JP2005147840A - マイクロフローデバイス用プラスチック基板 - Google Patents

マイクロフローデバイス用プラスチック基板 Download PDF

Info

Publication number
JP2005147840A
JP2005147840A JP2003385465A JP2003385465A JP2005147840A JP 2005147840 A JP2005147840 A JP 2005147840A JP 2003385465 A JP2003385465 A JP 2003385465A JP 2003385465 A JP2003385465 A JP 2003385465A JP 2005147840 A JP2005147840 A JP 2005147840A
Authority
JP
Japan
Prior art keywords
flow path
liquid
channel
plastic substrate
gas contained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003385465A
Other languages
English (en)
Inventor
Kotaro Idegami
公太郎 井手上
Masaaki Kobayashi
正昭 小林
Eiichi Tamiya
栄一 民谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003385465A priority Critical patent/JP2005147840A/ja
Publication of JP2005147840A publication Critical patent/JP2005147840A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

【課題】 剛性があり、耐薬品性が良く、耐熱性が良く、金属に接着し易く、透明性が良く、自家蛍光性が低く、気体除去に用いてもきわめて有効なデバイスを得る。
【解決手段】 断面の直径が数センチ以下に相当する流路断面積を有する流路構造を有し、その流路に液体を送液することが可能であり、液体が漏れることなく液体に含有する気体を透過させる物質からなる。液体継続注入手段が接続される流路入口1と、この流路入口1に連通する微細流路3とを有し、この微細流路3は液体に含有した気体を十分に透過させるような流路長さと流路断面積が調整された長尺流路である、脱泡デバイスとして機能する。液体継続注入手段が接続される流路入口と、この流路入口に連通する微細流路とを有し、この微細流路は、流路入口から入れる反応に必要な溶液が微細流路を流れる間に2つもしくは3つの温度領域を繰り返し通過するような形状であり、導入した反応溶液を連続的にサーマルサイクルできる、遺伝子増幅デバイスとして機能する。
【選択図】 図1

Description

本発明は、微量な試料を送液することによって、分析や反応等を行うマイクロフローデバイスのプラスチック基板に用いられる材料に関するものである。
微細加工技術を利用して微小な溝を加工し、半導体集積回路のように異なる機能の濃縮・抽出・分析といった化学装置を集積化するμTAS(マイクロトータルアナリシスシステム)の研究が世界的に進められている。これはDNA分析、免疫分析といった微量化学反応等の分析や反応に用いられるが、従来のこれらの検査のための大型装置と比較して、送液部分及び反応部分等の小型化によって試薬量低減、廃棄物低減が図られ、検出部分、装置全体の小型化により持ち運びが可能となり、POC(ポイントオブケアー、その場治療)に対応できると期待されている。この研究の中でも特に微小な溝に試料溶液を送液し、試薬量低減と微小空間効果を積極的に利用するマイクロフローデバイスの研究開発が現在最も盛んに行われている。
マイクロフローデバイスの材料としては、これまで主にシリコン、石英、ガラスが用いられているが、これらの材料ではデバイス作製のために複雑な工程を踏む必要があるため、完成したデバイスのコストが高くなり、このことが、汎用的な装置としての普及の妨げの一つとなっている。
ところで、マイクロフローデバイスを用いて試料と試薬とを混合して反応させる場合、具体的にマイクロメータオーダの流路を有するマイクロチャネルに液体を流すことが行われる。ところが、マイクロチャネルには、この送液する溶液を交換する際必ずといて良いほど気体が混入し、あるいは加熱等により液体内に気体が発生する。しかも発生しあるいは混入した気体は、デバイス材料が例えばプラスチックであれば疎水性という性質があり、また溶液中よりも壁面に付着しているほうがエネルギ的に安定するという現象に起因して、泡となってマイクロチャネル内に留まり易い性質がある。
このように、泡が発生あるいは混入し更には留まり易いという現象は、次のような問題を生ずる。すなわち、マイクロチャネル中を流れる溶液の流速及び流量が変化し、これによって狙った物質の反応時間が変化してしまい、また、泡に接する溶液の界面付近の濃度とそれ以外の部分の濃度が異なり、例えばセンサーの場合ではこれによって反応が不安定となり、定量的な検出が困難となる。このため、マイクロチャネルでの液体からの気体除去(脱泡)の要請は極めて強い。
また、製品化を視野に入れたマイクロフローデバイスの材料として求められる機能は用途にもよるが、光学的検出のための透明性と低自家蛍光性、電気的な検出や熱電対による温度検出、および抵抗加熱ヒータ等の加熱機能を持たせるために金属をデバイスに蒸着あるいはプリントする必要があるが、このための金属の接着性と耐熱性、生物反応や化学反応を扱うための耐薬品性、デバイスを製品として取り扱いやすくするための基板の剛性が必要である。
以上のような課題を改善する試みとしては、例えば、流路構造に工夫を凝らした方法が特許文献1に開示されている。これは脱泡にかかる文献であり、複数の基板を積層してなる積層体内部の流路に少なくとも一つの基板を貫通して流路と外部とを連通する連通孔を形成し、この連通孔の最も小さい径は0.2〜1.0μmであり、少なくともその孔内周面が疎水性を有するというものである。そして、この微細な孔に溶液中に含まれる泡が付着し、送液圧力により気体だけが流路外に排出されるというものである。
しかしながら、半導体微細加工にて頻繁に用いられるシリコン基板であれば、前述の連通孔のような複雑な加工も可能であるが、成形及び材料にかかる費用を安価に抑えるべく使用するポリマー材料での加工は困難であり、また成形可能になったとしても成形工程が煩雑になりチップ製造コストが高くついてしまう。
特開平9−257748号公報
本発明は、マイクロフローデバイスの流路中を送液する溶液に含まれるもしくは溶液を加熱することによって発生する気体を流路内で除去し、安定した送液や反応を可能とするのみならず、使用する用途によっては透明性が良く、自家蛍光性が低く、剛性があり、耐薬品性が良く、耐熱性が良く、金属の接着性が良く、製造コストの低いマイクロフローデバイス用プラスチック基板の提供を目的とする。
本発明者らは、これらの課題について鋭意研究を重ねた結果、マイクロフローデバイス用の基板にシリコンのような気体透過性の高い材料を用いることで、液体溶液中の気泡が取り除けることを見出し、本発明を完成するに至った。
すなわち、上述した課題を解決し、目的を達成するために、請求項1にかかる発明は、断面の直径が数センチ以下に相当する流路断面積を有する流路構造を有し、その流路に液体を送液することが可能であり、液体が漏れることなく液体に含有する気体を透過させる物質からなることを特徴とする。
また、請求項2にかかる発明は、請求項1にかかる発明において、液体が漏れることなく液体に含有する気体を透過させる物質が、シリコンと少なくとも一種類の有機高分子が混ぜ合わさった材料であることを特徴とする。
また、請求項3にかかる発明は、請求項2にかかる発明において、少なくとも一種類の有機高分子が、メタクリル酸を基本骨格とするモノマーを用いていることを特徴とする。
また、請求項4にかかる発明は、請求項1にかかる発明において、液体が漏れることなく液体に含有する気体を透過させる物質が、フッ素系樹脂を含む材料であることを特徴とする。
また、請求項5にかかる発明は、請求項1にかかる発明において、液体が漏れることなく液体に含有する気体を透過させる物質が、酢酸セルロースを含む材料であることを特徴とする。
また、請求項6にかかる発明は、請求項1にかかる発明において、液体継続注入手段が接続される流路入口と、この流路入口に連通する微細流路とを有し、この微細流路は液体に含有した気体を十分に透過させるような流路長さと流路断面積が調整された長尺流路である、脱泡デバイスとして機能することを特徴とする。
また、請求項7にかかる発明は、請求項1にかかる発明において、液体継続注入手段が接続される流路入口と、この流路入口に連通する微細流路とを有し、この微細流路は、流路入口から入れる反応に必要な溶液が微細流路を流れる間に2つもしくは3つの温度領域を繰り返し通過するような形状であり、導入した反応溶液を連続的にサーマルサイクルできる、遺伝子増幅デバイスとして機能することを特徴とする。
本発明にかかるマイクロフローデバイスによれば、シリコンを含むポリマーにて形成することにより、シリコンとポリマーの種類と量とに関連して、剛性、耐薬品性、耐熱性、金属接着容易性、透明性、低自家蛍光性に対応することができる。
また、本発明にかかるマイクロフローデバイスによれば、微細流路を気体透過材料にて形成し、この微細流路に液体を加圧しつつ継続して流すことにより、例えば少なくとも微細流路のみを高気体透過材料にて作ることにより、液体に混入している気体を液体の流れと共に次第に除去することができ、簡単な構造で高精度にかつ確実に気体を除去することができ、視認しにくい気体まで抜くことができる。
上記の発明に基づいて複数段の加熱を可能とした例えば遺伝子増幅チップを得ることができる。
以下に添付図面を参照して、この発明にかかるマイクロフローデバイスの実施形態を説明する。
(第1実施形態)
マイクロフローデバイスは、微細加工されたデバイスであり、しかも高気体透過性を有する。高気体透過性の材料としては、現在、マイクロフローデバイスの材料として頻繁に用いられるPDMS(ポリジメチルシロキサン)というシリコン樹脂がある。しかしながら、この材料は気体透過性に注目されて使用されているのではなく、フローデバイスの作成が簡単かつ短時間で行えるソフトリソグラフの材料として注目されており、本発明のように溶液からの気体除去に注目した内容についてはこれまで報告がない。しかも、このPDMSは、(1)研究開発用のチップデバイスとしては使用可能であるが、商品デバイスとしては変形しやすく取り扱い難い、つまり材料の剛性がない、(2)材料的に流す薬品が限られる、つまり耐薬品性が悪い、(3)デバイスに電気的な検出機能、熱電対による温度検出機能、抵抗加熱ヒータ等の加熱機能を持たせる場合、金属をデバイスに蒸着あるいはプリントする必要があるが、この金属との接着が良くない、(4)デバイス中にて気体を発生させるのみならず回収する場合には、気体透過性が高くて回収できない、という欠点がある。
そこで、本発明では、PDMS材料に注目するだけにとどまらず、剛性を備え、耐薬品性を備え、金属接着が容易である特性を備えるために、シリコンと少なくとも一種類の有機高分子が混ぜ合わさった材料を提案する。具体的には、ジメチルシロキサン、シロキサニルメタクリレート、フリオロシリコンアクリレート、シロキサニルスチレン等が挙げられるが、これらに限定されない。また、これらの材料とメタクリル酸、フルオロメタクリレート、メチルメタクリレート、フルオロフマレート、アルキルメタクリレート、ブチルアクリレート、ブチルメタクリレート、等のポリマーとの共重合された物質も考えられる。共重合及びシリコンを含むポリマーの種類及び割合は、使用する用途に合わせて気体透過性、剛性、耐薬品性、耐熱性、透明性、金属接着性、低自家蛍光性を考慮した設計を行うことによって決定される。例えば、ジメチルシロキサンは、気体透過性が高いが、剛性が低い、このため、剛性はあるが気体透過性のないメチルメタクリレートを共重合することによって、気体透過性と剛性があるポリマーができる。
このようにして、高気体透過性のみならず、所望の特性を有するマイクロフローデバイスを得ることができる。
(第2実施形態)
次に気体除去について述べる。図1は、第2実施形態にかかる気体除去装置を構成するマイクロフローデバイスの平面構成図である。図1において、マイクロフローデバイス(以下デバイスという)では、流路入口1と流路出口2とを有し、この流路入口1及び流路出口2からは次第に狭まる漏斗状の流路が形成され、この漏斗状の流路の端同士間は、微細断面積の極めて長い流路(長尺微細流路)3が形成されている。そして、この長尺微細流路3は、気体透過材料にて形成されている。この場合、このデバイスは、流路断面積が幅及び深さ共1mmに満たないマイクロメータオーダの寸法であり、しかも、この断面に比べて流路長さが極めて長い微細装置であり、既存の微細加工半導体製造技術(フォトリソグラフィ技術)にて形成され得る。
流路入口1には、図示省略するが液体継続注入手段が連通される。この液体継続注入手段は、例えば注射器のように継続して液体を注入可能なものであり、例えばポンプを用いた自動のあるいは場合によっては手動の注入装置である。そして、この液体継続注入手段によって液体が、長尺微細流路3の流路抵抗に抗して流路入口1に注入される。
前述のようにマイクロメータオーダの流路断面を有する長尺微細流路3は、シリコン樹脂、あるいはシリコンを含むポリマーからなり、長尺微細流路のみの材料としては前述の剛性や耐薬品性や耐熱性や金属接着容易性や透明性や低自家蛍光性のうち要求されない特性が仮に備わってないとしても、流路のみならば液体は透過させず気体のみ透過する高気体透過性のみの材料で形成することもできる。具体的には前述のPDMSのみによって形成され得る。なおこの場合、長尺微細流路の全部あるいは一部のみを高気体透過材料にて作成する場合には、その他の例えば基板部分は必要に応じて剛性のみならず耐薬品性、耐熱性、金属接着容易性、透明性、低自家蛍光性のポリマーにて作成するのが良い。また場合によっては流路の蓋部のみあるいは流路の壁部のみを高気体透過材料にて作成してももちろん良い。
液体継続注入手段にて流路抵抗に抗して注入された液体は、長尺微細流路3内を加圧されつつ流される。加圧された液体が長尺微細流路3内を進むと、内部に存在する気体は液体が進むにつれて次第に流路から抜け出す。すなわち、液体から気体が除去される。ここで、液体の注入に際し液体を加圧することは、長尺微細流路3の流路抵抗に抗して液体を流す以上必要なことではあるが、この実施形態にて必要なことは、長尺微細流路3内部にて液体が加圧されていることである。この加圧によって、気体透過材料からなる流路壁から外部へ抜け易くなると考えられることによる。流路断面が微細で流路壁と液体ひいては気体との体積当りの接触面積が大きくなっていることも、気体を抜け易くしている原因であると考えられる。
ここで、長尺微細流路3の流路抵抗は、流路半径の4乗に反比例し、流路長さに比例して増大することになり、この流路抵抗に抗して微細流路に液体を流す必要がある。このことは、液体継続注入手段によりある液体注入圧力にて液体を注入しているとき、流路が細くなるほど液体は加圧されて流れることになり、気体が加圧の程度に応じて抜け易くなることにつながる。この結果、長尺微細流路3の流路断面積が小さいほどそして液体が加圧されているほど、気体の除去効果が良いことになる。すなわち、長尺微細流路3の流路断面積及び長さによる流路抵抗と液体継続注入手段による液体注入圧力とを調整することで、液体への加圧の程度を加減することになる。
なお、流路入口1から注入される液体としては、例えば純粋の液体のみならず、液体中に金属等の微粒子等が分散された固液混合物、等が挙げられる。
図2は、実験での長尺微細流路3とその気体抜き状況を示している。図2に示す実験は、幅50μm、深さ50μm、長さ5.5m(本数にして111本)の流路を形成し、水をこの長尺微細流路3に満たし、その後、5μl、10μl、15μLの量の気体を導入したのち更に水を注入した場合、流路入口1よりそれぞれ19本目、26本目、32本目にて流路から気体が、完全に消えていた。また、図3は、10μlの気体を流路に導入した場合の気体が消えて行く様子を示しており、図3(1)にて約7本の微細流路に渡り存在した気体が、図3(2)では4本の微細流路に存在し、図3(3)では1本に満たない微細流路にまで減少している。
(第3実施形態)
この第3実施形態は、第1及び第2実施形態を応用して例えば遺伝子増幅チップとして働くマイクロフローデバイスを述べる。ここでは、液体継続注入手段が接続される図1にも示す流路入口1と、この流路入口1に連通する長尺微細流路3とを有し、この長尺微細流路3は温度の異なる領域が形成され、言い換えれば異なる温度の加熱手段が備えられ、この加熱手段による加熱が必要な任意の回数行われる構成を有している。そして、長尺微細流路3の上記領域にて反応に必要な溶液を継続して通過させるべく上記液体継続注入手段から連続的に溶液を注入するものである。
以上のように、本発明にかかるマイクロフローデバイスは、種々の特性を有する高気体透過性デバイスとして有用であり、特に、試料導入装置や化学分析装置に適している。
本発明の実施形態の断面構成図である。 本発明の実施例の断面構成図である。 本発明の気体除去状態を示す図である。
符号の説明
1 流路入口
2 流路出口
3 長尺微細流路

Claims (7)

  1. 断面の直径が数センチ以下に相当する流路断面積を有する流路構造を有し、その流路に液体を送液することが可能であり、液体が漏れることなく液体に含有する気体を透過させる物質からなることを特徴とするマイクロフローデバイス用プラスチック基板。
  2. 液体が漏れることなく液体に含有する気体を透過させる物質が、シリコンと少なくとも一種類の有機高分子が混ぜ合わさった材料であることを特徴とする請求項1のマイクロフローデバイス用プラスチック基板。
  3. 少なくとも一種類の有機高分子が、メタクリル酸を基本骨格とするモノマーを用いていることを特徴とする請求項2のマイクロフローデバイス用プラスチック基板。
  4. 液体が漏れることなく液体に含有する気体を透過させる物質が、フッ素系樹脂を含む材料であることを特徴とする請求項1のマイクロフローデバイス用プラスチック基板。
  5. 液体が漏れることなく液体に含有する気体を透過させる物質が、酢酸セルロースを含む材料であることを特徴とする請求項1のマイクロフローデバイス用プラスチック基板。
  6. 液体継続注入手段が接続される流路入口と、この流路入口に連通する微細流路とを有し、この微細流路は液体に含有した気体を十分に透過させるような流路長さと流路断面積が調整された長尺流路である、脱泡デバイスとして機能する請求項1に記載のマイクロフローデバイス用プラスチック基板。
  7. 液体継続注入手段が接続される流路入口と、この流路入口に連通する微細流路とを有し、この微細流路は、流路入口から入れる反応に必要な溶液が微細流路を流れる間に複数の温度領域を繰り返し通過するような形状であり、導入した反応溶液を連続的にサーマルサイクルできる、遺伝子増幅デバイスとして機能する請求項1に記載のマイクロフローデバイス用プラスチック基板。
JP2003385465A 2003-11-14 2003-11-14 マイクロフローデバイス用プラスチック基板 Pending JP2005147840A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003385465A JP2005147840A (ja) 2003-11-14 2003-11-14 マイクロフローデバイス用プラスチック基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003385465A JP2005147840A (ja) 2003-11-14 2003-11-14 マイクロフローデバイス用プラスチック基板

Publications (1)

Publication Number Publication Date
JP2005147840A true JP2005147840A (ja) 2005-06-09

Family

ID=34693517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003385465A Pending JP2005147840A (ja) 2003-11-14 2003-11-14 マイクロフローデバイス用プラスチック基板

Country Status (1)

Country Link
JP (1) JP2005147840A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032584A (ja) * 2006-07-31 2008-02-14 Seiko Instruments Inc マイクロリアクターシステム
JP2008122233A (ja) * 2006-11-13 2008-05-29 Konica Minolta Medical & Graphic Inc マイクロ総合分析チップおよびマイクロ総合分析システム
JP2009121984A (ja) * 2007-11-15 2009-06-04 Fujifilm Corp マイクロ流路内泡除去方法及びマイクロ流路内溶解分散方法
JP2011097884A (ja) * 2009-11-06 2011-05-19 Japan Advanced Institute Of Science & Technology Hokuriku 試料解析装置
JP2014226623A (ja) * 2013-05-24 2014-12-08 株式会社島津製作所 マイクロチップ反応装置
US10626360B2 (en) 2014-08-08 2020-04-21 Panasonic Corporation Nucleic acid amplification device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032584A (ja) * 2006-07-31 2008-02-14 Seiko Instruments Inc マイクロリアクターシステム
JP2008122233A (ja) * 2006-11-13 2008-05-29 Konica Minolta Medical & Graphic Inc マイクロ総合分析チップおよびマイクロ総合分析システム
JP2009121984A (ja) * 2007-11-15 2009-06-04 Fujifilm Corp マイクロ流路内泡除去方法及びマイクロ流路内溶解分散方法
JP2011097884A (ja) * 2009-11-06 2011-05-19 Japan Advanced Institute Of Science & Technology Hokuriku 試料解析装置
JP2014226623A (ja) * 2013-05-24 2014-12-08 株式会社島津製作所 マイクロチップ反応装置
US10626360B2 (en) 2014-08-08 2020-04-21 Panasonic Corporation Nucleic acid amplification device

Similar Documents

Publication Publication Date Title
CN101221168B (zh) 一种基于微球生物检测的微流控芯片
US20040043506A1 (en) Cascaded hydrodynamic focusing in microfluidic channels
JP5706880B2 (ja) 気体を含まない流体チャンバ
US20080311005A1 (en) Apparatus for focusing and detecting particles in sample and method of manufacturing the same
JP2007225438A (ja) マイクロ流体チップ
JP2018522220A (ja) 連続気相を伴うマイクロ流体チップにおける水滴の生成及び捕捉
CN112076807B (zh) 一种自发形成油包水液滴的微流控芯片及装置
CN103191792B (zh) 一种用于微球多元生物检测的微流控芯片
WO2016023637A1 (en) Device for separating bubbles from a fluid
JP2007229631A (ja) マイクロリアクタ
KR20110046867A (ko) 기체 제공부를 포함하는 미세 유동 장치, 및 이를 이용한 액체 혼합 방법 및 에멀젼 형성 방법
US20210370303A1 (en) Pressure insensitive microfluidic circuit for droplet generation and uses thereof
KR101541458B1 (ko) 유체 혼합 방법 및 유체 혼합 장치
Langer et al. Micropipette-powered droplet based microfluidics
JP2004194652A (ja) 溶解性物質付着流路を有するマイクロ流体素子及びその使用方法
JP2005147840A (ja) マイクロフローデバイス用プラスチック基板
JPWO2006098370A1 (ja) 流路の実効的な通過時間の調整機構を具える遅延回路、マイクロチップ、およびその作製方法
CN104994964B (zh) 细微图案化用表面化学处理装置
JP2007139500A (ja) マイクロチップおよびマイクロ総合分析システム
JP2009226271A (ja) エマルションをプラグ流に変化させる方法及びそのためのマイクロ流路
Ray Low power, high throughput continuous flow PCR instruments for environmental applications
JP4836272B2 (ja) 液体導入用デバイス
EP1336432A2 (en) A microreactor
JP2004191256A (ja) マイクロ流体素子への試料導入方法
WO2017221258A1 (en) Method and device for chemiluminescence-based analysis