JP2005142367A - 膜剥離方法 - Google Patents

膜剥離方法 Download PDF

Info

Publication number
JP2005142367A
JP2005142367A JP2003377384A JP2003377384A JP2005142367A JP 2005142367 A JP2005142367 A JP 2005142367A JP 2003377384 A JP2003377384 A JP 2003377384A JP 2003377384 A JP2003377384 A JP 2003377384A JP 2005142367 A JP2005142367 A JP 2005142367A
Authority
JP
Japan
Prior art keywords
substrate
resist
gas
base material
peeling method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003377384A
Other languages
English (en)
Inventor
Shunsuke Kunugi
俊介 功刀
Makoto Takatsuma
誠 高妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2003377384A priority Critical patent/JP2005142367A/ja
Publication of JP2005142367A publication Critical patent/JP2005142367A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

【課題】 基材に被膜されたレジスト等の有機膜を、基材にダメージが及ばないようにしながら、常圧プラズマ処理等によって剥離できるようにする。
【解決手段】 常圧のプラズマ処理部20においてプロセスガスをプラズマ化し、レジスト被膜基材Wに吹付ける。プロセスガスは、CF等のハロゲン系ガスをN等の酸素被含有ガスで大幅に希釈したものを用いる。これによって、下地の基材とその表面のレジストとの界面を分離できるとともに、基材がエッチングされないようにすることができる。その後、液体処理部30において基材Wに純水をかけて洗浄することにより、レジストを除去する。
【選択図】 図1

Description

この発明は、例えば半導体基材等の表面に被膜されたレジスト等の有機膜を剥離する方法に関する。
半導体基材に設けられたレジスト(有機物)を除去するには、アセトン等の有機溶剤をかける所謂ウェット方式が一般的である。
一方、例えば特許文献1、2には、プラズマを用いたレジスト除去方法が記載されている。それによれば、常圧下で酸素をプラズマ化(オゾン化)し、基材に照射することにより、レジストをアッシングする。次いで、基材に純水や有機溶剤をかけ、灰化したレジストを洗い落とす。
特開平8−78372号公報 特開2000−150475号公報
上掲特許文献のような酸素を用いた常圧プラズマ照射では、レジストのアッシングに止まらず、下地の基材までもがエッチングされてしまう場合がある。また、常圧プラズマ照射によるアッシングでは、レジスト表面を徐々にアッシングしていくので、処理時間がかかる。
本発明は、常圧下でプラズマ照射を行ないつつ、しかもアッシングでもなくエッチングでもない現象を起こさせてレジスト等の有機膜を剥離できる新たな方法を提供するものである。
上記課題を解決するため、本発明に係る膜剥離方法は、表面に剥離されるべきレジスト等の有機膜が被膜された基材にハロゲン系成分を含むプロセスガスを略常圧下でプラズマ化(励起、活性化)して吹付けるプラズマ処理工程と、プラズマ処理後の基材から有機膜を純水等の液体にて除去する液体処理工程を実行することを特徴とする。本発明によれば、ハロゲンガスによるプラズマ処理によって有機膜と下地である基材との界面を分離することができ、その後、液体処理工程によって有機膜を基材から除去することができる。
ここで、本発明における略常圧(大気圧近傍の圧力)とは、1.333×104〜10.664×104Paの範囲を言う。特に、9.331×104〜10.397×104Paの範囲は、圧力調整が容易で装置構成が簡便になり、好ましい。
前記液体処理工程では、浸漬用液に基材を浸漬してもよく、洗浄液で基材を洗浄してもよい。前記浸漬操作の後、前記洗浄操作を行なってもよい。浸漬用液や洗浄液は、純水を用いるのが望ましいが、各種の酸性またはアルカリ性または中性の水溶液を用いてもよい。
前記プロセスガスは、ハロゲン系ガスを、窒素等の希釈用ガスにて希釈したものであることが望ましい。希釈用ガスは、酸素を実質的に含まないことが望ましい。これによって、基材がエッチングされるのを防止でき、基材のダメージを低減できる。
前記の希釈倍率は、10倍〜100倍が望ましい。すなわち、前記プロセスガスの各成分の流量比は、(ハロゲン系ガス):(希釈用ガス)=10:90〜1:99であることが望ましい。ハロゲン系ガスを10vol%以下(希釈用ガスを90vol%以上)にすることによって、基材のダメージを確実に低減できる。ハロゲン系ガスを1vol%以上(希釈用ガスを99vol%以下)にすることによって、界面の分離作用を実用的な時間内で起こさせるようにすることができる。
前記プラズマ処理工程において、前記吹付け後のプロセスガスを基材からすみやかに離れるように吸引することが望ましい。これによって、基材のダメージを確実に低減できる。
前記プラズマ処理工程において、基材を加熱することが望ましい。これによって、基材のダメージを低減できる。
前記基材の加熱温度は、50℃〜100℃であることが望ましい。50℃以上にすることによって、基材のダメージを確実に低減でき、100℃以下にすることによって有機膜と基材の界面を確実に分離できる。
前記レジスト等の有機膜は、ノボラック樹脂やアクリル樹脂で構成されているのが望ましい。
下地の基材は、ガラス、酸化シリコン、アモルファスシリコン、窒化シリコン等のシリコン系で構成されていることが望ましい。レジスト等の有機膜にB等の陽イオンがインプラントされている場合、基材は、アルミニウムで構成されていてもよい。
前記プロセスガスのハロゲン系成分は、例えばCF、C等のフッ素系であることが望ましい。
本発明によれば、プラズマ処理工程によって基材と有機膜の界面を分離することができ、その後、液体処理工程によって有機膜を基材から除去することができる。
以下、本発明の実施形態を説明する。
図1は、第1実施形態に係るレジスト剥離装置M1を示したものである。レジスト剥離装置M1は、ハウジング10を備えている。ハウジング10の内部は、隔壁11によって左側の常圧プラズマ処理室12と右側の純水処理室(液体処理室)13とに仕切られている。すなわち、レジスト剥離装置M1は、隔壁11を境にして左側の常圧プラズマ処理部20と、右側の純水処理部(液体処理部)30とに区画されている。
プラズマ処理部20の室12内は、略常圧になっている。プラズマ処理室12の例えば上端部には、雰囲気ガス導入口16が設けられ、下端部には、排気口17が設けられている。導入口16には、雰囲気ガス供給ユニット6が接続されている。ユニット6は、プラズマ処理室12内の雰囲気ガスとして例えば空気を供給するようになっている。なお、雰囲気ガスとして、空気に代えて窒素等の不活性ガスを用いることにしてもよい。ユニット6からの雰囲気ガス供給分と後記プロセスガスの吹出し分に対応する量のガスが、下端の排気口17から排出される。
プラズマ処理室12には、プラズマ処理ヘッド21と移動ステージ40が収容されている。なお、移動ステージ40は、図示しない移動手段によって純水処理部30やハウジング10の外部に移動可能になっている。ハウジング10の左右の端壁や隔壁11には、ステージ40の移動用のシャッター等の扉14が設けられている。
ステージ40の上面に、被処理物として半導体基材Wが載置されている。
図3(a)に示すように、基材Wの上面(表面)には、剥離されるべきレジストRが被膜されている。基材Wは、例えばガラス、酸化シリコン、アモルファスシリコン、窒化シリコン等で構成されている。レジストRは、例えばノボラック樹脂、アクリル樹脂等の有機物にて構成されている。なお、図3以外の図面においては、下地である基材Wのみ図示し、その表面のレジストRの図示は省略してある。
レジスト剥離装置M1のプラズマ処理ヘッド21について説明する。
図1および図2に示すように、プラズマ処理ヘッド21は、処理室12におけるステージ40の配置場所の上方に位置されている。図2に示すように、プラズマ処理ヘッド21は、電極ホルダ22と、この電極ホルダに収容された一対の電極51,52を有している。これら電極51,52どうしの間にプラズマ放電空間となる通路50aが形成されている。詳細な図示は省略するが、少なくとも一方の電極51,52の対向面には、アルミナ等からなる固体誘電体層が被膜されている。一方の電極51は、給電線5aを介してプラズマ発生用電源5に接続され、ホット電極を構成している。他方の電極52は、接地線5bを介して接地され、アース電極を構成している。プラズマ発生用電源5は、例えばパルス状の電圧を出力するようになっている。このパルスの立上がり時間及び/又は立下り時間は、10μs以下、パルス継続時間は、200μs以下、電界強度は1〜1000kV/cm、周波数は0.5kHz以上であることが望ましい。なお、電源5の電圧波形は、パルス波に限らず、正弦波等の連続波であってもよい。
電極間通路50aの上端部には、プロセスガス供給ライン2aを介してプロセスガス供給ユニット2が接続されている。プロセスガス供給ユニット2には、プロセスガスとしてCFとNが別々に貯えられている。ガス供給ユニット2は、CFをNで大幅に希釈したうえで、供給ライン2aを介して電極間通路50aに導入するようになっている。上記の希釈倍率は、10倍〜100倍の範囲内で任意に設定できるようになっている。すなわち、希釈後のプロセスガス成分の流量比は、CF(vol%):N(vol%)=10:90〜1:99の範囲になるようになっている。
プラズマ処理ヘッド21の底部には、セラミック等からなるノズル板25が設けられている。ノズル板25は、一対の電極51,52の下面に宛がわれている。ノズル板25には、電極間通路50aに連なる吹出し口25aが形成されている。
次に、純水処理部30について説明する。
図1に示すように、純水処理部30の室13内には、シャワーノズル(洗浄用部材)31が下向きに設置されている。図1の仮想線に示すように、このシャワーノズル31の下方に、移動ステージ40ひいては基材Wが配置されるようになっている。
更に、処理部30には、純水供給ユニット3が設けられている。供給ユニット3には、洗浄液として純水が貯えられている。供給ユニット3から純水供給ライン3aが延び、シャワーノズル31に接続されている。
上記のように構成されたレジスト剥離装置M1を用いてレジスト被膜基材WからレジストRを剥離する方法を説明する。
先ず、レジスト剥離処理すべき基材Wを、移動ステージ40上に載せる。この移動ステージ40を、プラズマ処理室12内に入れ、処理ヘッド21の下方に配置する。そして、プラズマ処理工程を実行する。
〔プラズマ処理工程〕
プラズマ処理工程では、プロセスガス供給ユニット2において、CFをNで10倍〜100倍、すなわちCF:N=10:90〜1:99に希釈する。このプロセスガス(CF+N)を供給ライン2aから電極間通路50aに導入する。併行して、電源5からのパルス電圧供給によって電極51,52間にパルス電界を印加する。これによって、電極間通路50aにグロー放電が発生し、プロセスガスがプラズマ化(励起、活性化)される。このプラズマ化したプロセスガスが、吹出し口25aから下方に吹出され、レジスト被膜基材Wに吹付けられる。
これによって、図3(b)に示すように、下地であるシリコン系の基材Wとその表面の有機物からなるレジストRとの界面が分離し、両者の間に空隙や化合物等の分離層Waが形成される。
一方、CFがNで大幅に希釈されているため、下地の基材Wがエッチングされるのを防止でき、ダメージが及ばないようにすることができる。
次いで、移動ステージ40を、純水処理室13内に入れ、シャワーノズル31の下方に配置する。そして、純水処理工程(液体処理工程)を実行する。
〔純水処理工程〕
純水処理工程では、供給ユニット3から純水を供給ライン3a経由でシャワーノズル31に供給する。これによって、シャワーノズル31から純水が吹出される。図3(c)に示すように、この純水によって、基材Wの表面からレジストRを剥離し、洗い落とすことができる。
その後、基材Wを圧縮エア等で水切りし、半導体製造の次工程へ回す。
次に、本発明の他の実施形態を説明する。以下の実施形態において、既述の実施形態と重複する構成に関しては、図面に同一符号を付して説明を省略する。
図4は、第2実施形態を示したものである。第2実施形態では、プロセスガスとして100%のCFを用いており、希釈していない。プロセスガス供給ユニット2には、CFのみが貯えられている。
一方、プラズマ処理室12の排気口17には、排気管7aを介して吸引ポンプ7が接続されている。吸引ポンプ7の出力は、その吸引によって、基材Wの上面付近から排気口17へ向けてプロセスガスの速やかな流れが形成される程度に設定されている。具体的には、処理ヘッド21からのプロセスガスの吹出し流量に対し、吸引ポンプ7の吸引流量が、100倍以上になるようになっている。
第2実施形態によれば、プロセスガス供給ユニット2からのCF(100%)が、電極間通路50aに導入され、プラズマ化された後、基材Wに吹付けられる。これによって、下地の基材Wとその表面のレジストRとの界面を確実に分離できる。
これと併行して吸引ポンプ7を駆動する。これによって、吹付け後のプロセスガスが、レジスト被膜基材Wの上面付近に滞留することなく、排気口17へ向けて速やかに流れて行き、排気管7aを経て吸引排出される。これにより、下地の基材Wがエッチングされるのを防止でき、ダメージが及ばないようにすることができる。
なお、第2実施形態のプラズマ処理室12の上端部には、雰囲気ガス導入口16が単に開口されているだけであり、そこに雰囲気ガス供給ユニットが接続されていない。そして、吸引ポンプ7で吸込んだ分に相当する量の空気が外から導入口16を介してプラズマ処理室12内に導入されるようになっている。
図5は、第3実施形態を示したものである。第3実施形態では、プロセスガスとして100%のCFを用いている点で、第2実施形態と同様である。また、プラズマ処理室12の上端部の導入口16に雰囲気ガス供給ユニット6を設ける一方、下端部の排気口17には吸引ポンプ7を設けない(積極的に吸引しない)点で、第1実施形態と同様である。
第3実施形態が、第1、第2実施形態と異なるところは、基材加熱手段を有していることである。すなわち、第3実施形態の移動ステージ40には、基材加熱手段としてヒータ8が内蔵されている。ヒータ8は、基材Wを50℃〜100℃の範囲で加熱できるようになっている。
第3実施形態によれば、移動ステージ40に載せたレジスト被膜基材Wをヒータ8によって例えば50℃に加熱する。そのうえで、プロセスガス供給ユニット2からのCF(100%)を、電極間通路50aに導入してプラズマ化し、レジスト被膜基材Wに吹付ける。これによって、レジストRと下地の基材Wとの界面を確実に分離できるとともに、下地の基材Wがエッチングされるのを防止でき、ダメージが及ばないようにすることができる。
図6は、液体処理部30の変形例を示したものである。この変形例に係る液体処理部30には、浸漬用水槽32が設けられている。水槽32には、浸漬用液として純水が溜められている。
プラズマ処理工程後の純水処理工程(液体処理工程)では、基材Wを水槽32の純水内に浸漬する。これによって、レジストRを膨潤させて基材Wから離し、除去することができる。
水槽32内の純水は、図示しない循環ポンプにて汲み出し、分離したレジストRをフィルタ等で漉し取った後、水槽32に戻す。
本発明は、シリコン系等の被処理物に被膜された有機物を剥離するのに広く適用でき、被処理物は、半導体基材に限られず、剥離対象は、有機レジストに限られない。
例えば図7の態様では、配線用の基材W’を被処理物としている。被処理基材W’には、凹部Wbが設けられている。この凹部Wbの内周面に有機物からなるフィルムFが付着(被膜)されている。この被処理基材W’に対し、本発明のプラズマ処理工程および純水処理工程を施すことにより、図7の仮想線に示すように、凹部Wbから有機フィルムFを除去することができ、しかも下地の基材W’にダメージが及ばないようにすることができる。
本発明は、上記実施形態に限定されるものではなく、種々の改変をなすことができる。
例えば、CFに代えて、C等の他のフッ素系ガスを用いてもよく、フッ素系以外のハロゲン系ガスを用いてもよい。
第1実施形態において、プロセスガスの希釈用ガスは、窒素に限らず、他の不活性ガス等を用いてもよい。但し、希釈用ガスには、酸素が含有されていないのが望ましい。酸素が含有されていると、下地の基材がエッチングされてしまうおそれがある。
第2実施形態において、ヘッドの吹出し部の直近側方で吸気を行なってもよい。
第3実施形態において、基材の加熱温度を50℃より高温に設定してもよい。但し、100℃を超えないようにする。100℃を超えると、レジストと下地の基材との界面が分離されにくくなる。
プラズマ処理工程において、プロセスガスの希釈操作と、プラズマ処理室の吸引操作と、基材の加熱操作のうちの2つ、または全部を組み合わせて同時に行なうことにしてもよい。
次に、本発明の実施例を説明する。本発明は、以下の実施例に限定されるものではない。
本発明方法を種々の材質の基材に対して実施し、レジストが剥離されるか否かを調べた。その結果、基材が、ガラス、SiO、アモルファスシリコン、窒化シリコンの場合は、剥離可能であった。一般に、シリコン系の基材に対しては有効と考えられる。一方、Al、Cr、Moの場合は、剥離不能であった。一般に、金属系の基材に対しては適用しにくいと考えられる。但し、Al基材であっても、B等の陽イオンがインプラントされている場合には、剥離可能であった。
実施例2では、プラズマ処理工程における基材のダメージの程度(具体的にはエッチングレート)を調べた。基材の材質は、SiOとした。プロセスガスとして、第1実施形態と同様にCF+Nを用い、しかもNの量を0〜100vol%の範囲で変えた。さらに、以下の(1)〜(3)の条件分けを行なった。
条件(1):基材温度は常温とし、プラズマ処理室の吸引を行なわない。装置構成は、図2と同様。
条件(2):基材温度を50℃にし、プラズマ処理室の吸引を行なわない。装置構成は、図2のものに図5のヒータ8を組み合わせた構造。
条件(3):基材温度は常温とし、プラズマ処理室の吸引を、吹出し量に対し100倍の量で行なう。装置構成は、図4のものに図2のCF+N供給ユニット2を組み合わせた構造。
結果を、図8に示す。
条件(1)では、Nの添加量が0%または僅少(言い換えるとCFが100%またはそれに近い場合)であると、基材のエッチングレートが高く、ダメージが大きかった。一方、Nの添加量が増えるにしたがって基材のエッチングレートが低下した。そして、Nが約90vol%のとき、基材のエッチングレートがほぼゼロになった。これによって、Nの流量比が90vol%以上(すなわち希釈倍率が10倍以上)であれば、基材のダメージを殆ど防止できることが判明した。
条件(2)では、Nの添加量に拘わらず、基材のエッチングレートは殆どゼロになった。これによって、基材温度を50℃以上にすれば、基材のダメージをほぼ防止できることが判明した。なお、基材温度が100℃を超えると、界面分離が不十分になった。
条件(3)では、条件(2)と同様に、Nの添加量に拘わらず、基材のエッチングレートは殆どゼロになった。これによって、吹出し後のプロセスガスが基材上から速やかに流れ去るようにすれば、基材のダメージをほぼ防止できることが判明した。
本発明の第1実施形態に係るレジスト剥離装置の概略構成図である。 上記レジスト剥離装置の常圧プラズマ処理部の概略構成図である。 (a)は、レジスト剥離処理前の基材の拡大解説断面図である。(b)は、プラズマ処理工程により界面分離した状態の基材の拡大解説断面図である。(c)は、純水処理工程によりレジストを剥離した段階の基材の拡大解説断面図である。 本発明の第2実施形態に係るレジスト剥離装置の常圧プラズマ処理部の概略構成図である。 本発明の第3実施形態に係るレジスト剥離装置の常圧プラズマ処理部の概略構成図である。 レジスト剥離装置の純水処理部の変形例を示す概略構成図である。 基材とその表面の有機膜の変形例を示す断面図である。 実施例2の結果を示し、プロセスガス中の窒素添加量に対するSiO基材のエッチングレートのグラフである。
符号の説明
M1 レジスト剥離装置
2 プロセスガス供給ユニット(プロセスガス供給源)
3 純水供給ユニット(洗浄液供給源)
7 吸引ポンプ(吸引手段)
8 ヒータ(基材加熱手段)
12 常圧プラズマ処理室
13 純水処理室(液体処理室)
20 常圧プラズマ処理部
30 純水処理部(液体処理部)
31 洗浄用シャワーノズル(洗浄用部材)
32 浸漬用水槽
W,W’ 基材(被処理物)
R レジスト(有機膜)
F 有機物フィルム(有機膜)

Claims (11)

  1. 表面に剥離されるべき有機膜が被膜された基材にハロゲン系成分を含むプロセスガスを略常圧下でプラズマ化して吹付けるプラズマ処理工程と、プラズマ処理後の基材から有機膜を液体にて除去する液体処理工程を実行することを特徴とする膜剥離方法。
  2. 前記プロセスガスが、ハロゲン系ガスを、酸素を実質的に含まない希釈用ガスにて希釈したものであることを特徴とする請求項1に記載の膜剥離方法。
  3. 前記プロセスガスの各成分の流量比が、(ハロゲン系ガス):(希釈用ガス)=10:90〜1:99であることを特徴とする請求項2に記載の膜剥離方法。
  4. 前記プラズマ処理工程において、前記吹付け後のプロセスガスを基材からすみやかに離れるように吸引することを特徴とする請求項1に記載の膜剥離方法。
  5. 前記プラズマ処理工程において、基材を加熱することを特徴とする請求項1に記載の膜剥離方法。
  6. 前記基材の加熱温度が、50℃〜100℃であることを特徴とする請求項5に記載の膜剥離方法。
  7. 前記液体処理工程が、浸漬用液に基材を浸漬する操作を含むことを特徴とする請求項1〜6の何れかに記載の膜剥離方法。
  8. 前記液体処理工程が、洗浄液で基材を洗浄する操作を含むことを特徴とする請求項1〜7の何れかに記載の膜剥離方法。
  9. 前記有機膜が、レジストであることを特徴とする請求項1〜8の何れかに記載の膜剥離方法。
  10. 前記基材が、シリコン系にて構成されていること特徴とする請求項1〜9の何れかに記載の膜剥離方法。
  11. 前記プロセスガスのハロゲン系成分が、フッ素系であることを特徴とする請求項1〜10の何れかに記載の膜剥離方法。
JP2003377384A 2003-11-06 2003-11-06 膜剥離方法 Pending JP2005142367A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003377384A JP2005142367A (ja) 2003-11-06 2003-11-06 膜剥離方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003377384A JP2005142367A (ja) 2003-11-06 2003-11-06 膜剥離方法

Publications (1)

Publication Number Publication Date
JP2005142367A true JP2005142367A (ja) 2005-06-02

Family

ID=34688128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003377384A Pending JP2005142367A (ja) 2003-11-06 2003-11-06 膜剥離方法

Country Status (1)

Country Link
JP (1) JP2005142367A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028365A (ja) * 2006-06-22 2008-02-07 Riverbell Kk 処理装置及び処理方法
CN103092009A (zh) * 2011-11-08 2013-05-08 无锡华润华晶微电子有限公司 用作等离子注入的掩蔽层的光刻胶的去除方法
CN111696881A (zh) * 2020-06-17 2020-09-22 段玲玲 一种硅晶圆光阻溶解过程观测装置
CN113970880A (zh) * 2021-11-23 2022-01-25 江苏凯威特斯半导体科技有限公司 一种用于半导体光刻胶的清洗方法
WO2023037663A1 (ja) * 2021-09-09 2023-03-16 株式会社Screenホールディングス 基板処理方法および基板処理装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028365A (ja) * 2006-06-22 2008-02-07 Riverbell Kk 処理装置及び処理方法
CN103092009A (zh) * 2011-11-08 2013-05-08 无锡华润华晶微电子有限公司 用作等离子注入的掩蔽层的光刻胶的去除方法
CN103092009B (zh) * 2011-11-08 2015-05-20 无锡华润华晶微电子有限公司 用作等离子注入的掩蔽层的光刻胶的去除方法
CN111696881A (zh) * 2020-06-17 2020-09-22 段玲玲 一种硅晶圆光阻溶解过程观测装置
CN111696881B (zh) * 2020-06-17 2023-12-26 段玲玲 一种硅晶圆光阻溶解过程观测装置
WO2023037663A1 (ja) * 2021-09-09 2023-03-16 株式会社Screenホールディングス 基板処理方法および基板処理装置
CN113970880A (zh) * 2021-11-23 2022-01-25 江苏凯威特斯半导体科技有限公司 一种用于半导体光刻胶的清洗方法
CN113970880B (zh) * 2021-11-23 2024-05-28 江苏凯威特斯半导体科技有限公司 一种用于半导体光刻胶的清洗方法

Similar Documents

Publication Publication Date Title
JP5390846B2 (ja) プラズマエッチング装置及びプラズマクリーニング方法
JP2568371B2 (ja) 真空チャンバ用の新規な蓋および扉、並びにそれに対する前処理
TWI466170B (zh) 用於光阻劑剝離室之鋁裸板
JP4514336B2 (ja) 基板処理装置及びその洗浄方法
KR101153330B1 (ko) 플라즈마 처리 장치의 클리닝 방법, 그 클리닝 방법을 실행하는 플라즈마 처리 장치 및 그 클리닝 방법을 실행하는 프로그램을 기억하는 기억 매체
JP3958080B2 (ja) プラズマ処理装置内の被洗浄部材の洗浄方法
TW201724163A (zh) 電漿處理裝置及其清洗方法
JP2005142367A (ja) 膜剥離方法
CN109308987A (zh) 等离子体处理装置、半导体制造装置及半导体装置的制造方法
JP3508789B2 (ja) 基板の表面処理方法
JP2003027210A (ja) 表面処理方法及び表示装置の製造方法
JP7190938B2 (ja) プラズマ処理方法及びプラズマ処理装置
KR100765900B1 (ko) 기판의 가장자리 식각장치 및 상기 장치를 구비하는 기판처리 설비, 그리고 기판 처리 방법
KR20050004995A (ko) 플라즈마를 이용하는 기판 가공 장치
JP2007160206A (ja) 塗布装置
CN106920727A (zh) 等离子体处理装置及其清洗方法
JP6204881B2 (ja) 被処理体を処理する方法
KR102522272B1 (ko) 반도체 웨이퍼 세정 방법 및 장치
JP4053976B2 (ja) 基板処理方法及び基板処理装置
JP5475302B2 (ja) レジスト剥離装置およびレジスト剥離方法
JPH11145115A (ja) アッシング装置のクリーニング方法
JP3437557B2 (ja) プラズマアッシング方法
TWI695654B (zh) 電漿處理裝置、半導體製造裝置及半導體裝置之製造方法
KR100902613B1 (ko) 플라즈마 처리 장치 및 그의 처리 방법
KR100387757B1 (ko) 표면 세정 장치 및 방법