JP2005129760A - 半導体装置群及びその製造方法並びに半導体装置 - Google Patents

半導体装置群及びその製造方法並びに半導体装置 Download PDF

Info

Publication number
JP2005129760A
JP2005129760A JP2003364358A JP2003364358A JP2005129760A JP 2005129760 A JP2005129760 A JP 2005129760A JP 2003364358 A JP2003364358 A JP 2003364358A JP 2003364358 A JP2003364358 A JP 2003364358A JP 2005129760 A JP2005129760 A JP 2005129760A
Authority
JP
Japan
Prior art keywords
semiconductor device
region
active region
groove
element isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003364358A
Other languages
English (en)
Other versions
JP4056964B2 (ja
Inventor
Taiji Ema
泰示 江間
Hideyuki Kojima
秀之 兒嶋
Toru Anezaki
徹 姉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003364358A priority Critical patent/JP4056964B2/ja
Priority to TW093131978A priority patent/TWI253746B/zh
Priority to US10/969,240 priority patent/US7539963B2/en
Priority to DE102004051588A priority patent/DE102004051588B4/de
Priority to KR1020040084657A priority patent/KR100589477B1/ko
Priority to CNB2004100861774A priority patent/CN100349295C/zh
Publication of JP2005129760A publication Critical patent/JP2005129760A/ja
Application granted granted Critical
Publication of JP4056964B2 publication Critical patent/JP4056964B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Element Separation (AREA)

Abstract

【課題】不揮発性メモリを混載しないプロセス技術の優先的な開発が可能であると共に、不揮発性メモリを混載しない半導体装置と不揮発性メモリを混載する半導体装置との間で共通の設計マクロを使用しうる半導体装置群及びその製造方法を提供する。
【解決手段】第1の設計マクロ及び不揮発性メモリを含む第1の半導体装置と、第1の設計マクロとの同一性を有する第2の設計マクロを含み、不揮発性メモリを含まない第2の半導体装置とを有する半導体装置群において、第1の設計マクロは、第1の半導体基板上に形成された第1の活性領域と第1の素子分離領域とを有し、第2の設計マクロは、第2の半導体基板上に形成された第2の活性領域と第2の素子分離領域とを有し、第1の活性領域の断面上端部における曲率半径は、第2の活性領域の断面上端部における曲率半径よりも大きく、第1の活性領域の表面と第1の素子分離領域の表面との高さの差は、第2の活性領域の表面と第2の素子分離領域の表面との高さの差よりも大きい。
【選択図】 図3

Description

本発明は、フラッシュメモリを混載しない半導体装置とフラッシュメモリセルを混載する半導体装置とを含む半導体装置群及びその製造方法、並びにこの半導体装置群に含まれる半導体装置に関する。
FPGA(Field Programmable Gate Array)は、そのプログラム可能な点から、ロジック半導体市場における大きな分野を形成している。FPGAは基本的には、SRAMを基礎としたリコンフィギュラブルな配線等をチップ上に敷き詰めて構成される。また、リコンフィギュラブルな具体的なプログラムデータは、別チップであるフラッシュメモリ(Flash EPROM)等に格納されている。そして、電源を入れる毎にフラッシュメモリに格納されたデータをFPGAチップに伝達し、プログラミングを行う。このような構成をとった場合、電源オン時の立ち上がりが遅い、プログラムデータを外部から取り出すことができセキュリティ上好ましくない、等の問題が生じる。
こうした問題を解決するために、プログラムデータを格納できるフラッシュメモリを同一チップ上に混載したFPGAチップが開発されようとしている。しかしながら、フラッシュメモリを混載したFPGAチップの製造工程は、通常のFPGAチップに比較してフラッシュメモリを形成するための工程分だけ工程数が増加し、製造コストは増加してしまうという新たな問題を生じる。
このような背景から、高いセキュリティを必要とするFPGAにはフラッシュメモリ混載チップが、セキュリティよりもチップの価格を重視するFPGAにはロジック回路のみからなるチップが、それぞれ用いられると想定される。両者はチップ構成こそ異なるものの、FPGAとしての機能は基本的に同一であり、同一の設計マクロを用いて設計することとなる。したがって、フラッシュメモリを混載した製造プロセスを経て製造されたトランジスタの特性と、フラッシュメモリを混載しない製造プロセスを経て製造されたトランジスタ特性とを、できるだけ近づけるという努力がなされる。
特許文献1には、フラッシュメモリ素子を形成するウェル、高電圧トランジスタを形成するウェル、フラッシュメモリ素子のフローティングゲート等を形成した後に、主ロジック回路を構成するトランジスタのウェル等を形成する製造プロセスが開示されている。このようにして、フラッシュメモリ特有の製造プロセスを、ロジック回路を構成するトランジスタの製造プロセスよりも前に行うことにより、ロジック回路を構成するトランジスタのチャネル不純物分布を、フラッシュメモリを混載しない場合とほぼ等しくすることができる。
特開2001−196470号公報 特開平11−317458号公報 特開2000−269450号公報 特開2000−315738号公報 特開2001−015618号公報 特開2001−068652号公報 特開2003−007863号公報 "A 130nm Generation High Density ETOX Flash Memory Technology", IEDM 2001
しかしながら、例えば非特許文献1にも記載されているように、フラッシュメモリを混載する場合、トンネル絶縁膜の信頼性を確保するために、活性領域上端部の丸め量を一定以上に大きくすることが望ましい。一方、フラッシュメモリを混載しない場合、そのような必要はない。活性領域の上端部の丸まりが異なれば、特にチャネル幅の狭いナロートランジスタの特性が異なることとなる。
また、フラッシュメモリを混載する場合、フラッシュメモリ素子を制御する高電圧トランジスタが必要である。高電圧動作トランジスタには高電圧が印加されるため、主ロジックトランジスタのゲート絶縁膜よりも厚いゲート絶縁膜を用いるのが望ましい。したがって、フラッシュメモリを混載する場合には、より多くのゲート絶縁膜を形成する必要がある。
複数のゲート絶縁膜を形成する一般的な方法は、例えば特許文献2に記載されている。特許文献2に記載の方法は、まず、厚いゲート絶縁膜を成長し、薄いゲート絶縁膜の形成予定領域の厚いゲート絶縁膜を除去し、次いで薄いゲート絶縁膜を成長するというものである。したがって、フラッシュメモリを混載した場合には、高電圧トランジスタ用の厚いゲート絶縁膜を除去する分だけ、薄いゲート絶縁膜を有する主ロジックトランジスタ形成領域における素子分離膜のリセス量が増大することになる。素子分離膜のリセス量が増大すると、特にナロートランジスタに占める素子分離膜側面の影響が増大し、トランジスタの閾値電圧のチャネル幅依存が変化することとなる。
このように、フラッシュメモリを混載する場合と混載しない場合とでは、素子分離に要求される特性が大きく異なり、双方のトランジスタ特性、特にナロー効果を同一とすることは非常に困難であった。
こうした問題を解決する一つの方法として、フラッシュメモリを混載した場合としない場合とにおいて、満たすべき特性の総てを考慮に入れて製造方法を確立することが考えられる。しかしながら、これは新たに次のような課題を生じる。
第1に、フラッシュメモリを混載したプロセス技術と、フラッシュメモリを混載しないプロセス技術とを同時に開発する必要がある。例えば、活性領域上端部の丸め量は、フラッシュメモリ素子の特性と、主ロジックトランジスタの特性との双方の観点から最適される。フラッシュメモリを混載したプロセス技術は、その他にも最適化が必要となる。このため、フラッシュメモリを混載しないプロセス技術の開発が遅れてしまう。
第2に、フラッシュメモリを混載しない場合のSTIリセス量を、混載した場合と同じとするには、混載しない場合の主ロジックトランジスタのゲート絶縁膜形成前の絶縁膜除去処理を余分に行う必要がある。そうすると、主ロジックトランジスタのゲート絶縁膜形成領域の半導体基板表面が余分に絶縁膜除去薬液に曝されることとなる。半導体基板表面が過剰に絶縁膜除去薬液に曝されると、半導体基板表面が荒れたり、薬液からの汚染が増加したりしてしまう。主ロジックトランジスタのゲート絶縁膜形成領域に予め厚い絶縁膜を成長しておけば、過剰に薬液に曝されることは防止できるが、フラッシュメモリを混載しない半導体装置の製造に不要な工程を付加することとなり、フラッシュメモリを混載しない半導体装置の製造コストが増加してしまう。薬液の純度等を改善することも考えられるが、薬液の純度を高くするにはコストが増加し、結局はフラッシュメモリを混載しない半導体装置の製造コストが増大してしまう。
別の解決方法として、例えば特許文献3乃至6に記載されているように、フラッシュメモリ部と主ロジック部との素子分離構造を、各々の特性に合致するように異なったものとし、且つ、例えば特許文献7に記載されているように、素子分離膜の沈み込みを抑えることが考えられる。しかしながら、この方法では、フラッシュメモリ混載半導体装置の製造工程数が増大し、製造コストが増大することとなる。
本発明の目的は、不揮発性メモリを混載しないプロセス技術の優先的な開発が可能であると共に、不揮発性メモリを混載しない半導体装置と不揮発性メモリを混載する半導体装置との間で共通の設計マクロを使用することができ、不揮発性メモリを混載する半導体装置におけるトンネル絶縁膜の信頼性が高く、厚いゲート絶縁膜を有する高電圧トランジスタを容易に付加することができる半導体装置群及びその製造方法を提供することにある。
また、本発明の他の目的は、上記半導体装置群に含まれる半導体装置を提供することにある。
上記目的は、第1の設計マクロ及び不揮発性メモリを含む第1の半導体装置と、前記第1の設計マクロとの同一性を有する第2の設計マクロを含み、不揮発性メモリを含まない第2の半導体装置とを有する半導体装置群であって、前記第1の設計マクロは、第1の半導体基板上に形成された第1の活性領域と第1の素子分離領域とを有し、前記第2の設計マクロは、第2の半導体基板上に形成された第2の活性領域と第2の素子分離領域とを有し、前記第1の活性領域の断面上端部における曲率半径は、前記第2の活性領域の断面上端部における曲率半径よりも大きく、前記第1の活性領域の表面と前記第1の素子分離領域の表面との高さの差は、前記第2の活性領域の表面と前記第2の素子分離領域の表面との高さの差よりも大きいことを特徴とする半導体装置群によって達成される。
また、上記目的は、半導体基板上に形成された第1の活性領域と第1の素子分離領域とを有する第1の設計マクロ及び不揮発性メモリを含む半導体装置であって、他の半導体基板上に形成された第2の活性領域と第2の素子分離領域を有し、前記第1の設計マクロとの同一性を有する第2の設計マクロを含み、不揮発性メモリを含まない他の半導体装置と共に半導体装置群を構成し、前記第1の活性領域の断面上端部における曲率半径が、前記第2の活性領域の断面上端部における曲率半径よりも大きく、前記第1の活性領域の表面と前記第1の素子分離領域の表面との高さの差が、前記第2の活性領域の表面と前記第2の素子分離領域の表面との高さの差よりも大きいことを特徴とする半導体装置によっても達成される。
また、上記目的は、半導体基板上に形成された第1の活性領域と第1の素子分離領域とを有する第1の設計マクロを含み、不揮発性メモリを含まない半導体装置であって、他の半導体基板上に形成された第2の活性領域と第2の素子分離領域を有し、前記第1の設計マクロとの同一性を有する第2の設計マクロ及び不揮発性メモリを含む他の半導体装置と共に半導体装置群を構成し、前記第1の活性領域の断面上端部における曲率半径が、前記第2の活性領域の断面上端部における曲率半径よりも小さく、前記第1の活性領域の表面と前記第1の素子分離領域の表面との高さの差が、前記第2の活性領域の表面と前記第2の素子分離領域の表面との高さの差よりも小さいことを特徴とする半導体装置によっても達成される。
また、上記目的は、第1の設計マクロ及び不揮発性メモリを含む第1の半導体装置と、前記第1の設計マクロとの同一性を有する第2の設計マクロを含み、不揮発性メモリを含まない第2の半導体装置とを含む半導体装置群の製造方法であって、前記第1の半導体装置は、第1の半導体基板に第1の溝を形成する工程と、前記第1の半導体基板を酸化処理して前記第1の溝の上端部を丸める工程と、前記第1の溝内に第1の絶縁物を埋め込む工程と、前記第1の溝内に埋め込まれた前記第1の絶縁物の一部を除去し、表面に第1の沈み込み領域を形成する工程とを有する半導体装置の製造方法により製造し、前記第2の半導体装置は、第2の半導体基板に第2の溝を形成する工程と、前記第2の半導体基板を酸化処理して前記第2の溝の上端部を丸める工程と、前記第2の溝内に第2の絶縁物を埋め込む工程と、前記第2の溝内に埋め込まれた前記第2の絶縁物の一部を除去し、表面に第2の沈み込み領域を形成する工程とを有する半導体装置の製造方法により製造し、前記第1の溝の前記上端部を丸める工程及び前記第2の溝の前記上端部を丸める工程では、前記第1の溝の前記上端部の曲率半径が、前記第2の溝の前記上端部の曲率半径よりも大きくなるようにし、前記第1の沈み込み領域を形成する工程及び前記第2の沈み込み領域を形成する工程では、前記第1の沈み込み領域における沈み込み量が、前記第2の沈み込み領域における沈み込み量よりも大きくなるようにすることを特徴とする半導体装置群の製造方法によっても達成される。
本発明によれば、不揮発性メモリを混載しない半導体装置と不揮発性メモリを混載する半導体装置とにおけるSTIリセス量の差分を考慮し、この差分に基づいて、不揮発性メモリを混載しない半導体装置及び不揮発性メモリを混載する半導体装置の活性領域上端部の曲率半径をそれぞれ制御することにより、STIリセス量の増加に起因する素子特性の変動を活性層上端部の曲率半径増加により相殺するので、不揮発性メモリを混載しない半導体装置と不揮発性メモリを混載する半導体装置とに、共通の一の設計マクロを適用することができる。
これにより、不揮発性メモリを混載しないプロセス技術の優先的な開発が可能となる。また、活性領域上端部の曲率半径を増加することにより、不揮発性メモリのトンネル絶縁膜の信頼性を向上することができる。また、リセス量の増大を許容されることにより、トンネル酸化膜や高電圧トランジスタのゲート絶縁膜を追加的に形成することを容易にすることができる。
本発明の一実施形態による半導体装置群及びその製造方法について図1乃至図21を用いて説明する。
図1は本実施形態による半導体装置群の構造を示す平面図、図2及び図3は本実施形態による半導体装置群の構造を示す概略断面図、図4はロジックトランジスタの閾値電圧に関する活性領域上端部の曲率半径及びSTIリセス量依存性を示すグラフ、図5乃至図21は本実施形態による半導体装置群の製造方法を示す工程断面図である。
はじめに、本実施形態による半導体装置群について図1乃至図4を用いて説明する。なお、図1(a)はフラッシュメモリセルを混載しない半導体装置のチップ概念図、図1(b)はフラッシュメモリセルを混載する半導体装置のチップ概念図、図2(a)はフラッシュメモリセルを混載しない半導体装置に使用される6種類のトランジスタを示す概略断面図、図2(b)はフラッシュメモリセルを混載する半導体装置に使用される11種類のトランジスタを示す概略断面図である。
本実施形態による半導体装置群は、フラッシュメモリセルを混載しない半導体装置と、フラッシュメモリを混載する半導体装置とを含むものである。そして、フラッシュメモリを混載しない半導体装置の主ロジック回路部と、フラッシュメモリを混載する半導体装置の主ロジック回路部とが、共通の設計マクロにより構成されていることに主たる特徴がある。
なお、設計マクロとは、所定の回路やパターンレイアウト等の情報をも含み、特定の処理を行うための機能ブロックであり、IPマクロとも呼ばれている。設計マクロを組み合わせて回路設計を行うことにより、設計コストを低減することができる。設計マクロの回路やレイアウトが同じでも、含まれるトランジスタの特性や抵抗値等が異なれば所定の動作をしなくなることがある。したがって、異なる半導体装置で同一の設計マクロを用いる場合には、設計マクロに含まれるトランジスタの特性を可能な限り近づける必要がある。
図1(a)に示すように、フラッシュメモリを混載しない半導体装置200は、主ロジック回路部202と、入出力回路部204とを有している。入出力回路部204は、PMOS部204Pと、NMOS部204Nとをそれぞれ有している。
図2(a)に示すように、フラッシュメモリを混載しない半導体装置は、p型ウェル82内に形成されたnチャネル中電圧トランジスタ(N−MV)と、n型ウェル84内に形成されたpチャネル中電圧トランジスタ(P−MV)と、p型ウェル86内に形成されたnチャネル低電圧・高閾値トランジスタ(N−LV High Vt)及びnチャネル低電圧・低閾値トランジスタ(N−LV Low Vt)と、n型ウェル88内に形成されたpチャネル低電圧・高閾値トランジスタ(P−LV High Vt)及びpチャネル低電圧・低閾値トランジスタ(P−LV Low Vt)とを有している。
nチャネル中電圧トランジスタ(N−MV)及びpチャネル中電圧トランジスタ(P−MV)は、入出力回路部204を構成するトランジスタであり、2.5V動作或いは3.3V動作等のトランジスタである。2.5V動作トランジスタと3.3V動作トランジスタとは、ゲート絶縁膜の厚さ、閾値電圧制御条件、LDD条件は互いに相違するが、同時に両方を搭載する必要はなく、何れか一方のみが搭載されるものである。
nチャネル低電圧・高閾値トランジスタ(N−LV High Vt)と、nチャネル低電圧・低閾値トランジスタ(N−LV Low Vt)と、pチャネル低電圧・高閾値トランジスタ(P−LV High Vt)と、pチャネル低電圧・低閾値トランジスタ(P−LV Low Vt)は、主ロジック回路部202を構成するトランジスタである。これらトランジスタには、主ロジック回路部202の性能向上のために、極薄膜ゲート絶縁膜が用いられる。
図1(b)に示すように、フラッシュメモリを混載する半導体装置300は、フラッシュメモリを混載しない半導体装置と同様の主ロジック回路部302及び入出力回路部304に加え、フラッシュメモリセル部306と、フラッシュメモリセル制御回路部308とを有している。フラッシュメモリセル制御回路部308は、PMOS部308Pと、NMOS部308Nとをそれぞれ有している。
フラッシュメモリを混載する半導体装置は、フラッシュメモリを混載しない半導体装置に含まれる6種類のトランジスタに加え、n型ウェル90中のp型ウェル78内に形成されたフラッシュメモリセル(Flash cell)、nチャネル高電圧・低閾値トランジスタ(N−HV Low Vt)及びnチャネル高電圧・高閾値トランジスタ(N−HV High Vt)と、n型ウェル80内に形成されたpチャネル高電圧・低閾値トランジスタ(P−HV Low Vt)及びpチャネル高電圧・高閾値トランジスタ(P−HV High Vt)とを有している。
フラッシュメモリセル(Flash cell)は、スタックゲート構造のフラッシュEPROMであり、フローティングゲートに所定の情報を電荷として蓄えるものである。トンネル酸化膜の膜厚は、電荷保持特性や酸化膜寿命等に応じて独立して決定される。
nチャネル高電圧・低閾値トランジスタ(N−HV Low Vt)と、nチャネル高電圧・高閾値トランジスタ(N−HV High Vt)と、pチャネル高電圧・低閾値トランジスタ(P−HV Low Vt)と、pチャネル高電圧・高閾値トランジスタ(P−HV High Vt)とは、フラッシュメモリセル制御回路部308を構成するトランジスタであり、フラッシュメモリセルの読み出し時は5V、書込み消去時は10V弱までの電圧が印加される高電圧トランジスタである。フラッシュメモリセル制御回路部308は、このように大きな電圧が必要とされるため、ゲート絶縁膜も厚くなる。
このように、フラッシュメモリを混載しない半導体装置とフラッシュメモリを混載する半導体装置とではトランジスタの種類が大きく異なっており、フラッシュメモリを混載しない半導体装置の製造プロセスに単純にフラッシュメモリを混載する半導体装置特有のプロセスを追加しただけでは、フラッシュメモリを混載する半導体装置の主ロジック回路部と、フラッシュメモリを混載しない半導体装置の主ロジック回路部と共通の設計マクロにより構成することはできない。
そこで、本実施形態による半導体装置群では、フラッシュメモリを混載しない半導体装置の主ロジック回路部202を構成するトランジスタの特性と、フラッシュメモリを混載する半導体装置の主ロジック回路部302を構成するトランジスタの特性との相違を最小限に抑えて共通の一の設計マクロを適用可能とするために、素子分離膜の形成条件を適宜制御する。
具体的には、STI法によりシリコン基板10中に形成する素子分離膜22に関し、フラッシュメモリを混載しない半導体装置では、活性領域上端部の曲率半径を10〜20nm程度、STIリセス量を10〜40nmに設定するのに対し(図3(a)参照)、フラッシュメモリを混載する半導体装置では、活性領域上端部の曲率半径を30〜60nm程度、STIリセス量を40〜80nmと、フラッシュメモリセルを混載しない半導体装置の場合よりも大きい値に設定する(図3(b)参照)。ここで、活性領域上端部の曲率半径とは、活性領域を断面でみた場合の表面側縁部の曲率半径であり、STIリセス量(或いは沈み込み量)とは、活性領域表面と素子分離領域表面との高さの差を表す物理量である(図3(b)参照)。
図4は、フラッシュメモリを混載しないロジック半導体装置の通常のSTI形成条件を標準条件(図中、○印)とし、これに対してSTI埋め込み酸化膜のリセス(沈み込み)量を増加した場合(図中、●印)、活性領域上端部の曲率半径を増加した場合(図中、■印)の、ロジックトランジスタの閾値電圧のチャネル幅依存性をプロットしたものである。
図示するように、STIリセス量を増加すると、チャネル幅減少とともに閾値電圧が大きく低下する、いわゆる逆狭チャネル効果が顕著となる。これに対し、活性領域上端部の曲率半径を増加すると、チャネル幅減少とともに閾値電圧が増大する、いわゆる狭チャネル効果が顕著となる。したがって、活性領域上端部の曲率半径を大きくし、且つ、STIリセス量を大きくすれば、両者は互いに打ち消しあって、標準条件に近いチャネル幅依存性を得ることができる。
すなわち、フラッシュメモリを混載する半導体装置における活性領域上端部の曲率半径及びSTIリセス量を、フラッシュメモリを混載しない半導体装置よりも大きくすることにより、両半導体装置のトランジスタ特性を非常に近いものとすることができる。
しかも、活性領域上端部の曲率半径を増加することは、例えば非特許文献1にも記載されているように、フラッシュメモリセルのトンネル絶縁膜の信頼性向上という効果をも奏する。また、リセス量の増大を許容すれば、トンネル酸化膜や高電圧トランジスタのゲート絶縁膜を追加的に形成することは容易となる。
したがって、活性領域上端部の曲率半径及びSTIリセス量を適宜制御することにより、トランジスタ特性の同一性、トンネル絶縁膜の信頼性、厚いゲート絶縁膜の付加、フラッシュメモリを混載しないプロセス技術の優先的な開発、を達成することができる。
次に、本実施形態による半導体装置群の製造方法について、図5乃至図21を用いて説明する。
なお、図5はフラッシュメモリを混載しない半導体装置における素子分離膜の製造方法を示す工程断面図、図6はフラッシュメモリを混載する半導体装置における素子分離膜の製造方法を示す工程断面図、図7乃至図21は両半導体装置の製造方法を総括的に示す工程断面図である。
以下の説明において、nチャネルトランジスタと表現するときは、nチャネル高電圧・高閾値トランジスタ(N−HV High Vt)、nチャネル中電圧トランジスタ(N−MV)、nチャネル低電圧・高閾値トランジスタ(N−LV High Vt)、及びnチャネル低電圧・低閾値トランジスタ(N−LV Low Vt)を含むものとし、pチャネルトランジスタと表現するときは、pチャネル高電圧・高閾値トランジスタ(P−HV High Vt)、pチャネル中電圧トランジスタ(P−MV)、pチャネル低電圧・高閾値トランジスタ(P−LV High Vt)、及びpチャネル低電圧・低閾値トランジスタ(P−LV Low Vt)を含むものとする。
また、高電圧トランジスタと表現するときは、nチャネル高電圧・低閾値トランジスタ(N−HV Low Vt)、nチャネル高電圧・高閾値トランジスタ(N−HV High Vt)、pチャネル高電圧・低閾値トランジスタ(P−HV Low Vt)及びpチャネル高電圧・高閾値トランジスタ(P−HV High Vt)を含むものとし、中電圧トランジスタと表現するときは、nチャネル中電圧トランジスタ(N−MV)及びpチャネル中電圧トランジスタ(P−MV)を含むものとし、低電圧トランジスタと表現するときは、nチャネル低電圧・高閾値トランジスタ(N−LV High Vt)、nチャネル低電圧・低閾値トランジスタ(N−LV Low Vt)、pチャネル低電圧・高閾値トランジスタ(P−LV High Vt)及びpチャネル低電圧・低閾値トランジスタ(P−LV Low Vt)を含むものとする。
また、nチャネル高電圧トランジスタと表現するときは、nチャネル高電圧・低閾値トランジスタ(N−HV Low Vt)及びnチャネル高電圧・高閾値トランジスタ(N−HV High Vt)を含むものとし、pチャネルトランジスタと表現するときは、pチャネル高電圧・低閾値トランジスタ(P−HV Low Vt)及びpチャネル高電圧・高閾値トランジスタ(P−HV High Vt)を含むものとし、nチャネル低電圧トランジスタと表現するときは、nチャネル低電圧・高閾値トランジスタ(N−LV High Vt)及びnチャネル低電圧・低閾値トランジスタ(N−LV Low Vt)を含むものとし、pチャネル低電圧トランジスタと表現するときは、pチャネル低電圧・高閾値トランジスタ(P−LV High Vt)及びpチャネル低電圧・低閾値トランジスタ(P−LV Low Vt)を含むものとする。
まず、シリコン基板10を熱酸化し、例えば膜厚10nmのシリコン酸化膜12を成長する。
次いで、シリコン酸化膜12上に、例えばCVD法により、例えば膜厚100nmのシリコン窒化膜14を成長する。
次いで、リソグラフィー及びドライエッチングにより、シリコン窒化膜14、シリコン酸化膜12、シリコン基板10を順次エッチングし、シリコン基板10に、深さが例えば300nmの溝16を形成する(図5(a)、図6(a))。
次いで、シリコン基板10を熱酸化し、溝の内面にシリコン酸化膜18を形成する。この熱酸化は、フラッシュメモリを混載しない半導体装置とフラッシュメモリを混載する半導体装置とで、以下のように異なる条件にて行う。
フラッシュメモリを混載しない半導体装置では、例えば850℃の温度で熱酸化を行い、例えば膜厚約10nmのシリコン酸化膜18を成長する。この条件で熱酸化を行った場合、最終的な活性領域上端部の曲率半径は、約10〜30nmとなる(図5(b))。
フラッシュメモリを混載する半導体装置では、例えば1100℃の温度で熱酸化を行い、例えば膜厚約40nmのシリコン酸化膜18を成長する。シリコン酸化膜18の膜厚が厚ければ厚いほど、そして酸化温度が高ければ高いほど、活性領域上端部の丸まりが増大する。この条件で熱酸化を行った場合、最終的な活性領域上端部の曲率半径は、約40〜60nmとなる(図6(b))。
次いで、例えば高密度プラズマCVD法により、例えば膜厚550nmのシリコン酸化膜20を成長する。
次いで、CMP法により、シリコン窒化膜14が露出するまでシリコン酸化膜20を平坦化し、溝16に埋め込まれ、シリコン酸化膜18,20よりなる素子分離膜22を形成する(図5(c)、図6(c))。
このようにして素子分離膜22を形成した後、素子分離膜22により画定された活性領域上に、フラッシュメモリを混載しない半導体装置にあっては6種類のトランジスタを、フラッシュメモリを混載する半導体装置にあっては11種類のトランジスタを、それぞれ形成する。
以下の説明では、フラッシュメモリを混載する半導体装置の製造工程に沿って、本実施形態による半導体装置群の製造方法を説明する。フラッシュメモリを混載しない半導体装置の製造工程は、フラッシュメモリを混載する半導体装置の製造工程から不要な工程を省略するにすぎないため、その旨を説明することにより、改めて断面図を用いて説明することはしない。
まず、上述の製造方法により、シリコン基板10上に、素子分離膜22により画定された活性領域を形成する(図7(a))。
なお、図において、素子分離膜22により画定された活性領域は、左側から順に、フラッシュメモリセル(Flash cell)形成領域、nチャネル高電圧・低閾値トランジスタ(N−HV Low Vt)形成領域、nチャネル高電圧・高閾値トランジスタ(N−HV High Vt)形成領域、pチャネル高電圧・低閾値トランジスタ(P−HV Low Vt)形成領域、pチャネル高電圧・高閾値トランジスタ(P−HV High Vt)形成領域、nチャネル中電圧トランジスタ(N−MV)形成領域、pチャネル中電圧トランジスタ(P−MV)形成領域、nチャネル低電圧・高閾値トランジスタ(N−LV High Vt)形成領域、nチャネル低電圧・低閾値トランジスタ(N−LV Low Vt)形成領域、pチャネル低電圧・高閾値トランジスタ(P−LV High Vt)形成領域及びpチャネル低電圧・低閾値トランジスタ(P−LV Low Vt)形成領域を表すものとする。
次いで、シリコン窒化膜14を燐酸により、シリコン酸化膜12を弗酸水溶液により、それぞれ除去した後、シリコン基板10を熱酸化し、例えば膜厚10nmの犠牲酸化膜としてのシリコン酸化膜24を成長する。
次いで、フォトリソグラフィーにより、フラッシュメモリセル(Flash cell)形成領域及びnチャネル高電圧トランジスタ(N−HV High Vt、P−HV Low Vt)形成領域を露出し、他の領域を覆うフォトレジスト膜26を形成する。
次いで、フォトレジスト膜26をマスクとしてイオン注入を行い、フラッシュメモリセル(Flash cell)形成領域及びnチャネル高電圧トランジスタ(N−HV High Vt、P−HV Low Vt)形成領域に、n型埋め込み不純物層28及びp型ウェル用不純物層30,32を形成する(図7(b))。n型埋め込み不純物層28は、例えばリン(P)イオンを、加速エネルギー2MeV、ドーズ量2×1013cm−2の条件でイオン注入することにより形成する。p型ウェル用不純物層30は、例えばボロン(B)イオンを、加速エネルギー400keV、ドーズ量1.5×1013cm−2の条件でイオン注入することにより形成する。また、p型ウェル用不純物層32は、例えばボロンイオンを、加速エネルギー100keV、ドーズ量2×1012cm−2の条件でイオン注入することにより形成する。
次いで、例えばアッシングにより、フォトレジスト膜26を除去する。
次いで、フォトリソグラフィーにより、フラッシュメモリセル(Flash cell)形成領域を露出し、他の領域を覆うフォトレジスト膜34を形成する。
次いで、フォトレジスト膜34をマスクとしてイオン注入を行い、フッラッシュメモリセル(Flash cell)形成領域に、閾値電圧制御用不純物層36を形成する(図8(a))。閾値電圧制御用不純物層36は、例えばボロンイオンを、加速エネルギー40keV、ドーズ量6×1013cm−2の条件でイオン注入することにより形成する。
次いで、例えばアッシングにより、フォトレジスト膜34を除去する。
次いで、犠牲酸化膜としてのシリコン酸化膜24を、弗酸水溶液により除去する。
次いで、例えば900〜1050℃の温度で30分間の熱酸化を行い、活性領域上に、膜厚10nmのトンネル酸化膜38を形成する(図8(b))。
次いで、例えばCVD法により、トンネル酸化膜38上に、例えば膜厚90nmのポリシリコン膜を成長する。
次いで、フォトリソグラフィー及びドライエッチングによりポリシリコン膜をパターニングし、フラッシュメモリセル(Flash cell)形成領域に、ポリシリコン膜よりなるフローティングゲート40を形成する。
次いで、フローティングゲート40が形成されたトンネル酸化膜38上に、例えばCVD法により例えば膜厚5nmのシリコン酸化膜と例えば膜厚10nmのシリコン窒化膜を成長した後、シリコン窒化膜の表面を950℃にて90分間熱酸化し、膜厚30nm程度のシリコン酸化膜を成長する。これにより、シリコン酸化膜/シリコン窒化膜/シリコン酸化膜構造のONO膜42を形成する(図9(a))。なお、ONO膜42形成過程の熱処理により、ウェル不純物は0.1〜0.2μm程度以上拡散し、不純物分布はブロードとなる。
このように、本実施形態による半導体装置群の製造方法では、トンネル酸化膜38、フローティングゲート40、ONO膜42等、フラッシュメモリセル特有の熱処理プロセスを、中電圧トランジスタ及び低電圧トランジスタが形成されるp型ウェル82,86、n型ウェル84,88の形成前に行う。したがって、フラッシュメモリを混載する半導体装置に特有の熱処理工程が、中電圧トランジスタ形成領域及び低電圧トランジスタ形成領域の不純物プロファイルに影響を与えることを防止することができる。
なお、上述した図7(b)乃至図9(a)に示す工程は、フラッシュメモリを混載する半導体装置に特有の工程であり、フラッシュメモリを混載しない半導体装置では、これらの工程は省略する。
次いで、フォトリソグラフィーにより、nチャネル高電圧・高閾値トランジスタ(N−HV High Vt)形成領域、nチャネル中電圧トランジスタ(N−MV)形成領域及びnチャネル低電圧トランジスタ(N−LV High Vt、N−LV Low Vt)形成領域を露出し、他の領域を覆うフォトレジスト膜44を形成する。
次いで、フォトレジスト膜44をマスクとしてイオン注入を行い、nチャネル高電圧・高閾値トランジスタ(N−HV High Vt)形成領域、nチャネル中電圧トランジスタ(N−MV)形成領域、nチャネル低電圧トランジスタ(N−LV High Vt、N−LV Low Vt)形成領域に、p型ウェル用不純物層46,48を形成する(図9(b))。p型ウェル用不純物層46は、例えばボロンイオンを、加速エネルギー100keV、ドーズ量6×1012cm−2の条件でイオン注入することにより形成する。p型ウェル用不純物層48は、例えばボロンイオンを、加速エネルギー400keV、ドーズ量1.4×1013cm−2の条件でイオン注入することにより形成する。なお、p型ウェル用不純物層46,48は、前述のONO膜形成過程の熱処理を受けることなく急峻な分布を維持し、nチャネルソース/ドレインとn型ウェル90との間のパンチスルーを抑制する効果を有する。
次いで、例えばアッシングにより、フォトレジスト膜44を除去する。
次いで、フォトリソグラフィーにより、pチャネル高電圧トランジスタ(P−HV Low Vt、P−HV High Vt)形成領域、pチャネル中電圧トランジスタ(P−MV)形成領域、pチャネル低電圧トランジスタ(P−LV High Vt、P−LV Low Vt)形成領域を露出し、他の領域を覆うフォトレジスト膜50を形成する。
次いで、フォトレジスト膜50をマスクとしてイオン注入を行い、pチャネル高電圧トランジスタ(P−HV Low Vt、P−HV High Vt)形成領域、pチャネル中電圧トランジスタ(P−MV)形成領域、pチャネル低電圧トランジスタ(P−LV High Vt、P−LV Low Vt)形成領域に、n型ウェル用不純物層52,54を形成する(図10(a))。n型ウェル用不純物層52は、pチャネル高電圧・低閾値トランジスタの閾値電圧を制御するためのものであり、その条件は適宜調整できるが、例えばリンイオンを、加速エネルギー240keV、ドーズ量3×1012cm−2の条件でイオン注入することにより形成し、約−0.2Vの閾値電圧を得る。フラッシュメモリを混載しない場合には、n型ウェル用純物層52は、例えばリンイオンを、加速エネルギー240keV、ドーズ量8×1012cm−2の条件でイオン注入することにより形成する。また、n型ウェル用不純物層54は、例えばリンイオンを、加速エネルギー600keV、ドーズ量1.5×1013cm−2の条件でイオン注入することにより形成する。
次いで、例えばアッシングにより、フォトレジスト膜50を除去する。
次いで、フォトリソグラフィーにより、pチャネル高電圧・高閾値トランジスタ(P−HV High Vt)形成領域、pチャネル中電圧トランジスタ(P−MV)形成領域、pチャネル低電圧トランジスタ(P−LV High Vt、P−LV Low Vt)形成領域を露出し、他の領域を覆うフォトレジスト膜56を形成する。
次いで、フォトレジスト膜56をマスクとしてイオン注入を行い、pチャネル高電圧・高閾値トランジスタ(P−HV High Vt)形成領域に閾値電圧制御用不純物拡散層58を、pチャネル中電圧トランジスタ(P−MV)形成領域及びpチャネル低電圧トランジスタ(P−LV High Vt、P−LV Low Vt)形成領域にチャネルストップ層60を形成する(図10(b))。閾値電圧制御用不純物層58及びチャネルストップ層60は、例えばリンイオンを、加速エネルギー240keV、ドーズ量6.5×1012cm−2の条件でイオン注入することにより形成し、約−0.6Vの閾値電圧を得る。n型ウェルは、横拡散の少ない急峻な分布を有し、nチャネルソース・ドレインとn型ウェルとの間のパンチスルーも抑制される。
次いで、例えばアッシングにより、フォトレジスト膜56を除去する。
なお、上述した図10(b)に示す工程は、フラッシュメモリを混載する半導体装置に特有の工程であり、フラッシュメモリを混載しない半導体装置では、この工程は省略する。
次いで、フォトリソグラフィーにより、nチャネル中電圧トランジスタ(N−MV)形成領域を露出し、他の領域を覆うフォトレジスト膜62を形成する。
次いで、フォトレジスト膜62をマスクとしてイオン注入を行い、nチャネル中電圧トランジスタ(N−MV)形成領域に閾値電圧制御用不純物層64を形成する(図11(a))。閾値電圧制御用不純物層64は、例えばボロンイオンを、加速エネルギー30keV、ドーズ量5×1012cm−2の条件でイオン注入することにより形成し、約+0.3〜+0.4Vの閾値電圧を得る。
次いで、例えばアッシングにより、フォトレジスト膜62を除去する。
次いで、フォトリソグラフィーにより、pチャネル中電圧トランジスタ(P−MV)形成領域を露出し、他の領域を覆うフォトレジスト膜66を形成する。
次いで、フォトレジスト膜66をマスクとしてイオン注入を行い、pチャネル中電圧トランジスタ(P−MV)形成領域に閾値電圧制御用不純物層68を形成する(図11(b))。閾値電圧制御用不純物層68は、例えば砒素(As)イオンを、加速エネルギー150keV、ドーズ量3×1012cm−2の条件でイオン注入することにより形成し、約−0.3〜−0.4Vの閾値電圧を得る。
次いで、例えばアッシングにより、フォトレジスト膜66を除去する。
次いで、フォトリソグラフィーにより、nチャネル低電圧・高閾値トランジスタ(N−LV High Vt)形成領域を露出し、他の領域を覆うフォトレジスト膜70を形成する。
次いで、フォトレジスト膜70をマスクとしてイオン注入を行い、nチャネル低電圧・高閾値トランジスタ(N−LV High Vt)形成領域に閾値電圧制御用不純物層72を形成する(図12(a))。閾値電圧制御用不純物層72は、例えばボロンイオンを、加速エネルギー10keV、ドーズ量5×1012cm−2の条件でイオン注入することにより形成し、約+0.2Vの閾値電圧を得る。
次いで、例えばアッシングにより、フォトレジスト膜70を除去する。
次いで、フォトリソグラフィーにより、pチャネル低電圧・高閾値トランジスタ(P−LV High Vt)形成領域を露出し、他の領域を覆うフォトレジスト膜74を形成する。
次いで、フォトレジスト膜74をマスクとしてイオン注入を行い、pチャネル低電圧・高閾値トランジスタ(P−LV High Vt)形成領域に閾値電圧制御用不純物層76を形成する(図12(b))。閾値電圧制御用不純物層76は、例えば砒素イオンを、加速エネルギー100keV、ドーズ量5×1012cm−2の条件でイオン注入することにより形成し、約−0.2Vの閾値電圧を得る。
次いで、例えばアッシングにより、フォトレジスト膜74を除去する。
こうして、フラッシュメモリセル(Flash cell)形成領域及びnチャネル高電圧トランジスタ(N−HV Low Vt、N−HV High Vt)形成領域に形成され、p型ウェル用不純物層30,32,46,48、閾値電圧制御用不純物層36を含むp型ウェル78と、pチャネル高電圧トランジスタ(P−HV Low Vt、P−HV High Vt)形成領域に形成され、n型ウェル用不純物層52,54、閾値電圧制御用不純物層58を含むn型ウェル80と、nチャネル中電圧トランジスタ(N−MV)形成領域に形成され、p型ウェル用不純物層46,48、閾値電圧制御用不純物層64を含むp型ウェル82と、pチャネル中電圧トランジスタ(P−MV)形成領域に形成され、n型ウェル用不純物層52,54、チャネルストップ層60、閾値電圧制御用不純物層68を含むn型ウェル84と、nチャネル低電圧トランジスタ(N−LV High Vt、N−LV Low Vt)形成領域に形成され、p型ウェル用不純物層46,48、閾値電圧制御用不純物層72を含むp型ウェル86と、pチャネル低電圧トランジスタ(P−LV High Vt、P−LV Low Vt)形成領域に形成され、n型ウェル用不純物層52,54、チャネルストップ層60、閾値電圧制御用不純物層76を含むn型ウェル88とを形成する。また、n型ウェル80は、n型埋め込み不純物層28とともに、p型ウェル78を囲うn型ウェル90としても機能する。すなわち、p型ウェル78は、n型ウェル90内に形成された二重ウェルである(図13(a)参照)。
次いで、フォトリソグラフィーにより、フラッシュメモリセル(Flash cell)形成領域を覆い、他の領域を露出するフォトレジスト膜92を形成する。
次いで、例えばドライエッチングにより、フォトレジスト膜92をマスクとしてONO膜42をエッチングし、フラッシュメモリセル(Flash cell)形成領域以外のONO膜42を除去する。
次いで、例えば弗酸水溶液を用いたウェットエッチングにより、フォトレジスト膜92をマスクとしてトンネル酸化膜38をエッチングし、フラッシュメモリセル(Flash cell)形成領域以外のトンネル酸化膜38を除去する(図13(b))。
次いで、例えばアッシングにより、フォトレジスト膜92を除去する。
次いで、例えば850℃の温度で熱酸化を行い、活性領域上に、膜厚13nmのシリコン酸化膜94を形成する。
次いで、フォトリソグラフィーにより、フラッシュメモリセル(Flash cell)形成領域及び高電圧トランジスタ(N−HV Low Vt、N−HV High Vt、P−HV Low Vt、P−HV High Vt)形成領域を覆い、他の領域を露出するフォトレジスト膜96を形成する。
次いで、例えば弗酸水溶液を用いたウェットエッチングにより、フォトレジスト膜96をマスクとしてシリコン酸化膜94をエッチングし、中電圧トランジスタ(N−MV、P−MV)形成領域及び低電圧トランジスタ(N−LV Low Vt、N−LV High Vt、P−LV Low Vt、P−LV High Vt)形成領域のシリコン酸化膜94を除去する(図14(a))。
次いで、例えばアッシングにより、フォトレジスト膜96を除去する。
なお、上述した図14(a)に示す工程は、フラッシュメモリを混載しない半導体装置では、素子分離膜12の形成後に形成した膜厚10nmの犠牲酸化膜としてのシリコン酸化膜24を、マスクを用いずに除去することとなる。
次いで、例えば850℃の温度で熱酸化を行い、中電圧トランジスタ(N−MV、P−MV)形成領域及び低電圧トランジスタ(N−LV Low Vt、N−LV High Vt、P−LV Low Vt、P−LV High Vt)形成領域の活性領域上に、膜厚4.5nmのシリコン酸化膜98を形成する。なお、この熱酸化工程において、シリコン酸化膜94の膜厚も増加する。
次いで、フォトリソグラフィーにより、フラッシュメモリセル(Flash cell)形成領域、高電圧トランジスタ(N−HV Low Vt、N−HV High Vt、P−HV Low Vt、P−HV High Vt)形成領域及び中電圧トランジスタ(N−MV、P−MV)形成領域を覆い、低電圧トランジスタ(N−LV Low Vt、N−LV High Vt、P−LV Low Vt、P−LV High Vt)形成領域を露出するフォトレジスト膜100を形成する。
次いで、例えば弗酸水溶液を用いたウェットエッチングにより、フォトレジスト膜100をマスクとしてシリコン酸化膜98をエッチングし、低電圧トランジスタ(N−LV Low Vt、N−LV High Vt、P−LV Low Vt、P−LV High Vt)形成領域のシリコン酸化膜98を除去する(図14(b))。
次いで、例えばアッシングにより、フォトレジスト膜100を除去する。
次いで、例えば850℃の温度で熱酸化を行い、低電圧トランジスタ(N−LV Low Vt、N−LV High Vt、P−LV Low Vt、P−LV High Vt)形成領域の活性領域上に、膜厚2.2nmのシリコン酸化膜よりなるゲート絶縁膜102を形成する。なお、この熱酸化工程において、シリコン酸化膜94,98の膜厚も増加し、高電圧トランジスタ(N−HV Low Vt、N−HV High Vt、P−HV Low Vt、P−HV High Vt)形成領域には合計膜厚16nmのゲート絶縁膜104が形成され、中電圧トランジスタ(N−MV、P−MV)形成領域には合計膜厚5.5nmのゲート絶縁膜106が形成される(図15(a))。
図14(a)乃至図15(a)に示す工程を施すことにより、フラッシュメモリを混載しない半導体装置では、図14(a)に示す工程においてシリコン酸化膜24を除去する際、図14(b)に示す工程においてシリコン酸化膜98を除去する際に、素子分離膜12もエッチングされる。設定するエッチング量がエッチングすべき膜厚の1.5倍であること、高密度プラズマCVDにより形成したシリコン酸化膜が熱酸化膜の1.5倍のエッチングレートであることを考慮すると、シリコン酸化膜24,98の除去に伴いエッチングされる素子分離膜の量(STIリセス量)は、約33nmとなる。
一方、フラッシュメモリを混載する半導体装置では、図8(b)に示す工程においてシリコン酸化膜24を除去する際、図13(b)に示す工程においてトンネル酸化膜38を除去する際、図14(a)に示す工程においてシリコン酸化膜94を除去する際、図14(b)に示す工程においてシリコン酸化膜98を除去する際に、素子分離膜12もエッチングされる。したがって、シリコン酸化膜24,94,98、トンネル酸化膜38の除去に伴いエッチングされる素子分離膜の量(STIリセス量)は、約84nmとなる。
これにより、素子分離膜22は、低電圧トランジスタ(N−LV Low Vt、N−LV High Vt、P−LV Low Vt、P−LV High Vt)形成領域では、活性領域上端部の曲率半径が10〜30nm、STIリセス量が約30nm、フラッシュメモリセル(Flash cell)形成領域では、活性領域上端部の曲率半径が40〜60nm、STIリセス量が約80nmとなり、フラッシュメモリセル(Flash cell)形成領域における活性領域上の曲率半径及びSTIリセス量は、低電圧トランジスタ(N−LV Low Vt、N−LV High Vt、P−LV Low Vt、P−LV High Vt)形成領域よりも大きくなる(図5(d)、図6(d))。
次いで、CVD法により、例えば膜厚180nmのポリシリコン膜108を成長する。
次いで、プラズマCVD法により、ポリシリコン膜108上に、例えば膜厚30nmのシリコン窒化膜110を成長する。なお、シリコン窒化膜110は、下層のポリシリコン膜108をパターニングする際の反射防止及びエッチングマスクを兼ねるものであると同時に、後述するフラッシュセルのゲート電極の側面酸化の際にロジック部分のゲート電極を保護する役割をも有する。
次いで、フォトリソグラフィー及びドライエッチングにより、フラッシュメモリセル(Flash cell)形成領域のシリコン窒化膜110、ポリシリコン膜108、ONO膜42及びフローティングゲート40をパターニングし、ポリシリコン膜108よりなるフラッシュメモリセル(Flash cell)のゲート電極112等を形成する(図15(b))。
次いで、フラッシュメモリセル(Flash cell)のゲート電極112の側面を約10nm程度熱酸化し、ソース/ドレイン領域114のイオン注入を行う。
次いで、再度、ゲート電極112の側面を約10nm程度熱酸化する。
次いで、例えば熱CVD法によりシリコン窒化膜を堆積後、このシリコン窒化膜及びシリコン窒化膜110をエッチバックし、ゲート電極112の側壁部分にシリコン窒化膜よりなる側壁絶縁膜116を形成する。
次いで、フォトリソグラフィー及びドライエッチングにより、高電圧トランジスタ(N−HV Low Vt、N−HV High Vt、P−HV Low Vt、P−HV High Vt)形成領域、中電圧トランジスタ(N−MV、P−MV)形成領域及び低電圧トランジスタ(N−LV Low Vt、N−LV High Vt、P−LV Low Vt、P−LV High Vt)形成領域のポリシリコン膜108をパターニングし、ポリシリコン膜108よりなるゲート電極118を形成する(図16(a))。
なお、上述した図15(b)及び図16(a)に示す工程は、フラッシュメモリを混載しない半導体装置では、中電圧トランジスタ(N−MV、P−MV)形成領域及び低電圧トランジスタ(N−LV Low Vt、N−LV High Vt、P−LV Low Vt、P−LV High Vt)形成領域のシリコン窒化膜110及びポリシリコン膜108のパターニングのみを行う。
次いで、フォトリソグラフィーにより、pチャネル低電圧トランジスタ(P−LV Low Vt、P−LV High Vt)形成領域を露出し、他の領域を覆うフォトレジスト膜120を形成する。
次いで、フォトレジスト膜120をマスクとしてイオン注入を行い、pチャネル低電圧・高閾値トランジスタ(P−LV High Vt)及びpチャネル低電圧・低閾値トランジスタ(P−LV Low Vt)のソース/ドレイン領域のエクステンション122を形成する(図16(b))。エクステンション122は、例えばボロンイオンを、加速エネルギー0.5keV、ドーズ量3.6×1014cm−2として、及び、砒素イオンを、加速エネルギー80keV、ドーズ量各6.5×1012cm−2として、基板法線から28度傾いた4方向からイオン注入を行うことにより形成し、ポケット付きのエクステンションとする。
次いで、例えばアッシングにより、フォトレジスト膜120を除去する。
次いで、フォトリソグラフィーにより、nチャネル低電圧トランジスタ(N−LV Low Vt、N−LV High Vt)形成領域を露出し、他の領域を覆うフォトレジスト膜124を形成する。
次いで、フォトレジスト膜124をマスクとしてイオン注入を行い、nチャネル低電圧・高閾値トランジスタ(N−LV High Vt)及びnチャネル低電圧・低閾値トランジスタ(N−LV Low Vt)のソース/ドレイン領域のエクステンション126を形成する(図17(a))。エクステンション126は、例えば砒素イオンを、加速エネルギー3keV、ドーズ量1.1×1015cm−2として、及び、弗化ボロン(BF )イオンを、加速エネルギー35keV、ドーズ量各9.5×1012cm−2として、基板法線から28度傾いた4方向からイオン注入を行うことにより形成し、ポケット付きのエクステンションとする。
次いで、例えばアッシングにより、フォトレジスト膜124を除去する。
次いで、フォトリソグラフィーにより、pチャネル中電圧トランジスタ(P−MV)形成領域を露出し、他の領域を覆うフォトレジスト膜128を形成する。
次いで、フォトレジスト膜128をマスクとしてイオン注入を行い、pチャネル中電圧トランジスタ(P−MV)のソース/ドレイン領域のエクステンション130を形成する(図17(b))。エクステンション130は、例えば弗化ボロンイオンを、加速エネルギー10keV、ドーズ量7×1013cm−2の条件でイオン注入を行うことにより形成する。
次いで、例えばアッシングにより、フォトレジスト膜128を除去する。
次いで、フォトリソグラフィーにより、nチャネル中電圧トランジスタ(N−MV)形成領域を露出し、他の領域を覆うフォトレジスト膜132を形成する。
次いで、フォトレジスト膜132をマスクとしてイオン注入を行い、nチャネル中電圧トランジスタ(N−MV)のソース/ドレイン領域のエクステンション134を形成する(図18(a))。エクステンション134は、例えば砒素イオンを、加速エネルギー10keV、ドーズ量2×1013cm−2の条件で、例えばリンイオンを、加速エネルギー10keV、ドーズ量3×1013cm−2の条件で、それぞれイオン注入を行うことにより形成する。
次いで、例えばアッシングにより、フォトレジスト膜132を除去する。
次いで、フォトリソグラフィーにより、pチャネル高電圧トランジスタ(P−HV Low Vt、P−HV High Vt)形成領域を露出し、他の領域を覆うフォトレジスト膜136を形成する。
次いで、フォトレジスト膜136をマスクとしてイオン注入を行い、pチャネル高電圧・低閾値トランジスタ(P−HV Low Vt)及びpチャネル高電圧・高閾値トランジスタ(P−HV High Vt)のソース/ドレイン領域のエクステンション138を形成する(図18(b))。エクステンション138は、例えば弗化ボロンイオンを、加速エネルギー80keV、ドーズ量4.5×1013cm−2の条件でイオン注入を行うことにより形成する。
次いで、例えばアッシングにより、フォトレジスト膜136を除去する。
次いで、フォトリソグラフィーにより、nチャネル高電圧トランジスタ(N−HV Low Vt、N−HV High Vt)形成領域を露出し、他の領域を覆うフォトレジスト膜140を形成する。
次いで、フォトレジスト膜140をマスクとしてイオン注入を行い、nチャネル高電圧・低閾値トランジスタ(N−HV Low Vt)及びnチャネル高電圧・高閾値トランジスタ(N−HV High Vt)のソース/ドレイン領域のエクステンション142を形成する(図19(a))。エクステンション142は、例えばリンイオンを、加速エネルギー35keV、ドーズ量4×1013cm−2の条件でイオン注入を行うことにより形成する。
次いで、例えばアッシングにより、フォトレジスト膜140を除去する。
なお、上述した図18(b)及び図19(a)に示す工程は、フラッシュメモリを混載する半導体装置に特有の工程であり、フラッシュメモリを混載しない半導体装置では、この工程は省略する。
次いで、例えば熱CVD法によりシリコン酸化膜を堆積後、このシリコン酸化膜をエッチバックし、ゲート電極86,92の側壁部分にシリコン酸化膜よりなる側壁絶縁膜144を形成する。
次いで、フォトリソグラフィーにより、フラッシュメモリセル(Flash cell)形成領域及びnチャネルトランジスタ(N−HV Low Vt、N−HV High Vt、N−MV、N−LV High Vt、N−LV Low Vt)形成領域を露出し、他の領域を覆うフォトレジスト膜146を形成する。
次いで、フォトレジスト膜146をマスクとしてイオン注入を行い、フラッシュメモリセル(Flash cell)及びnチャネルトランジスタ(N−HV Low Vt、N−HV High Vt、N−MV、N−LV High Vt、N−LV Low Vt)のソース/ドレイン領域148を形成する(図19(b))。同時に、このイオン注入により、フラッシュメモリセル(Flash cell)のゲート電極112及びnチャネルトランジスタ(N−HV Low Vt、N−HV High Vt、N−MV、N−LV High Vt、N−LV Low Vt)のゲート電極118は、n型にドーピングされる。ソース/ドレイン領域148は、例えばリンイオンを、加速エネルギー10keV、ドーズ量6×1015cm−2の条件でイオン注入を行うことにより形成する。
次いで、例えばアッシングにより、フォトレジスト膜146を除去する。
次いで、フォトリソグラフィーにより、pチャネルトランジスタ(P−HV Low Vt、P−HV High Vt、P−MV、P−LV High Vt、P−LV Low Vt)形成領域を露出し、他の領域を覆うフォトレジスト膜150を形成する。
次いで、フォトレジスト膜150をマスクとしてイオン注入を行い、pチャネルトランジスタ(P−HV Low Vt、P−HV High Vt、P−MV、P−LV High Vt、P−LV Low Vt)のソース/ドレイン領域152を形成する(図20(a))。同時に、このイオン注入により、pチャネルトランジスタ(P−HV Low Vt、P−HV High Vt、P−MV、P−LV High Vt、P−LV Low Vt)のゲート電極118は、p型にドーピングされる。ソース/ドレイン領域152は、例えばボロンイオンを、加速エネルギー5keV、ドーズ量4×1015cm−2の条件でイオン注入を行うことにより形成する。
次いで、例えばアッシングにより、フォトレジスト膜150除去する。
次いで、周知のサリサイドプロセスにより、ゲート電極112,118上及びソース/ドレイン領域148,152上をシリサイド化する。
こうして、シリコン基板10上に、フラッシュメモリを混載する半導体装置にあっては11種類のトランジスタを、フラッシュメモリを混載しない半導体装置にあっては6種類のトランジスタを完成する。
次いで、トランジスタ等が形成されたシリコン基板10上に、絶縁膜154を成長後、コンタクトホール156、電極プラグ158、配線160等を形成し、第1層金属配線層までを完成する(図20(b))。
次いで、絶縁膜の成長、配線等の形成を繰り返し行い、絶縁膜154上に、所望の層数の多層配線層162を形成する。
次いで、多層配線層162上に、絶縁膜164を成長後、コンタクトホール166、電極プラグ168、配線170、パッド電極172等を形成し、最上層金属配線層までを完成する。
次いで、配線層170、パッド電極172等が形成された絶縁膜164上に、パッシベーション膜174を形成し、半導体装置を完成する(図21)。
このように、本実施形態によれば、フラッシュメモリを混載しない半導体装置とフラッシュメモリを混載する半導体装置とにおけるSTIリセス量の差分を考慮し、この差分に基づいて、フラッシュメモリを混載しない半導体装置及びフラッシュメモリを混載する半導体装置の活性領域上端部の曲率半径をそれぞれ制御することにより、STIリセス量の増加による逆狭チャネル効果を、活性層上端部の曲率半径増加による狭チャネル効果により相殺するので、フラッシュメモリを混載しない半導体装置に含まれるロジックトランジスタと、フラッシュメモリを混載する半導体装置に含まれるロジックトランジスタとに、共通の一の設計マクロを適用することができる。
これにより、フラッシュメモリを混載しないプロセス技術の優先的な開発が可能となる。また、活性領域上端部の曲率半径を増加することにより、フラッシュメモリのトンネル絶縁膜の信頼性を向上することができる。また、リセス量の増大を許容されることにより、トンネル酸化膜や高電圧トランジスタのゲート絶縁膜を追加的に形成することを容易にすることができる。
[変形実施形態]
本発明は上記実施形態に限らず種々の変形が可能である。
例えば、上記実施形態では、フラッシュメモリを混載しないFPGAとフラッシュメモリを混載するFPGAとを例にして説明したが、FPGAに限定されるものではない。本発明は、フラッシュメモリを混載しない半導体装置とフラッシュメモリを混載する半導体装置とを含む半導体装置群であって、両半導体装置のロジックトランジスタの同一性が重要である半導体装置群に広く適用することができる。
また、上記実施形態では、フラッシュメモリを混載しない半導体装置を6種類のトランジスタにより構成し、フラッシュメモリを混載する半導体装置を11種類のトランジスタにより構成したが、トランジスタの数はこれに限定されるものではない。
また、活性領域上端部の曲率半径や、STIリセス量は、上記実施形態に記載の値に限定されるものではなく、フラッシュメモリセルの特性やゲート絶縁膜の種類及び膜厚等に応じて適宜設定することができる。
上述したとおり、本発明の特徴をまとめると以下の通りとなる。
(付記1)
第1の設計マクロ及び不揮発性メモリを含む第1の半導体装置と、前記第1の設計マクロとの同一性を有する第2の設計マクロを含み、不揮発性メモリを含まない第2の半導体装置とを有する半導体装置群であって、
前記第1の設計マクロは、第1の半導体基板上に形成された第1の活性領域と第1の素子分離領域とを有し、
前記第2の設計マクロは、第2の半導体基板上に形成された第2の活性領域と第2の素子分離領域とを有し、
前記第1の活性領域の断面上端部における曲率半径は、前記第2の活性領域の断面上端部における曲率半径よりも大きく、
前記第1の活性領域の表面と前記第1の素子分離領域の表面との高さの差は、前記第2の活性領域の表面と前記第2の素子分離領域の表面との高さの差よりも大きい
ことを特徴とする半導体装置群。
(付記2)
付記1記載の半導体装置群において、
前記第1の活性領域の前記曲率半径は、前記第1の活性領域の前記表面と前記第1の素子分離領域の前記表面との高さの差と、前記第2の活性領域の前記表面と前記第2の素子分離領域の前記表面との高さの差とが異なることに伴う素子特性の相違を相殺するように、前記第2の活性領域の前記曲率半径よりも大きくなっている
ことを特徴とする半導体装置群。
(付記3)
付記2記載の半導体装置群の製造方法において、
前記素子特性は、トランジスタの閾値電圧のチャネル幅依存性である
ことを特徴とする半導体装置群の製造方法。
(付記4)
付記1乃至3のいずれか1項に記載の半導体装置群において、
前記第1の素子分離領域は、前記第1の半導体基板に形成された溝と、前記溝に埋め込まれた絶縁物とを有し、
前記第2の素子分離領域は、前記第2の半導体基板に形成された溝と、前記溝に埋め込まれた絶縁物とを有する
ことを特徴とする半導体装置群。
(付記5)
付記1乃至4のいずれか1項に記載の半導体装置群において、
前記第1の半導体装置は、前記不揮発性メモリを含むFPGAであり、
前記第2の半導体装置は、不揮発性メモリを含まないFPGAである
ことを特徴とする半導体装置群。
(付記6)
付記1乃至5のいずれか1項に記載の半導体装置群において、
前記第1の設計マクロ及び前記第2の設計マクロは、主ロジック回路部を構成する
ことを特徴とする半導体装置群。
(付記7)
半導体基板上に形成された第1の活性領域と第1の素子分離領域とを有する第1の設計マクロ及び不揮発性メモリを含む半導体装置であって、
他の半導体基板上に形成された第2の活性領域と第2の素子分離領域を有し、前記第1の設計マクロとの同一性を有する第2の設計マクロを含み、不揮発性メモリを含まない他の半導体装置と共に半導体装置群を構成し、
前記第1の活性領域の断面上端部における曲率半径が、前記第2の活性領域の断面上端部における曲率半径よりも大きく、
前記第1の活性領域の表面と前記第1の素子分離領域の表面との高さの差が、前記第2の活性領域の表面と前記第2の素子分離領域の表面との高さの差よりも大きい
ことを特徴とする半導体装置。
(付記8)
半導体基板上に形成された第1の活性領域と第1の素子分離領域とを有する第1の設計マクロを含み、不揮発性メモリを含まない半導体装置であって、
他の半導体基板上に形成された第2の活性領域と第2の素子分離領域を有し、前記第1の設計マクロとの同一性を有する第2の設計マクロ及び不揮発性メモリを含む他の半導体装置と共に半導体装置群を構成し、
前記第1の活性領域の断面上端部における曲率半径が、前記第2の活性領域の断面上端部における曲率半径よりも小さく、
前記第1の活性領域の表面と前記第1の素子分離領域の表面との高さの差が、前記第2の活性領域の表面と前記第2の素子分離領域の表面との高さの差よりも小さい
ことを特徴とする半導体装置。
(付記9)
第1の設計マクロ及び不揮発性メモリを含む第1の半導体装置と、前記第1の設計マクロとの同一性を有する第2の設計マクロを含み、不揮発性メモリを含まない第2の半導体装置とを含む半導体装置群の製造方法であって、
前記第1の半導体装置は、第1の半導体基板に第1の溝を形成する工程と、前記第1の半導体基板を酸化処理して前記第1の溝の上端部を丸める工程と、前記第1の溝内に第1の絶縁物を埋め込む工程と、前記第1の溝内に埋め込まれた前記第1の絶縁物の一部を除去し、表面に第1の沈み込み領域を形成する工程とを有する半導体装置の製造方法により製造し、
前記第2の半導体装置は、第2の半導体基板に第2の溝を形成する工程と、前記第2の半導体基板を酸化処理して前記第2の溝の上端部を丸める工程と、前記第2の溝内に第2の絶縁物を埋め込む工程と、前記第2の溝内に埋め込まれた前記第2の絶縁物の一部を除去し、表面に第2の沈み込み領域を形成する工程とを有する半導体装置の製造方法により製造し、
前記第1の溝の前記上端部を丸める工程及び前記第2の溝の前記上端部を丸める工程では、前記第1の溝の前記上端部の曲率半径が、前記第2の溝の前記上端部の曲率半径よりも大きくなるようにし、
前記第1の沈み込み領域を形成する工程及び前記第2の沈み込み領域を形成する工程では、前記第1の沈み込み領域における沈み込み量が、前記第2の沈み込み領域における沈み込み量よりも大きくなるようにする
ことを特徴とする半導体装置群の製造方法。
(付記10)
付記9記載の半導体装置群の製造方法において、
前記第1の溝の前記曲率半径は、前記第1の沈み込み領域における前記沈み込み量と前記第2の沈み込み領域における前記沈み込み量とが異なることに伴う素子特性の相違を相殺するように、前記第2の溝の前記曲率半径よりも大きくする
ことを特徴とする半導体装置群の製造方法。
(付記11)
付記10記載の半導体装置群の製造方法において、
前記素子特性は、トランジスタの閾値電圧のチャネル幅依存性である
ことを特徴とする半導体装置群の製造方法。
(付記12)
付記9乃至11の何れか1項に記載の半導体装置群の製造方法において、
前記第1の溝の上端部を丸める工程における酸化温度は、前記第2の溝の上端部を丸める工程における酸化温度よりも高い
ことを特徴とする半導体装置群の製造方法。
本発明の一実施形態による半導体装置群の構造を示す平面図である。 本発明の一実施形態による半導体装置群の構造を示す概略断面図(その1)である。 本発明の一実施形態による半導体装置群の構造を示す概略断面図(その2)である。 ロジックトランジスタの閾値電圧に関する活性領域上端部の曲率半径及びSTIリセス量依存性を示すグラフである。 本発明の一実施形態による半導体装置群の製造方法を示す工程断面図(その1)である。 本発明の一実施形態による半導体装置群の製造方法を示す工程断面図(その2)である。 本発明の一実施形態による半導体装置群の製造方法を示す工程断面図(その3)である。 本発明の一実施形態による半導体装置群の製造方法を示す工程断面図(その4)である。 本発明の一実施形態による半導体装置群の製造方法を示す工程断面図(その5)である。 本発明の一実施形態による半導体装置群の製造方法を示す工程断面図(その6)である。 本発明の一実施形態による半導体装置群の製造方法を示す工程断面図(その7)である。 本発明の一実施形態による半導体装置群の製造方法を示す工程断面図(その8)である。 本発明の一実施形態による半導体装置群の製造方法を示す工程断面図(その9)である。 本発明の一実施形態による半導体装置群の製造方法を示す工程断面図(その10)である。 本発明の一実施形態による半導体装置群の製造方法を示す工程断面図(その11)である。 本発明の一実施形態による半導体装置群の製造方法を示す工程断面図(その12)である。 本発明の一実施形態による半導体装置群の製造方法を示す工程断面図(その13)である。 本発明の一実施形態による半導体装置群の製造方法を示す工程断面図(その14)である。 本発明の一実施形態による半導体装置群の製造方法を示す工程断面図(その15)である。 本発明の一実施形態による半導体装置群の製造方法を示す工程断面図(その16)である。 本発明の一実施形態による半導体装置群の製造方法を示す工程断面図(その17)である。
符号の説明
10…シリコン基板
12,18,20,24,94,98…シリコン酸化膜
14,110…シリコン窒化膜
16…溝
22…素子分離膜
26,34,44,50,56,62,66,70,74,92,96,100,120,124,128,132,136,140,146,150…フォトレジスト膜
28…n型埋め込み不純物層
30,32,46,48…p型ウェル用不純物層
36,58,64,68,72…閾値電圧制御用不純物層
38…トンネル酸化膜
40…フローティングゲート
42…ONO膜
52,54…n型ウェル用不純物層
60…チャネルストップ層
78,82,86…p型ウェル
80,84,88,90…n型ウェル
102,104,106…ゲート絶縁膜
108…ポリシリコン膜
112,118…ゲート電極
114,148,152…ソース/ドレイン領域
116,144…側壁絶縁膜
122,126,130,134,138,142…エクステンション
154,164…絶縁膜
156,166…コンタクトホール
158,168…電極プラグ
160,170…配線層
162…多層配線層
172…パッド電極
174…パッシベーション膜
200,300…半導体装置
202,302…主ロジック回路部
204,304…入出力回路部
204N,304N,308N…NMOS部
204P,304P,308P…PMOS部
306…フラッシュメモリセル部
308…フラッシュメモリセル制御回路部

Claims (10)

  1. 第1の設計マクロ及び不揮発性メモリを含む第1の半導体装置と、前記第1の設計マクロとの同一性を有する第2の設計マクロを含み、不揮発性メモリを含まない第2の半導体装置とを有する半導体装置群であって、
    前記第1の設計マクロは、第1の半導体基板上に形成された第1の活性領域と第1の素子分離領域とを有し、
    前記第2の設計マクロは、第2の半導体基板上に形成された第2の活性領域と第2の素子分離領域とを有し、
    前記第1の活性領域の断面上端部における曲率半径は、前記第2の活性領域の断面上端部における曲率半径よりも大きく、
    前記第1の活性領域の表面と前記第1の素子分離領域の表面との高さの差は、前記第2の活性領域の表面と前記第2の素子分離領域の表面との高さの差よりも大きい
    ことを特徴とする半導体装置群。
  2. 請求項1記載の半導体装置群において、
    前記第1の活性領域の前記曲率半径は、前記第1の活性領域の前記表面と前記第1の素子分離領域の前記表面との高さの差と、前記第2の活性領域の前記表面と前記第2の素子分離領域の前記表面との高さの差とが異なることに伴う素子特性の相違を相殺するように、前記第2の活性領域の前記曲率半径よりも大きくなっている
    ことを特徴とする半導体装置群。
  3. 請求項1又は2記載の半導体装置群において、
    前記第1の素子分離領域は、前記第1の半導体基板に形成された溝と、前記溝に埋め込まれた絶縁物とを有し、
    前記第2の素子分離領域は、前記第2の半導体基板に形成された溝と、前記溝に埋め込まれた絶縁物とを有する
    ことを特徴とする半導体装置群。
  4. 請求項1乃至3のいずれか1項に記載の半導体装置群において、
    前記第1の半導体装置は、前記不揮発性メモリを含むFPGAであり、
    前記第2の半導体装置は、不揮発性メモリを含まないFPGAである
    ことを特徴とする半導体装置群。
  5. 請求項1乃至4のいずれか1項に記載の半導体装置群において、
    前記第1の設計マクロ及び前記第2の設計マクロは、主ロジック回路部を構成する
    ことを特徴とする半導体装置群。
  6. 半導体基板上に形成された第1の活性領域と第1の素子分離領域とを有する第1の設計マクロ及び不揮発性メモリを含む半導体装置であって、
    他の半導体基板上に形成された第2の活性領域と第2の素子分離領域を有し、前記第1の設計マクロとの同一性を有する第2の設計マクロを含み、不揮発性メモリを含まない他の半導体装置と共に半導体装置群を構成し、
    前記第1の活性領域の断面上端部における曲率半径が、前記第2の活性領域の断面上端部における曲率半径よりも大きく、
    前記第1の活性領域の表面と前記第1の素子分離領域の表面との高さの差が、前記第2の活性領域の表面と前記第2の素子分離領域の表面との高さの差よりも大きい
    ことを特徴とする半導体装置。
  7. 半導体基板上に形成された第1の活性領域と第1の素子分離領域とを有する第1の設計マクロを含み、不揮発性メモリを含まない半導体装置であって、
    他の半導体基板上に形成された第2の活性領域と第2の素子分離領域を有し、前記第1の設計マクロとの同一性を有する第2の設計マクロ及び不揮発性メモリを含む他の半導体装置と共に半導体装置群を構成し、
    前記第1の活性領域の断面上端部における曲率半径が、前記第2の活性領域の断面上端部における曲率半径よりも小さく、
    前記第1の活性領域の表面と前記第1の素子分離領域の表面との高さの差が、前記第2の活性領域の表面と前記第2の素子分離領域の表面との高さの差よりも小さい
    ことを特徴とする半導体装置。
  8. 第1の設計マクロ及び不揮発性メモリを含む第1の半導体装置と、前記第1の設計マクロとの同一性を有する第2の設計マクロを含み、不揮発性メモリを含まない第2の半導体装置とを含む半導体装置群の製造方法であって、
    前記第1の半導体装置は、第1の半導体基板に第1の溝を形成する工程と、前記第1の半導体基板を酸化処理して前記第1の溝の上端部を丸める工程と、前記第1の溝内に第1の絶縁物を埋め込む工程と、前記第1の溝内に埋め込まれた前記第1の絶縁物の一部を除去し、表面に第1の沈み込み領域を形成する工程とを有する半導体装置の製造方法により製造し、
    前記第2の半導体装置は、第2の半導体基板に第2の溝を形成する工程と、前記第2の半導体基板を酸化処理して前記第2の溝の上端部を丸める工程と、前記第2の溝内に第2の絶縁物を埋め込む工程と、前記第2の溝内に埋め込まれた前記第2の絶縁物の一部を除去し、表面に第2の沈み込み領域を形成する工程とを有する半導体装置の製造方法により製造し、
    前記第1の溝の前記上端部を丸める工程及び前記第2の溝の前記上端部を丸める工程では、前記第1の溝の前記上端部の曲率半径が、前記第2の溝の前記上端部の曲率半径よりも大きくなるようにし、
    前記第1の沈み込み領域を形成する工程及び前記第2の沈み込み領域を形成する工程では、前記第1の沈み込み領域における沈み込み量が、前記第2の沈み込み領域における沈み込み量よりも大きくなるようにする
    ことを特徴とする半導体装置群の製造方法。
  9. 請求項8記載の半導体装置群の製造方法において、
    前記第1の溝の前記曲率半径は、前記第1の沈み込み領域における前記沈み込み量と前記第2の沈み込み領域における前記沈み込み量とが異なることに伴う素子特性の相違を相殺するように、前記第2の溝の前記曲率半径よりも大きくする
    ことを特徴とする半導体装置群の製造方法。
  10. 請求項8又は9記載の半導体装置群の製造方法において、
    前記第1の溝の上端部を丸める工程における酸化温度は、前記第2の溝の上端部を丸める工程における酸化温度よりも高い
    ことを特徴とする半導体装置群の製造方法。
JP2003364358A 2003-10-24 2003-10-24 半導体装置群及びその製造方法並びに半導体装置 Expired - Fee Related JP4056964B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003364358A JP4056964B2 (ja) 2003-10-24 2003-10-24 半導体装置群及びその製造方法並びに半導体装置
TW093131978A TWI253746B (en) 2003-10-24 2004-10-21 Semiconductor device group and method for fabricating the same, and semiconductor device and method for fabricating the same
US10/969,240 US7539963B2 (en) 2003-10-24 2004-10-21 Semiconductor device group and method for fabricating the same, and semiconductor device and method for fabricating the same
DE102004051588A DE102004051588B4 (de) 2003-10-24 2004-10-22 Halbleitereinrichtungsgruppe und Verfahren zum Herstellen derselben und Halbleitereinrichtung
KR1020040084657A KR100589477B1 (ko) 2003-10-24 2004-10-22 반도체 장치군 및 그 제조 방법, 및 반도체 장치 및 그제조 방법
CNB2004100861774A CN100349295C (zh) 2003-10-24 2004-10-22 半导体装置组及其制造方法、半导体装置及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003364358A JP4056964B2 (ja) 2003-10-24 2003-10-24 半導体装置群及びその製造方法並びに半導体装置

Publications (2)

Publication Number Publication Date
JP2005129760A true JP2005129760A (ja) 2005-05-19
JP4056964B2 JP4056964B2 (ja) 2008-03-05

Family

ID=34643358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003364358A Expired - Fee Related JP4056964B2 (ja) 2003-10-24 2003-10-24 半導体装置群及びその製造方法並びに半導体装置

Country Status (1)

Country Link
JP (1) JP4056964B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172200A (ja) * 2006-11-01 2008-07-24 Macronix Internatl Co Ltd 実質的に高いカップリングレシオをもつ円筒型チャンネル電荷トラッピング装置
JP2009123975A (ja) * 2007-11-15 2009-06-04 Spansion Llc 半導体装置の製造方法
JP2010177342A (ja) * 2009-01-28 2010-08-12 Oki Semiconductor Co Ltd 半導体装置及びその製造方法
US7859045B2 (en) 2005-12-14 2010-12-28 Fujitsu Semiconductor Limited Semiconductor device and method for manufacturing the same
US7998806B2 (en) 2007-08-10 2011-08-16 Fujitsu Semiconductor Limited Semiconductor device and method of manufacturing the same
JP2018152450A (ja) * 2017-03-13 2018-09-27 三重富士通セミコンダクター株式会社 半導体装置の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7859045B2 (en) 2005-12-14 2010-12-28 Fujitsu Semiconductor Limited Semiconductor device and method for manufacturing the same
US7964288B2 (en) 2005-12-14 2011-06-21 Fujitsu Semiconductor Limited Semiconductor device and method for manufacturing the same
JP2008172200A (ja) * 2006-11-01 2008-07-24 Macronix Internatl Co Ltd 実質的に高いカップリングレシオをもつ円筒型チャンネル電荷トラッピング装置
US7998806B2 (en) 2007-08-10 2011-08-16 Fujitsu Semiconductor Limited Semiconductor device and method of manufacturing the same
US8258570B2 (en) 2007-08-10 2012-09-04 Fujitsu Semiconductor Limited Semiconductor device
US8460992B2 (en) 2007-08-10 2013-06-11 Fujitsu Semiconductor Limited Semiconductor device and method of manufacturing the same
JP2009123975A (ja) * 2007-11-15 2009-06-04 Spansion Llc 半導体装置の製造方法
JP2010177342A (ja) * 2009-01-28 2010-08-12 Oki Semiconductor Co Ltd 半導体装置及びその製造方法
JP2018152450A (ja) * 2017-03-13 2018-09-27 三重富士通セミコンダクター株式会社 半導体装置の製造方法

Also Published As

Publication number Publication date
JP4056964B2 (ja) 2008-03-05

Similar Documents

Publication Publication Date Title
KR100589477B1 (ko) 반도체 장치군 및 그 제조 방법, 및 반도체 장치 및 그제조 방법
JP4429036B2 (ja) 半導体装置の製造方法
JP4850174B2 (ja) 半導体装置及びその製造方法
JP5400378B2 (ja) 半導体装置と半導体装置の製造方法
JP4659527B2 (ja) 半導体装置の製造方法
JP2006059880A (ja) 半導体装置及びその製造方法
JP2005012227A (ja) 不揮発性メモリが内蔵された単一チップデータ処理装置及びその製造方法
JP2014103204A (ja) 半導体装置の製造方法および半導体装置
JP5142476B2 (ja) 半導体装置の製造方法
JP5047786B2 (ja) 半導体装置の製造方法
JP2008010756A (ja) 半導体装置とその製造方法
JP4056964B2 (ja) 半導体装置群及びその製造方法並びに半導体装置
JP2009010110A (ja) 不揮発性メモリ及びその製造方法
JPWO2006035503A1 (ja) 半導体装置および半導体装置の製造方法
JP2005142362A (ja) 半導体装置及びその製造方法
JP5691412B2 (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070926

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071212

R150 Certificate of patent or registration of utility model

Ref document number: 4056964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees