KR102534878B1 - 테라헤르츠 소자 - Google Patents

테라헤르츠 소자 Download PDF

Info

Publication number
KR102534878B1
KR102534878B1 KR1020160010036A KR20160010036A KR102534878B1 KR 102534878 B1 KR102534878 B1 KR 102534878B1 KR 1020160010036 A KR1020160010036 A KR 1020160010036A KR 20160010036 A KR20160010036 A KR 20160010036A KR 102534878 B1 KR102534878 B1 KR 102534878B1
Authority
KR
South Korea
Prior art keywords
thz
electrode
waveguide
present
filter line
Prior art date
Application number
KR1020160010036A
Other languages
English (en)
Other versions
KR20170089613A (ko
Inventor
문기원
박경현
이원희
김남제
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Priority to KR1020160010036A priority Critical patent/KR102534878B1/ko
Publication of KR20170089613A publication Critical patent/KR20170089613A/ko
Application granted granted Critical
Publication of KR102534878B1 publication Critical patent/KR102534878B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/04Fixed joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2002Dielectric waveguide filters

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

본 발명은 소형으로 제작 가능하면서도 검출 효율 및 성능이 향상된 테라헤르츠 소자를 제공한다.
본 발명의 실시예에 의한 테라헤르츠 소자는, 제1 및 제2 전극과, 상기 제1 및 제2 전극에 각각 연결되는 제1 및 제2 웨이브 가이드와, 상기 제1 및 제2 웨이브 가이드 사이의 갭 영역을 포함하며, 상기 제1 전극 및 상기 제1 웨이브 가이드의 사이와, 상기 제2 전극 및 상기 제2 웨이브 가이드의 사이 중 적어도 하나에 삽입된 미앤더(meander) 구조의 필터 라인을 포함한다.

Description

테라헤르츠 소자{TERAHERTZ DEVICE}
본 발명은 테라헤르츠파의 발생 및 검출에 이용될 수 있는 테라헤르츠 소자에 관한 것이다.
일반적으로, 전자기파 스펙트럼 대역에서 0.1 내지 10THz(1THz는 1012Hz) 영역을 테라헤르츠파로 정의하고 있다. 특히, 0.1 내지 3THz 영역은 매우 다양한 분자들의 회전 및 공진 주파수들이 존재하는 영역이다. 이들 분자 지문들을 테라헤르츠파를 활용하여 비파괴, 미개봉, 비접촉법으로 획득함으로써, 의료, 의학, 농업식품, 환경계측, 바이오, 통신, 비파괴 조사, 첨단재료 평가 등에서 신개념의 미래 핵심 기술을 제공할 수 있다. 이에 따라, 관련 핵심기술 개발에 치열한 경쟁이 진행되고 있다.
본 발명이 이루고자 하는 기술적 과제는, 소형으로 제작 가능하면서도 검출 효율 및 성능이 향상된 테라헤르츠 소자를 제공하는 것이다.
본 발명의 실시예에 의한 테라헤르츠 소자는, 제1 및 제2 전극과, 상기 제1 및 제2 전극에 각각 연결되는 제1 및 제2 웨이브 가이드와, 상기 제1 및 제2 웨이브 가이드 사이의 갭 영역을 포함하며, 상기 제1 전극 및 상기 제1 웨이브 가이드의 사이와, 상기 제2 전극 및 상기 제2 웨이브 가이드의 사이 중 적어도 하나에 삽입된 미앤더(meander) 구조의 필터 라인을 포함한다.
실시예에 따라, 상기 필터 라인은, 상기 제1 및 제2 전극과 상기 제1 및 제2 웨이브 가이드가 형성된 평면 상에 형성된 평면형 필터 라인일 수 있다.
실시예에 따라, 상기 제1 전극은 상기 제1 웨이브 가이드의 양단에 형성되고, 상기 제1 웨이브 가이드의 양단과 상기 제1 전극의 사이에는 각각 상기 필터 라인이 삽입될 수 있다.
실시예에 따라, 상기 제2 전극은 상기 제2 웨이브 가이드의 양단에 상기 제1 전극과 대향되도록 형성되고, 상기 제2 웨이브 가이드의 양단과 상기 제2 전극의 사이에도 각각 상기 필터 라인이 삽입될 수 있다.
실시예에 따라, 상기 필터 라인은 수 내지 수십 마이크로미터(㎛)의 주기를 갖는 미앤더 구조로 형성될 수 있다.
본 발명은 전극과 웨이브 가이드의 사이에 미앤더 구조의 필터 라인이 삽입된 테라헤르츠 소자를 제공한다.
이러한 본 발명에 의하면, 소형화 및 단가 절감이 가능하면서도 시영역에서의 다중반사, 즉 주파수 영역에서의 공명현상을 감소시켜 성능을 개선한 고효율의 테라헤르츠 소자를 제공할 수 있다. 이에 따라, 테라헤르츠 소자의 응용 범위를 확장시킬 수 있다.
도 1은 테라헤르츠 광전도 안테나의 구조 및 동작 원리를 나타내는 도면이다.
도 2는 테라헤르츠 시영역 분광, 영상 시스템의 구조를 나타내는 도면이다.
도 3은 테라헤르츠 포토믹서의 구조 및 동작 원리를 나타내는 도면이다.
도 4는 주파수 영역 테라헤르츠 분광 시스템의 구조를 나타내는 도면이다.
도 5는 테라헤르츠 광전도 안테나 구조의 일례를 상세히 나타내는 도면으로서, 특히 이러한 구조의 테라헤르츠 광전도 안테나에서 발생할 수 있는 다중반사 및 공명현상을 나타내는 도면이다.
도 6은 다중반사에 의한 테라헤르츠 광전도 안테나의 시영역 신호 및 주파수 스펙트럼을 나타내는 도면이다.
도 7은 본 발명의 실시예에 의한 테라헤르츠 소자를 나타내는 도면이다.
도 8은 본 발명의 효과를 나타내는 도면으로서, 특히 다양한 주기의 미앤더 구조의 효과를 나타내는 도면이다.
이하, 본 발명의 실시예 및 그 밖에 당업자가 본 발명의 내용을 쉽게 이해하기 위하여 필요한 사항에 대하여 상세히 설명하기로 한다. 이하에서 소개될 실시예나 관련 기술은 본 발명의 이해를 돕기 위하여 구체적으로 기술되었으며, 그 표현 여부에 관계없이 예시적인 것에 불과하다. 즉, 본 발명은 이하에서 개시되는 실시예에 국한되는 것이 아니며, 다양한 형태로 변경되어 실시될 수도 있을 것이다.
시간 대역에서 1 테라헤르츠(terahertz; 이하, THz)는 초당 1012회의 진동을 의미하는 것으로서, 1 피코초(10-12초)의 짧은 진동 주기를 갖는다. 따라서, THz파의 발생 및 검출을 위해서는, 소자를 설계하고 물질을 선택하면서부터 초고속의 동작이 가능하도록 설계하여야 한다.
하지만, 전하의 평균 수명시간이 수 나노초(10-10초)인 일반적인 반도체 물질로는 THz파의 발생 및 검출이 용이하지 않다. 따라서, 인위적으로 반도체 내에서 전하의 수명시간을 수 피코초 이하, 예컨대 1 피코초 이하로 줄이는 기술이 개발되어 왔다.
이와 관련하여, 분자선 증착법을 통해 일반적인 성장 조건보다 저온에서 결정 성장을 수행하여 결정 결함을 인위적으로 생성하고, 이러한 결정 결함을 통해 과도 전하를 흡수하여 전하의 수명시간을 낮추는 기술이 개발되었다.
특히, THz 검출기에 있어서 이와 같이 결함 제어된 물질은 필수적이다. 다만, 결함 제어된 물질은 제작 방법의 특성상 매우 고가이다. 따라서, THz파의 발생 및 검출을 위하여 전하의 수명시간을 낮추는 기술을 실제로 적용하기 위해서는 단가를 낮추는 일이 중요하다.
반도체 칩 단위에서 단가를 낮추는 방법으로는 그 크기를 줄이는 방법이 있다. 동일한 면적의 기판을 가공하여 생산할 수 있는 칩의 수가 많다면, 그 단가가 감소하게 되어 현실적 응용에 있어서는 중요한 의미가 있다.
하지만, 이와 같이 칩의 크기를 줄이게 되는 경우, 칩 내부의 바이어스 라인을 비롯한 금속 구조들이 안테나로 작용하면서, 광대역 검출에 있어서 원치 않는 주파수 특성이 나타나게 된다. 이는 특히 분광 응용에 있어서 치명적이다.
이에, 본 발명에서는 원치 않는 주파수 특성을 저감하고, 궁극적으로는 제거함으로써, THz 소자 및 모듈의 크기를 감소시킬 수 있는 방안을 제공한다.
이러한 본 발명을 적용할 수 있는 THz 소자로는, THz파의 발생 및/또는 검출에 이용되는 THz 광전도 안테나(이하, THz-PCA) 혹은 THz 포토믹서(이하, THz-PM) 등이 있을 수 있다. 본 발명에 의한 THz 소자의 구체적인 실시예에 대해서는 후술하기로 한다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예 및 그 밖에 당업자가 본 발명의 내용을 쉽게 이해하기 위하여 필요한 사항에 대하여 상세히 설명하기로 한다. 다만, 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 다양한 형태로 변경되어 실시될 수도 있을 것이다.
도 1은 THz 소자의 일례로서, THz-PCA의 구조 및 동작 원리를 나타내는 도면이다.
도 1을 참조하면, THz 발생용 PCA는 매우 짧은 지속 시간(예컨대, 1 picosecond 미만의 지속 시간)을 갖는 과도 전류를 생성하고, 이를 통해 THz 펄스(107)를 발생시킨다.
보다 구체적으로, 과도 전류의 발생을 위해 광전도 특성을 갖는 반도체 혹은 기타 물질로 이루어진 기판(101) 상에 양극(102) 및 음극(103)을 형성하되, 양극(102)과 음극(103)의 사이에 간격을 두도록(즉, 양극(102)과 음극(103)의 사이에 갭(gap) 영역(104)이 형성되도록) 금속 전극을 형성한다. 이러한 양극(102)과 음극(103) 사이에 소정의 전압(105)을 인가하여, 갭 영역(104)에 전기장이 형성되도록 한다.
이러한 갭 영역(104)에 매우 짧은 지속 시간을 갖는 광 펄스(106)를 입사시키면, 기판(101)의 광전도 특성에 의해 순간적으로 양극(102)과 음극(103) 사이에 과도 전류가 흐르게 된다. 이 과도 전류는 전자기 법칙에 따라 전류의 시간 미분에 비례하는 전기장 크기를 갖는 THz 펄스(107)를 방출한다.
방출 효율을 향상시키기 위하여 양극(102) 및 음극(103)의 형태는 평면형 안테나 구조로 제작될 수 있다.
또한, 역시 방출 효율의 향상을 위하여 초반구형(hyper-hemispherical) 구조를 갖는 렌즈(108)가 이용될 수 있다. 렌즈(108)는 THz파의 지향성을 위하여 THz 펄스(107)가 방사되는 방향에 배치될 수 있다.
도 2는 THz 시영역 분광, 영상 시스템의 구조를 나타내는 도면이다. 보다 구체적으로, 도 2에서는 도 1에 도시된 바와 같은 THz-PCA를 이용한 THz 시영역 분광 시스템(terahertz time-domain spectroscopy; 이하 THz-TDS)을 도시하였다.
도 2를 참조하면, THz파의 발생 및 검출을 위한 펄스 광원으로서 200 펨토초(femtosecond, fs) 이하의 지속 시간을 갖는 펄스 레이저(201)를 적용하여 도 1에 도시된 THz-PCA를 통해 THz파의 발생 및 검출을 수행한다. 이러한 THz파는 전송단 측의 발생용 PCA(202)에서 발생되어, 수신단 측의 검출용 PCA(203)에서 검출된다.
효율을 높이기 위하여, 발생 및 측정을 위한 레이저는 도 1에 도시된 바와 같은 THz-PCA의 갭 영역(104)에 렌즈 등을 통해 집속하며, 발생된 THz파는 THz 렌즈(204)를 통해 시편(205) 및 검출용 PCA(203)로 집속된다.
THz파의 특성은 데이터 획득장치(207)를 통해 획득할 수 있다. 보다 구체적으로, 데이터 획득장치(207)는 광학적 지연선(delay line; DL)(206)을 스캔함에 의해 시편(205)을 투과한 THz파의 시영역 특성(207a)을 획득하고, 푸리에 변환(예컨대, FFT)을 통해 THz파의 스펙트럼 특성(207b)을 획득할 수 있다. 이와 같은 THz-TDS를 통해 THz 분광 측정을 수행할 뿐 아니라, 시편(205)을 2차원 평면 상에서 주사(raster-scanning)하여 분광 이미지를 획득하는 것이 가능하다.
도 2에서 설명되지 않은 기호 M 및 BS는 각각 미러(mirror) 및 빔-스플리터(beam-spliter)를 의미하며, 이러한 미러(M) 및 빔-스플리터(BS)는 광의 경로를 제어하기 위하여 이용될 수 있다.
도 3은 THz 포토믹서의 구조 및 동작 원리를 나타내는 도면이다. 보다 구체적으로, 도 3에서는 연속파 THz 신호의 발생을 위한 THz-PM의 구조 및 동작 원리를 도시하였다.
도 3을 참조하면, THz 발생용 PM은 THz 주파수의 매우 빠른 속도로 크기가 변조되는 과도 전류를 생성하고, 이를 통해 THz 연속파(307)를 발생시킨다.
보다 구체적으로, 과도 전류의 발생을 위해 광전도 특성을 갖는 반도체 혹은 기타 물질로 이루어진 기판(301) 상에 양극(302) 및 음극(303)을 형성하고, 양극(302)과 음극(303) 사이에 핑거 구조 등을 포함하는 갭 영역(304)을 두도록 금속 전극을 형성한다. 양극(302)과 음극(303) 사이에는 전압(305)을 인가하여, 갭 영역(304)에 전기장이 형성되도록 한다.
이러한 갭 영역(304)에 THz 주파수로 진동하는 광원(306)을 입사시키면, 기판(301)의 광전도 특성에 의해 양극(302)과 음극(303) 사이에 연속적으로 진동하는 전류가 생성되고, 이 전류는 전자기 법칙에 따라 THz 연속파(307)를 방출한다.
THz 주파수로 진동하는 광원을 얻기 위해서는, 서로 다른 두 파장을 갖는 레이저를 공간적으로 중첩시켜 시영역에서 진동하는 비팅 광원(306)을 생성하는 방법이 이용될 수 있다.
방출 효율을 향상시키기 위하여 양극(302) 및 음극(303)의 형태는 평면형 안테나 구조로 제작될 수 있다. 또한, 역시 방출 효율의 향상을 위해 초반구형 구조를 갖는 렌즈(308)가 이용될 수 있다.
도 4는 주파수 영역 THz 분광 시스템의 구조를 나타내는 도면이다. 보다 구체적으로, 도 4에서는 PM을 사용한 주파수 영역 THz 분광 시스템(THz frequency-domain spectrometer, THz-FDS)의 예를 도시하였다.
도 4를 참조하면, 비팅 광원(403)의 생성을 위해 제1 파장(주파수)(ω1)을 갖는 제1 반도체 레이저(401)와 제2 파장(주파수)(ω2)을 갖는 제2 반도체 레이저(402)를 광학계를 통해 결합하여, 제1 주파수와 제2 주파수의 차(ω1-ω2)에 해당되는 주파수로 진동하는 비팅 광원(403)을 생성한다. 생성된 비팅 광원(403)은 빔-스플리터(BS)에 의해 나뉘어 THz 발생용 PM(404)과 검출용 PM(405)으로 각각 입사된다.
위상 차이의 제어를 위하여, 발생 혹은 검출 중 하나의 광 경로 상에는 페이저(Phaser, 406)가 삽입될 수 있다.
도면 상에 도시되지는 않았으나, 광 효율의 증가를 위해 발생/검출용 PM(404, 405)의 갭 영역(도 3의 304)에 광원을 집속하기 위한 렌즈가 사용될 수 있다.
THz-TDS와 마찬가지로, THz-FDS 역시 분광 및 영상에 응용될 수 있다. 특히, 분광에 있어서, 제1 및/또는 제2 반도체 레이저(401, 402)의 주파수를 조절하여 비팅 광원(403)의 주파수를 제어함으로써, THz 연속파(도 3의 307)의 주파수를 제어할 수 있다.
도 5는 THz-PCA 구조의 일례를 상세히 나타내는 도면으로서, 특히 이러한 구조의 THz-PCA에서 발생할 수 있는 다중반사 및 공명현상을 나타내는 도면이다.
도 5를 참조하면, 광전도 특성을 갖는 매우 짧은 전하 수명시간을 갖는 기판(예컨대, 도 1의 101) 상에, 도 5에 도시된 바와 같은 THz-PCA 구조의 금속막을 형성한다. 이러한 금속막에는 제1 전극(501) 및 제2 전극(502)과, 이들에 연결되는 제1 웨이브 가이드(503a) 및 제2 웨이브 가이드(503b) 등이 포함될 수 있다.
제1 전극(501) 및 제2 전극(502)은 서로 다른 전압을 인가받는 전극이다. 일례로, 제1 전극(501)은 양극으로 설정되고, 제2 전극(502)은 음극으로 설정될 수 있다. 실시예적으로, 제1 전극(501)에는 소정의 바이어스 전압이 인가되고, 제2 전극(502)에는 그라운드 전압이 인가될 수 있다.
제1 및 제2 웨이브 가이드(503a, 503b)에 의해 웨이브 가이드 구조(503)가 구성된다. 이러한 제1 및 제2 웨이브 가이드(503a, 503b)는 광전도 스위치의 역할을 하는 갭 영역(504)을 사이에 두도록 형성되어, 광전도 스위치에 여기된 THz 전자파를 가이드한다. 도 5에서, 제1 및 제2 웨이브 가이드(503a, 503b) 각각의 전체 길이는 L로 정의하였다.
이러한 구조의 THz-PCA에 있어서, THz파의 광 스위칭(샘플링)은 갭 영역(504)에 펄스 레이저를 입사시킴으로써 달성될 수 있다. 광 샘플링 순간 펄스 레이저에 의해 순간적으로 광전하가 생성되고, 생성된 광전하가 THz파에 의해 갭 영역(504)의 제1 전극(501)과 제2 전극(502) 사이에 형성된 전기장에 의해 분리되게 된다. 이에 따라, 제1 전극(501)과 제2 전극(502)에 연결된 외부 검출기(미도시)에 전류가 흐르게 되는데, 이를 통해 THz파의 전기장 세기를 측정하게 된다. 또한, THz 펄스와 광 펄스 간의 시간 차를 조절함으로써 시영역에서 전기장의 세기를 측정할 수 있게 된다.
도 5에 도시된 바와 같은 구조의 THz-PCA에서, 입사된 THz 펄스는 웨이브 가이드 구조(503)의 모드를 여기시킨다. 여기된 모드는 웨이브 가이드 구조(503)를 따라 전파되는데, 구조 상의 불연속점을 만날 경우 반사와 투과 현상을 일으킨다. 이에 따라, 시영역 측정 결과에서의 다중반사나 특정 주파수 성분에서의 공명현상이 나타나는 등 THz-PCA의 성능 저하가 유발된다.
이와 같이 다중반사나 공명현상 등에 의해 발생할 수 있는 성능 저하를 개선하기 위하여 웨이브 가이드 구조(503)의 길이(L)를 늘리는 방안이 있다. 일례로, 정밀한 분광을 위한 검출기의 경우, 웨이브 가이드 구조(503)의 길이(L)가 1cm 이상이 되도록 설계하게 된다.
하지만, 이와 같이 웨이브 가이드 구조(503)의 길이(L)가 길어지게 되면, 하나의 기판에서 제작될 수 있는 소자의 숫자가 한정된다. 따라서, 전술한 바와 같은 다중반사 및 공명현상에 의한 시영역 파형 및 광대역 스펙트럼 상의 왜곡은 방지하면서도 소자의 크기, 특히 웨이브 가이드 구조(503)의 길이(L)를 줄일 수 있는 방안이 마련되어야 한다.
도 6은 다중반사에 의한 THz-PCA의 시영역 신호 및 주파수 스펙트럼을 나타내는 도면이다. 특히, 도 6은 도 5에 도시된 구조의 THz-PCA를 검출기로 사용하여, 시영역 분광 기법으로 THz 펄스를 측정한 결과를 나타낸 것이다.
도 6의 (A)를 참조하면, 주된 THz 펄스(601) 이후, 다중 펄스(602)가 나타난 것을 확인할 수 있다.
이를 푸리에 변환(예컨대, FFT)한 결과, 도 6의 (B)에 도시된 바와 같이, 낮은 주파수 영역의 스펙트럼 상에서 다중반사에 의해 여러 개의 피크(peak)들(603)이 나타난 것을 확인할 수 있다. 이는 분광학적 응용을 어렵게 만드는 요인으로서, 이를 최소화할 필요가 있다.
도 7은 본 발명의 실시예에 의한 THz 소자를 나타내는 도면이다. 도 7에 도시된 바와 같은 실시예적 구조를 적용할 수 있는 THz 소자로서는 THz-PCA 혹은 THz-PM 등이 있을 수 있다. 편의상, 도 7의 실시예를 설명함에 있어, 도 5와 유사 또는 동일한 구성요소에 대한 상세한 설명은 생략하기로 한다.
도 7을 참조하면, 본 발명의 실시예에 의한 THz 소자는, 구불구불한 미앤더 구조(meander structure)의 전극 연결라인을 사용하여 구현된 필터 라인(705)을 포함한다.
보다 구체적으로, 본 발명의 실시예에 의한 THz 소자는, 광전도 특성을 갖는 기판(예컨대, 도 1의 101) 상에 형성된 제1 전극(701) 및 제2 전극(702)과, 제1 전극(701)에 연결되는 제1 웨이브 가이드(703a)와 제2 전극(702)에 연결되는 제2 웨이브 가이드(703b)를 포함하는 웨이브 가이드 구조(703)와, 제1 웨이브 가이드(703a) 및 제2 웨이브 가이드(703b)의 사이에 형성된 갭 영역(704)을 포함한다.
실시예에 따라 제1 전극(701) 및 제2 전극(702)은 각각 제1 전압이 인가되는 제1 전극 패드 및 제2 전압이 인가되는 제2 전극 패드와 일체형으로 구현될 수도 있다. 이 경우, 제1 및 제2 전극(701, 702)을 각각 제1 및 제2 전극 패드로 간주하여도 무방하다.
단, 본 발명의 실시예에 의한 THz 소자는, 제1 전극(701) 및 제1 웨이브 가이드(703a)의 사이와, 제2 전극(702) 및 제2 웨이브 가이드(703b)의 사이 중 적어도 하나에 삽입된 미앤더(meander) 구조의 필터 라인(필터링 기능을 하는 전극 연결라인)(705)을 포함한다. 이에 따라, 다중반사의 영향을 최소화할 수 있다.
예컨대, 미앤더 구조의 필터 라인(705)은 제1 전극(701) 및 제1 웨이브 가이드(703a)의 사이와, 제2 전극(702) 및 제2 웨이브 가이드(703b)의 사이 모두에 각각 형성될 수 있다.
또한, 실시예에 따라 제1 전극(701)은 제1 웨이브 가이드(703a)의 양단에 각각 형성되고, 제2 전극(702)은 제2 웨이브 가이드(703b)의 양단 각각에 제1 전극(701)과 대향되도록, 예컨대, 대칭되도록 형성될 수 있다. 이러한 구조에서, 제1 웨이브 가이드(703a)의 양단과 제1 전극(701)의 사이에는 각각 필터 라인(705)이 삽입되고, 제2 웨이브 가이드(703b)의 양단과 제2 전극(702)의 사이에도 각각 필터 라인(705)이 삽입될 수 있다.
이러한 필터 라인(705)은 제1 및 제2 전극(701, 702)과 제1 및 제2 웨이브 가이드(703a, 703b)가 형성된 평면과 실질적으로 동일한 평면 상에 배치되도록 광전도성 기판 상에 형성될 수 있다. 즉, 본 실시예에 의한 필터 라인(705)은 2차원의 평면형 필터 라인으로 구현될 수 있다.
또한, 필터 라인(705)은 제1 또는 제2 전극(701, 702)과 이에 전기적으로 연결되는 제1 또는 제2 웨이브 가이드(703a, 703b) 사이의 연결 부분에서, 도 7에 도시된 바와 같이 소정의 주기(P)를 갖는 미앤더 구조로 형성될 수 있다.
예컨대, 필터 라인(705)은 수 내지 수십 마이크로미터(이하, ㎛)의 주기(P)를 갖는 미앤더 구조로 형성될 수 있다. 이는 미앤더 구조의 제작 용이성 및 기대 효과를 고려하여 실시예적으로 제안하는 수치로서, 예컨대, 1㎛ 미만의 주기(P)를 가질 정도로 미세한 미앤더 구조를 적용할 시 양산에 어려움이 있을 수 있고, 100㎛ 이상의 주기(P)를 갖는 미앤더 구조의 경우 본 발명에서 기대하는 필터링 효과가 상대적으로 저감될 수 있음을 고려한 것이다. 다만, 본 발명이 이에 한정되는 것은 아니며, THz 소자의 제작 환경이나 목표하는 특성 값 등에 따라 필터 라인(705)의 주기(P)가 다양하게 변경 실시될 수 있음은 물론이다.
또한, 필터 라인(705)에 적용될 수 있는 미앤더 구조의 주기(P)는 물론, 그 형상 또한 다양하게 변경 실시될 수 있을 것이다. 예컨대, 도 7에 도시된 바와 같은 미앤더 구조보다 복합적인 굴곡 구조를 가진 형태의 라인 역시 본 발명의 범위에 속할 수 있음은 자명하다.
도 8은 본 발명의 효과를 나타내는 도면으로서, 특히 다양한 주기의 미앤더 구조의 효과를 나타내는 도면이다.
실시예적으로, 도 8에서는 각각 36 ㎛, 24 ㎛ 및 6 ㎛의 주기(P)를 갖는 세가지 종류의 미앤더 구조의 THz 소자를 제작하고, 미앤더 구조가 적용되지 않은 기준 구조(예컨대, 도 5의 구조)의 THz 소자의 측정 결과(REF)와 비교하여 그 효과를 도시하였다.
도 8의 (A)는 다양한 주기의 미앤더 구조를 갖는 THz-PCA로 측정한 시영역 신호를 나타낸 것이다. 도 8의 (A)에 나타난 바와 같이, 주기가 감소함에 따라 주된 피크(peak) 이후의 다중반사에 의한 영향 및 공명현상이 기준 구조에서의 측정 결과(REF) 대비 현저히 감소하는 것을 확인할 수 있다.
이에 따라, 도 8의 (B)에 나타난 바와 같이 주파수 스펙트럼의 피크(peak)들 역시 감소한 것을 확인할 수 있다.
본 발명의 실시예에 의한 미앤더 구조의 효과를 보다 명확히 나타내기 위하여, 도 8의 (C)에서는 세로축을 로그 눈금 간격으로 하여, 기준 구조의 측정 결과(REF)와 비교하여 6 um 주기의 미앤더 구조의 효과를 나타내었다.
도 8을 통해 확인할 수 있는 바와 같이 본 발명의 실시예에서 제안하는 미앤더 구조를 통해, THz 소자, 예컨대 수신용 THz-PCA의 성능을 개선할 수 있다.
전술한 바와 같이, 본 발명의 실시예는 평면형 필터 구조, 예컨대 평면형 미앤더 구조의 필터 라인(705)이 삽입된 THz 소자를 개시한다.
보다 구체적으로, 본 발명의 실시예에 의하면, THz-PCA나 THz-PM과 같은 THz 소자의 양극(예컨대 제1 전극, 701) 및/또는 음극(예컨대 제2 전극, 702)의 바이어스 라인(예컨대, 전극 연결라인)에 필터 역할을 할 수 있는 라인(필터 라인, 705)을 삽입한다. 이에 의해, 시영역에서의 다중반사, 즉 주파수 영역에서의 공명현상을 감소시킨다.
다시 말하여, 본 발명은 THz 발생 및/또는 검출 소자에서, 바이어스 전극 혹은 검출을 위한 전극 구조로 인한 주파수 특성을 제어, 또는 제거할 수 있는 평면형 필터 구조를 제공한다.
이와 같은 본 발명의 실시예에 의하면, 특정 주파수 영역에 존재하는 공명에 의한 원치 않는 전자기파의 방출 및 검출을 방지할 수 있는 THz 소자를 제공할 수 있다. 이에 따라, 본 발명에 의한 THz 소자는 분광 측정에 보다 적합한 성능을 가지게 된다.
또한, 공명 주파수로의 에너지 손실을 막음으로써, THz 소자의 측정 효율을 높이는 효과 역시 기대할 수 있다.
본 발명의 개념은 넓게 보아, 검출부와 전극부 사이에 저주파 영역의 전자기파를 차단할 수 있는 필터를 삽입하여 THz 소자의 검출 효율 및 성능을 높이는 것으로 해석될 수 있다.
이에 의해, 원하는 특성 값을 확보하면서도 단가 절감 및 소형화가 가능한 THz 소자를 제공할 수 있다. 이에 따라, THz 소자의 응용 범위를 확장시킬 수 있다.
본 발명의 기술 사상은 전술한 실시예에 따라 구체적으로 기술되었으나, 상기 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 지식을 가진 자라면 본 발명의 기술 사상의 범위 내에서 다양한 변형예가 가능함을 이해할 수 있을 것이다.
701: 제1 전극 702: 제2 전극
703: 웨이브 가이드 구조 703a: 제1 웨이브 가이드
703b: 제2 웨이브 가이드 704: 갭 영역
705: 필터 라인

Claims (5)

  1. 제1 및 제2 전극과,
    상기 제1 및 제2 전극에 각각 연결되는 제1 및 제2 웨이브 가이드와,
    상기 제1 및 제2 웨이브 가이드 사이의 갭 영역을 포함하며,
    상기 제1 웨이브 가이드가 상기 제2 웨이브 가이드와 대향하고,
    상기 제1 웨이브 가이드가 상기 제2 웨이브 가이드의 방향과 반대 방향으로 상기 제1 전극에 연결되되,
    상기 제1 전극 및 상기 제1 웨이브 가이드의 사이의 제1 영역에, 미앤더(meander) 구조의 필터 라인이 배치되고,
    상기 제1 영역의 필터 라인이 상기 제1 웨이브 가이드를 기준으로 상기 제2 웨이브 가이드의 방향과 반대 방향에 배치됨으로써, 상기 제1 영역은 상기 제1 웨이브 가이드에 의하여 상기 제2 웨이브 가이드 및 상기 제2 전극과 분리되는 테라헤르츠 소자.
  2. 제1항에 있어서,
    상기 필터 라인은, 상기 제1 및 제2 전극과 상기 제1 및 제2 웨이브 가이드가 형성된 평면 상에 형성된 평면형 필터 라인인 테라헤르츠 소자.
  3. 제1항에 있어서,
    상기 제1 전극은 상기 제1 웨이브 가이드의 양단에 형성되고,
    상기 제1 웨이브 가이드의 양단과 상기 제1 전극의 사이에는 각각 상기 필터 라인이 삽입된 테라헤르츠 소자.
  4. 제3항에 있어서,
    상기 제2 전극은 상기 제2 웨이브 가이드의 양단에, 상기 제1 전극과 대향되도록 형성되고,
    상기 제2 웨이브 가이드의 양단과 상기 제2 전극의 사이에도 각각 상기 필터 라인이 삽입된 테라헤르츠 소자.
  5. 제1항에 있어서,
    상기 필터 라인은 수 내지 수십 마이크로미터(㎛)의 주기를 갖는 미앤더 구조로 형성된 테라헤르츠 소자.
KR1020160010036A 2016-01-27 2016-01-27 테라헤르츠 소자 KR102534878B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160010036A KR102534878B1 (ko) 2016-01-27 2016-01-27 테라헤르츠 소자

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160010036A KR102534878B1 (ko) 2016-01-27 2016-01-27 테라헤르츠 소자

Publications (2)

Publication Number Publication Date
KR20170089613A KR20170089613A (ko) 2017-08-04
KR102534878B1 true KR102534878B1 (ko) 2023-05-22

Family

ID=59654186

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160010036A KR102534878B1 (ko) 2016-01-27 2016-01-27 테라헤르츠 소자

Country Status (1)

Country Link
KR (1) KR102534878B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110311193A (zh) * 2019-07-22 2019-10-08 福州大学 基于频率选择表面的双窄带选通太赫兹滤波器
KR102235761B1 (ko) * 2019-12-31 2021-04-02 한국과학기술원 3d 프린팅 공정의 펨토초 레이저 기반 초음파 계측 장치 및 이를 구비한 3d 프린팅 시스템

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100230596A1 (en) * 2007-11-14 2010-09-16 Hammamatsu Photonics K.K. Photoconductive antenna element
US20140103211A1 (en) * 2012-10-16 2014-04-17 Thomas E. Darcie Interlaced terahertz transceiver using plasmonic resonance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100230596A1 (en) * 2007-11-14 2010-09-16 Hammamatsu Photonics K.K. Photoconductive antenna element
US20140103211A1 (en) * 2012-10-16 2014-04-17 Thomas E. Darcie Interlaced terahertz transceiver using plasmonic resonance

Also Published As

Publication number Publication date
KR20170089613A (ko) 2017-08-04

Similar Documents

Publication Publication Date Title
EP1801939B1 (en) Infrared light emitting device, infrared light detecting device, time-domain pulsed spectrometer apparatus, and infrared light emitting method
US9488525B2 (en) Method and apparatus for femtosecond laser pulse measurement based on transient-grating effect
US7884942B2 (en) Probe apparatus and terahertz spectrometer
JP5419411B2 (ja) テラヘルツ波発生素子
US8610073B2 (en) Monochromatic wavelength variable terahertz wave generation/detection system and method
US8003961B2 (en) Electromagnetic wave generating device, electromagnetic wave integrated device, and electromagnetic wave detector
JP5489906B2 (ja) テラヘルツ波トランシーバ及び断層像取得装置
US10120263B2 (en) Low-duty-cycle continuous-wave photoconductive terahertz imaging and spectroscopy systems
CN101526399A (zh) 太赫分光计
CN104677497B (zh) 一种太赫兹波性能的检测装置和方法
EP3084376B1 (en) System for transmitting and receiving electromagnetic radiation
RU2539678C2 (ru) Способ генерации электромагнитного излучения в терагерцовом диапазоне и устройство для получения электромагнитного излучения в терагерцовом диапазоне
US20170322078A1 (en) Photoconductive antenna for terahertz waves, method for producing such photoconductive antenna and terahertz time domain spectroscopy system
US9356692B2 (en) System and method for testing the speed of a microwave photonics system
US11644418B2 (en) Far-infrared light source and far-infrared spectrometer
KR102534878B1 (ko) 테라헤르츠 소자
JP2019532599A (ja) テラヘルツトランシーバ
JP3919344B2 (ja) テラヘルツ波発生装置
JP2015055563A (ja) 情報取得装置及び情報取得方法
CN110658155A (zh) 一种基于电子自旋发射的太赫兹光谱仪及光谱分析系统
US6356381B1 (en) Multi-wavelength cross-correlator for ultrashort radiation pulses
JP5168684B2 (ja) 時間分解分光システム,時間分解分光方法及びテラヘルツ波発生システム
KR20120059314A (ko) 하나의 송수신모듈만을 이용하는 테라헤르츠파 발생 및 검출 시스템
JP3922463B2 (ja) 赤外光放射装置および赤外光検出装置ならびに時系列変換パルス分光計測装置
Murasawa et al. Generation and homodyne detection of continuous terahertz waves using single photoconductive antenna

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant