JP2005150982A - 多素子センサ微小検知信号増幅装置 - Google Patents

多素子センサ微小検知信号増幅装置 Download PDF

Info

Publication number
JP2005150982A
JP2005150982A JP2003383107A JP2003383107A JP2005150982A JP 2005150982 A JP2005150982 A JP 2005150982A JP 2003383107 A JP2003383107 A JP 2003383107A JP 2003383107 A JP2003383107 A JP 2003383107A JP 2005150982 A JP2005150982 A JP 2005150982A
Authority
JP
Japan
Prior art keywords
operational amplifier
sensor
output
terminal
reference potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003383107A
Other languages
English (en)
Inventor
Hirosuke Tei
弘亮 鄭
Hiroyuki Kasai
宏之 河西
Kazuya Yano
一也 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Precision Circuits Inc
Original Assignee
Nippon Precision Circuits Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Precision Circuits Inc filed Critical Nippon Precision Circuits Inc
Priority to JP2003383107A priority Critical patent/JP2005150982A/ja
Priority to US10/963,918 priority patent/US7161419B2/en
Publication of JP2005150982A publication Critical patent/JP2005150982A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Amplifiers (AREA)

Abstract

【課題】 高精度のオフセットキャンセルと低周波領域でのノイズの低減化が可能で、オペアンプの増幅率を変化可能な多素子センサ微小検知信号増幅装置を提供する。
【課題の解決手段】 複数のセンサ素子1a〜1nの出力信号を選択的に入力するオペアンプ12の正相入力端子14をセンサ素子1a〜1nの出力端子2a〜2nまたは基準電位60と選択的に導通する第1スイッチング素子31を設け、逆相入力端子15は抵抗41を介して基準電位60に接続するとともに、各抵抗42,43を介して出力端子16に接続し、コンデンサ51の一方の端子52をオペアンプ12の出力端子16に接続し、他方の端子53を出力バッファ13に接続し、端子53を基準電位60に選択的に導通する第2スイッチング素子32を設け、各抵抗42,43間をスイッチング素子33,34をオン、オフして選択的に短絡することで抵抗値を変え、オペアンプ12の増幅率を変える。
【選択図】 図1

Description

本発明は、低周波領域でのノイズ対策が必要な直流および低周波の微小検知信号を出力するセンサ素子、例えばサーモパイル型赤外線センサ素子を複数有する多素子センサの出力信号をオペアンプで増幅する多素子センサ微小検知信号増幅装置に関する。
多素子センサにおける各センサ素子の出力信号は、プロセスなどの影響により、すべてのセンサ素子の信号レベルを常に適切なレベルにするのは困難である。一方、近年におけるCMOS回路の高集積化、低電力化技術がセンサ装置の小型化、低電力化に寄与するところは大きいが、CMOSオペアンプのように、差動増幅回路で構成される増幅器にあっては、しきい値電圧のばらつき等に起因する入力オフセット電圧を有するので、出力端子には、入力オフセット電圧を増幅した出力オフセット電圧を生じる。出力オフセット電圧(以下オフセット電圧という)は、例えば、CMOSオペアンプを直流および低周波の微小検知信号を出力する赤外線センサの増幅回路に使用した場合、大きなものとなって、その動作領域の線形領域から外れてクリップ状態を生起することもありうる。また、特に直流および低周波の微小検知信号が入力する場合には、前記オフセット電圧とともに、低周波領域でのノイズ対策が問題となる。
従来、複数の赤外線センサ素子とこれと同様の電気特性を有するが赤外線が入射しても信号値が変化しない補正用素子とを近接配置し、走査手段により補正用素子を動作させて増幅回路のオフセット値を求め、次にセンサ素子の出力を前記オフセット値に基づき補正することは知られている。
特開平9−218090号公報
しかしながら、上述した補正は、オフセット電圧に関するもので、増幅回路の増幅率は一定であるから、各センサ素子の出力にばらつきがあると、増幅後の出力信号が小さかったり、大きかったりするという不都合がある。本発明は、このような従来の不都合を解消し、多素子センサにおいてオフセット電圧をキャンセルするとともに、各センサ素子の出力信号レベルに合わせて、増幅回路であるオペアンプの増幅率を調整できる多素子センサ微小検知信号増幅装置を提供することを目的とする。
この目的を達成するため、本発明の請求項1に係る多素子センサ微小検知信号増幅装置は、直流および低周波の微小検知信号を出力する複数のセンサ素子を有し、択一的に選択されたセンサ素子の微小検知信号を出力する多素子センサと、この多素子センサの出力信号が入力するオペアンプと、このオペアンプの入力端子を前記多素子センサの出力端子または基準電位と選択的に導通する第1スイッチング素子と、一方の端子を前記オペアンプの出力端子に接続したコンデンサと、このコンデンサの他方の端子を前記基準電位に選択的に導通する第2スイッチング素子と、前記オペアンプの逆相入力端子と出力端子との間に直列接続した複数の抵抗と、これら抵抗の各両端間を選択的に短絡する前記各抵抗毎に設けたスイッチング素子とを備え、選択されたセンサ素子に応じた増幅率を得るために必要に応じて前記各抵抗を選択的に短絡するとともに、前記第1および第2のスイッチング素子をともに前記基準電位と導通状態とし、次いで前記第2スイッチング素子を前記基準電位と非導通状態とし、その後前記第1スイッチング素子を前記センサの出力端子と導通状態とするよう制御することにより、オペアンプの増幅率を変化可能にするとともに、オフセット電圧のキャンセルと、低周波領域でのノイズの低減化をなすものである。
同じく上記目的を達成するために、本発明の請求項2に係る多素子センサ微小検知信号増幅装置は、直流および低周波の微小検知信号を出力する複数のセンサ素子を有、択一的に選択されたセンサ素子の微小検知信号を出力する多素子センサと、各出力端子にはそれぞれコンデンサを接続し、当該各コンデンサを介して次段の入力端子に接続することにより縦続接続された複数のオペアンプと、最前段の前記オペアンプの入力端子を前記多素子センサの出力端子または基準電位と選択的に導通する第1スイッチング素子と、前記各コンデンサの次段側の端子を前記基準電位に選択的に導通する複数の第2スイッチング素子と、前記各オペアンプの逆相入力端子と出力端子との間に直列接続した複数の抵抗と、これら抵抗の各両端間を選択的に短絡する前記各抵抗毎に設けたスイッチング素子とを備え、選択されたセンサ素子に応じた増幅率を得るために必要に応じて前記各抵抗を選択的に短絡するとともに、前記第1および第2の各スイッチング素子をすべて前記基準電位と導通状態とし、次いで最後段から最前段へと順次各段の前記第2スイッチング素子を前記基準電位と非導通状態とし、その後前記第1スイッチング素子を前記多素子センサの出力端子と導通状態とするよう制御することにより、オペアンプの増幅率を変化可能にするとともに、オフセット電圧のキャンセルと、低周波領域でのノイズの低減化をなすものである。
本発明の請求項1に係る多素子センサ微小検知信号増幅装置によれば、オペアンプの出力側に設けたコンデンサによって、オペアンプの入力側の第1スイッチング素子よりも出力側の第2スイッチング素子を先にオフとすることにより、オペアンプの入力側の影響を受けることなくオフセット電圧を保持し、多素子センサの出力信号を増幅した後に、オフセット電圧をキャンセルするので、2つのスイッチング素子と1つの容量値の小さいコンデンサを使った簡潔な構成で、オフセット電圧をキャンセルできるとともに、低周波領域でのノイズも低減でき、また、オペアンプの逆相入力端子と出力端子との間に直列接続した複数の抵抗の各両端間を選択的に短絡して抵抗値を変えることにより、選択されたセンサ素子の出力信号レベルに合わせてオペアンプの増幅率を調整できるという効果を奏する。
本発明の請求項2に係る多素子センサ微小検知信号増幅装置によれば、各オペアンプの出力側に設けたコンデンサによって、オペアンプの入力側の第1スイッチング素子よりも出力側の第2スイッチング素子を先にオフとすることにより、各オペアンプの入力側の影響を受けることなくオフセット電圧を保持し、多素子センサの出力信号を増幅した後に、オフセット電圧をキャンセルするとともに、オペアンプの出力端子とコンデンサとの間にスイッチング素子を有しないので、オペアンプを多段化した場合でも、オフセット電圧をキャンセルできるとともに、低周波領域でのノイズも低減でき、また、各オペアンプの逆相入力端子と出力端子との間に直列接続した複数の抵抗の各両端間を選択的に短絡して抵抗値を変えることにより、選択されたセンサ素子の出力信号レベルに合わせて各オペアンプの増幅率を調整できるという効果を奏する。
以下、本発明の好適な実施形態を添付図面に基づいて説明する。はじめに、第1の実施形態を図1のブロック図に基づいて説明する。図1に示すように、多素子センサ微小検知信号増幅装置はセンサ部Aと増幅部B1とからなる。センサ部Aは、n個のサーモパイル型赤外線センサ素子(以下センサ素子という)1a〜1nを有する多素子センサからなり、各センサ素子1a〜1nの一方の出力端子2a〜2nはそれぞれスイッチング素子4a〜4nを介して多素子センサの出力端子5に接続し、この出力端子5は、増幅部B1の第1スイッチング素子21を介してオペアンプ12の正相入力端子14に接続している。また、前記各センサ素子1a〜1nの他方の出力端子3a〜3nは、多素子センサの出力端子6を介して基準電位60に接続している。
各スイッチング素子4a〜4nは、例えば、MOSトランジスタからなる3端子のアナログスイッチで、順次選択された一つのスイッチング素子4a〜4nのみがオン状態に切り替えられ、オン状態となったスイッチング素子4a〜4nに対応するセンサ素子1a〜1nの出力信号が増幅部B1へ出力される。前記各スイッチング素子4a〜4nは、図示していない制御回路からのクロック信号によって、その動作が制御される。
次に、増幅部B1について説明する。オペアンプ12の逆相入力端子15は、抵抗41を介して基準電位60に接続するとともに、直列接続した各抵抗42,43を介して前記オペアンプ12の出力端子16に接続している。前記各抵抗42,43の両端間にはそれぞれ両端間を短絡する第3、第4のスイッチング素子33,34を接続している。前記オペアンプ12はMOSトランジスタから構成される正相演算増幅器であり、本実施形態の増幅回路は正相演算増幅器として機能する。なお、本明細書において増幅回路とは、増幅部において後述する出力バッファを除いた構成要素で構成される部分をいう。
オペアンプ12の出力端子16はコンデンサ51を介して出力バッファ13の入力端子17に接続している。この出力バッファ13もMOSトランジスタから構成されるもので、ハイインピーダンスの入力端子17を備え、この入力端子17に接続する側のコンデンサ51の端子53が、第2スイッチング素子32がオフとなることにより、オペアンプ12の入力が変化しない限り、直前の電荷を保持することを可能としている。前記出力バッファ13は、ハイインピーダンスの入力端子17を備えていればよく、その他の構成は適宜選択することができる。また、前記出力バッファ13の出力端子18が図示していない後段回路への出力端子となる一方、前記出力バッファ13の入力端子17と前記コンデンサ51の一方の端子53との接続点Yは、前記第2スイッチング素子32を介して基準電位60に接続している。
第1スイッチング素子31は、オペアンプ12の正相入力端子14をスイッチング素子4a〜4nがオンされたセンサ素子1a〜1nの一方の出力端子2a〜2nまたは基準電位60に選択的に導通させるものであり、例えば、MOSトランジスタからなる3端子のアナログスイッチである。また、第2スイッチング素子32も、例えば、MOSトランジスタからなる3端子のアナログスイッチであり、前記各スイッチング素子31,32は、図示していない制御回路からのクロック信号によって、その動作が制御される。
続いて、上述のように構成した本実施形態の動作を説明する。今、図示していない制御回路によって、スイッチング素子4aが選択されてオン状態になっているとすると、このスイッチング素子4aに対応するセンサ素子1aの出力レベルに合わせてオペアンプ12の増幅率を変えるものである。ここで、各抵抗41,42,43の抵抗値をそれぞれR1,R2,R3とすると、オペアンプ12の増幅率に関与する抵抗値は、図1図示状態においては各スイッチング素子33,34がオフ状態なので、1+(R2+R3)/R1となり、第4スイッチング素子34のみを切り替えて、抵抗43の両端を短絡すると、1+R2/R1となり、第3スイッチング素子33のみを切り替えて抵抗42の両端を短絡すると、1+R3/R1となる。
以下、前記スイッチング素子4aの出力信号のレベルに合うオペアンプ12の増幅率にするためには、抵抗値1+R2/R1を最適なものとし、第3スイッチング素子33をオフ状態とし,第4スイッチング素子34をオン状態とした場合について説明する。この状態において、まず、第1,第2の各スイッチング素子31,32をともに基準電位60側に導通させ、オペアンプ12の正相入力端子14と、各端子53,17の接続点Yを、基準電位60に導通させる(第1状態)。
ここで、基準電位60の電位を0Vとし、第1状態における前記オペアンプ12の出力端子16の電位をVx1とし、前記接続点Yの電位をVy1とし、オペアンプ12の入力オフセット電圧をVosとし、抵抗41,42の抵抗値をそれぞれR1,R2とし、コンデンサ51の容量値をCとし、第1状態でコンデンサ51に充電された電荷をΔQとすると、次の式(1)が成り立つ。
Vy1−Vx1=−Vos×(1+R2/R1)=ΔQ/C・・・(1)
すなわち、オペアンプ12における入力オフセット電圧Vosによって生じる出力電圧の誤差分の電荷がコンデンサ51に充電される。
次に、第2スイッチング素子32をオフとして接続点Yと基準電位60とを非導通とする(第2状態)。この第2状態で、出力バッファ13の入力端子17はハイインピーダンスのものであり、前記第2スイッチング素子32がオフとなることによって、コンデンサ51の端子53がフローティングとなり、また、オペアンプ12の正相入力端子14が基準電位60に接続されたままで、出力端子16の電位が変化しないことから、第1状態においてコンデンサ51に充電された電荷が保持される。ここでコンデンサ51の端子52,53間に保持する電圧は入力オフセット電圧Vosによる誤差分だけでよいので、コンデンサ51の容量は比較的小さなもので足りる。
次いで、第1スイッチング素子31を基準電位60から切り離し、出力端子5側に導通する(第3状態)。すると、オペアンプ12の正相入力端子14は、基準電位60に変わって、選択されてオン状態になっているスイッチング素子4aに対応するセンサ素子1aの出力端子2aに接続され、前記オペアンプ12には前記センサ素子1aの出力信号が入力する。ここで、第1状態および第2状態でのコンデンサ51の電荷は保存されており、第3状態での出力端子16の電位をVx3とし、接続点Yの電位をVy3とし、前記センサ素子1aの出力信号の電位をVo3とすると、次の(2)式が成り立つ。
Vy3−Vx3=Vy3−(Vo3+Vos)×(1+R2/R1)
=ΔQ/C・・・(2)
式(1)を式(2)に代入すると次の式(3)が成り立つ。
Vy3=Vo3×(1+R2/R1)・・・(3)
この式(3)から、第3状態において、オペアンプ12における入力オフセット電圧Vosによって生じる出力電圧の誤差分Vos×(1+R2/R1)、すなわち、オフセット電圧をキャンセルした出力電圧Vy3が接続点Yに生じることが示される。そして、この出力電圧Vy3は出力バッファ13を介してその出力端子18から図示しない後段回路に出力される。
本実施形態の増幅回路は、上述した第1,第2,第3の各状態を繰り返すことにより、スイッチング素子4a〜4nがオン状態となって選択されたセンサ素子1a〜1nの出力信号をオペアンプ12の入力オフセット電圧の影響なく増幅できる。第1状態から第2状態への移行期間は、誤差分Vos×(1+R2/R1)に相当する電圧をコンデンサ51に充電可能な期間とすればよい。また、第2状態から第3状態への移行期間は、その期間内にクロック信号によって第2スイッチング素子32を十分にオフとさせ得る期間とすればよく、第3状態から第1状態への移行期間は、コンデンサ51に保持された誤差分の電圧によってオフセット電圧をキャンセル可能な期間であればよく、後段回路に応じて適宜決めるもので、例えば、後段回路のサンプルタイミングにあわせて第3状態から第1状態に切り替えればよいものである。
このように、本実施形態の増幅回路では、入力オフセット電圧Vosによって生じるオフセット電圧をコンデンサ51の端子52,53間に保持した後に、センサ素子1a〜1nの出力信号をオペアンプ12に入力するとともに、前記コンデンサ51に保持した前記オフセット電圧を差し引くことで、オフセットキャンセルを行う。このため、本実施形態では、1つのコンデンサ51と、2つのスイッチング素子31,32を用いた簡潔な構成でオフセットキャンセルが可能であり、増幅回路の小型化および低電力化が可能になるとともに、高精度のオフセットキャンセルおよび低周波領域でのノイズの低減化が可能となる。また、センサ素子1a〜1nの出力信号のレベルに応じて、第3,第4の各スイッチング素子33,34をオン、オフすることにより、抵抗値を変えて、オペアンプ12の増幅率を変えることができる。
続いて、本発明の第2実施形態を図2のブロック図に基づき説明する。第1実施形態では正相演算増幅器として機能する増幅回路について説明したが、本実施形態は逆相演算増幅器として機能する増幅回路であり、第1実施形態と同一の構成要素については同一符号を付して説明する。図2に示すように、増幅部B2におけるオペアンプ12の正相入力端子14は基準電位60に接続され、逆相入力端子15は抵抗41を介して第1スイッチング素子31に接続するとともに、直列に接続した各抵抗42,43を介して出力端子16に接続している。前記第1スイッチング素子31は、抵抗41を介して選択的に、逆相入力端子15を基準電位60に接続するか、センサ部Aの出力端子5に接続する。他の構成については第1実施形態と同一であるからその説明は省略する。
本実施形態においても、第1実施形態と同様に、図示していない制御回路からのクロック信号によって、各スイッチング素子33,34をオン、オフ制御することによって、オペアンプ12の逆相入力端子15と出力端子16との間に接続される抵抗42,43を選択可能とし、抵抗値を変えることでオペアンプ12の構成する逆相演算増幅回路の増幅率を可変としている。ここで、各抵抗41,42,43の抵抗値をそれぞれR1,R2,R3とすると、オペアンプ12の増幅率に関与する抵抗値は、図2図示状態においては各スイッチング素子33,34がオフ状態なので、(R2+R3)/R1となり、第4スイッチング素子34のみを切り替えて、抵抗43の両端を短絡すると、R2/R1となり、第3スイッチング素子33のみを切り替えて抵抗42の両端を短絡すると、R3/R1となる。
続いて、上述のように構成した本実施形態の増幅回路における動作を説明するが、以下には、図示していない制御回路によって、スイッチング素子4bが選択されてオン状態になっているとし、このスイッチング素子4bに対応するセンサ素子1bの出力レベルに合うオペアンプ12の増幅率が抵抗値(R2+R3)/R1で得られるものとして、各スイッチング素子33,34をオフ状態(図2参照)とした場合を説明する。この状態において、まず、第1,第2の各スイッチング素子31,32をともに基準電位60側に導通させ、オペアンプ12の逆相入力端子15と、各端子53,17の接続点Yを、基準電位60に導通させる(第1状態)。
ここで、基準電位60の電位を0Vとし、第1状態での前記オペアンプ12の出力端子16の電位をVx1とし、接続点Yの電位をVy1とし、オペアンプ12の入力オフセット電圧をVosとし、各抵抗41,42,43の抵抗値をそれぞれR1,R2,R3とし、コンデンサ51の容量値をCとし、第1状態でコンデンサ51に充電された電荷をΔQとすると、次の式(4)が成り立つ。
Vy1−Vx1=Vos×{(R2+R3)/R1}=ΔQ/C・・・(4)
すなわち、第1実施形態におけると同様に、オペアンプ2における入力オフセット電圧Vosによって生じる出力電圧の誤差分の電荷がコンデンサ51に充電される。
次に、第2スイッチング素子32をオフとして接続点Yと基準電位60とを非導通とする(第2状態、図2参照)。この第2状態で、出力バッファ13の入力端子17はハイインピーダンスのものであり、前記第2スイッチング素子32がオフとなることによって、コンデンサ51の端子53がフローティングとなり、また、オペアンプ12の逆相入力端子15が基準電位60に接続されたままで、出力端子16の電位が変化しないことから、第1状態においてコンデンサ51に充電された電荷が保持される。ここでコンデンサ51の端子52,53間に保持する電圧は入力オフセット電圧Vosによる誤差分だけでよいので、コンデンサ51の容量は比較的小さなもので足りる。
次いで、第1スイッチング素子31を基準電位60から切り離し、多素子センサ素子の出力端子5側に導通する(第3状態、図2図示状態)。これによって、オペアンプ12の逆相入力端子15は基準電位60に変わって、スイッチング素子4bがオン状態となっているセンサ素子1bの出力端子2bに続され、前記オペアンプ12には前記センサ素子1bの出力信号が入力する。ここで、第1状態および第2状態でのコンデンサ51の電荷は保存されており、第3状態での出力端子16の電位をVx3とし、接続点Yの電位をVy3とし、前記センサ素子1bの出力信号の電位をVo3とすると、次の(5)式が成り立つ。
Vy3−Vx3=Vy3+(Vo3+Vos)×{(R2+R3)/R1}
=ΔQ/C・・・(5)
式(4)を式(5)に代入すると次の式(6)が成り立つ。
Vy3=−Vo3×{(R2+R3)/R1}・・・(6)
この式(6)から、第3状態において、オペアンプ12における入力オフセット電圧Vosによって生じる出力電圧の誤差分Vos×{(R2+R3)/R1}、すなわち、オフセット電圧をキャンセルした出力電圧Vy3が接続点Yに生じることが示される。この出力電圧Vy3は出力バッファ13を介してその出力端子18から図示しない後段回路に出力される。なお、本実施形態では、オペアンプ12の入力と出力は基準電位60を中心に反転される。
このように、本実施形態の逆相増幅器として機能する増幅回路においても、第1実施形態の正相増幅器として機能する増幅回路と同様の作用効果を奏するもので、オフセット電圧のキャンセルと低周波領域でのノイズの低減が可能になるとともに、選択されたセンサ素子1a〜1nの出力信号のレベルに応じて、オペアンプ12の増幅率を変えることができる。
続いて、本発明の第3実施形態を、図3のブロック図に基づき説明する。本実施形態は微小電圧の取扱にさらに適合させ、かつ、より大きな増幅率を得るために、複数のオペアンプを縦続接続したものであり、第1実施形態と同様、正相演算増幅器として機能する増幅回路であって、第1実施形態及び第2実施形態と同一の構成要素についてはそれぞれ同一符号を付して説明する。図3に示すように、増幅部B3において、オペアンプ12の正相入力端子14は、第1スイッチング素子31を介してセンサ部Aの多素子センサの出力端子5側に接続し、逆相入力端子15は抵抗41を介して基準電位60に接続するとともに、直列に接続した各抵抗42,43を介して出力端子16に接続している。前記各抵抗42,43の両端間にはそれぞれ両端間を短絡する第3、第4のスイッチング素子33,34を接続している。
オペアンプ12の出力端子16は、コンデンサ51を介してオペアンプ19の正相入力端子20に接続している。このオペアンプ19は前記オペアンプ12と同様なもので、その出力端子22は前記コンデンサ51と同様のコンデンサ54を介して出力バッファ13の入力端子17に接続している。このコンデンサ54の端子56と出力バッファ13の入力端子17との接続点Zと基準電位60との間に、第2スイッチング素子32と同様のさらなる第2スイッチング素子37を接続している。そして、前記コンデンサ54の端子56が、第2スイッチング素子37がオフとなることにより、オペアンプ19の入力が変化しない限り、直前の電荷を保持することを可能としている。前記出力バッファ13の出力端子18が図示していない後段回路への出力端子となる。
また、オペアンプ19の正相入力端子20は第2のスイッチング素子32を介して基準電位60に接続し、逆相入力端子21は抵抗44を介して基準電位60に接続するとともに、直列に接続した各抵抗45,46を介して出力端子22に接続し、正相演算増幅器を構成する。さらに、前記各抵抗45,46の両端間にはそれぞれ両端間を短絡する第5、第6のスイッチング素子35,36を接続している。前記オペアンプ19はハイインピーダンスの入力端子20を備えるもので、コンデンサ51の端子53を第2スイッチング素子32がオフのときにフローティングとし、前段のオペアンプ12の入力が変化しない限り、コンデンサ51の電荷を保持可能としている。なお、前記各抵抗45,46および各スイッチング素子35,36は、上述の各抵抗42,43および各スイッチング素子33,34と同様の構成である。
そして、上述した各実施形態と同様に、図示していない制御回路からのクロック信号によって、各スイッチング素子33,34及び35,36をオン、オフ制御することによって、オペアンプ12及び19の逆相入力端子15及び21と出力端子16及び22との間に接続される抵抗42,43及び45,46を選択可能とし、抵抗値を変えることでオペアンプ12及び19の構成する正相演算増幅器の増幅率を可変としている。なお、可変となる抵抗値は、オペアンプ12については第1実施形態で説明したところと同一である。また、オペアンプ19については、各抵抗44,45,46の抵抗値をそれぞれR4,R5,R6とすると、図3図示状態においては、オペアンプ19の増幅率に関与する抵抗値は1+(R5+R6)/R4であるが、第5スイッチング素子35のみを切り替えて抵抗45の両端を短絡すると、抵抗値は1+R6/R4となり、第6スイッチング素子36のみを切り替えて、抵抗46の両端を短絡すると、抵抗値は1+R5/R4となる。
続いて、上述のように構成した本実施形態の増幅回路における動作を説明する。以下、図示していない制御回路によって、スイッチング素子4nが選択されてオン状態になっているものとし、このスイッチング素子4nに対応するセンサ素子1nの出力レベルに合うオペアンプ12,19の増幅率が、抵抗値1+(R2+R3)/R1および1+(R5+R6)/R4で得られるものとして、各スイッチング素子33,34,35,36をオフ状態(図3参照)とした場合を説明する。この状態で、まず、第1スイッチング素子31及び各第2スイッチング素子32,37をすべて基準電位60側に導通させ、オペアンプ12の正相入力端子14と、オペアンプ19の正相入力端子20(接続点Y)と、各端子56,17の接続点Zを、基準電位60に導通させる(第1状態)。
これによって、上述した第1実施形態と同様の作用により、コンデンサ51の両端子52,53間にはオペアンプ12の入力オフセット電圧による誤差分の電圧が生じ、また、同様の作用によって、コンデンサ54の両端子55,56間にはオペアンプ19の入力オフセット電圧による誤差分の電圧が生じる。
次に、最終段(本実施形態では2段目)のオペアンプ19の第2スイッチング素子37をオフとする(第2の1状態、図3参照)。これによりコンデンサ54の端子56がフローティングとなり、オペアンプ19の正相入力端子20は基準電位60に接続されているので、コンデンサ54の端子55,56間にはオペアンプ19の入力オフセット電圧による誤差分の電圧が保持される。
次いで、1段目のオペアンプ12の第2スイッチング素子32をオフとする(第2の2状態、図3参照)。これによってコンデンサ51の端子53がフローティングとなり、オペアンプ12の正相入力端子14は基準電位60に接続されているので、コンデンサ51の端子52,53間にはオペアンプ12の入力オフセット電圧による誤差分の電圧が保持される。
続いて、第1スイッチング素子31を基準電位60から切り離し(図3参照)、出力端子5およびオン状態にあるスイッチング素子4nを介してセンサ素子1nの出力端子2n側に導通する(第3状態)。これによって、オペアンプ12の正相入力端子14は基準電位60に変わって前記出力端子2nに接続され、前記オペアンプ12には前記センサ1nの出力信号が入力する。ここで、上述した第1実施形態と同様の作用でオペアンプ12にそのオフセット電圧をキャンセルした出力電圧が接続点Yに生じる。この出力電圧が入力するオペアンプ19においても上述の第1実施形態と同様の作用によって、オペアンプ19にそのオフセット電圧をキャンセルした出力電圧が接続点Zに生じる。そして、この出力電圧は出力バッファ13を介してその出力端子18から、図示していない後段回路に出力される。
本実施形態のように、第1実施形態の増幅回路を基本としてオペアンプを多段化したものでも、第1スイッチング素子31、各第2スイッチング素子32,37を基準電位60側に導通させ、各段のコンデンサ51,54にそれぞれ各段のオペアンプ12,19のオフセット電圧を充電し、各第2スイッチング素子32,37を最終段の第2スイッチング素子37から順にオフとし、各コンデンサ51,54にそれぞれ各段の電荷を保持し、各端子52,53及び55,56間の電圧を保持した後、第1スイッチング素子31をセンサ素子1a〜1nの出力端子2a〜2n側に導通させることにより、各段のオペアンプ12,19のオフセット電圧をキャンセルできるとともに、低周波数領域でのノイズを低減することができる。
なお、本発明は上述の各実施形態に限定されるものではなく、例えば、第3実施形態で説明した多段化にあっては2段としたが、3段以上としてもよいものであり、2段目以降のオペアンプ19はハイインピーダンスの入力端子20,21を備えるものであればよい。また、第2実施形態で説明した逆相演算増幅器として機能する増幅回路について多段化することも可能である。さらに、センサ素子1a〜1nとしては、直流及び低周波の微小検知信号を出力するものであれば、サーモパイル型赤外線センサに限らないことはもちろんである。
第1実施形態の多素子センサ微小検知信号増幅装置の構成を示すブロック図。 第2実施形態の多素子センサ微小検知信号増幅装置の構成を示すブロック図。 第3実施形態の多素子センサ微小検知信号増幅装置の構成を示すブロック図。
符号の説明
1a〜1n センサ素子
2a〜2n,3a〜3n 出力端子
4a〜4n スイッチング素子
5,6 出力端子
12,19 オペアンプ
13 出力バッファ
31 第1スイッチング素子
32,37 第2スイッチング素子
33 第3スイッチング素子
34 第4スイッチング素子
35 第5スイッチング素子
36 第6スイッチング素子
41,42,43,44,45,46 抵抗
51,54 コンデンサ
60 基準電位

Claims (2)

  1. 直流および低周波の微小検知信号を出力する複数のセンサ素子を有し、択一的に選択されたセンサ素子の微小検知信号を出力する多素子センサと、この多素子センサの出力信号が入力するオペアンプと、このオペアンプの入力端子を前記多素子センサの出力端子または基準電位と選択的に導通する第1スイッチング素子と、一方の端子を前記オペアンプの出力端子に接続したコンデンサと、このコンデンサの他方の端子を前記基準電位に選択的に導通する第2スイッチング素子と、前記オペアンプの逆相入力端子と出力端子との間に直列接続した複数の抵抗と、これら抵抗の各両端間を選択的に短絡する前記各抵抗毎に設けたスイッチング素子とを備え、
    選択されたセンサ素子に応じた増幅率を得るために必要に応じて前記各抵抗を選択的に短絡するとともに、前記第1および第2のスイッチング素子をともに前記基準電位と導通状態とし、次いで前記第2スイッチング素子を前記基準電位と非導通状態とし、その後前記第1スイッチング素子を前記センサの出力端子と導通状態とするよう制御する
    ことを特徴とする多素子センサ微小検知信号増幅装置。
  2. 直流および低周波の微小検知信号を出力する複数のセンサ素子を有、択一的に選択されたセンサ素子の微小検知信号を出力する多素子センサと、各出力端子にはそれぞれコンデンサを接続し、当該各コンデンサを介して次段の入力端子に接続することにより縦続接続された複数のオペアンプと、最前段の前記オペアンプの入力端子を前記多素子センサの出力端子または基準電位と選択的に導通する第1スイッチング素子と、前記各コンデンサの次段側の端子を前記基準電位に選択的に導通する複数の第2スイッチング素子と、前記各オペアンプの逆相入力端子と出力端子との間に直列接続した複数の抵抗と、これら抵抗の各両端間を選択的に短絡する前記各抵抗毎に設けたスイッチング素子とを備え、
    選択されたセンサ素子に応じた増幅率を得るために必要に応じて前記各抵抗を選択的に短絡するとともに、前記第1および第2の各スイッチング素子をすべて前記基準電位と導通状態とし、次いで最後段から最前段へと順次各段の前記第2スイッチング素子を前記基準電位と非導通状態とし、その後前記第1スイッチング素子を前記多素子センサの出力端子と導通状態とするよう制御する
    ことを特徴とする多素子センサ微小検知信号増幅装置。
JP2003383107A 2003-11-12 2003-11-12 多素子センサ微小検知信号増幅装置 Pending JP2005150982A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003383107A JP2005150982A (ja) 2003-11-12 2003-11-12 多素子センサ微小検知信号増幅装置
US10/963,918 US7161419B2 (en) 2003-11-12 2004-10-12 Sensor device and a signal amplification device of a small detection signal provided by the sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003383107A JP2005150982A (ja) 2003-11-12 2003-11-12 多素子センサ微小検知信号増幅装置

Publications (1)

Publication Number Publication Date
JP2005150982A true JP2005150982A (ja) 2005-06-09

Family

ID=34691961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003383107A Pending JP2005150982A (ja) 2003-11-12 2003-11-12 多素子センサ微小検知信号増幅装置

Country Status (1)

Country Link
JP (1) JP2005150982A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112957026A (zh) * 2021-02-05 2021-06-15 上海爻火微电子有限公司 接入阻抗的检测电路及电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112957026A (zh) * 2021-02-05 2021-06-15 上海爻火微电子有限公司 接入阻抗的检测电路及电子设备

Similar Documents

Publication Publication Date Title
JP3839027B2 (ja) Ad変換器
JPH0927883A (ja) 画像読取信号処理装置
JP2004357059A (ja) 半導体集積回路装置
US8324968B2 (en) Amplifier circuit, signal processor circuit, and semiconductor integrated circuit device
JP2008104197A (ja) 容量素子バラツキ依存性のないスイッチドキャパシタ増幅器およびその動作方法
JP2006313084A (ja) 容量式物理量センサ
US20110205098A1 (en) Switched capacitor amplifier
US7199654B1 (en) Multi-stage amplifier with switching circuitry
JP3801112B2 (ja) 画像読取信号処理装置
US20050116769A1 (en) Sensor device and a signal amplification device of a small detection signal provided by the sensor
US7342443B2 (en) Operational amplifier
JP2008219404A (ja) 増幅回路
JP2002374153A (ja) 電圧比較回路
JP2010087542A (ja) 増幅回路
JP2010141406A (ja) 差動増幅回路
JP2005150982A (ja) 多素子センサ微小検知信号増幅装置
JP2003060934A (ja) 増幅器の駆動制御装置及びこれを備えた信号処理システム
JP2004096324A (ja) 増幅回路
JP5027510B2 (ja) 平衡出力回路及びそれを用いた電子機器
JP2004222018A (ja) スイッチトキャパシタ増幅回路
JP2005150978A (ja) センサ微小検知信号増幅装置
JP4242800B2 (ja) センサ回路
JP3644445B2 (ja) 画像読取信号処理装置
JP2006129107A (ja) 信号増幅装置
JP5139767B2 (ja) センサ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061024

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080409

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202