JP2005146141A - Resin composition for sealing and resin sealing type semiconductor device - Google Patents

Resin composition for sealing and resin sealing type semiconductor device Download PDF

Info

Publication number
JP2005146141A
JP2005146141A JP2003386585A JP2003386585A JP2005146141A JP 2005146141 A JP2005146141 A JP 2005146141A JP 2003386585 A JP2003386585 A JP 2003386585A JP 2003386585 A JP2003386585 A JP 2003386585A JP 2005146141 A JP2005146141 A JP 2005146141A
Authority
JP
Japan
Prior art keywords
resin composition
sealing
silica powder
resin
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003386585A
Other languages
Japanese (ja)
Other versions
JP3811154B2 (en
Inventor
Yuzuru Wada
譲 和田
Nobuhiro Sudo
信博 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Chemical Corp
Original Assignee
Kyocera Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Chemical Corp filed Critical Kyocera Chemical Corp
Priority to JP2003386585A priority Critical patent/JP3811154B2/en
Publication of JP2005146141A publication Critical patent/JP2005146141A/en
Application granted granted Critical
Publication of JP3811154B2 publication Critical patent/JP3811154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition for sealing excellent in moldability, having good reflow resistance and moisture-proof reliability of the cured product under high temperature and suitable for sealing of semiconductor elements. <P>SOLUTION: The resin composition for sealing comprises (a) an epoxy resin, (b) a phenol resin curing agent, (c) a curing accelerator and (d) an inorganic filler as essential components. The inorganic filler (d) is composed of two kinds of powders different in at least average particle diameter and one kind thereof is fine silica powder, in which the average particle diameter is 0.5-2.0 μm and the content of coarse particle having ≥45 μm particle size is ≤30 ppm, obtained by surface-treating amorphous silica fine particles synthesized by VMC (Vaperized Metal Combustion) method with an aminosilane type surface-treating agent and the content of the fine silica powder is 1-50 wt.% based on total amount of the resin composition for sealing. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は封止用樹脂組成物および樹脂封止型半導体装置に係り、特に成形性、硬化物の耐リフロー性、耐湿信頼性に優れた封止用樹脂組成物およびそれを用いた樹脂封止型半導体装置に関する。   The present invention relates to a sealing resin composition and a resin-encapsulated semiconductor device, and in particular, a sealing resin composition excellent in moldability, reflow resistance of a cured product, and moisture resistance reliability, and resin sealing using the same The present invention relates to a type semiconductor device.

近年、電子機器の高密度実装化および組み立て工程の自動化の要求から、半導体装置の実装方法は従来のピン挿入法から表面実装法へと移行してきている。表面実装法により基板にパッケージをはんだ付けする際には、基板上のクリームはんだを赤外繰やフロロカーボン蒸気で加熱しリードと接続する方法が採られている。このとき半導体装置全体は215〜260℃の高温に晒されることになる。この急激な加熱が原因になって半導体装置の封止樹脂部分にクラックが発生し、デバイスの信頼性の極端な低下を引き起こすことがある。   In recent years, due to demands for high-density mounting of electronic devices and automation of assembly processes, the mounting method of semiconductor devices has shifted from the conventional pin insertion method to the surface mounting method. When the package is soldered to the substrate by the surface mounting method, a method is adopted in which the cream solder on the substrate is heated with infrared rays or fluorocarbon vapor and connected to the lead. At this time, the entire semiconductor device is exposed to a high temperature of 215 to 260 ° C. Due to this rapid heating, cracks may occur in the sealing resin portion of the semiconductor device, which may cause an extreme decrease in device reliability.

すなわち、半導体装置の封止樹脂部分はわずかではあるものの吸湿しており、この吸湿した封止樹脂部分が高温にさらされると内部の水分が気化膨脹することにより膨れ、その応力によって封止樹脂部分が破壊に至る。   In other words, the sealing resin portion of the semiconductor device absorbs moisture, although it is slight, and when the moisture-absorbing sealing resin portion is exposed to a high temperature, the internal moisture expands due to vaporization and expansion. Will lead to destruction.

近年における環境についての関心の高まりから、半導体装置においても、外装や接合に使用されるはんだからの鉛の除去、パッケージ中に含まれる臭素化合物やアンチモン化合物の除去が強く求められている。   In recent years, with increasing interest in the environment, semiconductor devices are also strongly required to remove lead from solder used for packaging and bonding, and to remove bromine compounds and antimony compounds contained in packages.

現在、鉛を使用しないはんだのうち半導体装置分野に使用可能なはんだの多くは従来のはんだに比較して融点が高く、前述した表面実装時の半導体装置の温度も同様に高くなることとなる。従って、加熱により発生する水蒸気圧はさらに増大し、半導体装置の封止樹脂部分にはさらにすぐれた耐リフロー性が要求される。   At present, many of the solders that do not use lead can be used in the field of semiconductor devices, and have a higher melting point than conventional solders, and the temperature of the semiconductor device during surface mounting described above also increases. Accordingly, the water vapor pressure generated by heating further increases, and the sealing resin portion of the semiconductor device is required to have better reflow resistance.

また、半導体装置の薄型化、小型化によりその内部構造がより複雑化しており、従来の充填剤を多量に含んだ封止用樹脂組成物ではトランスファー成形時に充填性の不具合が生じてきている。   Further, the internal structure of the semiconductor device has become more complicated due to the thinning and miniaturization of the semiconductor device, and the conventional resin composition for sealing containing a large amount of the filler has caused a filling problem at the time of transfer molding.

すなわち、従来の封止用樹脂組成物では大きな粒子の影響により半導体装置内部の微細部分への充填性が不十分となっている。このため微細な充填剤が開発されている(例えば、特許文献1参照)が、粒子間の相互作用が大きいために封止用樹脂組成物の流動性が悪化し、充填性が十分に改善されているとはいえない。   That is, in the conventional sealing resin composition, the filling property to the fine part inside the semiconductor device is insufficient due to the influence of large particles. For this reason, fine fillers have been developed (see, for example, Patent Document 1), but the fluidity of the sealing resin composition deteriorates due to the large interaction between the particles, and the fillability is sufficiently improved. I cannot say that.

また、微細な充填剤は凝集しやすいため成形品内部に凝集物を生じることがあり、不良の原因ともなっている。さらに、従来の封止用樹脂組成物には粗粒分として原料である金属酸化物が残留しており、これが成形品に混入することにより金線ワイヤー間のショート不良の原因となっている。   In addition, since the fine filler easily aggregates, it may cause an aggregate in the molded product, which is also a cause of defects. Furthermore, the metal oxide which is a raw material remains as a coarse particle in the conventional sealing resin composition, and this is mixed into a molded product, thereby causing a short circuit failure between the gold wire wires.

また、一般に封止用樹脂組成物には難燃剤として臭素化エポキシ樹脂と酸化アンチモンが使用されていることから、この組み合わせに代わる代替難燃手法の開発が必須となっている。
特開2001−106521
Also, since brominated epoxy resins and antimony oxide are generally used as flame retardants for encapsulating resin compositions, it is essential to develop alternative flame retardant techniques that can replace this combination.
JP 2001-106521 A

上述したように半導体素子の封止に用いられる封止用樹脂組成物には、流動性、充填性等の成形性の向上が求められているとともに、その硬化物には耐リフロー性、耐湿信頼性の向上、臭素系難燃剤等の環境に有害なものを含まないこと等が求められている。   As described above, the sealing resin composition used for sealing the semiconductor element is required to improve moldability such as fluidity and filling property, and the cured product has reflow resistance and moisture resistance reliability. There is a demand for improving environmental properties and not containing environmentally harmful substances such as brominated flame retardants.

本発明はこのような課題を解決するためになされたものであって、成形性、硬化物の耐リフロー性、耐湿信頼性に優れ、環境への悪影響が抑制された封止用樹脂組成物およびそれを用いた樹脂封止型半導体装置を提供することを目的としている。   The present invention has been made to solve such problems, and is excellent in moldability, reflow resistance of a cured product, moisture resistance reliability, and a sealing resin composition in which adverse effects on the environment are suppressed, and An object of the present invention is to provide a resin-encapsulated semiconductor device using the same.

本発明の封止用樹脂組成物は、(a)エポキシ樹脂、(b)フェノール樹脂硬化剤、(c)硬化促進剤、(d)無機充填剤を必須成分として含有する封止用樹脂組成物であって、前記(d)無機充填剤は少なくとも平均粒径の異なる2種の粉末からなり、その1種がVMC(Vaperized Metal Combution)法により合成された非晶質シリカ微粒子をアミノシラン型表面処理剤で表面処理することにより得られる平均粒径が0.5〜2.0μm、45μm以上の粗粒分が30ppm以下の微細シリカ粉末であって、前記微細シリカ粉末の含有量が前記封止用樹脂組成物全体に対して1〜50重量%であることを特徴とする。   The encapsulating resin composition of the present invention comprises (a) an epoxy resin, (b) a phenol resin curing agent, (c) a curing accelerator, and (d) an inorganic filler as essential components. The (d) inorganic filler is composed of at least two kinds of powders having different average particle diameters, one of which is obtained by subjecting amorphous silica fine particles synthesized by a VMC (Vaperized Metal Combution) method to an aminosilane type surface treatment. A fine silica powder having an average particle size of 0.5 to 2.0 μm and a coarse particle content of 45 μm or more obtained by surface treatment with an agent is 30 ppm or less, and the content of the fine silica powder is for sealing It is 1 to 50 weight% with respect to the whole resin composition, It is characterized by the above-mentioned.

また本発明の樹脂封止型半導体装置は、半導体素子を樹脂組成物で封止してなる樹脂封止型半導体装置であって、この樹脂組成物として上述したような封止用樹脂組成物を用いたことを特徴とする。   The resin-encapsulated semiconductor device of the present invention is a resin-encapsulated semiconductor device obtained by encapsulating a semiconductor element with a resin composition, and the encapsulating resin composition as described above is used as the resin composition. It is used.

本発明の封止用樹脂組成物は成形作業性に優れると共に、その硬化物の耐リフロー性、耐湿信頼性が良好であり、表面実装タイプの樹脂封止型半導体装置の封止に好適である。   The encapsulating resin composition of the present invention is excellent in molding workability, and the cured product has good reflow resistance and moisture resistance reliability, and is suitable for encapsulating a surface mount type resin encapsulated semiconductor device. .

また、このような封止用樹脂組成物で封止された樹脂封止型半導体装置は、表面実装を行ってもその後の耐湿性が良好であり、高い信頼性を有するものである。   Moreover, the resin-encapsulated semiconductor device encapsulated with such an encapsulating resin composition has good moisture resistance and high reliability even after surface mounting.

以下、本発明を更に詳細に説明する。
本発明の封止用樹脂組成物は、(a)エポキシ樹脂、(b)フェノール樹脂硬化剤、(c)硬化促進剤、(d)無機充填剤を必須成分として含有する封止用樹脂組成物であって、(d)無機充填剤は少なくとも平均粒径の異なる2種の粉末からなり、その1種がVMC(Vaperized Metal Combution)法により合成された非晶質シリカ微粒子をアミノシラン型表面処理剤で表面処理することにより得られる平均粒径が0.5〜2.0μm、45μm以上の粗粒分が30ppm以下の微細シリカ粉末であって、この微細シリカ粉末の含有量が封止用樹脂組成物全体に対して1〜50重量%であることを特徴とする。
Hereinafter, the present invention will be described in more detail.
The encapsulating resin composition of the present invention comprises (a) an epoxy resin, (b) a phenol resin curing agent, (c) a curing accelerator, and (d) an inorganic filler as essential components. (D) The inorganic filler is composed of at least two kinds of powders having different average particle diameters, one of which is an amorphous silica fine particle synthesized by a VMC (Vaperized Metal Combution) method. A fine silica powder having an average particle diameter of 0.5 to 2.0 μm and a coarse particle content of 45 μm or more obtained by surface treatment with 30 ppm or less, and the content of the fine silica powder is a resin composition for sealing It is characterized by being 1 to 50% by weight based on the whole product.

本発明に用いられる(a)エポキシ樹脂は1分子中に2個以上のエポキシ基を有するものであれば特に限定されるものではなく、封止用樹脂組成物の製造に一般に用いられるエポキシ樹脂であれば広く用いることができる。   The (a) epoxy resin used in the present invention is not particularly limited as long as it has two or more epoxy groups in one molecule, and is an epoxy resin generally used in the production of a sealing resin composition. If there is, it can be widely used.

(a)エポキシ樹脂としては、例えばフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフトールのノボラック型エポキシ樹脂、ビスフェノールAのノボラック型エポキシ樹脂、ビスフェノールAのグリシジルエーテル、テトラ(ヒドロキシフェニル)アルカンのエポキシ化物、ビスヒドロキシビフェニル系エポキシ樹脂等が挙げられる。これらのエポキシ樹脂は、信頼性を確保するため、樹脂中に含まれる塩素が1000ppm以下であれば好ましい。   (A) Examples of the epoxy resin include phenol novolac type epoxy resin, cresol novolak type epoxy resin, naphthol novolak type epoxy resin, bisphenol A novolak type epoxy resin, bisphenol A glycidyl ether, tetra (hydroxyphenyl) alkane epoxy And bishydroxybiphenyl epoxy resin. These epoxy resins are preferable if the chlorine contained in the resin is 1000 ppm or less in order to ensure reliability.

本発明の封止用樹脂組成物を実質的に難燃剤を含まないものとする場合には、(a)エポキシ樹脂として下記化学式(1)で示されるエポキシ樹脂を用いることが好ましい。

Figure 2005146141
(但し、式中、nは0または1以上の整数を表す) When the sealing resin composition of the present invention is substantially free of flame retardant, it is preferable to use an epoxy resin represented by the following chemical formula (1) as the (a) epoxy resin.
Figure 2005146141
(In the formula, n represents 0 or an integer of 1 or more.)

上記化学式(1)で示されるエポキシ樹脂の具体例としては、NC−3000(日本化薬株式会社製 商品名、軟化湿度57℃、エポキシ樹脂当量273)が挙げられる。上記化学式(1)で示されるエポキシ樹脂は単独で用いてもよいし、その効果を損なわない範囲で上述したような各種エポキシ樹脂と混合して用いてもよい。   Specific examples of the epoxy resin represented by the chemical formula (1) include NC-3000 (trade name, softening humidity 57 ° C., epoxy resin equivalent 273 manufactured by Nippon Kayaku Co., Ltd.). The epoxy resin represented by the chemical formula (1) may be used alone or in combination with various epoxy resins as described above within a range not impairing the effect.

本発明に用いられる(b)フェノール樹脂硬化剤は、1分子中に2個以上のフェノール基を有するものであれば特に限定されるものではなく、封止用樹脂組成物の製造に一般に用いられるフェノール樹脂硬化剤であれば広く用いることができる。このようなものとしては、例えばフェノールアラルキル樹脂、ナフトール樹脂、テルペンフェノール樹脂等が挙げられる。   The (b) phenol resin curing agent used in the present invention is not particularly limited as long as it has two or more phenol groups in one molecule, and is generally used for the production of a sealing resin composition. Any phenolic resin curing agent can be used. As such a thing, a phenol aralkyl resin, a naphthol resin, a terpene phenol resin etc. are mentioned, for example.

(b)フェノール樹脂硬化剤の水酸基当量は130以上であることが好ましい。このような水酸基当量とすることにより、十分な難燃性、低吸湿性を得ることができる。また信頼性を確保するため、(b)フェノール樹脂硬化剤中に含まれるフリーのフェノール類の濃度を1%以下とすることが好ましい。   (B) The hydroxyl equivalent of the phenol resin curing agent is preferably 130 or more. By setting it as such a hydroxyl equivalent, sufficient flame retardance and low hygroscopicity can be obtained. In order to ensure reliability, it is preferable that the concentration of free phenols contained in (b) the phenol resin curing agent is 1% or less.

本発明の封止用樹脂組成物を実質的に難燃剤を含まないものとする場合には、下記化学式(2)で示されるフェノール樹脂硬化剤を用いることが好ましい。

Figure 2005146141
(但し、式中、nは0または1以上の整数を表す) When the sealing resin composition of the present invention is substantially free of flame retardant, it is preferable to use a phenol resin curing agent represented by the following chemical formula (2).
Figure 2005146141
(In the formula, n represents 0 or an integer of 1 or more.)

上記化学式(2)で示されるフェノール樹脂硬化剤としては、例えばMEH−7851S(明和化成株式会社製 商品名、軟化温度72℃、エポキシ樹脂当量209)が挙げられる。上記化学式(2)で示されるフェノール樹脂硬化剤は単独で用いてもよいし、その効果を損なわない範囲で上述したような各種フェノール樹脂硬化剤と混合して用いてもよい。   As a phenol resin hardening | curing agent shown by the said Chemical formula (2), MEH-7851S (Maywa Kasei Co., Ltd. brand name, softening temperature 72 degreeC, epoxy resin equivalent 209) is mentioned, for example. The phenol resin curing agent represented by the chemical formula (2) may be used alone, or may be mixed with various phenol resin curing agents as described above within a range not impairing the effect thereof.

(a)エポキシ樹脂と(b)フェノール樹脂硬化剤との配合比は、(b)フェノール樹脂硬化剤のフェノール性水酸基数と(a)エポキシ樹脂のエポキシ基数との比(フェノール性水酸基数/エポキシ基数)が0.4〜1.0の範囲となるように配合することが好ましい。上記値が0.4未満では硬化反応が充分に起こりにくく、上記値が1.0を超えると、硬化物の特性、特に耐湿性が劣化しやすくなるためである。   The blending ratio of (a) epoxy resin to (b) phenol resin curing agent is the ratio of (b) the number of phenolic hydroxyl groups in the phenol resin curing agent to the number of epoxy groups in (a) epoxy resin (number of phenolic hydroxyl groups / epoxy It is preferable to blend so that the base number is in the range of 0.4 to 1.0. This is because if the above value is less than 0.4, the curing reaction is not likely to occur sufficiently, and if the above value exceeds 1.0, the properties of the cured product, particularly moisture resistance, is likely to deteriorate.

本発明に用いられる(c)硬化促進剤としては、フェノール樹脂を用いてエポキシ樹脂を硬化する際に硬化促進剤剤として使用されることが一般に知られているものであれば特に限定されるものではない。   The (c) curing accelerator used in the present invention is particularly limited as long as it is generally known to be used as a curing accelerator when an epoxy resin is cured using a phenol resin. is not.

(c)硬化促進剤としては、例えばDBU(1、8−ジアザビシクロ(5,4,0)ウンデセン−7)、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、トリ(p−メチルフェニル)ホスフィン、トリ(ノニルフェニルホスフィン)、メチルジフェニルホスフィン、ジブチルフェニルホスフィン、トリシクロヘキシルホスフィン、1,2−ビス(ジフェニルホスフィノ)エタン、ビス(ジフェニルホスフィノ)メタン等の有機ホスフィン化合物、2−メチルイミダゾール、2,4−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−ヘプタデシルイミダゾール等のイミダゾール化合物またはその誘導体等が挙げられる。   (C) Examples of the curing accelerator include DBU (1,8-diazabicyclo (5,4,0) undecene-7), trimethylphosphine, triethylphosphine, tributylphosphine, triphenylphosphine, tri (p-methylphenyl) phosphine. , Tri (nonylphenylphosphine), methyldiphenylphosphine, dibutylphenylphosphine, tricyclohexylphosphine, 1,2-bis (diphenylphosphino) ethane, organic phosphine compounds such as bis (diphenylphosphino) methane, 2-methylimidazole, Imidazole compounds such as 2,4-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole or derivatives thereof And the like.

これらの硬化促進剤は単独で用いてもよいし、2種以上を混合して用いてもよい。これらの硬化促進剤の添加割合はそれぞれの触媒活性が異なるため一概にその好適量は決められないが、例えば(a)エポキシ樹脂、(b)フェノール樹脂硬化剤および(c)硬化促進剤の合計量中、0.1〜5重量%の範囲で添加することが好ましい。(c)硬化促進剤の添加量が0.1重量%未満では硬化性能が低下し、5重量%を超えると硬化物の耐湿信頼性が低下する傾向がある。   These curing accelerators may be used alone or in combination of two or more. The ratio of these curing accelerators to be added is not generally determined because their catalytic activity is different. For example, the total of (a) an epoxy resin, (b) a phenol resin curing agent, and (c) a curing accelerator. The amount is preferably added in the range of 0.1 to 5% by weight. (C) When the addition amount of the curing accelerator is less than 0.1% by weight, the curing performance decreases, and when it exceeds 5% by weight, the moisture resistance reliability of the cured product tends to decrease.

本発明に用いられる(d)球状無機充填剤は少なくとも平均粒径の異なる2種の粉末からなるものである。そして、そのうちの1種はVMC(Vaperized Metal Combution)法により合成された非晶質シリカ微粉末をアミノシラン型表面処理剤で表面処理したものであり、平均粒径を0.5〜2.0μm、45μm以上の粗粒分を30ppm以下とした微細シリカ粉末である。   The (d) spherical inorganic filler used in the present invention comprises at least two kinds of powders having different average particle diameters. And one of them is a surface treatment of an amorphous silica fine powder synthesized by a VMC (Vaperized Metal Combution) method with an aminosilane type surface treatment agent, with an average particle size of 0.5 to 2.0 μm, A fine silica powder having a coarse particle content of 45 μm or more and 30 ppm or less.

VMC(Vaperized Metal Combution)法とは、シリコン粉末とシリカ粉末とをキャリアガスと共に加熱して溶解または気化させた後、冷却し、非晶質シリカ微粒子を形成する方法である。VMC法では、例えばシリカ粉末を溶解することによりその表面張力により真球とし、そのまま冷却させることで真球度の高い、平均粒径の揃った非晶質シリカ微粒子を得ることができる。VMC法による非晶質シリカ微粒子の具体例としては、例えば特開2001−106521に示されるものが挙げられる。   The VMC (Vaperized Metal Combution) method is a method in which silicon powder and silica powder are heated and dissolved or vaporized together with a carrier gas and then cooled to form amorphous silica fine particles. In the VMC method, for example, a silica powder is dissolved to form a true sphere by its surface tension, and then cooled as it is, whereby amorphous silica fine particles having a high sphericity and a uniform average particle diameter can be obtained. Specific examples of the amorphous silica fine particles by the VMC method include those disclosed in JP-A-2001-106521.

本発明では、このようにして得られた非晶質シリカ微粒子をアミノシラン型表面処理剤により表面処理する。非晶質シリカ微粒子の表面処理は、例えばアミノシラン型表面処理剤を気化することにより行うことができる。   In the present invention, the amorphous silica fine particles thus obtained are surface treated with an aminosilane type surface treating agent. The surface treatment of the amorphous silica fine particles can be performed, for example, by vaporizing an aminosilane type surface treatment agent.

このような表面処理に用いられるアミノシラン型表面処理剤としては、例えばγ−アミノプロピルトリエトキシシラン、γ−アミノプピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシラン、γ−N−フェニルアミノプロピルトリメトキシシラン等が挙げられる。   Examples of the aminosilane type surface treating agent used for such surface treatment include γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, and N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane. , Γ-ureidopropyltriethoxysilane, γ-N-phenylaminopropyltrimethoxysilane, and the like.

VMC法により合成された真球度の高い非晶質シリカ微粒子をアミノシラン型表面処理剤で表面処理することにより得られる微細シリカ粉末は、凝集性が改善されており、従来では150μm程度でしか行うことができなかった篩を45μm以下で行うことができる。このため、微細シリカ粉末の平均粒径を0.5〜2.0μmとし、かつ、その45μm以上の粗粒分を30ppm以下とすることができる。   The fine silica powder obtained by subjecting amorphous silica fine particles with high sphericity synthesized by the VMC method to surface treatment with an aminosilane type surface treatment agent has improved cohesion, and is conventionally performed only at about 150 μm. The sieve that could not be obtained can be carried out at 45 μm or less. For this reason, the average particle diameter of fine silica powder can be 0.5-2.0 micrometers, and the coarse particle part of 45 micrometers or more can be 30 ppm or less.

そして、このような表面処理が施され、所定の平均粒径、粗粒分量とされた微細シリカ粉末を、(d)球状無機充填剤を構成する2種以上の粉末のうちの1種として用いることで、封止用樹脂組成物の流動性、充填性等の成形性の向上が可能となる。また、このような微細シリカ粉末を用いることで凝集物の発生を抑制することができ、樹脂封止型半導体装置における不良の発生も抑制することができる。   Then, the fine silica powder that has been subjected to such a surface treatment and has a predetermined average particle diameter and a coarse particle amount is used as one of two or more kinds of powders constituting the spherical inorganic filler (d). Thus, it is possible to improve moldability such as fluidity and filling property of the sealing resin composition. Further, by using such fine silica powder, the generation of aggregates can be suppressed, and the occurrence of defects in the resin-encapsulated semiconductor device can also be suppressed.

本発明に用いられる微細シリカ粉末は、800℃における重量損失が0.05%〜0.20%であれば好ましい。この重量損失は微細シリカ粉末の表面処理剤の定量に用いられるものである。   The fine silica powder used in the present invention preferably has a weight loss at 800 ° C. of 0.05% to 0.20%. This weight loss is used for quantifying the surface treatment agent of fine silica powder.

重量損失が0.05%未満であると表面処理剤の量が少ないため効果が不十分となり、例えば微細シリカ粉末が凝集したり、封止用樹脂組成物の流動性が低下するといった不都合が発生することがある。また、重量損失が0.20%より多くなると表面処理剤が多すぎるため、例えば微細シリカ粉末が再凝集したり、封止用樹脂組成物の成形性、耐熱性が低下するといった不都合が発生することがある。なお、表面処理を施していないシリカ粉末の一般的な重量損失は0.02%以下である。   If the weight loss is less than 0.05%, the effect is insufficient because the amount of the surface treatment agent is small. For example, the fine silica powder aggregates or the fluidity of the sealing resin composition decreases. There are things to do. Further, when the weight loss is more than 0.20%, the amount of the surface treatment agent is too much, and thus, for example, the fine silica powder is re-agglomerated or the moldability and heat resistance of the sealing resin composition are lowered. Sometimes. In addition, the general weight loss of the silica powder which has not surface-treated is 0.02% or less.

また、本発明に用いられる微細シリカ粉末は、その熱抽出水のpHが5.5〜8.5であれば好ましい。熱抽出水のpHが5.5未満であると表面処理剤の量が少なく、8.5を超えると表面処理剤が多すぎ、いずれの場合においても微細シリカ粉末の凝集および再凝集、封止用樹脂組成物の流動性、成形性および耐熱性の低下等の発生があるため好ましくない。   Moreover, if the fine silica powder used for this invention is the pH of the heat extraction water 5.5-8.5, it is preferable. If the pH of the hot extraction water is less than 5.5, the amount of the surface treatment agent is small, and if it exceeds 8.5, the amount of the surface treatment agent is too much. This is not preferable because the resin composition has a decrease in fluidity, moldability, and heat resistance.

さらに、本発明に用いられる微細シリカ粉末は、その熱抽出水の電気伝導度が1.5mS/m以下であれば好ましい。微細シリカ粉末の熱抽出水の電気伝導度が1.5mS/mを超えると不純物が多すぎることとなり、例えばこれを用いた封止用樹脂組成物により半導体素子を封止して半導体装置を製造した場合に、その信頼性が低下するおそれがある。   Furthermore, it is preferable that the fine silica powder used in the present invention has an electric conductivity of 1.5 mS / m or less in the heat extraction water. If the electrical conductivity of the heat-extracted water of fine silica powder exceeds 1.5 mS / m, there will be too many impurities. For example, a semiconductor device is manufactured by sealing a semiconductor element with a sealing resin composition using this. In such a case, the reliability may be reduced.

本発明に用いられる微細シリカ粉末の配合割合は、封止用樹脂組成物全体に対して1〜50重量%であることが好ましく、5〜30重量%であればより好ましい。1重量%未満では、封止用樹脂組成物の流動性が不足し、充填性が悪くなる。また、50重量%よりも多いと混練性が悪くなり、封止用樹脂組成物を製造することが困難となるおそれがある。   The blending ratio of the fine silica powder used in the present invention is preferably 1 to 50% by weight and more preferably 5 to 30% by weight with respect to the whole sealing resin composition. If it is less than 1 weight%, the fluidity | liquidity of the resin composition for sealing will run short, and a filling property will worsen. On the other hand, if the amount is more than 50% by weight, the kneadability is deteriorated, and it may be difficult to produce a sealing resin composition.

本発明に用いられる(d)球状無機充填剤のうち、上記微細シリカ粉末と共に用いられる他の粉末としては上記微細シリカ粉末よりも平均粒径の大きい球状のシリカ粉末が好適に用いられる。このようなシリカ粉末としては、例えば溶射あるいは破砕により得られる平均粒径5〜20μmのシリカ粉末が好適に用いられる。   Among the (d) spherical inorganic fillers used in the present invention, spherical silica powder having an average particle size larger than that of the fine silica powder is preferably used as the other powder used together with the fine silica powder. As such a silica powder, for example, a silica powder having an average particle diameter of 5 to 20 μm obtained by thermal spraying or crushing is preferably used.

上記平均粒径5〜20μmのシリカ粉末の配合割合は、封止用樹脂組成物全体に対して60〜90重量%とすることが好ましい。平均粒径5〜20μmのシリカ粉末の配合割合が60重量%未満であると、封止用樹脂組成物の流動性が不足し、充填性が悪くなるおそれがあり、また90重量%を超えると混練性が悪くなり、封止用樹脂組成物を製造することが困難となるおそれがある。平均粒径5〜20μmのシリカ粉末の配合割合は、好ましくは80〜89重量%である。   The blending ratio of the silica powder having an average particle diameter of 5 to 20 μm is preferably 60 to 90% by weight with respect to the whole sealing resin composition. When the blending ratio of the silica powder having an average particle size of 5 to 20 μm is less than 60% by weight, the fluidity of the sealing resin composition may be insufficient, and the filling property may be deteriorated. There is a possibility that the kneadability is deteriorated and it is difficult to produce the sealing resin composition. The blending ratio of the silica powder having an average particle diameter of 5 to 20 μm is preferably 80 to 89% by weight.

本発明の封止用樹脂組成物には、上記(a)エポキシ樹脂、(b)フェノール樹脂硬化剤、(c)硬化促進剤および(d)無機充填剤に加えて、本発明の趣旨に反しない限度において表面処理剤、天然ワックス類、合成ワックス類、直鎖脂肪酸やその金属塩、酸アミド類、エステル類、パラフィン類等の離型剤、カーボンブラック、二酸化チタンなどの顔料、シリコーンゴム、各種プラスチックス粉末、各種エンジニアリングプラスチックス粉末、ABS樹脂やMBS樹脂の粉末等の低応力化剤などを適宣添加してもよい。   In addition to the above (a) epoxy resin, (b) phenol resin curing agent, (c) curing accelerator, and (d) inorganic filler, the sealing resin composition of the present invention is contrary to the spirit of the present invention. As long as the surface treatment agent, natural waxes, synthetic waxes, release agents such as linear fatty acids and their metal salts, acid amides, esters, paraffins, pigments such as carbon black and titanium dioxide, silicone rubber, Various plastic powders, various engineering plastics powders, low stress agents such as ABS resin and MBS resin powders, and the like may be appropriately added.

表面処理剤は(d)無機充填剤を構成する粉末のうち微細シリカ粉末を除く粉末の表面処理を目的として加えられるものであり、一般に無機充填剤の表面処理に使用されるものであれば特に限定されるものではないが、シリコン原子に結合したアルコキシ基を有するシラン化合物が好ましく、なかでも一級もしくは二級のアミンを有するシラン化合物が好ましい。これらのシラン化合物を用いることにより封止用樹脂組成物の成形性をより良好にすることができる。   The surface treatment agent is added for the purpose of surface treatment of the powder excluding the fine silica powder among the powders constituting the inorganic filler (d), and particularly if it is generally used for the surface treatment of inorganic fillers. Although not limited, a silane compound having an alkoxy group bonded to a silicon atom is preferable, and a silane compound having a primary or secondary amine is particularly preferable. By using these silane compounds, the moldability of the sealing resin composition can be further improved.

一級もしくは二級のアミンを有するシラン化合物としては、例えばγ−アミノプロピルトリエトキシシラン、γ−アミノプピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシラン、γ−N−フェニルアミノプロピルトリメトキシシラン等を用いることができる。   Examples of the silane compound having a primary or secondary amine include γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, γ- Ureidopropyltriethoxysilane, γ-N-phenylaminopropyltrimethoxysilane, and the like can be used.

これらの一級もしくは二級のアミンを有するシラン化合物は単独もしくは2種以上混合して使用することができ、さらにこれら以外の表面処理剤を併用してもかまわない。   These silane compounds having primary or secondary amines can be used alone or in combination of two or more, and a surface treatment agent other than these may be used in combination.

表面処理剤の配合割合は、封止用樹脂組成物全体の0.01〜5重量%であることが好ましい。0.01重量%未満では成形性の向上が十分でないおそれがあり、5重量%を超えると封止用樹脂組成物の硬化物の信頼性に悪影響を与え好ましくない。   The blending ratio of the surface treatment agent is preferably 0.01 to 5% by weight of the entire sealing resin composition. If it is less than 0.01% by weight, the moldability may not be sufficiently improved. If it exceeds 5% by weight, the reliability of the cured product of the sealing resin composition is adversely affected.

本発明の封止用樹脂組成物は、少なくとも上記(a)エポキシ樹脂、(b)フェノール樹脂硬化剤、(c)硬化促進剤および(d)無機充填剤を、例えばヘンシェルミキサーなとのミキサーによって充分混合し、さらに熱ロールによる溶融処理または二軸の押し出し機等による溶融混合処理を加えた後、冷却、粉砕することにより調製することができる。   The sealing resin composition of the present invention comprises at least the above (a) epoxy resin, (b) phenol resin curing agent, (c) curing accelerator, and (d) inorganic filler by a mixer such as a Henschel mixer. It can be prepared by mixing sufficiently, further adding a melting treatment with a hot roll or a melting and mixing treatment with a biaxial extruder, and then cooling and pulverizing.

そして、本発明の樹脂封止型半導体装置は上記封止用樹脂組成物を用いて半導体素子を封止することによって製造することができる。このような封止には最も一般的には低圧トランスファ成形が用いられるが、コンプレッション成形、インジェクション成形、注型等によっても封止することができる。なお、本発明の封止用樹脂組成物によって封止される半導体素子は特に限定されるものではない。   And the resin-sealed semiconductor device of this invention can be manufactured by sealing a semiconductor element using the said resin composition for sealing. For such sealing, low-pressure transfer molding is most commonly used, but it can also be sealed by compression molding, injection molding, casting, or the like. In addition, the semiconductor element sealed with the resin composition for sealing of this invention is not specifically limited.

以下、本発明を実施例に基づいてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail based on examples.

(実施例1〜6および比較例1〜3)
まず、表1に示す各成分が同表に示す割合で配合されてなる封止用樹脂組成物を次のようにして調製した(表中の配合量は重量部を示す)。まずヘンシェルミキサー中で充填剤A〜Eを表面処理剤で処理し、次いで他の成分を配合混合して60〜130℃の加熱ロールで混練し、冷却した後粉砕することにより、封止用樹脂組成物を得た。なお、表1に示した各成分としては、それぞれ以下に示すものを用いた。
(Examples 1-6 and Comparative Examples 1-3)
First, a sealing resin composition in which the components shown in Table 1 were blended in the proportions shown in the same table was prepared as follows (the blending amount in the table represents parts by weight). First, fillers A to E are treated with a surface treatment agent in a Henschel mixer, then other components are blended and mixed, kneaded with a heating roll at 60 to 130 ° C., cooled, and then pulverized, thereby sealing resin. A composition was obtained. In addition, as each component shown in Table 1, what was shown below was used, respectively.

Figure 2005146141
Figure 2005146141

エポキシ樹脂A:低吸湿性エポキシ樹脂(NC−3000P、日本化薬株式会社製、当量273)
エポキシ樹脂B:オルソクレゾールノボラックエポキシ樹脂(ESCN195XL、住友化学株式会社製)
当量197)
Epoxy resin A: low hygroscopic epoxy resin (NC-3000P, Nippon Kayaku Co., Ltd., equivalent 273)
Epoxy resin B: Orthocresol novolac epoxy resin (ESCN195XL, manufactured by Sumitomo Chemical Co., Ltd.)
Equivalent 197)

フェノール樹脂A:低吸湿性フェノール樹脂(MEH−7851S、明和化成株式会社製、当量209)
フェノール樹脂B:フェノールノボラック樹脂(BRG−556、昭和高分子株式会社製、当量104)
Phenol resin A: low hygroscopic phenol resin (MEH-7851S, manufactured by Meiwa Kasei Co., Ltd., equivalent 209)
Phenol resin B: Phenol novolac resin (BRG-556, Showa Polymer Co., Ltd., equivalent 104)

硬化促進剤:DBUフェノールノボラック塩(DBU含有率30%、フェノール樹脂 当量104)
離型剤:カルナバワックス
表面処理剤:γ−グリシドキシプロピルトリメトキシシラン(A−187、日本ユニカー株式会社製)
Curing accelerator: DBU phenol novolak salt (DBU content 30%, phenol resin equivalent 104)
Mold release agent: Carnauba wax Surface treatment agent: γ-glycidoxypropyltrimethoxysilane (A-187, manufactured by Nihon Unicar Corporation)

充填剤A:溶射法による平均粒径10μm、比表面積5.0m/gのシリカ粉末
充填剤B:VMC法により合成された非晶質シリカ微粒子をγ−アミノプロピルトリエトキシシランで表面処理した微細シリカ粉末(SC−2500SQ、株式会社アドマテックス製、平均粒径0.5μm、比表面積6.0m/g、45μm以上が7ppm、800℃重量損失0.12%、pH6.7)
充填剤C:VMC法により合成された非晶質シリカ微粒子をγ−アミノプロピルトリエトキシシランで表面処理した微細シリカ粉末(平均粒径0.5μm、比表面積6.0m/g、45μm以上が12ppm、800℃重量積失0.26%、pH9.6)
充填剤D:VMC法により合成された非晶質シリカ微粒子をγ−アミノプロピルトリエトキシシランで表面処理した微細シリカ粉末(平均粒径0.5μm、比表面積6.0m/g、45μm以上が11ppm、800℃重量損失0.03%、pH4.5)
充填剤E:VMC法により合成された非晶質シリカ微粒子(微細シリカ粉末)(平均粒径0.5μm、比表面積6.0m/g、45μm以上が46ppm、800℃重量損失0.02%、pH4.5)
Filler A: Silica powder with an average particle diameter of 10 μm by spraying and a specific surface area of 5.0 m 2 / g Filler B: Amorphous silica fine particles synthesized by the VMC method were surface-treated with γ-aminopropyltriethoxysilane Fine silica powder (SC-2500SQ, manufactured by Admatechs Co., Ltd., average particle size 0.5 μm, specific surface area 6.0 m 2 / g, 45 μm or more is 7 ppm, 800 ° C. weight loss 0.12%, pH 6.7)
Filler C: Fine silica powder obtained by surface-treating amorphous silica fine particles synthesized by the VMC method with γ-aminopropyltriethoxysilane (average particle size 0.5 μm, specific surface area 6.0 m 2 / g, 45 μm or more 12ppm, 800 ° C weight loss 0.26%, pH 9.6)
Filler D: Fine silica powder obtained by surface-treating amorphous silica fine particles synthesized by the VMC method with γ-aminopropyltriethoxysilane (average particle size 0.5 μm, specific surface area 6.0 m 2 / g, 45 μm or more 11ppm, 800 ° C weight loss 0.03%, pH 4.5)
Filler E: Amorphous silica fine particles (fine silica powder) synthesized by the VMC method (average particle size 0.5 μm, specific surface area 6.0 m 2 / g, 45 μm or more 46 ppm, 800 ° C. weight loss 0.02% PH 4.5)

次いで、これらの封止用樹脂組成物についてそれぞれ下記のような評価試験を行った。   Next, the following evaluation tests were performed on these sealing resin compositions.

[1]耐湿信頼性を調べるために次の試験を行った。すなわち各封止用樹脂組成物を用いて試験用デバイスを封止した後、180℃で4時間アフターキュアを行った。次いで、この樹脂封止型半導体装置を850℃、相対湿度60%の雰囲気中に168時間放置して吸湿処理を行った後、これをMAX.温度260℃のIRリフロー炉に3回通した。この時点での樹脂封止型半導体装置のクラック発生率を調べた。結果を表2に示す。なお、表2におけるクラック発生率は、(クラック発生数/試料数)で示した。 [1] The following test was conducted to examine the moisture resistance reliability. That is, after sealing the test device using each sealing resin composition, after-curing was performed at 180 ° C. for 4 hours. Next, the resin-encapsulated semiconductor device was left in an atmosphere at 850 ° C. and a relative humidity of 60% for 168 hours for moisture absorption treatment. It was passed through an IR reflow furnace at a temperature of 260 ° C. three times. The crack generation rate of the resin-encapsulated semiconductor device at this time was examined. The results are shown in Table 2. In addition, the crack generation rate in Table 2 is indicated by (number of cracks generated / number of samples).

また、同様の樹脂封止型半導体装置を127℃の飽和水蒸気雰囲気中に放置し、プレッシャークッカー試験を行い、不良(リーク不良、オープン不良)発生率を調べた。結果を表2に示す。なお、表2における不良発生率は、(不良発生数/試料数)で示した。   A similar resin-encapsulated semiconductor device was left in a saturated water vapor atmosphere at 127 ° C., and a pressure cooker test was conducted to examine the occurrence rate of defects (leak defects, open defects). The results are shown in Table 2. In addition, the defect occurrence rate in Table 2 is indicated by (number of defects generated / number of samples).

[2]流動性を調べるために、スパイラルフローを測定した。スパイラルフローは、EMMI−1−66に準じて測定した。結果を表3に示す。 [2] In order to investigate the fluidity, spiral flow was measured. The spiral flow was measured according to EMMI-1-66. The results are shown in Table 3.

[3]樹脂封止型半導体装置における充填性を調べるため、QFP208−2828(厚さ1.4mm、チップサイズ11×11mm)とTSOP54(LOC構造、チップサイズ4×6mm)を成形した。結果を表3に示す。 [3] QFP208-2828 (thickness: 1.4 mm, chip size: 11 × 11 mm) and TSOP54 (LOC structure, chip size: 4 × 6 mm) were molded in order to examine the filling properties in the resin-encapsulated semiconductor device. The results are shown in Table 3.

[4]微細シリカ粉末の凝集状態を調べるために、成形したQFP208−2828(厚さ1.4mm)の断面を研磨し凝集物の有無を確認した。結果を表3に示す。 [4] In order to examine the agglomeration state of the fine silica powder, the cross section of the molded QFP 208-2828 (thickness 1.4 mm) was polished to confirm the presence or absence of agglomerates. The results are shown in Table 3.

[5]難燃性を調べるために、封止用樹脂組成物を成形、硬化し、120mm×12mm×0.8mmの試験片を作製した。この試験片について、UL94に基づく燃焼試験を実施し評価した。結果を表3に示す。 [5] In order to examine flame retardancy, the sealing resin composition was molded and cured to prepare a test piece of 120 mm × 12 mm × 0.8 mm. About this test piece, the combustion test based on UL94 was implemented and evaluated. The results are shown in Table 3.

Figure 2005146141
Figure 2005146141

Figure 2005146141
Figure 2005146141

表2、表3に示されるように、実施例1〜6の封止用樹脂組成物は比較例1〜3の封止用樹脂組成物に比べ、充填性および流動性等の成形性に優れると共に、その硬化物の高温下での耐クラック性およびその後の耐湿信頼性も良好であることが認められた。また、難燃性についても十分であることが認められた。   As shown in Tables 2 and 3, the sealing resin compositions of Examples 1 to 6 are superior to the sealing resin compositions of Comparative Examples 1 to 3 in moldability such as fillability and fluidity. At the same time, it was confirmed that the cured product had good crack resistance under high temperature and subsequent moisture resistance reliability. It was also confirmed that the flame retardancy was sufficient.

Claims (6)

(a)エポキシ樹脂、(b)フェノール樹脂硬化剤、(c)硬化促進剤、(d)無機充填剤を必須成分として含有する封止用樹脂組成物であって、
前記(d)無機充填剤は少なくとも平均粒径の異なる2種の粉末からなり、その1種がVMC(Vaperized Metal Combution)法により合成された非晶質シリカ微粒子をアミノシラン型表面処理剤で表面処理することにより得られる平均粒径が0.5〜2.0μm、45μm以上の粗粒分が30ppm以下の微細シリカ粉末であって、前記微細シリカ粉末の含有量が前記封止用樹脂組成物全体に対して1〜50重量%であることを特徴とする封止用樹脂組成物。
(A) an epoxy resin, (b) a phenol resin curing agent, (c) a curing accelerator, (d) a sealing resin composition containing an inorganic filler as an essential component,
(D) The inorganic filler is composed of at least two kinds of powders having different average particle diameters, one of which is a surface treatment of amorphous silica fine particles synthesized by VMC (Vaperized Metal Combution) method with an aminosilane type surface treatment agent. The fine silica powder having an average particle size of 0.5 to 2.0 μm and a coarse particle content of 45 μm or more is 30 ppm or less, and the content of the fine silica powder is the whole sealing resin composition 1 to 50% by weight based on the resin composition for sealing.
前記(d)無機充填剤は、平均粒径5〜20μmのシリカ粉末と前記微細シリカ粉末とからなり、前記平均粒径5〜20μmのシリカ粉末の含有量が前記封止用樹脂組成物全体に対して60〜90重量%であることを特徴とする請求項1記載の封止用樹脂組成物。   The (d) inorganic filler comprises a silica powder having an average particle diameter of 5 to 20 μm and the fine silica powder, and the content of the silica powder having an average particle diameter of 5 to 20 μm is included in the entire sealing resin composition. The sealing resin composition according to claim 1, wherein the content is 60 to 90% by weight. 前記微細シリカ粉末の800℃における重量損失が0.05〜0.20%であることを特徴とする請求項1または2記載の封止用樹脂組成物。   The encapsulating resin composition according to claim 1 or 2, wherein a weight loss of the fine silica powder at 800 ° C is 0.05 to 0.20%. 前記微細シリカ粉末の熱抽出水のpHが5.5〜8.5であり、かつ、その熱抽出水の電気伝導度が1.5mS/m以下であることを特徴とする請求項1乃至3のいずれか1項記載の封止用樹脂組成物。   The pH of the heat extraction water of the fine silica powder is 5.5 to 8.5, and the electric conductivity of the heat extraction water is 1.5 mS / m or less. The sealing resin composition according to any one of the above. 前記封止用樹脂組成物は、難燃化剤である臭素化エポキシ樹脂および三酸化アンチモンを実質的に含まないことを特徴とする請求項1乃至4のいずれか1項記載の封止用樹脂組成物。   5. The sealing resin according to claim 1, wherein the sealing resin composition does not substantially contain a brominated epoxy resin and antimony trioxide which are flame retardants. 6. Composition. 半導体素子を樹脂組成物で封止してなる樹脂封止型半導体装置であって、前記樹脂組成物として請求項1乃至4のいずれか1項記載の封止用樹脂組成物を用いたことを特徴とする樹脂封止型半導体装置。   A resin-encapsulated semiconductor device obtained by encapsulating a semiconductor element with a resin composition, wherein the encapsulating resin composition according to any one of claims 1 to 4 is used as the resin composition. A resin-encapsulated semiconductor device.
JP2003386585A 2003-11-17 2003-11-17 Resin composition for sealing and resin-sealed semiconductor device Expired - Fee Related JP3811154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003386585A JP3811154B2 (en) 2003-11-17 2003-11-17 Resin composition for sealing and resin-sealed semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003386585A JP3811154B2 (en) 2003-11-17 2003-11-17 Resin composition for sealing and resin-sealed semiconductor device

Publications (2)

Publication Number Publication Date
JP2005146141A true JP2005146141A (en) 2005-06-09
JP3811154B2 JP3811154B2 (en) 2006-08-16

Family

ID=34694229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003386585A Expired - Fee Related JP3811154B2 (en) 2003-11-17 2003-11-17 Resin composition for sealing and resin-sealed semiconductor device

Country Status (1)

Country Link
JP (1) JP3811154B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009513758A (en) * 2005-10-27 2009-04-02 ウァッカー ケミー アーゲー Particles containing zwitterionic structural elements
JP2017179353A (en) * 2016-03-29 2017-10-05 アイカ工業株式会社 Hot melt seal composition
WO2019124192A1 (en) * 2017-12-21 2019-06-27 ナミックス株式会社 Resin composition, semiconductor sealing material, one-part adhesive and adhesive film
WO2021048977A1 (en) * 2019-09-12 2021-03-18 昭和電工マテリアルズ株式会社 Sealing material for compression molding and electronic component device
WO2023112281A1 (en) * 2021-12-16 2023-06-22 株式会社アドマテックス Filler for electronic materials and method for producing same, slurry for electronic materials, and resin composition for electronic materials

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009513758A (en) * 2005-10-27 2009-04-02 ウァッカー ケミー アーゲー Particles containing zwitterionic structural elements
JP4914449B2 (en) * 2005-10-27 2012-04-11 ウァッカー ケミー アーゲー Particles containing zwitterionic structural elements
JP2017179353A (en) * 2016-03-29 2017-10-05 アイカ工業株式会社 Hot melt seal composition
WO2019124192A1 (en) * 2017-12-21 2019-06-27 ナミックス株式会社 Resin composition, semiconductor sealing material, one-part adhesive and adhesive film
JP2019112486A (en) * 2017-12-21 2019-07-11 ナミックス株式会社 Resin composition
JP7148946B2 (en) 2017-12-21 2022-10-06 ナミックス株式会社 resin composition
US11518867B2 (en) 2017-12-21 2022-12-06 Namics Corporation Resin composition, semiconductor sealing material, one-part adhesive and adhesive film
WO2021048977A1 (en) * 2019-09-12 2021-03-18 昭和電工マテリアルズ株式会社 Sealing material for compression molding and electronic component device
WO2023112281A1 (en) * 2021-12-16 2023-06-22 株式会社アドマテックス Filler for electronic materials and method for producing same, slurry for electronic materials, and resin composition for electronic materials

Also Published As

Publication number Publication date
JP3811154B2 (en) 2006-08-16

Similar Documents

Publication Publication Date Title
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP5507477B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP7126186B2 (en) Resin composition for encapsulation, cured product thereof, and semiconductor device
JP2006233016A (en) Epoxy resin composition and semiconductor device
JP2013067694A (en) Epoxy resin composition for sealing semiconductor, and semiconductor device
JP4967353B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP3811154B2 (en) Resin composition for sealing and resin-sealed semiconductor device
JP4250987B2 (en) Epoxy resin composition and semiconductor device
JP2006213849A (en) Sealing resin composition and semiconductor sealing apparatus
JP2008045075A (en) Epoxy resin composition for sealing and electronic component device
JP2005089486A (en) Epoxy resin composition and semiconductor device
JP4984501B2 (en) Epoxy resin composition and semiconductor device
JP2005290111A (en) Resin composition for encapsulation and semiconductor device
JP2005162826A (en) Sealing resin composition and resin-sealed semiconductor device
JPH07107091B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2005281624A (en) Resin composition for sealing and semiconductor device
JP2002080694A (en) Epoxy resin composition and semiconductor device
JPH11335527A (en) Epoxy resin composition for semiconductor sealing
JP5055778B2 (en) Epoxy resin composition, epoxy resin molding material and semiconductor device
JP4687195B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2006111672A (en) Semiconductor sealing resin composition and semiconductor device
JP2006206748A (en) Epoxy resin composition and semiconductor device
JP2006143784A (en) Epoxy resin composition and semiconductor device
JP2007045916A (en) Resin composition for sealing, and resin-sealed type semiconductor device
JP2003040981A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060525

R150 Certificate of patent or registration of utility model

Ref document number: 3811154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140602

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140602

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees