JP2005129732A - テラヘルツ光発生装置およびテラヘルツ光測定装置 - Google Patents

テラヘルツ光発生装置およびテラヘルツ光測定装置 Download PDF

Info

Publication number
JP2005129732A
JP2005129732A JP2003363785A JP2003363785A JP2005129732A JP 2005129732 A JP2005129732 A JP 2005129732A JP 2003363785 A JP2003363785 A JP 2003363785A JP 2003363785 A JP2003363785 A JP 2003363785A JP 2005129732 A JP2005129732 A JP 2005129732A
Authority
JP
Japan
Prior art keywords
light
terahertz
terahertz light
tera
beam combining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003363785A
Other languages
English (en)
Inventor
Mamoru Usami
護 宇佐見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tochigi Nikon Corp
Nikon Corp
Original Assignee
Tochigi Nikon Corp
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tochigi Nikon Corp, Nikon Corp filed Critical Tochigi Nikon Corp
Priority to JP2003363785A priority Critical patent/JP2005129732A/ja
Publication of JP2005129732A publication Critical patent/JP2005129732A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】 広帯域のテラヘルツパルス光を発生するテラヘルツ光発生装置および様々な測定目的に適するテラヘルツ光測定装置を提供すること。
【解決手段】 テラヘルツ光発生装置10は、テラヘルツパルス光T1を放射する光伝導アンテナ4と、テラヘルツパルス光T2を放射する半導体部材5と、励起レーザ光L4,L5をそれぞれ光伝導アンテナ4、半導体部材5に照射するレーザ光源1と、テラヘルツパルス光T1,T2を一つに合成するワイヤーグリッド6とを備える。テラヘルツ光測定装置100は、テラヘルツ光発生装置10と、テラヘルツパルス光T3を試料Sに照射し、試料Sからのテラヘルツパルス光T4を検出手段へ導くテラヘルツ光学系と、テラヘルツパルス光T4検出するテラヘルツ光検出器27と、テラヘルツ光検出器27により検出された値に基づいて試料Sの物性値を演算する演算手段とを備える。
【選択図】 図1

Description

本発明は、テラヘルツ光発生装置およびこれを備えるテラヘルツ光測定装置に関する。
テラヘルツ光測定装置は、概ね0.01×1012〜100×1012ヘルツの周波数領域のパルス光を試料に照射して、試料からの透過光または反射光を検出することにより、試料の電気的特性や成分濃度などを測定する装置である。テラヘルツパルス光を放射するテラヘルツ光源としては、光伝導アンテナ、半導体、非線形光学結晶などが知られている。光伝導アンテナは、光伝導膜上にアンテナパターンが形成されたもので、アンテナパターン形状によってテラヘルツパルス光の強度や周波数帯域が異なる。半導体や非線形光学結晶は、材料の種類や組成によってテラヘルツパルス光の強度や周波数帯域が異なる。また、複数の光スイッチを有する素子を用い、各光スイッチに印加するバイアス電圧の値と極性を切り換えることにより、テラヘルツ波の周波数スペクトルを変えることができるテラヘルツ波発生装置が知られている(例えば、特許文献1参照)。
特開2000−49402号公報(第2頁、図1)
従来のテラヘルツ光源は、アンテナパターン形状または材料の種類、組成によってテラヘルツパルス光の放射強度や周波数帯域が決まってしまうので、測定の目的に応じて各種の光源を使い分けており、光源の交換や光学的な位置合わせ作業は煩雑であった。また、特許文献1の技術では、1つの素子でいくつかの特定の周波数領域のテラヘルツ波を発生させることはできても、周波数帯域を拡張することはできないので、様々な測定目的に対してそれに適した周波数帯域を設定し直すという煩わしさがある。
(1)請求項1のテラヘルツ光発生装置は、周波数帯域の異なるテラヘルツ光を放射する複数のテラヘルツ光源と、複数のテラヘルツ光源の各々に励起レーザ光を照射するレーザ光源と、複数のテラヘルツ光源から放射されるテラヘルツ光を一つに合成するビーム結合素子とを備えることを特徴とする。
(2)請求項2に記載のテラヘルツ光発生装置は、放射特性が等しいテラヘルツ光を放射する複数のテラヘルツ光源と、複数のテラヘルツ光源の各々に励起レーザ光を照射するレーザ光源と、複数のテラヘルツ光源から放射されるテラヘルツ光を一つに合成するビーム結合素子とを備えることを特徴とする。
(3)請求項1または2のテラヘルツ光発生装置は、ビーム結合素子を透過するようにビーム結合素子に入射するテラヘルツ光の偏光方向とビーム結合素子で反射するようにビーム結合素子に入射するテラヘルツ光の偏光方向とが直交するように、複数のテラヘルツ光源を配置することが好ましい。これらの偏光方向が直交するテラヘルツ光をそれぞれ平行光とするコリメート用光学素子を設けることができる。
(4)上記のテラヘルツ光発生装置において、ビーム結合素子は、ワイヤーグリッドであっても半導体基板であっても良い。半導体基板の場合、シリコンが好ましい。
(5)請求項8のテラヘルツ光測定装置は、上記のいずれかのテラヘルツ光発生装置と、ビーム結合素子により一つに合成されたテラヘルツ光を試料に照射し、試料からのテラヘルツ光を検出手段へ導くテラヘルツ光学系と、試料からのテラヘルツ光を検出するテラヘルツ光検出器と、テラヘルツ光検出器により検出された値に基づいて試料の物性値を演算する演算手段とを備えることを特徴とする。
(6)請求項9のテラヘルツ光測定装置は、請求項3または4のテラヘルツ光発生装置と、ビーム結合素子により一つに合成されたテラヘルツ光を試料に照射し、試料からのテラヘルツ光を検出手段へ導くテラヘルツ光学系と、試料からのテラヘルツ光を検出する光伝導アンテナと、テラヘルツ光検出器により検出された値に基づいて試料の物性値を演算する演算手段とを備え、互いに偏光方向が直交する、ビーム結合素子を透過するようにビーム結合素子に入射するテラヘルツ光、およびビーム結合素子で反射するようにビーム結合素子に入射するテラヘルツ光の偏光方向に対して、光伝導アンテナのアンテナパターンに沿った方向が所定の角度をなすように、光伝導アンテナを配置することを特徴とする。
本発明によれば、広帯域のテラヘルツパルス光を発生するテラヘルツ光発生装置および様々な測定目的に適するテラヘルツ光測定装置を提供することができる。
以下、本発明によるテラヘルツ光発生装置およびテラヘルツ光測定装置について図1〜7を参照しながら説明する。
〈第1の実施の形態〉
図1は、本発明によるテラヘルツ光測定装置を模式的に示す全体構成図である。図2,3,4は、それぞれ本実施の形態によるテラヘルツ光源の斜視図、ビーム結合素子の斜視図、テラヘルツ光検出器の斜視図である。図5は、第1の実施の形態によるテラヘルツ光発生装置とテラヘルツ光検出部を模式的に示す図である。図1〜5では、同じ構成部品には同一符号を付す。
図1において、テラヘルツ光測定装置100は、テラヘルツ光発生装置10、テラヘルツ光検出部20、測定回路30、制御・演算処理部31、表示部32および光路長変更部40を備える。また、テラヘルツ光測定装置100は、試料Sにテラヘルツパルス光T3を照射する照射光学系を構成する曲面鏡7、8および試料Sを透過するテラヘルツパルス光T4をテラヘルツ光検出部20へ導く検出光学系を構成する曲面鏡12、13を備える。
先ず、テラヘルツパルス光の発生について説明する。テラヘルツ光発生装置10は、レーザ光源1、ビームスプリッタ2,3、光伝導アンテナ4、半導体部材5およびワイヤーグリッド6を備える。
レーザ光源1から放射されたパルス光L1は、ビームスプリッタ2で2つのパルス光L2,L3に分割される。レーザ光源1としては、例えば、フェムト秒パルスレーザが用いられる。パルス光L1は、中心波長が近赤外領域のうちの780〜800nm程度、繰り返し周期が数kHzから100MHzのオーダー、パルス幅が10〜150fs程度の直線偏光のパルス光である。
ビームスプリッタ2で分割された一方のパルス光L2は、さらにビームスプリッタ3で2つのパルス光L4,L5に分割される。一方のパルス光L4は、光伝導アンテナ4に照射される。パルス光L4は、光伝導アンテナ4を励起してテラヘルツパルス光を発生させるためのポンプ光(励起光)となり、光伝導アンテナ4からテラヘルツパルス光T1が発生する。他方のパルス光L5は、GaAs基板にGaAsエピタキシャル膜を形成した半導体部材5に照射される。パルス光L5は、半導体部材5を励起してテラヘルツパルス光を発生させるためのポンプ光となり、半導体部材5からテラヘルツパルス光T2が発生する。光伝導アンテナ4および半導体部材5は、いずれもテラヘルツ光源であるが、放射するテラヘルツパルス光の周波数帯域が異なる。なお、ビームスプリッタ3と光伝導アンテナ4との間およびビームスプリッタ3と半導体部材5との間に、それぞれ集光レンズを介挿してパルス光L4,L5の光束を絞ってもよい。光伝導アンテナ4については図2により後述する。
テラヘルツパルス光T1,T2は、0.01×1012〜100×1012ヘルツ(0.01THz〜100THz)の周波数領域に含まれる光である。テラヘルツパルス光T1は、ワイヤーグリッド6を透過して、曲面鏡7、8を経て試料Sに到達する。テラヘルツパルス光T2は、ワイヤーグリッド6で反射して、曲面鏡7、8を経て試料Sに到達する。すなわち、テラヘルツパルス光T1とT2は、ワイヤーグリッド6により合成されてテラヘルツパルス光T3となって試料Sに到達する。曲面鏡7、8としては、例えば、放物面鏡や楕円鏡等が用いられる。ワイヤーグリッド6については図3により後述する。
試料Sを透過したテラヘルツパルス光T4は、曲面鏡12,13、ワイヤーグリッド14を順次経由してテラヘルツ光検出器27に入射する。ワイヤーグリッド14とテラヘルツ光検出器27は、テラヘルツ光検出部20を構成する。テラヘルツ光検出器27については図4により後述する。
テラヘルツ光検出器27にテラヘルツパルス光T4が入射すると、電場が生じた状態になる。この部分にプローブ光を照射すると、電場強度に応じた光電流が流れ、これを測定回路30で測定することにより、その瞬間にテラヘルツ光検出器27に到達したパルス光の電場強度を得ることができる。プローブ光は以下の光路でテラヘルツ光検出器27に入射する。
ビームスプリッタ2で分割された他方のパルス光L3がプローブ光である。パルス光L3は、反射鏡21で光路を曲げられ、2枚または3枚の反射鏡からなる移動可能な可動鏡22に入射する。パルス光L3は、可動鏡22で反射し、反射鏡24,25,26を順次経由してテラヘルツ光検出器27に入射する。なお、反射鏡26とテラヘルツ光検出器27との間に集光レンズを介挿してパルス光L3の光束を絞ってもよい。
可動鏡22を駆動機構23によって図中矢印Aのように移動させることにより、可動鏡22の移動量に応じてパルス光L3の光路長を変化させることができる。この結果、パルス光L3がテラヘルツ光検出器27へ到達する時間が遅延する。駆動機構23は、制御・演算処理部31からの制御信号によって制御される。このように、遅延時間を変更しながらテラヘルツ光検出器27で検出される光の電場強度を測定することにより、時系列テラヘルツ分光が可能となる。さらに、この結果から、制御・演算処理部31で所定の理論式に基づいて演算することにより、試料の電気的特性や不純物濃度等が得られる。また、測定値等は、必要に応じてディスプレイ32に表示してもよい。
以下、本実施の形態で用いられるテラヘルツ光源、ビーム結合素子およびテラヘルツ光検出器について詳細に説明する。
図2は、テラヘルツ光源として用いられる光伝導アンテナ4の構造を模式的に示す斜視図である。光伝導アンテナ4は、光伝導膜4a、導電膜4bを有する。光伝導膜4aは、例えばGaAsやアモルファスシリコンの薄膜であり、サファイヤ基板上に形成される。導電膜4bは、光伝導膜4a上にパターニング形成された金属膜であり、パターン形状によりダイポール型、ボウタイ型、ストリップライン型などがある。半球レンズ4cは、例えばシリコンから作製され、テラヘルツ光などの赤外光を透過させる。
これらのパターン形状によって放射されるテラヘルツパルス光の強度や周波数帯域が異なる。ボウタイ型パターンの場合は、テラヘルツパルス光の放射強度は比較的大きく、ピーク周波数は0.1THz程度と低く、低周波領域の分光測定に有効である。ストリップライン型パターンの場合は、テラヘルツパルス光のピーク周波数は1THz付近にあり、4THz程度まで放射強度を有し、周波数帯域が比較的広い。
図2に示されるように、ダイポール型の導電膜4bにバイアス電圧Vbを印加した状態で、パルス光L4が領域Bを照射すると、テラヘルツパルス光T1が発生する。テラヘルツパルス光T1は、半球レンズ4cを通って外部に放射する。
図3は、ビーム結合素子として用いられるワイヤーグリッド6の構造を模式的に示す斜視図である。ワイヤーグリッド6は、ビームスプリッタの一種であり、直径5μm程度の細いタングステン線6aを等間隔(例えば、s=12.5μm)に張った素子である。ワイヤーグリッド6は、光の電気ベクトルがタングステン線6aに平行である場合は光を反射し、光の電気ベクトルがタングステン線6aに垂直である場合は光を透過させる。ワイヤーグリッド6は、1THzより低周波領域では、タングステン線6aに平行な偏光光の反射効率も垂直な偏光光の透過効率もほぼ100%である。
図3に示されるように、テラヘルツパルス光T1はワイヤーグリッド6を透過し、テラヘルツパルス光T2はワイヤーグリッド6で反射し、両者は合成されてテラヘルツパルス光T3となる。このとき、ワイヤーグリッド6のタングステン線6aの方向を基準に、テラヘルツパルス光T1,T2の偏光方向をそれぞれ透過効率、反射効率が100%となるように調整しておくと、合成されたテラヘルツパルス光T3の損失を低減することができる。テラヘルツパルス光T3は、テラヘルツパルス光T1とT2の両者の周波数帯域の光を含んでいる。例えば、テラヘルツパルス光T1が0.1〜1.8THzの周波数領域、テラヘルツパルス光T2が1.5〜3.0THzの周波数領域をもっているとすると、テラヘルツパルス光T3は、0.1〜3.0THzと広い周波数領域をもつ。
図4は、テラヘルツ光検出器として用いられる光伝導アンテナ27の構造を模式的に示す斜視図である。光伝導アンテナ27は、光伝導膜27a、導電膜27bを有する。光伝導膜27a、導電膜27bおよび半球レンズ27cは、それぞれ上述した光伝導膜4a、導電膜4bおよび半球レンズ4cと同じである。また、導電膜27bのパターン形状は、ダイポール型であるが、ボウタイ型でも使用できる。
図4に示されるように、試料Sを透過したテラヘルツパルス光T4は、半球レンズ27c側から光伝導アンテナ27へ入射し、半球レンズ27cを通ってダイポール型の導電膜27bの領域Cへ集光する。一方、プローブ光としてのパルス光L3も領域Cを照射する。このとき、ダイポール型パターンの2本のライン間には、テラヘルツパルス光T4の電場によって生じる光電流Imが流れ、この電場強度に応じた光電流Imは測定回路30により測定される。
次に、図5を参照して、テラヘルツパルス光T1,T2が直線偏光の光である場合、両者の合成について説明する。
テラヘルツパルス光T1の偏光方向は、光伝導アンテナ4のアンテナパターンの向きによって決まる。従って、光伝導アンテナ4を光軸AX1周りに回転することによりテラヘルツパルス光T1の偏光方向を調整することができる。不図示の回転機構により、光伝導アンテナ4を保持するホルダー15を回転させることにより、放射するテラヘルツパルス光T1の光軸周りに光伝導アンテナ4を回転させることができる。光伝導アンテナ4は、ダイポール型であるが、ボウタイ型パターン、ストリップライン型パターンの場合も同様に、テラヘルツパルス光の偏光方向を調整することができる。
一方、半導体部材5では、レーザ光L5(ポンプ光)が半導体表面に入射したときに発生するテラヘルツパルス光T2の偏光方向は、レーザ光L5の入射角度に依存する。レーザ光L5の入射方向に対するテラヘルツパルス光T2の偏光方向は一定なので、例えば、偏光方向を90°回転するには、半導体部材5の表面をYZ面に垂直、且つ紙面に対して45°の角度に設定し、紙面に垂直な方向からレーザ光を半導体部材5へ入射させる。このように、Y方向に対して45°の角度を維持して半導体部材5の向きを変え、発生するテラヘルツパルス光T2がワイヤーグリッド6に向かうようにレーザ光を半導体部材5へ入射させれば、テラヘルツパルス光T2の偏光方向を任意に変えることができる。
また、テラヘルツ光源として非線形光学結晶部材を用いている場合は、非線形光学結晶部材に入射する励起レーザ光(ポンプ光)の偏光方向を変えることにより、放射するテラヘルツパルス光の偏光方向を調整することができる。この場合、ビームスプリッタ3と非線形光学結晶部材との間に不図示の偏光方向変換素子を配置して、非線形光学結晶部材に入射するレーザ光の偏光方向を変える。偏光方向変換素子としては、例えば、1/2波長位相板等の波長位相板を単数、または複数組み合わせたもの、波長位相板と偏光子とを組み合わせたものが用いられる。非線形光学結晶部材に入射するレーザ光の偏光方向を変える際に、その偏光方向に応じて非線形光学結晶部材の結晶方位軸を合わせると、テラヘルツパルス光の発生効率が向上するのでより一層望ましい。
このように、テラヘルツパルス光T1,T2の偏光方向を調整してワイヤーグリッド6に入射させることにより、合成されたテラヘルツパルス光T3は、合成時の結合損失を低減しつつ広い周波数帯域を有することになる。
続いて、偏光成分を有するテラヘルツパルス光の検出について説明する。テラヘルツパルス光T1,T2が直線偏光の光であって、試料による偏光作用がないか、その作用が小さい場合、試料Sを透過したテラヘルツパルス光T4は、テラヘルツパルス光T1とT2に由来する互いに直交する2つの偏光方向の光を含んでいる。テラヘルツパルス光T4を検出する光伝導アンテナ27は、アンテナパターンに沿った偏光方向(図4中、矢印D方向)の光にのみ応答する。
そこで、テラヘルツパルス光T1とT2のいずれの偏光方向にも応答するように、光伝導アンテナ27を光軸AX3周りに回転し、アンテナパターンに沿った方向、すなわち信号検出方向をいずれの偏光方向に対しても45°の角度になるように配置する。これにより、2つの偏光成分の光を等しく受光することができるようになる。
また、本実施の形態のように、テラヘルツパルス光T1とT2でテラヘルツ光源の機構が異なる場合には、例えば、T1に比べてT2が強いという状況が考えられる。その際に、前述の方法で各々のテラヘルツパルス光の偏光方向を調整し、強いテラヘルツパルス光T2の検出効率を抑え、且つ弱いテラヘルツパルス光T1の検出効率を向上させることによって、所望の周波数特性を得ることができる。さらに、不図示の回転機構により、光伝導アンテナ27を保持するホルダー28を光軸AX3周りに回転させることにより、テラヘルツパルス光T1とT2の偏光方向に対して光伝導アンテナ27のパターン方向(信号検出方向)を任意の角度に設定することにより、テラヘルツパルス光T1またはT2の一方を所定の割合で重点的に検出することもできる。
さらに、光伝導アンテナ27の前側にワイヤーグリッド14を設けると、偏光方向を厳密に整えることができるので測定値がより正確になる。なお、ボウタイ型パターンの場合も同様に、アンテナパターンの信号検出方向を45°の角度にすることにより、より正確な測定値が得られる。
以上、放射するテラヘルツパルス光の周波数帯域が異なる複数のテラヘルツ光源を用いる場合を説明したが、放射特性が同一の複数のテラヘルツ光源を本実施の形態の配置構成で用いる場合も広い周波数帯域のテラヘルツパルス光を得ることができる。これを図6により説明する。
図6は、光伝導アンテナから放射するテラヘルツパルス光の周波数特性を示すグラフである。横軸が周波数、縦軸が放射強度である。1つの光伝導アンテナが放射するテラヘルツパルス光の周波数領域が0.1〜2.0THzの場合、その特性曲線はG1で示され、同一放射特性の2つの光伝導アンテナが放射するテラヘルツパルス光を合成したテラヘルツパルス光の特性曲線はG2で示される。特性曲線G1,G2は、いずれも放射強度のピーク値が約0.5THzにあるが、特性曲線G2の方がG1よりもピーク値が大きく、周波数全域に亘って高強度である。分光測定には一定レベル以上の強度が必要であり、そのレベルをIとすると、特性曲線G1では周波数帯域f1が使用可能であるのに対し、特性曲線G2では周波数帯域f2(>f1)が使用可能である。すなわち、同一放射特性の2つの光伝導アンテナが放射するテラヘルツパルス光を合成することにより、実質的に広い周波数帯域のテラヘルツパルス光を得ることができる。
なお、放射特性が同一であれば、半導体部材同士でも非線形光学結晶部材同士でも、光伝導アンテナ、半導体部材および非線形光学結晶部材のうちの任意の2つの組み合わせでも実質的に広い周波数帯域のテラヘルツパルス光を得ることができる。
以上説明したように、複数のテラヘルツ光源からの光を合成することにより、テラヘルツパルス光の周波数帯域が異なる場合でも、放射特性が同一である場合でも、単一のテラヘルツ光源からの光よりも広い周波数帯域の光を得ることができる。さらに、複数のテラヘルツパルス光の偏光方向を考慮することにより、合成時の結合損失を低減しつつ広い周波数帯域の光を得ることができる。
〈第2の実施の形態〉
図7は、第2の実施の形態によるテラヘルツ光発生装置とテラヘルツ光検出部を模式的に示す図である。第1の実施の形態と同様に、本実施の形態のテラヘルツ光発生装置も図1のテラヘルツ光測定装置100に適用される。本実施の形態では、図1〜5と同じ構成部品には同一符号を付し、第1の実施の形態と異なる特徴のみを説明する。
テラヘルツ光発生装置50は、レーザー光源1、ビームスプリッタ2,3、光伝導アンテナ4A、4Bおよび半導体基板51を備える。光伝導アンテナ4A、4Bは、放射特性が同じでも異なっていてもよい。本実施の形態では、ビーム結合素子としての半導体基板51にシリコン基板が用いられる。
光伝導アンテナ4Aから発生するテラヘルツパルス光T11は、曲面鏡7Aにより平行光にコリメートされてシリコン基板51に入射し、平行光のままシリコン基板51を透過して、曲面鏡8を経て試料Sに到達する。一方、光伝導アンテナ4Bから発生するテラヘルツパルス光T12は、曲面鏡7Bにより平行光にコリメートされてシリコン基板51に入射し、平行光のままシリコン基板51で反射して、曲面鏡8を経て試料Sに到達する。すなわち、テラヘルツパルス光T11とT12は、シリコン基板51により合成されて平行光のテラヘルツパルス光T13となって曲面鏡8に入射する。これにより、本実施の形態の配置構成においても広い周波数帯域のテラヘルツパルス光を得ることができる。なお、シリコン基板51は、基板内部での多重反射を小さく抑えるために、2mm程度の厚さが望ましい。
本実施の形態では、テラヘルツパルス光T11とT12とを平行光としてシリコン基板51に入射させるので、合成テラヘルツパルス光T13の波面に影響を及ぼすことがない。また、3つ以上のテラヘルツ光源から発生する3つ以上のテラヘルツパルス光の場合でも、図7に示されるのと同様の構成により合成することができる。
テラヘルツパルス光T11,T12が直線偏光の光である場合、両者の合成法は第1の実施の形態と同様である。すなわち、光伝導アンテナ4Aを保持するホルダー15Aを光軸周りに回転することにより、テラヘルツパルス光T11の偏光方向を調整することができる。同様に、光伝導アンテナ4Bを保持するホルダー15Bを回転させることにより、テラヘルツパルス光T12の偏光方向を調整することができる。このようにテラヘルツパルス光T11,T12の偏光方向を調整した上でシリコン基板51に入射させることにより、本実施の形態の配置構成においても、合成時の結合損失を低減しつつ広い周波数帯域のテラヘルツパルス光を得ることができる。
以下、本発明の変形例を説明する。
第1、第2の実施の形態では、テラヘルツ光検出器は1つであったが、試料Sからの透過光(テラヘルツパルス光T4またはT14)を偏光ビームスプリッタで2つに分割し、2つの検出器で受光するように構成してもよい。この場合、検出する光の偏光成分に合わせて、2つの検出器を別々に回転調整できるように構成する。また、上記の実施の形態では、テラヘルツ光検出器として光伝導アンテナを用いたが、感度が高いボロメータなどの熱検出型検出器を用いてもよい。
図1に示されるテラヘルツ光測定装置100は、試料Sの各種物性値の二次元分布を得るイメージング装置としても用いられる。すなわち、制御・演算処理部31からの出力信号で駆動機構11を制御し、試料Sを保持するホルダー9をテラヘルツパルス光T3の光軸に垂直な面内で二次元的に走査する。
上記の実施の形態では、透過型の分光測定装置について説明したが、反射型の分光測定装置にも本発明が適用できる。また、本発明は、その特徴を損なわない限り、以上説明した実施の形態に何ら限定されない。
本発明によるテラヘルツ光測定装置を模式的に示す全体構成図である。 本発明の第1の実施の形態によるテラヘルツ光源の斜視図である。 本発明の第1の実施の形態によるビーム結合素子の斜視図である。 本発明の第1の実施の形態によるテラヘルツ光検出器の斜視図である。 本発明の第1の実施の形態によるテラヘルツ光発生装置とテラヘルツ光検出部を模式的に示す図である。 本発明の第1の実施の形態による光伝導アンテナから放射するテラヘルツパルス光の周波数特性を示すグラフである。 本発明の第2の実施の形態によるテラヘルツ光発生装置とテラヘルツ光検出部を模式的に示す図である。
符号の説明
1:レーザ光源
2,3:ビームスプリッタ
4,4A,4B:光伝導アンテナ
5:半導体部材
6,14:ワイヤーグリッド
10、50:テラヘルツ光発生装置
20:テラヘルツ光検出部
27,27A:テラヘルツ光検出器
30:測定回路
31:制御・演算処理部
32:表示部
40:光路長変更部
51:半導体基板(シリコン基板)
100:テラヘルツ光測定装置
L1〜L3:パルス光
T1〜T4:テラヘルツパルス光
T11〜T14:テラヘルツパルス光

Claims (9)

  1. 周波数帯域の異なるテラヘルツ光を放射する複数のテラヘルツ光源と、
    前記複数のテラヘルツ光源の各々に励起レーザ光を照射するレーザ光源と、
    前記複数のテラヘルツ光源から放射されるテラヘルツ光を一つに合成するビーム結合素子とを備えることを特徴とするテラヘルツ光発生装置。
  2. 放射特性が等しいテラヘルツ光を放射する複数のテラヘルツ光源と、
    前記複数のテラヘルツ光源の各々に励起レーザ光を照射するレーザ光源と、
    前記複数のテラヘルツ光源から放射されるテラヘルツ光を一つに合成するビーム結合素子とを備えることを特徴とするテラヘルツ光発生装置。
  3. 請求項1または2に記載のテラヘルツ光発生装置において、
    前記ビーム結合素子を透過するように前記ビーム結合素子に入射するテラヘルツ光の偏光方向と、前記ビーム結合素子で反射するように前記ビーム結合素子に入射するテラヘルツ光の偏光方向とが直交するように、前記複数のテラヘルツ光源を配置することを特徴とするテラヘルツ光発生装置。
  4. 請求項3に記載のテラヘルツ光発生装置において、
    前記ビーム結合素子を透過するように前記ビーム結合素子に入射するテラヘルツ光および前記ビーム結合素子で反射するように前記ビーム結合素子に入射するテラヘルツ光をそれぞれ平行光とするコリメート用光学素子を設けることを特徴とするテラヘルツ光発生装置。
  5. 請求項1〜4に記載のテラヘルツ光発生装置において、
    前記ビーム結合素子は、ワイヤーグリッドであることを特徴とするテラヘルツ光発生装置。
  6. 請求項1〜4に記載のテラヘルツ光発生装置において、
    前記ビーム結合素子は、半導体基板であることを特徴とするテラヘルツ光発生装置。
  7. 請求項6に記載のテラヘルツ光発生装置において、
    前記半導体基板は、シリコンであることを特徴とするテラヘルツ光発生装置。
  8. 請求項1〜7のいずれかに記載のテラヘルツ光発生装置と、
    前記ビーム結合素子により一つに合成されたテラヘルツ光を前記試料に照射し、前記試料からのテラヘルツ光を検出手段へ導くテラヘルツ光学系と、
    前記試料からのテラヘルツ光を検出するテラヘルツ光検出器と、
    前記テラヘルツ光検出器により検出された値に基づいて前記試料の物性値を演算する演算手段とを備えることを特徴とするテラヘルツ光測定装置。
  9. 請求項3または4に記載のテラヘルツ光発生装置と、
    前記ビーム結合素子により一つに合成されたテラヘルツ光を前記試料に照射し、前記試料からのテラヘルツ光を検出手段へ導くテラヘルツ光学系と、
    前記試料からのテラヘルツ光を検出する光伝導アンテナと、
    前記テラヘルツ光検出器により検出された値に基づいて前記試料の物性値を演算する演算手段とを備え、
    互いに偏光方向が直交する、前記ビーム結合素子を透過するように前記ビーム結合素子に入射するテラヘルツ光、および前記ビーム結合素子で反射するように前記ビーム結合素子に入射するテラヘルツ光の偏光方向に対して、前記光伝導アンテナのアンテナパターンに沿った方向が所定の角度をなすように、前記光伝導アンテナを配置することを特徴とするテラヘルツ光測定装置。
JP2003363785A 2003-10-23 2003-10-23 テラヘルツ光発生装置およびテラヘルツ光測定装置 Pending JP2005129732A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003363785A JP2005129732A (ja) 2003-10-23 2003-10-23 テラヘルツ光発生装置およびテラヘルツ光測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003363785A JP2005129732A (ja) 2003-10-23 2003-10-23 テラヘルツ光発生装置およびテラヘルツ光測定装置

Publications (1)

Publication Number Publication Date
JP2005129732A true JP2005129732A (ja) 2005-05-19

Family

ID=34642999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003363785A Pending JP2005129732A (ja) 2003-10-23 2003-10-23 テラヘルツ光発生装置およびテラヘルツ光測定装置

Country Status (1)

Country Link
JP (1) JP2005129732A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020268A (ja) * 2006-07-12 2008-01-31 Shimadzu Corp テラヘルツ波応答測定装置
JP2009053096A (ja) * 2007-08-28 2009-03-12 Otsuka Denshi Co Ltd 測定装置
WO2009050993A1 (ja) * 2007-10-16 2009-04-23 Aisin Seiki Kabushiki Kaisha 非接触膜厚測定方法及び装置
KR100926032B1 (ko) * 2007-11-12 2009-11-11 한국표준과학연구원 시간분해 THz 펌프-프로브 분광기
JP2010002214A (ja) * 2008-06-18 2010-01-07 Advantest Corp 光検出装置
WO2011013452A1 (ja) * 2009-07-29 2011-02-03 株式会社村田製作所 被測定物の特性を測定する方法、測定装置およびフィルタ装置
JP2012177896A (ja) * 2011-02-01 2012-09-13 Arkray Inc 光学結晶、テラヘルツ波発生装置及び方法
US8304732B2 (en) 2009-09-03 2012-11-06 Murata Manufacturing Co., Ltd. Method of measuring characteristics of specimen and flat-plate periodic structure
WO2013077097A1 (ja) * 2011-11-25 2013-05-30 学校法人慶應義塾 偏波解析装置、偏波解析方法、物性測定装置、及び物性測定方法
EP2538200A4 (en) * 2010-02-26 2016-10-05 Aisin Seiki APPARATUS AND METHOD FOR INSPECTING COATING FILMS
CN108507970A (zh) * 2018-06-05 2018-09-07 中国工程物理研究院激光聚变研究中心 太赫兹测试样品装置
WO2024111691A1 (ko) * 2022-11-22 2024-05-30 주식회사 마인즈아이 테라헤르츠파 반사광학계 모듈

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4654996B2 (ja) * 2006-07-12 2011-03-23 株式会社島津製作所 テラヘルツ波応答測定装置
JP2008020268A (ja) * 2006-07-12 2008-01-31 Shimadzu Corp テラヘルツ波応答測定装置
JP2009053096A (ja) * 2007-08-28 2009-03-12 Otsuka Denshi Co Ltd 測定装置
WO2009050993A1 (ja) * 2007-10-16 2009-04-23 Aisin Seiki Kabushiki Kaisha 非接触膜厚測定方法及び装置
JPWO2009050993A1 (ja) * 2007-10-16 2011-03-03 アイシン精機株式会社 非接触膜厚測定方法及び装置
KR100926032B1 (ko) * 2007-11-12 2009-11-11 한국표준과학연구원 시간분해 THz 펌프-프로브 분광기
JP2010002214A (ja) * 2008-06-18 2010-01-07 Advantest Corp 光検出装置
WO2011013452A1 (ja) * 2009-07-29 2011-02-03 株式会社村田製作所 被測定物の特性を測定する方法、測定装置およびフィルタ装置
US8304732B2 (en) 2009-09-03 2012-11-06 Murata Manufacturing Co., Ltd. Method of measuring characteristics of specimen and flat-plate periodic structure
EP2538200A4 (en) * 2010-02-26 2016-10-05 Aisin Seiki APPARATUS AND METHOD FOR INSPECTING COATING FILMS
JP2012177896A (ja) * 2011-02-01 2012-09-13 Arkray Inc 光学結晶、テラヘルツ波発生装置及び方法
WO2013077097A1 (ja) * 2011-11-25 2013-05-30 学校法人慶應義塾 偏波解析装置、偏波解析方法、物性測定装置、及び物性測定方法
JPWO2013077097A1 (ja) * 2011-11-25 2015-04-27 学校法人慶應義塾 偏波解析装置、偏波解析方法、物性測定装置、及び物性測定方法
CN108507970A (zh) * 2018-06-05 2018-09-07 中国工程物理研究院激光聚变研究中心 太赫兹测试样品装置
CN108507970B (zh) * 2018-06-05 2024-02-02 中国工程物理研究院激光聚变研究中心 太赫兹测试样品装置
WO2024111691A1 (ko) * 2022-11-22 2024-05-30 주식회사 마인즈아이 테라헤르츠파 반사광학계 모듈

Similar Documents

Publication Publication Date Title
TWI665840B (zh) 使用單體頻寬窄化裝置之雷射總成及檢測系統
Song et al. Fast continuous terahertz wave imaging system for security
EP3521809B1 (en) Terahertz full-polarization-state detection spectrograph
JP2005129732A (ja) テラヘルツ光発生装置およびテラヘルツ光測定装置
WO2006035780A1 (ja) 赤外光放射装置、赤外光検出装置および時系列変換パルス分光計測装置ならびに赤外光放射方法
JP2008096210A (ja) 単発テラヘルツ波時間波形計測装置
JP2014525141A5 (ja)
RU2539678C2 (ru) Способ генерации электромагнитного излучения в терагерцовом диапазоне и устройство для получения электромагнитного излучения в терагерцовом диапазоне
JP2009300108A (ja) テラヘルツ分光装置
US11644418B2 (en) Far-infrared light source and far-infrared spectrometer
JP2009053096A (ja) 測定装置
CN106546333A (zh) 高动态范围红外成像光谱仪
JP2005537489A (ja) テラヘルツ分光法
WO2009146561A1 (en) Dual mode terahertz spectroscopy and imaging systems and methods
JP4091214B2 (ja) テラヘルツ波分光器
JP2024023306A (ja) 任意の偏光方向を有するテラヘルツ放射の生成及び検出
JP2005317669A (ja) テラヘルツ波発生装置及びそれを用いた計測装置
JP3922462B2 (ja) 赤外光放射装置および時系列変換パルス分光計測装置ならびに赤外光放射方法
JP2004085359A (ja) テラヘルツパルス光計測装置
JP4248665B2 (ja) 赤外分光装置
JP5600374B2 (ja) テラヘルツ分光装置
KR102534878B1 (ko) 테라헤르츠 소자
JP2008089546A (ja) 電磁波測定装置
JP2005227021A (ja) テラヘルツ光測定装置
JP4393147B2 (ja) テラヘルツ電磁波発生素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070918