JP2005129826A - Power semiconductor device - Google Patents

Power semiconductor device Download PDF

Info

Publication number
JP2005129826A
JP2005129826A JP2003365755A JP2003365755A JP2005129826A JP 2005129826 A JP2005129826 A JP 2005129826A JP 2003365755 A JP2003365755 A JP 2003365755A JP 2003365755 A JP2003365755 A JP 2003365755A JP 2005129826 A JP2005129826 A JP 2005129826A
Authority
JP
Japan
Prior art keywords
power semiconductor
semiconductor device
lead frame
electrode
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003365755A
Other languages
Japanese (ja)
Inventor
Yasushi Nakajima
泰 中島
Takanobu Yoshida
貴信 吉田
Hiroaki Maeda
浩明 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003365755A priority Critical patent/JP2005129826A/en
Publication of JP2005129826A publication Critical patent/JP2005129826A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a self-arc-extinguishing type power semiconductor device capable of preventing gate oscillation and of miniaturization. <P>SOLUTION: The self-arc-extinguishing power semiconductor device including a plurality of power semiconductor elements 2 comprises a heat dissipation plate 1, the plurality of the power semiconductor elements 2 disposed on the heat dissipation plate 1, a lead frame 3 to which gate electrodes G of the plurality of the power semiconductor elements 2 are connected in parallel, and a sealing resin provided on the heat dissipation plate 1 to cover the power semiconductor elements 2. The gate electrodes G and the lead frame 3 are connected via a metal resistor 5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、パワー半導体装置に関し、特に、自己消弧(ターンオフ)型パワー半導体装置に関する。   The present invention relates to a power semiconductor device, and more particularly to a self-extinguishing (turn-off) power semiconductor device.

自己消弧型パワー半導体装置では、複数の半導体素子(例えばIGBT)を並列動作させる場合、2つのパワー半導体素子のゲート間にC成分及びL成分が形成され、ゲート発振が発生するという問題があった。これに対して、パワー半導体素子が載置される絶縁基板上にチップ状の抵抗体を載置し、抵抗体をゲート配線中に接続することにより、ゲート発振を防止していた(例えば、特許文献1)。
特開平8−191239号公報
In the self-extinguishing power semiconductor device, when a plurality of semiconductor elements (for example, IGBTs) are operated in parallel, there is a problem that a C component and an L component are formed between the gates of the two power semiconductor elements, and gate oscillation occurs. It was. On the other hand, a chip-like resistor is placed on an insulating substrate on which the power semiconductor element is placed, and the resistor is connected to the gate wiring to prevent gate oscillation (for example, patents). Reference 1).
JP-A-8-191239

しかしながら、かかる構造では、複数のチップ状の抵抗体が絶縁基板上にはんだ付け等で載置されるため、絶縁基板の面積が大きくなり、自己消弧型パワー半導体装置の小型化、低コスト化が困難であった。   However, in such a structure, since a plurality of chip-shaped resistors are mounted on the insulating substrate by soldering or the like, the area of the insulating substrate increases, and the self-extinguishing power semiconductor device is reduced in size and cost. It was difficult.

そこで、本発明は、ゲート発振が防止できかつ小型化の可能な自己消弧型パワー半導体装置の提供を目的とする。   Therefore, an object of the present invention is to provide a self-extinguishing power semiconductor device that can prevent gate oscillation and can be miniaturized.

本発明は、複数のパワー半導体素子を有する自己消弧型パワー半導体装置であって、放熱板と、放熱板上に配置された複数のパワー半導体素子と、複数のパワー半導体素子のゲート電極が並列に接続されたリードフレームと、放熱板上に、パワー半導体素子を覆うように設けられた封止樹脂とを含み、ゲート電極とリードフレームとが、金属抵抗体を介して接続されたことを特徴とするパワー半導体装置である。   The present invention is a self-extinguishing type power semiconductor device having a plurality of power semiconductor elements, wherein a heat sink, a plurality of power semiconductor elements arranged on the heat sink, and gate electrodes of the plurality of power semiconductor elements are arranged in parallel. Including a lead frame connected to the substrate and a sealing resin provided on the heat sink so as to cover the power semiconductor element, and the gate electrode and the lead frame are connected via a metal resistor. This is a power semiconductor device.

本発明にかかるパワー半導体装置では、素子サイズを大きくすることなくパワー半導体素子のゲート間で発生するゲート発振を防止できる。   In the power semiconductor device according to the present invention, gate oscillation that occurs between the gates of the power semiconductor element can be prevented without increasing the element size.

実施の形態1.
図1は、全体が100で表される、本実施の形態にかかる自己消弧型パワー半導体装置の内部構造の斜視図であり、図2は、図1をI−I方向に見た場合の断面図である。
パワー半導体装置100は、例えば銅からなる放熱板1を含む。放熱板1の上には、例えばIGBTやFETのようなパワー半導体素子2が、半田等により固着されている。また、放熱板1の上には、例えば銅からなるリードフレーム3のコレクタ端子(C)が、超音波溶接により接合されている。図1に示すように、リードフレーム3は、ゲート端子(G)、エミッタ端子(E)、およびコレクタ端子(C)に分かれている。ゲート端子(G)、エミッタ端子(E)は放熱板1に接触せず、中空に浮いた構造となっている。
Embodiment 1 FIG.
FIG. 1 is a perspective view of the internal structure of the self-extinguishing power semiconductor device according to the present embodiment, the whole being represented by 100, and FIG. 2 is a view when FIG. 1 is viewed in the II direction. It is sectional drawing.
The power semiconductor device 100 includes a heat sink 1 made of, for example, copper. On the heat radiating plate 1, a power semiconductor element 2 such as an IGBT or FET is fixed by solder or the like. Further, a collector terminal (C) of a lead frame 3 made of, for example, copper is joined on the heat radiating plate 1 by ultrasonic welding. As shown in FIG. 1, the lead frame 3 is divided into a gate terminal (G), an emitter terminal (E), and a collector terminal (C). The gate terminal (G) and the emitter terminal (E) do not contact the heat radiating plate 1 and have a structure floating in the air.

リードフレーム3のエミッタ端子(E)は、パワー半導体素子2の表面に設けられたエミッタ電極に、アルミニウム等のボンディングワイヤで接続されている。また、コレクタ端子(C)は、パワー半導体素子2の裏面に設けられたコレクタ電極と電気的に接続されている。   The emitter terminal (E) of the lead frame 3 is connected to the emitter electrode provided on the surface of the power semiconductor element 2 by a bonding wire such as aluminum. The collector terminal (C) is electrically connected to the collector electrode provided on the back surface of the power semiconductor element 2.

一方、ゲート端子(G)に該当するリードフレーム3の先端には金属板5が、例えば超音波溶接により固着されている。金属板5は、抵抗値が略0.1Ω〜略100Ωであり、例えば、コンスタンタン、クロメル、マンガニンから選択された金属の、矩形形状の板からなる。ゲート端子(G)は、金属板5を介して、アルミニウム等のボンディングワイヤ4で、パワー半導体素子2の表面に設けられたゲート電極に接続されている。   On the other hand, a metal plate 5 is fixed to the tip of the lead frame 3 corresponding to the gate terminal (G) by, for example, ultrasonic welding. The metal plate 5 has a resistance value of about 0.1Ω to about 100Ω, and is made of, for example, a rectangular plate made of metal selected from constantan, chromel, and manganin. The gate terminal (G) is connected to a gate electrode provided on the surface of the power semiconductor element 2 through a metal plate 5 with a bonding wire 4 such as aluminum.

放熱板1の上には、パワー半導体素子2、ボンディングワイヤ4等を埋め込むように、例えばエポキシ樹脂からなるモールド樹脂6が設けられている。更に、放熱板1の裏面には、絶縁樹脂層7が設けられている。絶縁樹脂層7は、例えば酸化物や窒化物のフィラーを混入したシリコーン樹脂やエポキシ樹脂からなる。ただし、図1では、モールド樹脂6、絶縁樹脂層7を省略してある。   A mold resin 6 made of, for example, an epoxy resin is provided on the heat radiating plate 1 so as to embed the power semiconductor element 2, the bonding wire 4 and the like. Furthermore, an insulating resin layer 7 is provided on the back surface of the heat sink 1. The insulating resin layer 7 is made of, for example, a silicone resin or an epoxy resin mixed with an oxide or nitride filler. However, in FIG. 1, the mold resin 6 and the insulating resin layer 7 are omitted.

図3は、パワー半導体装置100の回路図である。図3からわかるように、ゲート端子(G)であるリードフレーム3は2つに分岐し、その先端で抵抗体である金属板5を介してそれぞれのパワー半導体素子2のゲート電極に接続されている。上述のように、金属板5は、略0.1Ω〜略10Ωの抵抗値を備えた抵抗体であり、ゲート抵抗として機能する。従って、金属板5を配置することにより、複数(ここでは2つ)のパワー半導体素子2を並列動作させる場合に、パワー半導体素子2のゲート間で発生するゲート発振を防止できる。   FIG. 3 is a circuit diagram of the power semiconductor device 100. As can be seen from FIG. 3, the lead frame 3 which is the gate terminal (G) branches into two, and is connected to the gate electrode of each power semiconductor element 2 through the metal plate 5 which is a resistor at the tip. Yes. As described above, the metal plate 5 is a resistor having a resistance value of approximately 0.1Ω to approximately 10Ω, and functions as a gate resistance. Therefore, by arranging the metal plate 5, it is possible to prevent gate oscillation that occurs between the gates of the power semiconductor elements 2 when a plurality (here, two) of power semiconductor elements 2 are operated in parallel.

即ち、ゲート回路は、容量(C)成分及びコイル(L)成分を持つため、共振周波数に近い電流が流れたときに発振現象が生じるおそれがある。これに対して、パワー半導体装置100では、抵抗成分を有する金属板5を設けることにより、発振のエネルギを熱に変換して消費し、ゲート発振を防止する。   That is, since the gate circuit has a capacitance (C) component and a coil (L) component, an oscillation phenomenon may occur when a current close to the resonance frequency flows. On the other hand, in the power semiconductor device 100, by providing the metal plate 5 having a resistance component, the oscillation energy is converted into heat and consumed, thereby preventing gate oscillation.

また、例えばリードフレームの二つの電極の間にチップ抵抗体を半田付け等で配置し、リードフレームの各電極とチップ抵抗体とをボンディングワイヤで接合する構造に比べて、リードフレームの形状が簡単になり、製造工程も簡略化できる。また、素子サイズの小型化も可能となる。   Also, for example, the lead frame shape is simple compared to a structure in which a chip resistor is placed between two electrodes of the lead frame by soldering etc., and each electrode of the lead frame and the chip resistor are joined by a bonding wire. Thus, the manufacturing process can be simplified. In addition, the element size can be reduced.

図4は、本実施の形態にかかるパワー半導体装置の一部を詳細に示した上面図であり、図4中、図1と同一符号は、同一又は相当箇所を示す。ただし、図1のパワー半導体装置100とは異なり、L字型のリードフレーム3が2つの電極板5を有し、ボンディングワイヤ4を介してそれぞれのパワー半導体素子2のゲート電極12に接続されている。
なお、各パワー半導体素子2には、合計5つの電極が設けられており、かかる5つの電極は、ゲート電極12、電流センサ用電極、電圧センサ用電極、温度センサのアノード電極とカソード電極からなる。
また、L字型のリードフレーム3を用いた場合は、2つの電極板5の抵抗値を調整して、リードフレーム3の先端からそれぞれのゲート電極12までの抵抗値が略等しくなるようにしてある。
4 is a top view showing in detail a part of the power semiconductor device according to the present embodiment. In FIG. 4, the same reference numerals as those in FIG. 1 denote the same or corresponding parts. However, unlike the power semiconductor device 100 of FIG. 1, the L-shaped lead frame 3 has two electrode plates 5 and is connected to the gate electrodes 12 of the respective power semiconductor elements 2 via bonding wires 4. Yes.
Each power semiconductor element 2 is provided with a total of five electrodes. The five electrodes include a gate electrode 12, a current sensor electrode, a voltage sensor electrode, and an anode electrode and a cathode electrode of a temperature sensor. .
When the L-shaped lead frame 3 is used, the resistance values of the two electrode plates 5 are adjusted so that the resistance values from the tip of the lead frame 3 to the respective gate electrodes 12 are substantially equal. is there.

一方、図5は、図4の比較例であり、図5中、図4と同一符号は、同一又は相当箇所を示す。図5の構造では、ゲート端子(G)のリードフレーム3は、金属板5を介して、一旦他のリードフレーム(吊りリード)に接続され、更にボンディングワイヤ4を介してそれぞれのパワー半導体素子2のゲート電極12に接続されている。   On the other hand, FIG. 5 is a comparative example of FIG. 4, and in FIG. 5, the same reference numerals as those in FIG. 4 indicate the same or corresponding parts. In the structure of FIG. 5, the lead frame 3 of the gate terminal (G) is once connected to another lead frame (hanging lead) via the metal plate 5, and further, each power semiconductor element 2 via the bonding wire 4. Are connected to the gate electrode 12.

図4と図5とを比較するとわかるように、本実施の形態にかかるパワー半導体装置では、比較例に比べてリードフレーム3の数を2本少なくできる。このため、パワー半導体装置の小型化や製造コストの削減が可能となる。   As can be seen by comparing FIG. 4 and FIG. 5, in the power semiconductor device according to the present embodiment, the number of lead frames 3 can be reduced by two compared to the comparative example. For this reason, it is possible to reduce the size and manufacturing cost of the power semiconductor device.

実施の形態2.
図6は、本実施の形態にかかる自己消弧型パワー半導体装置に含まれる金属抵抗体15の拡大図である。金属抵抗体15は、導体部15aと、その両側に設けられた電極部15bからなる。導体部15aの断面積は、電極部15bの断面積より小さくなっている。
Embodiment 2. FIG.
FIG. 6 is an enlarged view of the metal resistor 15 included in the self-extinguishing power semiconductor device according to the present embodiment. The metal resistor 15 includes a conductor portion 15a and electrode portions 15b provided on both sides thereof. The cross-sectional area of the conductor portion 15a is smaller than the cross-sectional area of the electrode portion 15b.

一方の電極部15bは、ゲート端子(G)のリードフレーム3に固着されている。また、他方の電極部15bは、ボンディングワイヤ4を介してパワー半導体素子のゲート電極(図示せず)に接続されている。   One electrode portion 15b is fixed to the lead frame 3 of the gate terminal (G). The other electrode portion 15 b is connected to a gate electrode (not shown) of the power semiconductor element through the bonding wire 4.

このように、導体部15aに比べて、電極部15bの断面積を大きくし、広い電極部15bを設けることにより、金属抵抗体15とリードフレーム3との相対的な位置が多少変動しても、ボンディングワイヤ4の長さを変えずに両者を接続でき、ゲート電極とリードフレーム3との間の抵抗値の変動を防止できる。
また、画像認識を用いて金属抵抗体15の位置の検出を行なう場合も、角が多い形状の方が、検出が容易となり生産性が高まる。
As described above, by making the cross-sectional area of the electrode portion 15b larger than that of the conductor portion 15a and providing the wide electrode portion 15b, even if the relative position between the metal resistor 15 and the lead frame 3 slightly varies. Both can be connected without changing the length of the bonding wire 4, and the fluctuation of the resistance value between the gate electrode and the lead frame 3 can be prevented.
Also, when the position of the metal resistor 15 is detected using image recognition, the shape with many corners is easier to detect and the productivity is increased.

また、図6に示すように、リードフレーム3と接合する電極部15bには、超音波接合を行なう際に、ツールにより圧痕15cが形成される。このため、電極部15bを覆うモールド樹脂との密着性が高まる。
従来のようにチップ状の抵抗体を半田付けした構造では、半田表面とモールド樹脂との接着性が低いため、剥離の起点となり、信頼性に問題が生じていた。これに対して、本実施の形態にかかる構造では、金属抵抗体15をリードフレーム3に超音波接合するため、半田接合した場合のようにモールド樹脂との密着性が損なわれることなく抵抗体を内蔵できる。更に、ツールの圧痕15cでモールド樹脂との密着性が向上するため、信頼性を高くできる。
Further, as shown in FIG. 6, an indentation 15 c is formed by a tool on the electrode portion 15 b to be joined to the lead frame 3 when performing ultrasonic joining. For this reason, adhesiveness with the mold resin which covers the electrode part 15b increases.
In the conventional structure in which a chip-like resistor is soldered, the adhesiveness between the solder surface and the mold resin is low, which causes a starting point of peeling, causing a problem in reliability. On the other hand, in the structure according to the present embodiment, the metal resistor 15 is ultrasonically bonded to the lead frame 3, so that the resistor is not impaired without loss of adhesion to the mold resin as in the case of solder bonding. Can be built in. Furthermore, since the adhesion with the mold resin is improved by the tool impression 15c, the reliability can be increased.

実施の形態3.
図7は、本実施の形態にかかるパワー半導体装置の一部を詳細に示した上面図であり、図7中、図1と同一符号は、同一又は相当箇所を示す。
Embodiment 3 FIG.
FIG. 7 is a top view showing in detail a part of the power semiconductor device according to the present embodiment. In FIG. 7, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.

図7に示すように、本実施の形態にかかるパワー半導体装置では、パワー半導体素子2を制御するためのIC10がリードフレーム3に搭載されている。IC10は複数の電極を有し、それぞれがリードフレーム3にボンディングワイヤで接続されている。   As shown in FIG. 7, in the power semiconductor device according to the present embodiment, an IC 10 for controlling the power semiconductor element 2 is mounted on the lead frame 3. The IC 10 has a plurality of electrodes, and each is connected to the lead frame 3 by bonding wires.

パワー半導体素子2では、パワー半導体素子2に含まれる複数のゲート電極に対して、ゲート電圧を与えるための電荷を瞬時に移動させる必要がある。具体的には、数マイクロ秒の間に1A程度の電流を流す必要がある。
この時、ゲート発振を防止するためのゲート抵抗をIC10に内蔵される構成では、IC10の発熱が大きく、IC10の温度が上昇して誤動作が発生する。このため、IC10を放熱板に搭載して、放熱を確保する必要がある。
In the power semiconductor element 2, it is necessary to instantaneously move charges for applying a gate voltage to the plurality of gate electrodes included in the power semiconductor element 2. Specifically, it is necessary to pass a current of about 1 A within a few microseconds.
At this time, in the configuration in which the gate resistor for preventing the gate oscillation is built in the IC 10, the heat generation of the IC 10 is large, the temperature of the IC 10 rises, and a malfunction occurs. For this reason, it is necessary to secure the heat dissipation by mounting the IC 10 on the heat dissipation plate.

これに対して、本実施の形態にかかるパワー半導体装置では、ゲート抵抗をIC10から分離し、IC10の外部に金属板5として設けている。かかる構造では、大きなゲート電流が金属板5に流れて金属板5の温度が上昇しても、IC10の制御性には影響しない。このため、IC10を冷却するための放熱板が不要となり、パワー半導体装置の小型化が可能となる。   On the other hand, in the power semiconductor device according to the present embodiment, the gate resistance is separated from the IC 10 and provided as the metal plate 5 outside the IC 10. In such a structure, even if a large gate current flows through the metal plate 5 and the temperature of the metal plate 5 rises, the controllability of the IC 10 is not affected. For this reason, the heat sink for cooling IC10 becomes unnecessary, and the power semiconductor device can be miniaturized.

図8は、図7の比較例であり、図7中、図8と同一符号は、同一又は相当箇所を示す。図8の構造ではリードフレーム3に載置された金属板5が、更に他のリードフレーム(吊りリード)を介してボンディングワイヤ4で電極12に接続されている。これに対して、本実施の形態にかかるパワー半導体装置では、リードフレーム3に載置された金属板5が、直接、ボンディングワイヤ4で電極12に接続されているため、リードフレームの本数が、それぞれ1本ずつ少なくなり、パワー半導体装置の小型化が可能となる。   FIG. 8 is a comparative example of FIG. 7. In FIG. 7, the same reference numerals as those in FIG. 8 indicate the same or corresponding parts. In the structure of FIG. 8, the metal plate 5 placed on the lead frame 3 is further connected to the electrode 12 by the bonding wire 4 through another lead frame (suspended lead). In contrast, in the power semiconductor device according to the present embodiment, since the metal plate 5 placed on the lead frame 3 is directly connected to the electrode 12 by the bonding wire 4, the number of lead frames is Each one is reduced and the power semiconductor device can be miniaturized.

実施の形態4.
図9は、本実施の形態にかかるパワー半導体装置の一部を詳細に示した上面図であり、図9中、図1と同一符号は、同一又は相当箇所を示す。
Embodiment 4 FIG.
FIG. 9 is a top view showing in detail a part of the power semiconductor device according to the present embodiment. In FIG. 9, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.

図9に示すように、本実施の形態にかかるパワー半導体装置では、パワー半導体素子2を制御するためのIC10がリードフレーム3に搭載されており、かつ1つのIC10で、2つのパワー半導体素子2を制御する構造となっている。   As shown in FIG. 9, in the power semiconductor device according to the present embodiment, an IC 10 for controlling the power semiconductor element 2 is mounted on the lead frame 3, and two power semiconductor elements 2 are formed by one IC 10. It has a structure to control.

本実施の形態にかかるパワー半導体装置においても、ゲート抵抗をIC10から分離して外部に金属板5として設けることにより、パワー半導体装置の小型化が可能となる。   Also in the power semiconductor device according to the present embodiment, it is possible to reduce the size of the power semiconductor device by separating the gate resistance from the IC 10 and providing it as the metal plate 5 outside.

図10は、図9の比較例であり、図10中、図9と同一符号は、同一又は相当箇所を示す。図10の構造ではリードフレーム3に載置された金属板5が、更に他のリードフレーム(吊りリード)を介してボンディングワイヤ4で電極12に接続されている。これに対して、本実施の形態にかかるパワー半導体装置では、金属板5が、直接、ボンディングワイヤ4で電極12に接続されているため、リードフレームの本数が2本少なくなり、パワー半導体装置の小型化が可能となる。   FIG. 10 is a comparative example of FIG. 9, and in FIG. 10, the same reference numerals as those in FIG. 9 indicate the same or corresponding parts. In the structure of FIG. 10, the metal plate 5 placed on the lead frame 3 is further connected to the electrode 12 by the bonding wire 4 through another lead frame (suspended lead). In contrast, in the power semiconductor device according to the present embodiment, since the metal plate 5 is directly connected to the electrode 12 by the bonding wire 4, the number of lead frames is reduced by two, and the power semiconductor device Miniaturization is possible.

実施の形態5.
図11は、本実施の形態にかかるパワー半導体装置の一部の拡大図である。図11は、パワー半導体素子2とリードフレーム3の接続部分であり、図11中、図1と同一符号は同一又は相当箇所を示す。
Embodiment 5 FIG.
FIG. 11 is an enlarged view of a part of the power semiconductor device according to the present embodiment. FIG. 11 shows a connection portion between the power semiconductor element 2 and the lead frame 3, and in FIG. 11, the same reference numerals as those in FIG. 1 denote the same or corresponding portions.

かかるパワー半導体装置では、実施の形態1等のように金属抵抗体として金属板5を用いる代りに、ボンディングワイヤを金属抵抗体として用いるものである。図11に示すように、本実施の形態では、ボンディングワイヤ14が、パワー半導体素子2の電極とリードフレーム3との間を直接、接続する。ボンディングワイヤ14には、例えば、クロメル、コンスタンタン、マンガニンのような、電気抵抗率の変化が100度あたり5%以下の材料が用いられる。また、ボンディングワイヤ14は、例えば、抵抗値が略0.1Ω〜略100Ωとなるように、その直径と長さが調整される。   In such a power semiconductor device, a bonding wire is used as the metal resistor instead of using the metal plate 5 as the metal resistor as in the first embodiment. As shown in FIG. 11, in the present embodiment, the bonding wire 14 directly connects the electrode of the power semiconductor element 2 and the lead frame 3. For the bonding wire 14, for example, a material having a change in electrical resistivity of 5% or less per 100 degrees, such as chromel, constantan and manganin is used. Moreover, the diameter and length of the bonding wire 14 are adjusted so that the resistance value becomes approximately 0.1Ω to approximately 100Ω, for example.

このように、ボンディングワイヤ14をゲート抵抗とすることにより、金属板が不要となるとともに、金属板をフレームに接合する工程も省略でき、製造コストの低減が可能となる。   Thus, by using the bonding wire 14 as the gate resistance, a metal plate is not necessary, and a process of joining the metal plate to the frame can be omitted, and the manufacturing cost can be reduced.

また、リードフレーム3の先端の電極サイズは、好適には、パワー半導体素子2の表面の電極パッドサイズの3倍以上である。かかる構造とすることにより、パワー半導体素子2とリードフレーム3との位置関係が、例えば半田付けの位置精度などにより多少変動しても、ワイヤボンディング14の長さを変えることなく両者の間を接続できる。即ち、ワイヤボンディング14の有する抵抗値を常に一定とすることができる。   The electrode size at the tip of the lead frame 3 is preferably at least three times the electrode pad size on the surface of the power semiconductor element 2. By adopting such a structure, even if the positional relationship between the power semiconductor element 2 and the lead frame 3 fluctuates somewhat due to, for example, the positional accuracy of soldering, the two are connected without changing the length of the wire bonding 14. it can. That is, the resistance value of the wire bonding 14 can always be constant.

本発明の実施の形態1にかかるパワー半導体装置の内部構造の斜視図である。1 is a perspective view of an internal structure of a power semiconductor device according to a first embodiment of the present invention. 図1をI−I方向に見た場合の断面図である。It is sectional drawing at the time of seeing FIG. 1 in the II direction. 本発明の実施の形態1にかかるパワー半導体装置の回路図である。1 is a circuit diagram of a power semiconductor device according to a first embodiment of the present invention. 本発明の実施の形態1にかかるパワー半導体装置の一部を詳細に示す上面図である。It is a top view which shows a part of power semiconductor device concerning Embodiment 1 of this invention in detail. 比較例の上面図である。It is a top view of a comparative example. 本発明の実施の形態2にかかるパワー半導体装置に含まれる金属抵抗体の拡大図である。It is an enlarged view of the metal resistor contained in the power semiconductor device concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかるパワー半導体装置の一部を詳細に示す上面図である。It is a top view which shows a part of power semiconductor device concerning Embodiment 3 of this invention in detail. 比較例の上面図である。It is a top view of a comparative example. 本発明の実施の形態4にかかるパワー半導体装置の一部を詳細に示す上面図である。It is a top view which shows a part of power semiconductor device concerning Embodiment 4 of this invention in detail. 比較例の上面図である。It is a top view of a comparative example. 本発明の実施の形態5にかかるパワー半導体装置の一部の拡大図である。It is a one part enlarged view of the power semiconductor device concerning Embodiment 5 of this invention.

符号の説明Explanation of symbols

1 放熱板、2 パワー半導体素子、3 リードフレーム、4 ボンディングワイヤ、5 金属板、6 モールド樹脂、7 絶縁樹脂層、10 IC、12 電極、15金属抵抗体、100 パワー半導体装置。

DESCRIPTION OF SYMBOLS 1 Heat sink, 2 Power semiconductor element, 3 Lead frame, 4 Bonding wire, 5 Metal plate, 6 Mold resin, 7 Insulation resin layer, 10 IC, 12 electrode, 15 metal resistor, 100 Power semiconductor device.

Claims (6)

複数のパワー半導体素子を有する自己消弧型パワー半導体装置であって、
放熱板と、
該放熱板上に配置された複数のパワー半導体素子と、
複数の該パワー半導体素子のゲート電極が並列に接続されたリードフレームと、
該放熱板上に、該パワー半導体素子を覆うように設けられた封止樹脂とを含み、
該ゲート電極と該リードフレームとが、金属抵抗体を介して接続されたことを特徴とするパワー半導体装置。
A self-extinguishing power semiconductor device having a plurality of power semiconductor elements,
A heat sink,
A plurality of power semiconductor elements disposed on the heat sink;
A lead frame in which gate electrodes of the plurality of power semiconductor elements are connected in parallel;
A sealing resin provided on the heat sink so as to cover the power semiconductor element;
A power semiconductor device, wherein the gate electrode and the lead frame are connected via a metal resistor.
上記金属抵抗体が、導体部と該導体部の両側に設けられた電極部からなる金属板であり、
一方の電極部が、上記リードフレームに固着され、他方の電極部が、ボンディングワイヤを介して上記ゲート電極に接続されたことを特徴とする請求項1に記載のパワー半導体装置。
The metal resistor is a metal plate composed of a conductor portion and electrode portions provided on both sides of the conductor portion,
2. The power semiconductor device according to claim 1, wherein one electrode portion is fixed to the lead frame, and the other electrode portion is connected to the gate electrode through a bonding wire.
上記導体部の断面積が、上記電極部の断面積より小さいことを特徴とする請求項2に記載のパワー半導体装置。 The power semiconductor device according to claim 2, wherein a cross-sectional area of the conductor portion is smaller than a cross-sectional area of the electrode portion. 上記金属抵抗体が、ボンディングワイヤからなることを特徴とする請求項1に記載のパワー半導体装置。 The power semiconductor device according to claim 1, wherein the metal resistor is made of a bonding wire. 上記金属抵抗体が、コンスタンタン、クロメル、マンガニンからなる群から選択される材料からなることを特徴とする請求項1〜4のいずれかに記載のパワー半導体装置。 5. The power semiconductor device according to claim 1, wherein the metal resistor is made of a material selected from the group consisting of constantan, chromel, and manganin. 上記金属抵抗体が、略0.1Ω〜略100Ωの抵抗値を有することを特徴とする請求項1〜4のいずれかに記載のパワー半導体装置。

The power semiconductor device according to claim 1, wherein the metal resistor has a resistance value of approximately 0.1Ω to approximately 100Ω.

JP2003365755A 2003-10-27 2003-10-27 Power semiconductor device Pending JP2005129826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003365755A JP2005129826A (en) 2003-10-27 2003-10-27 Power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003365755A JP2005129826A (en) 2003-10-27 2003-10-27 Power semiconductor device

Publications (1)

Publication Number Publication Date
JP2005129826A true JP2005129826A (en) 2005-05-19

Family

ID=34644320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003365755A Pending JP2005129826A (en) 2003-10-27 2003-10-27 Power semiconductor device

Country Status (1)

Country Link
JP (1) JP2005129826A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012015203A (en) * 2010-06-29 2012-01-19 On Semiconductor Trading Ltd Semiconductor device, and method of manufacturing the same
US8432015B2 (en) 2007-09-13 2013-04-30 Toyota Jidosha Kabushiki Kaisha Semiconductor device and wire bonding method
JP2014130909A (en) * 2012-12-28 2014-07-10 Mitsubishi Electric Corp Semiconductor device for electric power
WO2015001648A1 (en) * 2013-07-04 2015-01-08 三菱電機株式会社 Semiconductor device manufacturing method and semiconductor device
JP2015149508A (en) * 2015-05-11 2015-08-20 三菱電機株式会社 Semiconductor device for electric power
CN106098684A (en) * 2016-08-16 2016-11-09 武汉华星光电技术有限公司 A kind of electrostatic discharge protection circuit
DE112017004776T5 (en) 2016-09-23 2019-06-19 Mitsubishi Electric Corporation POWER SEMICONDUCTOR MODULE AND POWER SEMICONDUCTOR ARRANGEMENT
DE112018004893T5 (en) 2017-09-04 2020-06-10 Mitsubishi Electric Corporation Semiconductor module and power converter device
DE112019006894T5 (en) 2019-02-22 2021-11-04 Mitsubishi Electric Corporation SEMICONDUCTOR UNIT AND POWER CONVERTER
EP4102558A1 (en) * 2021-06-10 2022-12-14 Hitachi Energy Switzerland AG Power semiconductor module
WO2022122224A3 (en) * 2020-12-07 2022-12-15 Siemens Aktiengesellschaft Bonding means having a core and an enclosing shell
EP4261878A1 (en) * 2022-04-13 2023-10-18 Infineon Technologies Austria AG Multi-chip device with gate redistribution structure

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8432015B2 (en) 2007-09-13 2013-04-30 Toyota Jidosha Kabushiki Kaisha Semiconductor device and wire bonding method
JP2012015203A (en) * 2010-06-29 2012-01-19 On Semiconductor Trading Ltd Semiconductor device, and method of manufacturing the same
JP2014130909A (en) * 2012-12-28 2014-07-10 Mitsubishi Electric Corp Semiconductor device for electric power
US9041456B2 (en) 2012-12-28 2015-05-26 Mitsubishi Electric Corporation Power semiconductor device
WO2015001648A1 (en) * 2013-07-04 2015-01-08 三菱電機株式会社 Semiconductor device manufacturing method and semiconductor device
US9472538B2 (en) 2013-07-04 2016-10-18 Mitsubishi Electric Corporation Semiconductor device manufacturing method and semiconductor device
JP6065978B2 (en) * 2013-07-04 2017-01-25 三菱電機株式会社 Semiconductor device manufacturing method, semiconductor device
JP2015149508A (en) * 2015-05-11 2015-08-20 三菱電機株式会社 Semiconductor device for electric power
CN106098684A (en) * 2016-08-16 2016-11-09 武汉华星光电技术有限公司 A kind of electrostatic discharge protection circuit
CN106098684B (en) * 2016-08-16 2019-04-26 武汉华星光电技术有限公司 A kind of electrostatic discharge protection circuit
DE112017004776T5 (en) 2016-09-23 2019-06-19 Mitsubishi Electric Corporation POWER SEMICONDUCTOR MODULE AND POWER SEMICONDUCTOR ARRANGEMENT
US10727213B2 (en) 2016-09-23 2020-07-28 Mitsubishi Electric Corporation Power semiconductor module and power semiconductor device
DE112017004776B4 (en) 2016-09-23 2022-10-13 Mitsubishi Electric Corporation POWER SEMICONDUCTOR MODULE AND POWER SEMICONDUCTOR ARRANGEMENT
DE112018004893T5 (en) 2017-09-04 2020-06-10 Mitsubishi Electric Corporation Semiconductor module and power converter device
US11063025B2 (en) 2017-09-04 2021-07-13 Mitsubishi Electric Corporation Semiconductor module and power conversion device
DE112019006894T5 (en) 2019-02-22 2021-11-04 Mitsubishi Electric Corporation SEMICONDUCTOR UNIT AND POWER CONVERTER
WO2022122224A3 (en) * 2020-12-07 2022-12-15 Siemens Aktiengesellschaft Bonding means having a core and an enclosing shell
EP4102558A1 (en) * 2021-06-10 2022-12-14 Hitachi Energy Switzerland AG Power semiconductor module
WO2022258297A1 (en) 2021-06-10 2022-12-15 Hitachi Energy Switzerland Ag Power semiconductor module
EP4261878A1 (en) * 2022-04-13 2023-10-18 Infineon Technologies Austria AG Multi-chip device with gate redistribution structure

Similar Documents

Publication Publication Date Title
JP5001637B2 (en) Package for high power density devices
JP6665926B2 (en) Semiconductor device and method of manufacturing semiconductor device
US8013431B2 (en) Semiconductor power module package with temperature sensor mounted thereon and method of fabricating the same
JP5168866B2 (en) Power semiconductor module
US20120244697A1 (en) Method for fabricating a semiconductor device
US6841866B2 (en) Power semiconductor device
US20140035605A1 (en) Shunt Resistor Integrated in a Connection Lug of a Semiconductor Module and Method for Determining a Current Flowing Through a Load Connection of a Semiconductor Module
JP5285224B2 (en) Circuit equipment
JP2005129826A (en) Power semiconductor device
JP2010034350A (en) Semiconductor device
JP6464787B2 (en) Semiconductor device and manufacturing method of semiconductor device
KR20130069108A (en) Semiconductor package
US20060220188A1 (en) Package structure having mixed circuit and composite substrate
JP2005142189A (en) Semiconductor device
WO2021010210A1 (en) Semiconductor device
CN110176446B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
EP3503181A1 (en) Electronic assembly with a direct bonded copper substrate
JP5880664B1 (en) Semiconductor device
JP7392319B2 (en) semiconductor equipment
JP2004349300A (en) Semiconductor device and its manufacturing method
JP2010251559A (en) Electronic circuit device
JP2008187145A (en) Circuit device
JP2004048084A (en) Semiconductor power module
WO2023214500A1 (en) Semiconductor device
JP7026688B2 (en) Semiconductor module and manufacturing method including first and second connecting elements for connecting semiconductor chips