生じさせ、シリンダ内の空気/燃料混合物に点火する。点火フェーズ220に続いて、バイアス電圧VBIASは、空気/燃料混合物の燃焼中に生成されたイオンを引き付ける。典型的にはH3+イオン、C33 +イオン、及びCHO+イオンを含むイオンが、バイアス電圧VBIASによってスパーク・プラグのギャップ領域に引き付けられるので、イオン化電流がスパーク・プラグのギャップに流れる。このイオン化電流は、図2においてイオン化電圧信号VION205によって表される。点火後フェーズ230中に、燃焼が進行して火炎面がシリンダ内を移動するにつれて、イオン化電圧信号VION205はピーク電圧240まで上昇することになる。シリンダ内の燃焼状態によっては、シリンダ内の圧力及び温度が高まることによって、第2のピーク250が現れることもある。
図4は、イオン化電流信号を用いてエンジン診断ルーチンを実施する内燃エンジン診断システム300を示す。イオン化電流信号IION100a〜100nは、イオン信号処理のために、エンジンの各々のシリンダにあるイオン検出組立体305a〜305nからイオン信号処理を行なうアナログ回路310に送信される。アナログ回路310からは、処理されたイオン化電流信号IION100a〜100nが、アナログ・デジタル(A/D)コンバータ320に送信される。次に、アナログ・デジタル(A/D)コンバータ320は、デジタル化されたイオン化信号IION100a〜100nを、パワートレイン制御モジュール(PCM)350のメイン・プロセッサ330に送信する。パワートレイン制御モジュール(PCM)350は、調整され、デジタル化された信号を用いて、種々のエンジン診断及び制御ルーチン335を実施する。エンジン診断ルーチンは、シリンダ識別、全域にわたる不点火(失火)検出、及び二次オープン検出を含む。システム300は、必要に応じて、アナログ回路310、及びメイン・プロセッサ330のエンジン診断ルーチンを再校正することを可能にする。このシステムはまた、広範囲のエンジン及び内燃作動状態及びパラメータにわたって、より大きな自由度をもたらす。
図5に示されるように、本発明の好ましい実施形態のアナログ信号調整システム400は、信号分離器410と、増幅器420と、オン/オフコントローラ430と、ピーク及び積分リセットコントローラ440と、ピーク検出器450と、イオン電流積分器460とを備えている。
2種類の信号が、アナログ信号調整システム400に入力される。第1に、アナログ信号調整システム400は、内燃エンジンのイオン化センサISENSOR 1-n305a〜305nから、イオン化信号IION100a〜100nを受信する。アナログ信号調整システム400はまた、パワートレイン制御モジュール(PCM)350の、例えば時間処理ユニット(TPU)470などのタイム・プロセッサから、オン/オフ制御信号480及びリセット制御信号475を受信する。
エンジン燃焼サイクルの逐次的な特性のため、イオン化センサ305a〜305nからのイオン化電流信号100a〜100nは、信号の損失又は歪みなしに、アナログ信号調整システム400の信号分離器410への単一の入力として合成してもよい。イオン化電流信号IION100a〜100nを1つのピンに多重化することができる1つの理由は、該イオン化電流信号IION100a〜100nは、一次コイル巻線の充電、点火、及び燃焼中のみ検出可能なことである。これら3つの期間は、シリンダの活動期間と呼ばれ、120度のクランク角度より小さい範囲にわたる(図2参照)。イオン化電流信号IION100a〜100nを多重化することができる別の理由は、イオン化電流信号IION100a〜100nが電流源であることである。したがって、イオン化信号情報のいかなる顕著な損失又は歪みもなく、イオン化電流信号をまとめて、各々のシリンダからの個々のイオン化信号100a、100b、100nを合成した単一の信号にすることができる。
信号分離器410は、イオン化電流信号IION100a〜100nからバイアス電流IBIASを引くことによって、検出されたイオン化電流信号を分離する。上述したように、バイアス電流IBIASは、バイアス電圧VBIASをスパーク・プラグのギャップに印加してイオン化電流信号IION100a〜100nを発生させた時に生じる。信号分離器410は、電流ミラー回路を用いて、イオン化電流信号IION100a〜100nからバイアス電流IBIASを取り除く。次いで、イオン化電流信号IION100a〜100nは、以下に説明するように、アナログ信号調整システム400内部で増幅され、処理される。
増幅器420は、信号分離器410から、分離されたイオン化電流信号IION100a〜100nを受信する。好ましい実施形態においては、増幅器420は、電流ミラー回路を用いてイオン化電流信号IION100a〜100nを増幅する。増幅器420はまた、オン/オフコントローラ430からオン/オフ制御信号を受信する。
オン/オフコントローラ430は、パワートレイン制御モジュール(PCM)350の時間処理ユニット(TPU)470からオン/オフ制御信号480を受信する。オン/オフコントローラ430は、オン/オフ信号480を処理し、これらの信号に基づいて増幅器420を「オン」及び「オフ」にして、イオン化電流信号IION100a〜100nのピーク検出及び積分を可能にする。
ピーク及び積分リセットコントローラ440は、パワートレイン制御モジュール(PCM)350の時間処理ユニット(TPU)470からリセット制御信号475を受信する。リセットコントローラ440は、これらの信号を処理して、ピーク検出器450及びイオン電流積分器460をそれぞれの初期値にリセットする。ピーク検出器450がリセットされた後で、該ピーク検出器450は、増幅器420がオン/オフコントローラ430によって「オン」にされたときに、増幅されたイオン化電流信号を処理して、ピークイオン化信号IPEAK455を生成する。ピークイオン化信号IPEAK455を、パワートレイン制御モジュール(PCM)350又は同様のエンジン診断及び制御プロセッサに送信することができる。イオン電流積分器460がリセットされた後で、該イオン電流積分器460は、増幅器がオン/オフコントローラ430によって「オン」にされたときに、増幅されたイオン化電流信号を処理して、積分イオン化電流信号IINT465を生成する。積分イオン化電流信号IINT465を、パワートレイン制御モジュール(PCM)350又は同様のエンジン診断及び制御プロセッサに送信することができる。
ピーク検出器450は、増幅されたイオン化電流信号IION100a〜100nを増幅器420から受信し、ピークイオン化信号IPEAK455を生成する。好ましい実施形態においては、ピークイオン化信号IPEAK455は、増幅器420がオン/オフコントローラ430によって「オン」にされた期間中のピーク検出器450の最終リセット以降に測定されたピークイオン化電圧と等しい。本発明の好ましい実施形態においては、ピーク検出器450は、点火フェーズ220及び点火後フェーズ230についてのピークイオン化信号IPEAK455を生成する。しかしながら、ピーク検出器450は、エンジンの作動状態及びエンジン診断ルーチンに応じて、2つより多いか又は少ないピークイオン化信号IPEAK455を生成するようにしてもよい。
イオン電流積分器460は、増幅されたイオン化電流信号IION100a〜100nを増幅器420から受信し、積分イオン化信号IINT465を生成する。好ましい実施形態においては、積分イオン化信号IINT465は、増幅器420がオン/オフコントローラ430によって「オン」にされた期間中のイオン電流積分器460の最終リセット以降のイオン化電流IIONの積分値と等しい。本発明の好ましい実施形態においては、イオン化電流信号IIONは、点火フェーズ220及び点火後フェーズ230について積分される。しかしながら、イオン電流積分器460は、エンジンの作動状態及びエンジン診断ルーチンに応じて、2つより多いか又は少ない積分イオン化電流信号IINT465を生成するようにしてもよい。
図6は、正常燃焼の場合における信号調整システム400の代表的な入力及び出力信号を示す。図6の最上部のチャートは、イオン化センサ305a〜305nから受信されたイオン化電流信号IION100a〜100nである。第2及び第3のチャートは、それぞれ、時間処理ユニット(TPU)470からアナログ調整システム400に送信されるオン/オフ制御信号Pa480及びリセット制御信号Pb475である。点火充電信号640は、最下部のチャートの曲線として示される。
オン/オフ制御信号480及びリセット制御信号475は、パルス列である。オン/オフ制御信号480は、論理レベル0(「LL0」)の時に「オン」である。リセット制御信号475は、論理レベル1(「LL1」)の時に「オン」である。オン/オフ制御信号480及びリセット制御信号475の作動は、以下の領域に従って説明することができる。当初は、時間0.0〜0.15ミリ秒において、オン/オフ制御信号480及びリセット制御信号475は、「オフ」状態である。この「オフ」状態は、オン/オフ制御信号480についてはLL1(イナクティブ「高」)として、及び、リセット制御信号475についてはLL0(イナクティブ「低」)として、示される。領域aにおいて、リセット制御信号475を「オン」及び「オフ」にして、点火フェーズ220に先立ち、積分器460及びピーク検出器450をリセットする。このリセットにより、ウィンドウ#1として示される点火フェーズ220について、ピーク検出器450がピークイオン化信号IPEAK455を生成し、積分器460が積分イオン化信号IINT465を生成することが可能になる。
領域bにおいて、オン/オフ制御信号480は「オン」にされる。オン/オフコントローラ430は、ピーク検出器450が増幅されたイオン化電流信号IION100a〜100nを受信して、点火フェーズ220(ウィンドウ#1)についてのピークイオン化信号IPEAK455を検出するように、増幅器420を「オン」にする。積分器460は、増幅されたイオン化電流信号IION100a〜100nを受信して、点火フェーズ220(ウィンドウ#1)についての積分イオン化電流信号IINT465を生成する。積分イオン化電流信号IINTを用いて、二次コイル・オープン診断ルーチン、エンジン不点火及び不完全燃焼診断ルーチン、並びにシリンダ識別診断ルーチンを実施することができる。領域bのスパーク・ウィンドウは、図6では約500マイクロ秒である。しかしながら、エンジンの作動状態及び点火システムに応じて、持続時間がより長いか又はより短いスパーク・ウィンドウを用いることができる。例えば、スパーク・ウィンドウは、点火システムの実際のスパーク持続時間に応じて、300マイクロ秒から3ミリ秒までのいずれかの間続くようにすることもできる。
領域bと領域cとの間の領域において、オン/オフ制御信号480は「オフ」状態にされる。これにより、増幅器420が「オフ」になり、ピーク検出器450及び積分器460に対するそれ以上の信号供給が停止する。積分イオン化信号IINT465は、適切な点火チャージがシリンダに対して行われたかどうか、すなわちスパークが起こったかどうかを判断するために、閾値と比較される。スパーク・ウィンドウについての積分イオン化信号IINT465が閾値を超える場合は、スパークが起こったものと判断される。積分イオン化信号IINT465がこの閾値を下回る場合は、スパークは起こらなかったものと判断される。
領域cにおいて、リセット制御信号475は「オン」及び「オフ」にされる。この制御動作により、積分器460及びピーク検出器450が初期値にリセットされる。このようにして、ウィンドウ#2として識別される点火後フェーズ230の間に発生したイオン化電流信号IION100a〜100nについて、ピーク検出及び積分を実行することができる。
領域dにおいて、リセット制御信号475は「オフ」状態に維持され、オン/オフ制御信号480は「オン」及び「オフ」にされる。このリセット制御動作により、点火後フェーズ230の間に、ピーク検出器450及び積分器460が、それぞれピークイオン化信号IPEAK455及び積分イオン化信号IINT465を検出することが可能になる。オン/オフコントローラ430は、パルス幅変調(PWM)を用いて、オン/オフ制御信号Pa480を調節する。パルス幅変調により、データ・オーバーフローを起こすことなく、様々な毎分エンジン回転数(RPM)で、点火後フェーズ230についてのピークイオン化信号IPEAK455及び積分イオン化信号IINT465を計算することが可能になる。その周波数は、10kHzに固定される。しかしながら、エンジンの作動状態によっては、より高いか又はより低い周波数を用いてもよい。以下の表に示されるように、オン/オフ制御信号480のパルス幅のデューティサイクルは、エンジンRPMに従ってオン周期の間が変動する。
Figure 2005155634
上述のように、パルス幅変調された制御信号480のデューティサイクルは、RPM単位のエンジン速度の関数である。パルス幅変調は、領域dにわたって、主に積分オーバーフローを防止し、良好な信号対雑音比を得るように用いられる。領域dの積分ウィンドウは、エンジン・サイクルのクランク角度に基づいている。本発明の第一の実施形態においては、60度のクランク角度にわたって、積分ウィンドウをとる。言うまでも無く、60度のクランク角度より大きいか又は小さい積分ウィンドウを用いることもできる。600RPMでは、60度のクランク角度の積分ウィンドウは、約16.17msの時間間隔である。6000RPMでは、60度のクランク角度の積分ウィンドウは、約1.667msの時間間隔である。このように、600rpmでの固定クランク角度にわたる時間ベースの積分は、6,000RPMでの同じ固定クランク角度にわたる時間ベースの積分と比較して、10倍増加する。
積分オーバーフローを防止する従来の手法は、可変積分ゲインを用いるものである。しかしながら、この手法は、特にアナログ回路に導入するには比較的高価である。本発明によれば、オン/オフ制御信号480のパルス幅変調を用いて、高いエンジンRPMでは積分が続き、エンジン速度が選択されたRPMを下回るデューティサイクルでは続かないように、増幅器420を「オン」及び「オフ」に切り換えることができる。この手法は、良好な信号出力分解能を維持しつつ、積分器のオーバーフローを防止するものである。
点火後フェーズ230(ウィンドウ#2)についての積分イオン化信号IINT465は、種々の診断ルーチンに用いることができる。例えば、不点火及び不完全燃焼診断ルーチンは、第2のウィンドウ(ウィンドウ#2)についての補正された、すなわち正規化された積分イオン化信号INTCi2(i=1,2)を用いる。本発明のこれらの実施形態においては、点火後フェーズ230(ウィンドウ#2)についての積分イオン化電流信号IINT465を正規化して、時間領域の積分をクランク角ベースの値に変換することができる。第2のウィンドウについての積分イオン化信号IINT465は、次式に従ってクランク角度で表すことができる。
∫Ion(θ)dθ=(∫Ion(t)dt)×6×RPM(i=1又は2)
第2のウィンドウについての時間ベースの積分イオン化値INTCi2は、エンジン速度の関数としてアナログ調整回路400から出力され、次式によってエンジンRPMに関連付けることができる。
INTCi2=∫Ion(t)dt×PWMDC=∫Ion(θ)dθ×PWMDC/(6×RPM)
従って、アナログ信号調整システム400から得られた点火後フェーズ230(ウィンドウ#2)についての積分イオン化信号IINT465を正規化して、時間領域の積分を、エンジンRPMに基づくクランク角ベースの値に変換することができる。すなわち、
INTCi2=∫Ion(θ)dθ=6×RPM×INTCi2/PWMDC
となる。パルス幅のデューティサイクル(PWMDC)はエンジン速度の関数なので、時間ベースの積分INTCi2を、下表を用いてクランク角ベースの積分に変換することができる。
Figure 2005155634
領域dの後は、オン/オフ制御信号480は「オフ」にされ、リセット制御信号475は「オフ」のまま留まる。積分器460及びピーク検出器450の出力が読み込まれ、それぞれ、点火後フェーズ230(ウィンドウ#2)についての積分イオン化信号IINT465及びピークイオン化信号IPEAK455が得られる。
図7に示されるように、各々のエンジン燃焼サイクルの間に、2つのデータ・サンプル610、620が取得される。これらのデータ・サンプル610、620を処理して、正常燃焼の場合の積分イオン化信号IINT465及びピークイオン化信号IPEAK455を生成する。第1のデータ・サンプル610が第1のデータ・サンプリング・ウィンドウ(ウィンドウ#1)で取得され、点火フェーズ220についての積分イオン化信号IINT465及びピークイオン化信号IPEAK455を生成する。第2のデータ・サンプルが第2のデータ・サンプリング・ウィンドウ(ウィンドウ#2)で取得され、点火後フェーズ230についての積分イオン化信号IINT465及びピークイオン化信号IPEAK455を生成する。アナログ信号調整システム400は、これらの2つのサンプルからのデータを処理して、点火フェーズ220及び点火後フェーズ230についてのピークイオン化信号IPEAK455及び積分イオン化信号IINT465を生成する。アナログ信号調整システム400は、これらの値をパワートレイン制御モジュール(PCM)350に出力する。従って、アナログ信号調整システム400は、点火フェーズ220及び点火後フェーズ230中のイオン化電流をサンプリングし、各々のエンジン燃焼サイクルについて、2つのピークイオン化信号及び2つの積分イオン化信号を生成する。このように、各々のエンジン燃焼サイクル中のシリンダ識別、点火診断、不点火/不完全燃焼検出、及び同様のエンジン診断ルーチンのために、4つのパラメータがパワートレイン制御モジュール(PCM)350に送られる。しかしながら、当業者であれば、エンジンの診断必要条件、作動状態、及び同様のパラメータに応じて、本発明に従っていかなる数のデータサンプリング・ウィンドウを用いてもよいことを理解するであろう。
本発明のアナログ信号調整システムは、既知の信号調整システムと比較して、データ・サンプル・レートを大きく低下させる。本発明と矛盾しない1つの実施形態によると、各々のシリンダからのイオン化電流信号IION100a〜100nは、各々のエンジン燃焼事象、すなわち点火フェーズ220、点火後フェーズ230について一回サンプリングすることができ、各々のエンジン燃焼サイクルについて二回サンプリングすることができる。このサンプル・レートは、独立したマイクロプロセッサを用いてイオン化電流信号を直接サンプリングする既知のシステムにおいて取得されるエンジン燃焼サイクルあたり何百個ものサンプルと比べて、著しく少ない。既知のシステムにおいては、イオン化電流信号IION100a〜100nは、少なくともクランク角度ごとに、又はエンジン燃焼サイクルあたり数百回、サンプリングされる。本発明は、エンジン燃焼サイクルあたりのデータ・サンプル・レートを百倍以上低減させることにより、著しい経費節減及び効率向上をもたらす。
本発明のアナログ回路310は、例えば、図4に示されるように同じ回路基板の一部にするなどして、パワートレイン制御モジュール(PCM)350と一体にすることができる。この構成は、製造コストを最小にし、システムの自由度を向上させる。アナログ回路310はエンジン燃焼サイクルあたり2つのデータ・サンプルを用いるので、データ・サンプリング・レートの増加に対応するためにパワートレイン制御モジュール(PCM)350のメモリ340を増やす必要はない。パルス幅変調を用いることにより、アナログ回路310が広範なエンジン作動状態にわたって2つのピークイオン化信号及び2つの積分イオン化信号を調整して出力することが可能になる。さらに、パワートレイン制御モジュール(PCM)350のエンジン診断ルーチン335は、異なる作動状態に対して変化させることができる。この自由度により、メイン・プロセッサ330が広範なエンジン作動状態にわたって積分イオン化信号IINT465及びピークイオン化信号IPEAK455を処理することが可能になる。好ましい実施形態においては、アナログ・デジタル(A/D)コンバータ320は、メイン・プロセッサ330の一部にすることができる。他の実施形態においては、アナログ回路310は、パワートレイン制御モジュール(PCM)350から独立させることができる。
2以上のアナログ回路310を組み合わせて、イオン化電流信号IION100a〜100nを処理し、調整することができる。図8は、2つのアナログ回路710、720を備える本発明の実施形態を示す。この実施形態においては、内燃エンジンのシリンダは、バンク#1及びバンク#2の2つのシリンダ・バンクに分けられる。図8に示されるように、各々のシリンダ・バンクは、アナログ回路710、720の一方に接続される。発火順序が1、3、4、2である4気筒内燃エンジン用途では、一方のシリンダ・バンク、例えばバンク#1が、シリンダ1及び3を含み、もう一方のシリンダ・バンク、例えば#2が、シリンダ2及び4を含むものとすることができる。「V」型エンジンの場合、内燃エンジンのシリンダは、バンク#1とバンク#2の間で分けることができる。内燃エンジンのシリンダをバンク#1及びバンク#2に分けることにより、特にシリンダの数が増加する場合、シリンダ識別を改善し、それぞれのイオン化信号の間の干渉を防止するために、圧縮/膨張行程及び排気/給気行程をずらしてシリンダを対にすることが可能になる。
2つのデータサンプリング・ウィンドウを伴う本発明の好ましい実施形態においては、アナログ調整回路710、720の各々は、2つのイオン化信号サンプルを調整して、各々の燃焼サイクルにつき4つの値、すなわち2つの積分イオン化信号IINT465及び2つのピークイオン化信号IPEAK455を生成する。アナログ回路710、720は、合わせて、エンジン燃焼サイクルあたり8つの値を発生させる。アナログ回路710、720は、シリンダ識別、不点火/不完全燃焼検出、及び同様のエンジン診断ルーチンのために、これらの値をパワートレイン制御モジュール(PCM)350に送信する。
本発明を用いて、エンジン・クランク・モード中のシリンダ識別を実施することができる。シリンダ内の気体混合物が圧縮されるときは、その密度が大きくなり、その結果、スパーク・プラグの電極間の絶縁破壊電圧が高くなる。絶縁破壊電圧はまた、多くの異なる要因(密度、湿度、温度等)にも左右される。絶縁破壊電圧が高くなることによって、幾つかの明確な効果が生じる。例えば、圧縮行程にあるシリンダのスパーク持続時間は、圧縮行程にないシリンダのスパーク持続時間と比べて短くなる。さらに、スパークがアークを生じる前に電圧を増加させるのに、より時間がかかるようになる。各々のシリンダの点火コイルに同一の点火エネルギーが充電されると仮定すると、エネルギーが失われて電圧が下がるにつれて、スパークは、圧縮行程にあるシリンダの中でより早く終わることになる。アナログ信号調整システム400は、スパーク・ウィンドウにわたって、すなわち各々のシリンダについての点火フェーズ220中のイオン化信号を積分し、該スパーク・ウィンドウについての積分イオン化信号IINT465を所定の閾値と比較することによって、圧縮行程にあるシリンダを識別することができる。
本発明の別の実施形態においては、アナログ調整システムは、領域dにわたる積分及びピークイオン化電流信号を用いて、エンジンの不点火及び不完全燃焼診断ルーチンを実施する。ピークイオン化電流信号IPEAK及び積分イオン化信号IINTが所定の閾値より大きいときは、正常燃焼が宣言される。ピークイオン化信号IPEAK又は積分イオン化信号IINTの一方のみが所定の閾値より大きい場合は、不完全燃焼が宣言される。燃焼が相対的に遅れて起こることにより、領域dにわたる積分値が減少するので、この状況は不完全燃焼サイクルにおいて起こる。ピークイオン化信号IPEAK及び積分イオン化信号IINTがそれぞれの所定の閾値より小さい場合は、不点火が宣言される。
アナログ信号調整システムを用いて、二次巻線オープン検出、故障したコイル/イオン検出組立体、及びバンク・センサ/入力の接地短絡の診断ルーチンを実施することができる。二次巻線オープンは、スパークが起こるかどうかを観察することによって検出することができる。好ましい実施形態においては、イオン化信号IIONはスパーク・ウィンドウにわたって積分され、積分イオン化信号IINTは閾値と比較される。積分イオン化信号IINTが閾値より小さい場合、診断ルーチンは、スパークが起こらなかったと判断し、二次巻線オープンを宣言する。スパークが起こらないときは、二次巻線は内部の「環状」電流のみを発生させるので、積分イオン化信号IINTは閾値より小さい。結果として、スパーク・ウィンドウにわたるイオン化信号は、50パーセントのデューティサイクル方形波に近づく。スパーク・ウィンドウにわたって検出されたピークイオン化値が閾値を下回る場合は、コイル及びイオン検出組立体の故障が宣言される。燃焼ウィンドウ(領域d)にわたって検出されたピークイオン化信号が閾値より小さい場合は、バンク・センサ/入力のバッテリ短絡が宣言される。これらの診断ルーチンの各々は、以下により詳細に説明される。
本発明の好ましい実施形態に従って、エンジン・クランク・モード及び正常エンジン作動モード中に、エンジン診断ルーチンを実行することができる。図9は、エンジン・クランク・モードの間に実施されるエンジン診断ルーチンのフローチャートである。例えばアルゴリズムなどのクランク・モード診断ルーチンは、いくつかの予備条件が満たされると、エンジン診断及びシリンダ識別のサブルーチンを実施する。クランクシャフト・センサが同期しなければならず、カムシャフトが同期せず、各々のシリンダ・バンクの点火コイルが充電され(800)、TDC(上死点)近傍で放電されなければならない。これらの条件のいずれかが満たされない場合は、メイン・プロセッサ330はクランク・モード診断制御ルーチンを実施しない(805)。クランク・モード診断ルーチンは、カムシャフトが同期するまで実行されることになる。
クランクシャフト位置センサが、毎分回転数(「rpm」)及びクランクシャフトの回転位置を検出する。好ましい実施形態においては、クランクシャフト位置センサは、磁気ピックアップ、ホール効果スイッチ、又は可変リラクタンス・センサである。クランクシャフトが回転すると、クランクシャフト位置センサはクランクシャフトの位置に基づく信号を生成し、該クランクシャフト位置センサからの信号に基づいてエンジンrpmを計算することができる。信号は、この信号を処理して各々のシリンダ・バンクで上死点(TDC)にあるピストンを識別し、次のサイクルでTDCに来ることになる各々のバンクのシリンダについて点火休止パルスを生成する点火モジュール及び/又はメイン・プロセッサ330に送信される。点火が完了した後で、クランク・モード診断制御ルーチンは圧縮行程にあるシリンダを識別し、シリンダ識別プロセスを完了することができる。休止パルス幅が広すぎるか又は狭すぎて圧縮行程にあるシリンダを識別できないときは、診断ルーチンは、シリンダ識別プロセスが完了するまで、以下により詳細に説明される双方向プロセスにおいてパルス幅を調節する。
クランクシャフト位置センサが同期し、各々のシリンダ・バンクのコイルが充電され放電されると、エンジン・クランク・モード診断ルーチンは、各々のシリンダ・バンクについて、2つのデータサンプリング・ウィンドウ610、620にわたってピークイオン化信号IPEAK及び積分イオン化信号IINTをサンプリングする。本発明の好ましい実施形態においては、クランク・モード診断ルーチンは、スパーク・ウィンドウ610とも呼ばれる点火フェーズ220の間、及び、燃焼ウィンドウ620とも呼ばれる点火後フェーズ230の間に、バンク#1及びバンク#2の両方について、ピークイオン化信号Pi1及び積分イオン化信号INTi1(i=1,2)をサンプリングする。
クランクシャフト位置センサが同期し、カム同期フラグが設定されず、各々のシリンダ・バンクの点火コイルが充電され、放電される場合、クランク・モード診断ルーチンは、故障したコイル/イオン検出組立体診断サブルーチン810、820を実施する。このサブルーチンは、スパーク・ウィンドウ610(すなわち、ウィンドウ1)の間にサンプリングされたピークイオン化信号Pi1(i=1,2)を、故障したコイル/イオン検出組立体閾値THFCと比較して、コイル及びイオン化センサ組立体が故障したかどうかを判断する。この診断サブルーチンは、ウィンドウ1におけるバンク#1についてのピークイオン化信号Pi1を、故障したコイル/イオン検出閾値THFCと比較して、バンク#1において点火コイル及びイオン化センサ組立体が故障したかどうかを判断する(ステップ810)。このサブルーチンはまた、ウィンドウ1におけるバンク#2についてのピークイオン化信号P21を、故障したコイル/イオン検出閾値THFCと比較して、バンク#2においてコイル及びイオン化センサ組立体が故障したかどうかを判断する(ステップ820)。
バンク#1についてサンプリングされたピークイオン化値P11が、故障したコイル/イオン検出組立体閾値THFCより小さい場合、診断サブルーチンは、対応するバンク#1のコイル/イオン検出組立体の故障を宣言する(ステップ815)。バンク#1についてサンプリングされたピークイオン化信号P11が、故障したコイル/イオン検出組立体閾値THFCより小さくない場合、診断サブルーチンは、対応するバンク#1のコイル及びイオン化センサ組立体が点火フェーズ220の間に故障しなかったものと判断する。クランク・モード診断ルーチンは、エンジンのバンク#2について同様のサブルーチンを実施する。バンク#2についてサンプリングされたピークイオン化値P21が、故障したコイル/イオン検出組立体閾値THFCより小さい場合、診断サブルーチンは、点火フェーズ220の間にバンク#2の点火コイル/イオン検出組立体の故障が起こったものと判断し、対応するコイル/イオン検出組立体の故障を宣言する(ステップ825)。バンク#2についてサンプリングされたピークイオン化信号P21が、故障したコイル/イオン検出組立体閾値THFCより小さくない場合、エンジン・クランク・モード診断サブルーチンは、対応する点火コイル及びイオン化センサ組立体が故障しなかったものと判断する。
故障したコイル/イオン電流検出組立体の故障がどちらのシリンダ・バンクについても宣言される場合、メイン・プロセッサ330はその故障を記録する。さらに、メイン・プロセッサ330は、例えば、エンジンrpmなどのエンジン作動パラメータを制限することによって、エンジンをリンプ・ホーム・モードに置くか、又はメイン・プロセッサ330は、エンジンを停止させることができる。メイン・プロセッサ330は、故障を記録することもできる。メイン・プロセッサ330は、故障したコイル/イオン電流検出の故障を宣言してリンプ・ホーム・モードを開始するか又はエンジンを停止させる前に、数回、エンジン・クランク・モード診断ルーチンを実施することができる。
エンジン・クランク・モード診断ルーチンが故障したコイル/イオン電流検出組立体の故障を検出しない場合、クランク・モード診断ルーチンは、燃焼ウィンドウ(ウィンドウ2)でサンプリングされたピークイオン化信号Pi2(I=1,2)を用いて、バンク#1及びバンク#2についてのセンサ/入力のバッテリ短絡サブルーチンを実施する(ステップ830及びステップ840)。診断サブルーチンは、バンク#1についてサンプリングされたピークイオン化信号P12と、バンク#2についてサンプリングされたP22とを、イオン・センサのバッテリ短絡閾値THSBと比較する。バンク#1についてサンプリングされたピークイオン化信号P12が、イオン・センサのバッテリ短絡閾値THSBより小さい場合、診断サブルーチンは、バンク#1にあるイオン化センサ・フィードバック・チャネルの少なくとも1つがバッテリに短絡していることを宣言する(ステップ835)。バンク#1についてのピークイオン化値P12が、センサのバッテリ短絡閾値THSBより小さくない場合、診断サブルーチンは、バンク#1においてはイオン・センサのバッテリ短絡がないものと判断する。
クランク・モード診断ルーチンは、バンク#2についてサンプリングされたピークイオン化値P22をセンサのバッテリ短絡閾値THSBと比較すること840によって、エンジンのバンク#2について同様のサブルーチンを実施する。バンク#2についてサンプリングされたピークイオン化値P22が、センサのバッテリ短絡閾値THSBより小さい場合、診断サブルーチンは、バンク#2にあるイオン化センサ・フィードバック・チャネルの少なくとも1つがバッテリに短絡していることを宣言する(ステップ845)。バンク#2についてサンプリングされたピークイオン化値P22がセンサのバッテリ短絡閾値THSBより小さくない場合、診断サブルーチンは、バンク#2においてはイオン・センサ入力のバッテリ短絡がないものと判断する。
本発明の1つの実施形態においては、故障したコイル/イオン検出閾値THFC及びセンサのバッテリ短絡閾値THSBは、所定の定数とすることができる。本発明の別の実施形態においては、故障したコイル/イオン検出閾値THFC及びセンサのバッテリ短絡閾値THSBは、エンジン速度、エンジン負荷、及び同様の作動パラメータの関数として定めることができる。
クランク・モード診断ルーチンが、故障したコイル/イオン検出組立体の故障又はセンサのバッテリ短絡故障を検出しない場合、診断ルーチンは、シリンダ識別サブルーチンを実施して、バンク#1及び/又はバンク#2において圧縮状態にあるシリンダを識別する。各々のコイルの休止持続時間は、圧縮状態にあるシリンダについては比較的高い気体混合物密度のためにスパークせず、圧縮状態にないシリンダについてはスパークするように選択される。この診断サブルーチンは、バンク#1についてサンプリングされた積分イオン化信号INT11と、バンク#2についてサンプリングされたINT21とをシリンダ識別閾値THIDと比較して、どのシリンダが圧縮行程にあるのかを判断する。図9においてステップ850で表されるように、このサブルーチンは、バンク#1の積分イオン化信号INT11からバンク#2の積分イオン化信号INT21を引く。ウィンドウ1でバンク#1についてサンプリングされた積分イオン化信号INT11から、ウィンドウ1でバンク#2についてサンプリングされた積分イオン化信号INT21を引いた差が、シリンダ識別閾値THIDを超える場合、診断サブルーチンは、バンク#1のシリンダが圧縮状態にあると判断し、該サブルーチンは、バンク#1についてカム同期フラグを設定する(ステップ855)。同様に、ウィンドウ1でバンク#2についてサンプリングされた積分イオン化信号INT21から、ウィンドウ1でバンク#1についてサンプリングされた積分イオン化信号INT11を引いた差が、シリンダ識別閾値THIDを超える場合、サブルーチンは、バンク#2のシリンダが圧縮状態にあると判断し、該サブルーチンは、バンク#2についてカム同期フラグを設定する(ステップ865)。
両方のシリンダがスパークしたか、又はどちらのシリンダもスパークしなかったかのいずれかのために、クランク・モード診断サブルーチンが初めに圧縮状態にあるシリンダを識別できない場合、該サブルーチンは、圧縮状態にあるシリンダがスパークせず、圧縮状態にないシリンダがスパークするまで、充電持続時間を段階的な処理で調節する。このように、次のシリンダ識別事象の間、すなわちバンク#1及びバンク#2における次の点火フェーズの間に、シリンダ識別を行うことができる。
クランク・モード診断ルーチンの充電持続時間調整サブルーチンは、以下のように作動する。バンク#2についてサンプリングされた積分イオン化信号INT21とバンク#1についてサンプリングされた積分イオン化信号INT11との間の差の絶対値が、シリンダ識別閾値THIDより大きくない場合、クランク・モード診断ルーチンは、INT11とINT21の合計を点火閾値THIGNと比較して、コイル充電持続時間を長くすべきか又は短くすべきかを判断する(ステップ870)。このように、どちらの診断基準も満足されない場合(すなわち、|INT21−INT11THID)、充電持続時間サブルーチンは、例えば段階的な又は双方向の処理を通じてコイル充電持続時間を変更し、シリンダ識別が適応的に行われるようにする。
適応的な休止持続時間調整サブルーチンは、バンク#2についてサンプリングされた積分イオン化信号INT21とバンク#1についてサンプリングされた積分イオン化信号INT11とを加え、その合計を点火閾値THIGNと比較する(ステップ870)。バンク#2についてサンプリングされた積分イオン化信号INT21とバンク#1についてサンプリングされたINT11の合計が点火閾値THIGNより大きい場合、充電持続時間サブルーチンは、ステップ870において、たとえバンク#1及びバンク#2のシリンダの一方が圧縮状態にあったとしても、両方のシリンダがスパークしたものと判断する。診断サブルーチンは、ステップ875において、次の燃焼サイクル中の段階的な処理で各々のシリンダ・バンクのコイル充電持続時間を短くし、圧縮状態にあるシリンダが次の燃焼サイクルの間にスパークせず、圧縮状態にないシリンダがスパークするようにする。バンク#2についてサンプリングされた積分イオン化信号INT21とバンク#1についてサンプリングされたINT11の合計が、次の燃焼サイクルにおいても依然として点火閾値THIGNより大きい場合、診断サブルーチンは、圧縮状態のシリンダがスパークせず、圧縮状態にないシリンダがスパークするまで、ステップ870において、段階的にコイル充電持続時間を短くし続ける。このように、クランク・モード診断ルーチンは、圧縮状態にあるシリンダの識別を可能にし、同期フラグを設定する。
バンク#1についてサンプリングされた積分イオン化信号INT11とバンク#2についてサンプリングされたINT21の合計が、点火閾値THIGNより大きくない場合、クランク・モード診断ルーチンは、どちらのシリンダもスパークしなかったものと判断し、圧縮状態にないシリンダがスパークし、圧縮状態にあるシリンダがスパークしない状態が続くようになるまで、段階的な処理で充電持続時間を長くする(ステップ880)。バンク#2についてサンプリングされた積分イオン化信号INT21とバンク#1についてサンプリングされたINT11の合計が、次の燃焼サイクルにおいて点火閾値THIGNより大きくない場合、診断サブルーチンは、圧縮状態にないシリンダがスパークし、圧縮状態にあるシリンダがスパークしない状態が続くようになるまで、段階的にコイル充電持続時間を長くし続ける(ステップ880)。このように、充電持続時間サブルーチンは、クランク・モード診断ルーチンがバンク#1及びバンク#2において圧縮状態にあるシリンダを識別し、カム同期フラグを設定することを可能にする。
クランク・モード診断ルーチンが、圧縮状態にあるシリンダを識別してカム同期フラグを設定すると、メイン・プロセッサ330は、図10に示されるように、正常作動モード診断ルーチンを実施する。この診断ルーチンのための前提条件は、ステップ900において示され、クランクシャフト位置センサが同期し、カムシャフトのフェーズすなわちセンサが同期し、点火休止が有効であること900、すなわち言い換えれば、エンジンが正常作動モードであることを含む。上で説明されたように、クランクシャフト位置センサは、クランク・モード診断ルーチンの作動に先立って同期される。カムシャフト・センサは、クランク・モード診断ルーチンが圧縮状態にあるシリンダを識別すると、同期される。点火休止が「有効」に設定されることにより、コイル充電持続時間は、正常なエンジン作動の間に空気/燃料混合物を点火するのに十分な長さになる。クランクシャフト位置センサ若しくはカムシャフト・センサが同期されないか、又は点火休止が無効の場合は、正常作動モード診断ルーチンは実施されないことになる(ステップ905)。
正常作動モード診断ルーチンは、故障したコイル/イオン・センサ組立体サブルーチン、及びバンク・センサ/入力のバッテリ短絡サブルーチンを実施する。故障したコイル/イオン検出診断サブルーチンは、今問題としているシリンダ・バンク(バンク#1又はバンク#2のいずれか)についてウィンドウ1の間にサンプリングされたピークイオン化信号Pi1(ここで「i」はシリンダのバンク#1又はバンク#2を表す)を、故障したコイル/イオン検出閾値THFCと比較する(ステップ920)。今問題としているバンク#1についてウィンドウ1の間にサンプリングされたピークイオン化信号Pi1(i=1又は2)が、故障したコイル/イオン検出閾値THFCより小さい場合、診断サブルーチンは、今問題としているシリンダ・バンクについての対応する点火コイル/イオン・センサ組立体の故障を宣言する(ステップ925)。ウィンドウ1で今問題としているバンクについてサンプリングされたピークイオン化信号Pi1(i=1又は2)が、故障したコイル/イオン検出閾値THFCより小さくない場合、診断サブルーチンは、対応する点火コイル/イオン・センサ組立体の故障が今問題としているバンクにおいて起こらなかったものと判断する。
次いで、正常作動モード診断ルーチンは、バンク・センサ/入力のバッテリ短絡診断サブルーチンを実施する(ステップ930)。このサブルーチンは、今問題としているバンクについてウィンドウ2の間にサンプリングされたピークイオン化信号Pi2(ここで「i」はシリンダ・バンク#1又は#2を表す)を、バンク・センサのバッテリ短絡閾値THSBと比較する(ステップ930)。今問題としているシリンダ・バンクについてサンプリングされたピークイオン化信号Pi2(i=1又は2)が、バンク・センサのバッテリ短絡閾値THSBより小さい場合、診断サブルーチンは、今問題としているシリンダ・バンクについてセンサのバッテリ短絡故障を宣言する(ステップ935)。
今問題としているバンクについてサンプリングされたピークイオン化信号Pi2(i=1又は2)が、バンク・センサ/入力のバッテリ短絡閾値THSBより小さくない場合、正常エンジン作動診断サブルーチンは、二次オープン診断サブルーチンを実施する(ステップ940)。
二次オープン診断サブルーチンは、今問題としているシリンダ・バンクについてウィンドウ1の間にサンプリングされた積分イオン化信号INTi1(i=1又は2)を、二次オープン閾値THOSと比較する(ステップ940)。今問題としているシリンダ・バンクについてサンプリングされた積分イオン化信号INTi1(i=1又は2)が、二次オープン閾値THOSより小さい場合、診断サブルーチンは、今問題としているバンクにおける対応するシリンダの二次オープン故障を宣言する(ステップ945)。ウィンドウ1で今問題としているシリンダ・バンクについてサンプリングされた積分イオン化信号INTi1(i=1又は2)が、二次オープン閾値THOSより大きいか又は等しい場合、診断サブルーチンは、今問題としているシリンダ・バンクにおいて二次オープン故障が起こらなかったものと判断する。本発明の1つの実施形態においては、二次オープン閾値THOSは、エンジン速度、負荷などの関数として導き出すことができる。本発明の別の実施形態においては、二次オープン閾値THOSは、定数値とすることができる。
正常エンジン作動診断ルーチンが、コイル/イオン検出組立体サブルーチンと、センサのバッテリ短絡故障サブルーチンと、二次オープン故障サブルーチンとを実行することに成功すると、正常エンジン作動診断ルーチンは、エンジン燃料システムが稼動していることを確認する(ステップ950)。エンジン燃料システムは、燃料をポート燃料噴射(PFI)の吸気ポートを通して間接的にエンジンシリンダに供給するか、又は、ガソリン直接噴射(GDI)の場合は燃料を直接シリンダ内部に供給する。例えば燃料噴射システムが稼動状態であるなど、燃料システムが稼動している場合、正常作動診断ルーチンは、エンジン不点火/不完全燃焼診断サブルーチンを実施する(ステップ960)。
このサブルーチンは、ウィンドウ2にわたって、すなわち燃焼フェーズの間にサンプリングされたピーク値及び補正された積分値を用いて、不点火及び不完全燃焼エンジン診断を実施する。このサブルーチン960は、今問題としているシリンダ・バンクについてサンプリングされたピークイオン化信号Pi2(i=1又は2)をピーク不点火閾値THPMと比較する。このサブルーチン960はまた、今問題としているシリンダ・バンクについてサンプリングされた補正済みの、すなわち正規化済みの積分イオン化信号INTCi2(i=1又は2)を、積分不点火閾値THIMと比較する。
今問題としているシリンダ・バンクについてサンプリングされたピークイオン化信号Pi2(i=1又は2)が、ピーク不点火閾値THPMを超え、かつ、今問題としているシリンダ・バンクについてサンプリングされた補正済みの、すなわち正規化済みの積分イオン化信号INTCi2(i=1又は2)が積分不点火閾値THIMを超える場合、不点火診断サブルーチンは、正常燃焼が今問題としているバンクの対応するシリンダ内で起こったものと判断し、カム同期フラグを確認する(ステップ965)。
エンジン不点火/不完全燃焼基準の一方のみが満たされる場合、すなわち、ピーク不点火閾値THPM又は積分不点火閾値THIMの一方のみを超える場合(ステップ970)、診断サブルーチンは、不完全燃焼を宣言する(ステップ975)。例えば、ウィンドウ2で今問題としているシリンダ・バンクについてサンプリングされたピークイオン化信号Pi2(i=1又は2)はピーク不点火閾値THPMを超えるが、ウィンドウ2で今問題としているシリンダ・バンクについてサンプリングされた補正済みの積分イオン化信号INTCi2(i=1又は2)は積分不点火閾値THIMを超えない場合(ステップ970)、サブルーチンは、今問題としているバンクの対応するシリンダにおける不完全燃焼を宣言する(ステップ975)。あるいは、ウィンドウ2で今問題としているバンクについてサンプリングされた補正済みの積分イオン化信号INTCi2(i=1又は2)は積分不点火閾値THIMを超えるが、ウィンドウ2で今問題としているシリンダ・バンクについてサンプリングされたピークイオン化信号Pi2(i=1又は2)はピーク不点火閾値THPMを超えない場合(ステップ970)、サブルーチンは、バンク#1における不完全燃焼を宣言する975。
基準Pi2及びINTCi2(i=1又は2)のいずれもそれぞれの閾値THPM及びTHIMを超えない場合、不点火が宣言される(ステップ980)。例えば、ウィンドウ2で今問題としているシリンダ・バンクについてサンプリングされたピークイオン化信号Pi2(i=1又は2)がピーク不点火閾値THPMより小さいか又はこれと等しく、ウィンドウ2で今問題としているシリンダ・バンクについてサンプリングされた補正済みの積分イオン化信号INTCi2(i=1又は2)が積分不点火閾値THIMより小さいか又はこれと等しい場合、今問題としているシリンダ・バンクの対応するシリンダについて不点火が宣言される(ステップ980)。
ピークイオン化信号Pi2(i=1又は2)及び積分イオン化信号INTCi2(i=1又は2)は、エンジン速度及びエンジン負荷の状態が変わるのに従って変化するので、ピーク不点火閾値THPM及び積分不点火閾値THIMは、エンジン速度及びエンジン負荷の関数として選択することができる。本発明の別の実施形態においては、ピーク不点火閾値THPM及び積分不点火閾値THIMは、定数とすることができる。
このように、本発明は、エンジン診断ルーチンを実施するのに必要なデータ・サンプル・レートを、既知のエンジン診断システム及び方法と比較して、少なくとも100分の1に減少させる。エンジン診断ルーチンは、広範囲のエンジンrpm及び作動状態にわたって作動させることができる。これらの効率は、既知のシステム及び方法に比べ、実質的にエンジン診断の効率を改善し、診断システムのコストを低減する。
上記の考察は、本発明の例示的な実施形態を開示し、説明するものである。当業者であれば、こうした考察並びに添付図面及び特許請求の範囲から、特許請求の範囲によって定められる本発明の真の精神及び正当な範囲から逸脱することなく、種々の変更、修正、及び変形を行うことが可能であることを容易に認識するであろう。
イオン化電流検出システムを示す。 イオン化電圧信号のグラフである。 既知のエンジン診断システムを示す。 イオン化信号を用いる内燃エンジン診断システムを示す。 イオン化信号調整システムを示す。 イオン化電流信号、オン/オフ制御信号、リセット制御信号、及び点火充電信号のグラフを示す。 正常燃焼の場合において、入力イオン化信号及び制御信号を伴うピーク検出信号及び積分イオン化信号のグラフである。 エンジン診断システムを示す。 クランク・モード診断ルーチンのブロック図である。 正常作動モード診断ルーチンのブロック図である。
符号の説明
110:アナログ・デジタル(A/D)コンバータ
120:マイクロプロセッサ
130:パワートレイン制御モジュール(PCM)メイン・プロセッサ
140:メモリ
210:点火前フェーズ
220:点火フェーズ
230:点火後フェーズ
280:イオン化信号検出システム
281:コイル・オン・プラグ構成
282:モジュール

Claims (6)

  1. コンピュータ・システムにエンジン診断ルーチンを実施させるコンテンツをもったコンピュータ読み取り可能媒体であって、
    前記コンピュータ・システムが、
    a)イオン化信号を検出し、
    b)第1のサンプリング・ウィンドウにわたって前記イオン化信号を積分して、第1の積分イオン化値を生成し、
    c)前記第1のサンプリング・ウィンドウにわたって前記イオン化信号のピークを検出して、第1のピークイオン化値を生成し、
    d)第2のサンプリング・ウィンドウにわたって前記イオン化信号を積分して、第2の積分イオン化値を生成し、
    e)前記第2のサンプリング・ウィンドウにわたって前記イオン化信号のピークを検出して、第2のピークイオン化値を生成し、
    f)前記第1の積分イオン化値と、前記第1のピークイオン化値と、前記第2の積分イオン化値と、前記第2のピークイオン化値のうちの少なくとも1つを用いて、前記エンジン診断ルーチンを実施する、ステップを実行するプログラムを有する、
    ことを特徴とするコンピュータ読み取り可能媒体。
  2. 前記プログラムが、さらに、
    前記第1のピークイオン化値を故障したコイル/イオン検出閾値と比較し、
    前記第1のピークイオン化値が前記故障したコイル/イオン検出閾値より小さいときは、点火コイル/イオン検出組立体の故障を宣言し、
    前記第2のピークイオン化値をセンサのバッテリ短絡閾値と比較し、
    前記第2のピークイオン化値が前記センサのバッテリ短絡閾値より小さいときは、センサのバッテリ短絡故障を宣言し、
    シリンダ識別ルーチンを実行し、該シリンダ識別ルーチンでは、
    第1のシリンダ・バンクのシリンダについての前記第1の積分イオン化値から、第2のシリンダ・バンクのシリンダについての前記第1の積分イオン化値を引いて、第1の差を生成し、
    前記第1の差をシリンダ識別閾値と比較して、該第1の差が前記シリンダ識別閾値を超える場合は、前記第1のシリンダ・バンクの前記シリンダについてカム同期フラグを設定し、
    前記第2のシリンダ・バンクの前記シリンダについての前記第1の積分イオン化値から、前記第1のシリンダ・バンクの前記シリンダについての前記第1の積分イオン化値を引いて、第2の差を生成し、
    前記第2の差を前記シリンダ識別閾値と比較して、該第2の差が該シリンダ識別閾値を超える場合は、前記第2のシリンダ・バンクについてカム同期フラグを設定する、
    ことを特徴とする請求項1に記載のコンピュータ読み取り可能媒体。
  3. 前記プログラムが、さらに、
    前記第1の差及び前記第2の差が前記シリンダ識別閾値を越えない場合は、
    前記第2のシリンダ・バンクの前記シリンダについての前記第1の積分イオン化値を、前記第1のシリンダ・バンクの前記シリンダについての前記第1の積分イオン化値に加えて合計値を生成し、
    前記合計値を点火閾値と比較し、
    前記合計値が前記点火閾値を越える場合は、コイル充電持続時間を長くする、
    ステップを含む段階的な方法で前記コイル充電持続時間を調整し、
    前記合計値が前記点火閾値を超えない場合は、前記コイル充電持続時間を短くするステップを実行する、
    ことを特徴とする請求項2に記載のコンピュータ読み取り可能媒体。
  4. 前記プログラムが、さらに、
    前記第1のピークイオン化値を故障したコイル/イオン検出閾値と比較し、
    前記第1のピークイオン化値が前記故障したコイル/イオン検出閾値より小さい場合は、点火コイル/イオン検出組立体の故障を宣言し、
    前記第2のピークイオン化値をセンサのバッテリ短絡閾値と比較し、
    前記第2のピークイオン化値が前記センサ/入力のバッテリ短絡閾値より小さい場合は、センサのバッテリ短絡故障を宣言し、
    前記第1の積分イオン化値を二次オープン閾値と比較し、
    前記第1の積分イオン化値が前記二次オープン閾値より小さい場合は、二次オープン故障を宣言し、
    燃料システムが稼動している場合は、判断を行うステップを実行する、
    ことを特徴とする請求項1に記載のコンピュータ読み取り可能媒体。
  5. 前記プログラムが、さらに、
    前記第2のピークイオン化値を不完全燃焼閾値と比較し、
    前記第2の積分値の補正値を不点火閾値と比較し、
    前記第2のピークイオン化値及び前記第2の積分値の補正値が前記不完全燃焼閾値を越える場合は、正常燃焼を宣言し、
    前記第2のピークイオン化値及び前記第2の積分値の補正値の一方のみが前記不完全燃焼閾値を越える場合は、不完全燃焼を宣言し、
    前記第2のピークイオン化値及び前記第2の積分値の補正値のいずれも前記不完全燃焼閾値を越えない場合は、不点火を宣言するステップを実行する、
    ことを特徴とする請求項4に記載のコンピュータ読み取り可能媒体。
  6. 前記プログラムが、さらに、
    クランク・センサが同期しているかどうかを判断し、
    カム同期フラグが設定されているかどうかを判断し、
    少なくとも1つのシリンダ・バンクのコイルが充電されているかどうかを判断し、
    前記クランク・センサが同期し、前記カム同期フラグが設定されず、前記少なくとも1つのシリンダ・バンクの前記コイルが充電されている場合は、クランク・モード診断ルーチンを実施し、
    クランク・センサが同期しているかどうかを判断し、
    カム同期フラグが設定されているかどうかを判断し、
    点火休止が有効かどうかを判断し、
    前記クランク・センサが同期し、前記カム同期フラグが設定され、前記点火休止が有効な場合は、正常作動モード診断ルーチンを実施するステップを実行する、
    ことを特徴とする請求項1に記載のコンピュータ読み取り可能媒体。
JP2004340713A 2003-11-26 2004-11-25 ピーク及び積分イオン化電流信号を用いる内燃エンジン診断システム Expired - Fee Related JP4044924B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/723,097 US6922628B2 (en) 2003-11-26 2003-11-26 IC engine diagnostic system using the peak and integration ionization current signals

Publications (2)

Publication Number Publication Date
JP2005155634A true JP2005155634A (ja) 2005-06-16
JP4044924B2 JP4044924B2 (ja) 2008-02-06

Family

ID=33541661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004340713A Expired - Fee Related JP4044924B2 (ja) 2003-11-26 2004-11-25 ピーク及び積分イオン化電流信号を用いる内燃エンジン診断システム

Country Status (5)

Country Link
US (1) US6922628B2 (ja)
JP (1) JP4044924B2 (ja)
DE (1) DE102004057282B4 (ja)
FR (1) FR2862713A1 (ja)
GB (1) GB2408581A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239691A (ja) * 2006-03-10 2007-09-20 Diamond Electric Mfg Co Ltd 内燃機関の燃焼制御装置
JP2016079920A (ja) * 2014-10-20 2016-05-16 三菱電機株式会社 内燃機関の制御装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7197913B2 (en) * 2003-09-04 2007-04-03 Visteon Global Technologies, Inc. Low cost circuit for IC engine diagnostics using ionization current signal
KR100579926B1 (ko) * 2004-06-30 2006-05-15 현대자동차주식회사 내연기관의 실화 판정 방법 및 시스템
US7689334B2 (en) * 2006-09-28 2010-03-30 Perkins Engines Company Limited Engine diagnostic method
US7878177B2 (en) * 2007-10-23 2011-02-01 Ford Global Technologies, Llc Internal combustion engine having common power source for ion current sensing and fuel injectors
US7677230B2 (en) * 2007-10-30 2010-03-16 Ford Global Technologies, Llc Internal combustion engine with multiple spark plugs per cylinder and ion current sensing
US7693648B2 (en) * 2007-11-27 2010-04-06 Caterpillar Inc. System and method for detecting misassembly of an exhaust aftertreatment system of a machine
US7992542B2 (en) * 2008-03-11 2011-08-09 Ford Global Technologies, Llc Multiple spark plug per cylinder engine with individual plug control
US20100006066A1 (en) * 2008-07-14 2010-01-14 Nicholas Danne Variable primary current for ionization
US8132556B2 (en) 2008-08-29 2012-03-13 Ford Global Technologies, Llc Ignition energy management with ion current feedback to correct spark plug fouling
US8176893B2 (en) * 2008-08-30 2012-05-15 Ford Global Technologies, Llc Engine combustion control using ion sense feedback
US7818998B2 (en) * 2008-09-30 2010-10-26 Visteon Global Technologies, Inc. Detecting ionization signal for HCCI engines using a dual gain and dual bias voltage circuit
US7966992B2 (en) * 2009-02-15 2011-06-28 Ford Global Technologies, Llc Combustion control using ion sense feedback and multi-strike spark to manage high dilution and lean AFR
US8490598B2 (en) * 2009-08-20 2013-07-23 Ford Global Technologies, Llc Ignition coil with ionization and digital feedback for an internal combustion engine
US8324905B2 (en) * 2010-03-01 2012-12-04 Woodward, Inc. Automatic variable gain amplifier
US8408191B2 (en) 2010-06-23 2013-04-02 Delphi Technologies, Inc. Engine combustion control using ignition dwell
DE102010040271A1 (de) * 2010-09-06 2012-03-08 Robert Bosch Gmbh Verfahren und Vorrichtung zur Einstellung eines Notlaufbetriebes bei einem fehlerbehafteten System zur Erkennung von Vorentflammungen in einem Verbrennungsmotor
JP6165873B2 (ja) * 2013-10-08 2017-07-19 日立オートモティブシステムズ株式会社 内燃機関の制御装置
US9534984B2 (en) * 2013-12-19 2017-01-03 Ford Global Technologies, Llc Spark plug fouling detection for ignition system
US9824505B2 (en) * 2014-02-25 2017-11-21 Ford Global Technologies, Llc Method for triggering a vehicle system monitor
WO2018119201A1 (en) 2016-12-23 2018-06-28 Cummins Inc. Engine health diagnosis and fault isolation with cranking test
JP6328293B1 (ja) * 2017-04-19 2018-05-23 三菱電機株式会社 内燃機関の制御装置及び制御方法
IT201700055908A1 (it) * 2017-05-23 2018-11-23 Fpt Ind Spa Metodo e sistema di controllo di combustione in una camera di combustione di un motore a combustione interna

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250935A (en) 1990-09-24 1993-10-05 Snap-On Tools Corporation Waveform peak capture circuit for digital engine analyzer
JP2568507Y2 (ja) * 1991-09-27 1998-04-15 株式会社小松製作所 建設機械の微操作モード制御装置
JP2721604B2 (ja) * 1991-09-30 1998-03-04 株式会社日立製作所 燃焼状態診断装置
JP2909345B2 (ja) * 1993-03-23 1999-06-23 三菱電機株式会社 内燃機関制御装置
US5925819A (en) 1995-05-10 1999-07-20 Nippon Soken, Inc. Combustion monitoring apparatus for internal combustion engine
US6104195A (en) 1995-05-10 2000-08-15 Denso Corporation Apparatus for detecting a condition of burning in an internal combustion engine
SE508753C2 (sv) * 1995-10-24 1998-11-02 Saab Automobile Förfarande och anordning för att identifiera vilken förbränningskammare hos en förbränningsmotor som befinner sig i kompressionstakt samt förfarande för att starta en förbränningsmotor
JP3026427B2 (ja) 1996-09-03 2000-03-27 トヨタ自動車株式会社 内燃機関のノッキング検出装置
US5725214A (en) * 1996-12-23 1998-03-10 Adams; Martin Four horseshoe wire puzzle
JPH1113619A (ja) * 1997-06-25 1999-01-19 Denso Corp 内燃機関の燃焼状態検出装置
DE19727004A1 (de) * 1997-06-25 1999-01-07 Bosch Gmbh Robert Verfahren und Vorrichtung zur Erkennung von Zündaussetzern einer Brennkraftmaschine
US5778855A (en) * 1997-07-03 1998-07-14 Ford Global Technologies, Inc. Combustion stability control for lean burn engines
JP3754188B2 (ja) * 1997-09-08 2006-03-08 日産自動車株式会社 車両の駆動力制御装置
US6006156A (en) 1997-12-11 1999-12-21 Cummins Engine Company, Inc. Apparatus and method for diagnosing and controlling an ignition system of an internal combustion engine
DE19755255C2 (de) * 1997-12-12 2000-12-21 Telefunken Microelectron Verfahren zur Erkennung von klopfender Verbrennung aus einem Ionenstromsignal bei Brennkraftmaschinen
DE19901066C1 (de) 1999-01-14 2000-08-10 Daimler Chrysler Ag Verfahren zur Erkennung von durchlaßverringernden Veränderungen in einem Abgaskatalysatorkörper
JP2001059442A (ja) 1999-08-23 2001-03-06 Ngk Spark Plug Co Ltd 燃料直噴エンジンの制御方法及び記憶媒体
JP3659565B2 (ja) 1999-09-01 2005-06-15 三菱電機株式会社 ノック検出装置
JP3783823B2 (ja) 1999-09-03 2006-06-07 三菱電機株式会社 内燃機関のノック制御装置
JP3502580B2 (ja) 1999-09-16 2004-03-02 三菱電機株式会社 内燃機関のノック検出装置
JP3696002B2 (ja) 1999-09-20 2005-09-14 三菱電機株式会社 内燃機関のノック制御装置
US6338267B1 (en) 2000-02-17 2002-01-15 Delphi Technologies, Inc. System for rejecting noise in ignition knock data
DE10008553B4 (de) 2000-02-24 2009-01-29 Robert Bosch Gmbh Verfahren und Vorrichtung zur Auswertung eines Ionenstrom-Sensor-Signals einer Brennkraftmaschine
US6611145B2 (en) 2000-07-20 2003-08-26 Harley-Davidson Motor Company Group, Inc. Motorcycle having a system for combustion diagnostics
US6360587B1 (en) 2000-08-10 2002-03-26 Delphi Technologies, Inc. Pre-ignition detector
US6832472B2 (en) * 2002-06-17 2004-12-21 Southwest Research Institute Method and apparatus for controlling exhausted gas emissions during cold-start of an internal combustion engine
US6805099B2 (en) * 2002-10-31 2004-10-19 Delphi Technologies, Inc. Wavelet-based artificial neural net combustion sensing
US6742499B2 (en) * 2002-11-01 2004-06-01 Woodward Governor Company Method and apparatus for detecting abnormal combustion conditions in lean burn reciprocating engines
US6922057B2 (en) 2002-11-01 2005-07-26 Visteon Global Technologies, Inc. Device to provide a regulated power supply for in-cylinder ionization detection by using a charge pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239691A (ja) * 2006-03-10 2007-09-20 Diamond Electric Mfg Co Ltd 内燃機関の燃焼制御装置
JP4637039B2 (ja) * 2006-03-10 2011-02-23 ダイヤモンド電機株式会社 内燃機関の燃焼制御装置
JP2016079920A (ja) * 2014-10-20 2016-05-16 三菱電機株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
DE102004057282B4 (de) 2014-11-06
US6922628B2 (en) 2005-07-26
GB2408581A (en) 2005-06-01
US20050114012A1 (en) 2005-05-26
JP4044924B2 (ja) 2008-02-06
DE102004057282A1 (de) 2005-07-07
FR2862713A1 (fr) 2005-05-27
GB0424750D0 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
JP4044924B2 (ja) ピーク及び積分イオン化電流信号を用いる内燃エンジン診断システム
US7472687B2 (en) System and method for pre-processing ionization signal to include enhanced knock information
US7690352B2 (en) System and method of selecting data content of ionization signal
JP3971737B2 (ja) 点火コイルフライバックエネルギ及び2段調整を使用することによって気筒内イオン化検出用安定化電源を得るためのデバイス
JP3971738B2 (ja) イオン化検出回路及び点火コイルドライバを単一パッケージ内に集積することによって気筒内イオン化検出システムの部品数及びパッケージサイズを減少させるためのデバイス
US6980903B2 (en) Exhaust gas control using a spark plug ionization signal
US7134423B2 (en) Ignition diagnosis and combustion feedback control system using an ionization signal
JP4015606B2 (ja) 閉ループ式個別シリンダ空燃比のバランス化
JP3971736B2 (ja) イオン化信号及びコイルチャージ電流フィードバック信号を多重化することによってドライバ及びイオン化検出回路と共に集積された点火コイルのピン数を減少させる方法
US7086382B2 (en) Robust multi-criteria MBT timing estimation using ionization signal
US7013871B2 (en) Closed loop MBT timing control using ionization feedback
JP3971739B2 (ja) チャージポンプを使用することによって気筒内イオン化検出回路用安定化電源を得るデバイス
JP3971735B2 (ja) 集積されたコイルドライバ及びイオン化検出回路を有する点火コイル
US8260529B2 (en) Internal combustion engine ignition controlling apparatus having ignition diagnosing function
US6748922B2 (en) Knock control apparatus for internal combustion engine
JP2012017745A (ja) 内燃機関におけるノッキングを識別する方法および装置
GB2395575A (en) Optimal wide open throttle air-fuel ratio control
US7856308B2 (en) Knock detection apparatus for internal combustion engine
JP2007198318A (ja) 内燃機関の点火時期制御装置
JP2001082304A (ja) 内燃機関のノック制御装置
US20150019112A1 (en) Control device for internal combustion engine
JP3971734B2 (ja) 点火コイルの部分的チャージングに続いてスパークを検出するための気筒内イオン化を使用して気筒idを検出する方法
JP4906884B2 (ja) 内燃機関の燃焼状態検出装置
CN105673235B (zh) 用于内燃机的爆震调整的方法和装置
US5606118A (en) System and method for detecting misfire in an internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070423

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070723

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees