JP2005123483A - Plasma-etching method of semiconductor wafer - Google Patents

Plasma-etching method of semiconductor wafer Download PDF

Info

Publication number
JP2005123483A
JP2005123483A JP2003358555A JP2003358555A JP2005123483A JP 2005123483 A JP2005123483 A JP 2005123483A JP 2003358555 A JP2003358555 A JP 2003358555A JP 2003358555 A JP2003358555 A JP 2003358555A JP 2005123483 A JP2005123483 A JP 2005123483A
Authority
JP
Japan
Prior art keywords
flatness
plasma
application region
semiconductor wafer
plasma etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003358555A
Other languages
Japanese (ja)
Inventor
Nobuo Yokoo
延男 横尾
Etsuro Morita
悦郎 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumitomo Mitsubishi Silicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Mitsubishi Silicon Corp filed Critical Sumitomo Mitsubishi Silicon Corp
Priority to JP2003358555A priority Critical patent/JP2005123483A/en
Publication of JP2005123483A publication Critical patent/JP2005123483A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma-etching method of a semiconductor for plasma-etching the outer periphery of a flatness applicable region with high flatness. <P>SOLUTION: A value of thickness data of a measurable actually measured outermost periphery of the flatness applicable region multiplied by a coefficient S is to be virtual thickness data of the outer periphery where the measurement of the flatness applicable region is difficult. The outer periphery of the region is plasma-etched while partially controlling a plasma-etched amount according to the thickness of the flatness applicable region based on the data. As a result, reliability in the virtual thickness data is higher than a conventional case where the thickness data of the actually measured outermost periphery of the region is regarded as the virtual thickness data of the region, and the outer periphery of the flatness applicable region can be plasma-etched with high flatness. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は半導体ウェーハのプラズマエッチング方法、詳しくは平坦度適用領域の外周部を高い平坦度でプラズマエッチングする半導体ウェーハのプラズマエッチング方法に関する。   The present invention relates to a plasma etching method for a semiconductor wafer, and more particularly to a plasma etching method for a semiconductor wafer in which the outer periphery of a flatness application region is plasma etched with high flatness.

近年、シリコンウェーハのデバイスが形成される表面の平坦度の向上を目的として、研磨後のシリコンウェーハの板厚を測定し、その板厚データに基づき、ウェーハの表面をプラズマエッチングする方法が開発されている。
具体的には、例えば、シリコンウェーハの表面の平坦度適用領域(FQA;Flatness Quality Area )における板厚を、市販のウェーハ板厚測定機により測定し、この板厚データに基づき、市販のプラズマエッチング装置を用いて、プラズマをシリコンウェーハの面方向に移動させる速度を調整してプラズマエッチング量を制御しながら、平坦度適用領域をプラズマエッチングする。すなわち、シリコンウェーハの板厚が厚い部分は、プラズマを低速で移動させてエッチング量を大きくする。反対にこの板厚が薄い部分は、プラズマを高速で移動させ、エッチング量を小さくする。
In recent years, in order to improve the flatness of the surface on which silicon wafer devices are formed, a method for measuring the thickness of a polished silicon wafer and plasma etching the surface of the wafer based on the thickness data has been developed. ing.
Specifically, for example, the thickness in the flatness application area (FQA: Flatness Quality Area) of the surface of the silicon wafer is measured by a commercially available wafer thickness measuring machine, and a commercially available plasma etching is performed based on the thickness data. Using the apparatus, the flatness application region is plasma etched while controlling the plasma etching amount by adjusting the speed at which the plasma is moved in the surface direction of the silicon wafer. That is, in the thick part of the silicon wafer, the etching amount is increased by moving the plasma at a low speed. On the other hand, in the thin part, the plasma is moved at a high speed to reduce the etching amount.

しかしながら、前記ウェーハ板厚測定機によれば、シリコンウェーハの平坦度適用領域中、ウェーハの板厚を測定することが可能であるのは、この測定機の構成上、8インチウェーハの場合で平坦度適用領域の最外周から半径方向に3mm内側(実測最外周)までの部分に限定されていた。したがって、それより外側の平坦度適用領域の外周部は、現実的にウェーハの板厚を測定することができなかった。
そのため、プラズマ加工時には、この平坦度適用領域の実測最外周の板厚データを、測定が困難な外周部の板厚データとみなし、信頼性が乏しい仮想板厚データに基づき、平坦度適用領域の外周部をプラズマエッチングしていた。
However, according to the wafer thickness measuring machine, it is possible to measure the thickness of the wafer in the flatness application area of the silicon wafer because of the configuration of the measuring machine. It was limited to a portion from the outermost periphery of the degree application area to the inside 3 mm (measured outermost periphery) in the radial direction. Therefore, the outer peripheral portion of the flatness application area outside it cannot actually measure the thickness of the wafer.
Therefore, at the time of plasma processing, the plate thickness data of the measured outermost circumference of this flatness application region is regarded as the plate thickness data of the outer peripheral portion that is difficult to measure, and based on the virtual plate thickness data with poor reliability, The outer periphery was plasma etched.

そこで、発明者は、鋭意研究の結果、実測最外周の板厚データに特定の係数を乗算したものを平坦度適用領域の外周部の仮想板厚データとすれば、仮想板厚データの信頼性が高まり、この平坦度適用領域の外周部をさらに高い平坦度でプラズマエッチングできることを知見し、この発明を完成させた。   Therefore, as a result of diligent research, the inventors have determined that the virtual plate thickness data obtained by multiplying the measured outermost plate thickness data by a specific coefficient is the virtual plate thickness data of the outer peripheral portion of the flatness application area. As a result, it was found that the outer peripheral portion of the flatness application region can be plasma etched with higher flatness, and the present invention was completed.

そこで、この発明は、平坦度適用領域の外周部を、高い平坦度でプラズマエッチングすることができる半導体ウェーハのプラズマエッチング方法を提供することを、その目的としている。   Therefore, an object of the present invention is to provide a plasma etching method for a semiconductor wafer that can perform plasma etching on the outer peripheral portion of the flatness application region with high flatness.

請求項1に記載した発明は、半導体ウェーハのデバイスが形成される表面の平坦度適用領域中、該平坦度適用領域の外周部を除いた部分の板厚を測定する工程と、測定された板厚データに基づいてプラズマエッチング量を制御しながら、前記平坦度適用領域をプラズマエッチングする工程とを備えた半導体ウェーハのプラズマエッチング方法において、前記平坦度適用領域の測定部分の最外周の板厚データに所定の係数を乗算して、前記平坦度適用領域の外周部の仮想板厚データを求め、得られた仮想板厚データに基づいてプラズマエッチング量を制御しながら、前記平坦度適用領域の外周部をプラズマエッチングする半導体ウェーハのプラズマエッチング方法である。   The invention described in claim 1 is a step of measuring a plate thickness of a portion excluding the outer peripheral portion of the flatness application region in a flatness application region of a surface on which a device of a semiconductor wafer is formed, and the measured plate In the plasma etching method of a semiconductor wafer, comprising the step of plasma etching the flatness application region while controlling the amount of plasma etching based on the thickness data, the plate thickness data of the outermost periphery of the measurement portion of the flatness application region Is multiplied by a predetermined coefficient to obtain virtual plate thickness data of the outer periphery of the flatness application region, and the outer periphery of the flatness application region is controlled while controlling the amount of plasma etching based on the obtained virtual plate thickness data. A method for plasma etching of a semiconductor wafer in which a portion is plasma etched.

請求項1に記載の発明によれば、平坦度適用領域の測定部分の最外周の板厚データに所定の係数を乗算したものを平坦度適用領域の外周部の仮想板厚データとし、この仮想板厚データに基づき、平坦度適用領域の厚さに合わせて部分的にプラズマエッチング量を制御しながら、この平坦度適用領域の外周部を加工する。プラズマエッチングしたことで、ウェーハ表面の凹凸が無くなる。
これにより、従来法のように平坦度適用領域の実測最外周の板厚データを平坦度適用領域の外周部の仮想板厚データとみなしてプラズマエッチングしていた場合に比べ、この仮想板厚データの信頼性が高まり、平坦度適用領域の外周部を高い平坦度でプラズマエッチングすることができる。
According to the first aspect of the present invention, the virtual plate thickness data of the outer peripheral portion of the flatness application region is obtained by multiplying the plate thickness data of the outermost peripheral portion of the measurement portion of the flatness application region by a predetermined coefficient. Based on the plate thickness data, the outer peripheral portion of the flatness application region is processed while partially controlling the plasma etching amount according to the thickness of the flatness application region. As a result of plasma etching, irregularities on the wafer surface are eliminated.
As a result, the virtual plate thickness data is compared with the case where plasma etching is performed by regarding the plate thickness data of the measured outermost circumference of the flatness application region as virtual plate thickness data of the outer periphery of the flatness application region as in the conventional method. Therefore, the outer peripheral portion of the flatness application region can be plasma etched with high flatness.

半導体ウェーハとしては、例えばシリコンウェーハ、ガリウム砒素ウェーハなどが挙げられる。また、半導体ウェーハは研磨後のウェーハでもよいし、それ以外の加工後のウェーハでもよい。
平坦度適用領域とは、半導体ウェーハの表面において、除外領域である面取り部を含まない平坦度規格適用領域である。
また、平坦度適用領域の外周部とは、平坦度適用領域のうち、ウェーハの板厚の測定が困難な外周部分である。
半導体ウェーハの板厚測定機としては、市販の静電容量式またはレーザー式を採用することができる。
Examples of the semiconductor wafer include a silicon wafer and a gallium arsenide wafer. Further, the semiconductor wafer may be a polished wafer or other processed wafer.
The flatness application region is a flatness standard application region that does not include a chamfered portion that is an exclusion region on the surface of the semiconductor wafer.
Further, the outer peripheral portion of the flatness application region is an outer peripheral portion of the flatness application region where it is difficult to measure the thickness of the wafer.
A commercially available electrostatic capacitance type or laser type can be adopted as the thickness measuring device for the semiconductor wafer.

プラズマエッチングは、反応性ガスプラズマを利用したドライエッチングの一種で、高周波やマイクロ波の放電プラズマ中に発生した化学的に活性度の高い励起状態にある原子または分子(ラジカル)を反応種として用いる化学反応である。
プラズマエッチングのエッチングレートは、200mmウェーハで0.5〜1.0μm/分である。プラズマエッチング後の半導体ウェーハのGBIRは、0.2μm前後の高平坦度となる。
エッチング量の制御方法としては、例えばエッチングガスに供給される高周波やマイクロ波の大きさを制御したり、プラズマおよびまたは半導体ウェーハを相対的にウェーハ面方向に移動させる際の速度を変化させる。
Plasma etching is a type of dry etching that uses reactive gas plasma. Chemically active atoms or molecules (radicals) generated in high-frequency or microwave discharge plasma are used as reactive species. It is a chemical reaction.
The etching rate of plasma etching is 0.5 to 1.0 μm / min for a 200 mm wafer. The GBIR of the semiconductor wafer after plasma etching has a high flatness of around 0.2 μm.
As a method for controlling the etching amount, for example, the magnitude of the high frequency or microwave supplied to the etching gas is controlled, or the speed at which the plasma and / or the semiconductor wafer is relatively moved in the wafer surface direction is changed.

半導体ウェーハの表面を均一にプラズマエッチングするのに適した方法として、PACE(Plasma Assisted Chemical Etching)法が知られている。これは、「Heughes Danbary Optical Systems」社が開発したプラズマアシスト化学エッチング法のひとつであり、エッチング前のウェーハ形状情報を部分的なエッチング代にフィードバックすることで、プラズマエッチング後の半導体ウェーハの厚さ精度や平坦度精度を高める方法である。
平坦度適用領域の外周部の仮想板厚データを求める際に利用される係数は限定されない。この係数が小さければプラズマエッチングのエッチング量が大きくなり、平坦度適用領域は外周ダレの傾向となる。反対に係数が大きければプラズマエッチングのエッチング量が小さくなり、平坦度適用領域は外周立ちの傾向となる。
A PACE (Plasma Assisted Chemical Etching) method is known as a method suitable for uniformly etching the surface of a semiconductor wafer. This is one of the plasma-assisted chemical etching methods developed by "Heughs Danbury Optical Systems", and the thickness of the semiconductor wafer after plasma etching is fed back by feeding back the wafer shape information before etching to the partial etching cost. This is a method for improving accuracy and flatness accuracy.
The coefficient used when obtaining the virtual plate thickness data of the outer peripheral portion of the flatness application region is not limited. If this coefficient is small, the etching amount of plasma etching becomes large, and the flatness application region tends to sag at the outer periphery. On the contrary, if the coefficient is large, the etching amount of plasma etching becomes small, and the flatness application region tends to stand on the outer periphery.

請求項2に記載の発明は、測定された板厚データに半導体ウェーハの形状を考慮した前記係数が0.5〜1.5である請求項1に記載の半導体ウェーハのプラズマエッチング方法である。
好ましい係数は1.0〜1.5である。1.0未満ではプラズマエッチングのエッチング量が大きくなりすぎて、平坦度適用領域の外周ダレが発生しやすい。また1.5を超えるとプラズマエッチングのエッチング量が小さくなりすぎて、平坦度適用領域の外周立ちが起きやすい。
The invention according to claim 2 is the semiconductor wafer plasma etching method according to claim 1, wherein the coefficient in consideration of the shape of the semiconductor wafer in the measured plate thickness data is 0.5 to 1.5.
A preferable coefficient is 1.0 to 1.5. If it is less than 1.0, the etching amount of plasma etching becomes too large, and the outer periphery sagging of the flatness application region is likely to occur. On the other hand, if it exceeds 1.5, the etching amount of plasma etching becomes too small, and the outer periphery of the flatness application region tends to occur.

この発明によれば、平坦度適用領域の測定可能な実測最外周の板厚データに所定の係数を乗算したものを、平坦度適用領域の測定が困難な外周部の仮想板厚データとみなし、この仮想板厚データに基づき、プラズマエッチング量を制御しながら、平坦度適用領域の外周部を加工するので、この仮想板厚データの信頼性が高まり、平坦度適用領域の外周部を高い平坦度でプラズマエッチングすることができる。   According to the present invention, the product obtained by multiplying the measured outermost plate thickness data that can be measured in the flatness application region by a predetermined coefficient is regarded as the virtual plate thickness data in the outer peripheral portion where it is difficult to measure the flatness application region, Based on this virtual plate thickness data, the outer peripheral portion of the flatness application region is processed while controlling the plasma etching amount. Therefore, the reliability of the virtual plate thickness data is improved, and the outer peripheral portion of the flatness application region has a high flatness. Can be plasma etched.

以下、この発明の実施例に係る半導体ウェーハのプラズマエッチング方法を説明する。   Hereinafter, a semiconductor wafer plasma etching method according to an embodiment of the present invention will be described.

図1は、この発明の一実施例に係る半導体ウェーハのプラズマエッチング方法が適用された半導体ウェーハの製造方法を示すフローシートである。図2(a)は、この発明の一実施例に係る半導体ウェーハのプラズマエッチング方法に用いられるウェーハ板厚測定機の要部拡大図である。図2(b)は、この発明の一実施例に係る半導体ウェーハのプラズマエッチング方法に用いられる他のウェーハ板厚測定機の要部拡大図である。図3は、この発明の一実施例に係る半導体ウェーハのプラズマエッチング方法に用いられるプラズマエッチング装置の模式図である。図4は、この発明の一実施例に係る半導体ウェーハのプラズマエッチング方法におけるプラズマエッチング中の半導体ウェーハの要部拡大断面図である。図5は、この発明の一実施例に係る半導体ウェーハのプラズマエッチング方法を利用して作製された半導体ウェーハを等高線で示した斜視図である。   FIG. 1 is a flow sheet showing a semiconductor wafer manufacturing method to which a semiconductor wafer plasma etching method according to one embodiment of the present invention is applied. FIG. 2A is an enlarged view of a main part of a wafer thickness measuring machine used in a semiconductor wafer plasma etching method according to one embodiment of the present invention. FIG. 2B is an enlarged view of a main part of another wafer thickness measuring machine used in the semiconductor wafer plasma etching method according to one embodiment of the present invention. FIG. 3 is a schematic view of a plasma etching apparatus used in a semiconductor wafer plasma etching method according to an embodiment of the present invention. FIG. 4 is an enlarged sectional view of the main part of the semiconductor wafer during plasma etching in the semiconductor wafer plasma etching method according to one embodiment of the present invention. FIG. 5 is a perspective view showing contour lines of a semiconductor wafer manufactured by using the semiconductor wafer plasma etching method according to one embodiment of the present invention.

図1に示すように、この一実施例にあっては、スライス、面取り、ラップ、エッチング、表面1次研磨、ウェーハ板厚測定、表面プラズマエッチング、仕上げ研磨、洗浄の各工程を経て、表面が鏡面仕上げされた半導体ウェーハが作製される。
以下、各工程を詳細に説明する。
CZ法により引き上げられたシリコンインゴットは、スライス工程(S101)で、厚さ860μm程度の8インチのシリコンウェーハにスライスされる。
次に、このスライスドウェーハは、続く面取り工程(S102)で、その外周部に面取り砥石を押し付けて、所定の形状に面取りされる。面取り砥石は、#600のメタルボンド円柱砥石である。これにより、シリコンウェーハの外周部は、所定の丸みを帯びた形状(例えばMOS型の面取り形状)に加工される。
As shown in FIG. 1, in this embodiment, the surface is subjected to the steps of slicing, chamfering, lapping, etching, primary surface polishing, wafer plate thickness measurement, surface plasma etching, final polishing, and cleaning. A mirror-finished semiconductor wafer is produced.
Hereinafter, each process will be described in detail.
The silicon ingot pulled up by the CZ method is sliced into an 8-inch silicon wafer having a thickness of about 860 μm in the slicing step (S101).
Next, this sliced wafer is chamfered into a predetermined shape by pressing a chamfering grindstone on its outer peripheral portion in the subsequent chamfering step (S102). The chamfering grindstone is a # 600 metal bond cylindrical grindstone. Thus, the outer peripheral portion of the silicon wafer is processed into a predetermined rounded shape (for example, a MOS type chamfered shape).

次に、ラッピング工程(S103)が行われる。この工程では、シリコンウェーハを互いに平行なラップ定盤間に配置し、その後、このラップ定盤間に、アルミナ砥粒と分散剤と水の混合物であるラップ液を流し込む。そして、加圧下で回転・摺り合わせを行うことで、シリコンウェーハの表裏両面を機械的にラッピングする。その際、シリコンウェーハのラップ量は、ウェーハの表裏両面を合わせて40〜100μm程度である。
それから、ラップドウェーハをエッチングする(S104)。具体的には、フッ酸と硝酸とを混合した混酸液(常温〜50℃)中に、シリコンウェーハを所定時間だけ浸漬する。なお、例えばNaOH,KOHなどを用いたアルカリエッチでもよい。エッチングを行うと、シリコンウェーハの表裏両面に多量の気泡が発生する。これにより、シリコンウェーハの表裏両面に、高さ数nm〜200nm程度の微小凹凸を伴った周期0.5〜20mm程度のうねりが現出する。
このエッチング後に、シリコンウェーハの外周部をPCR加工してもよい。この加工時には、周知のPCR加工装置が用いられる。例えば、円筒形状のウレタンバフをモータで回転させる装置などである。
Next, a wrapping step (S103) is performed. In this step, the silicon wafer is placed between lap surface plates parallel to each other, and thereafter, a wrap liquid that is a mixture of alumina abrasive grains, a dispersant, and water is poured between the wrap surface plates. Then, the front and back surfaces of the silicon wafer are mechanically lapped by rotating and sliding under pressure. At that time, the amount of wrapping of the silicon wafer is about 40 to 100 μm in total on both the front and back surfaces of the wafer.
Then, the wrapped wafer is etched (S104). Specifically, the silicon wafer is immersed for a predetermined time in a mixed acid solution (normal temperature to 50 ° C.) in which hydrofluoric acid and nitric acid are mixed. For example, alkaline etching using NaOH, KOH or the like may be used. When etching is performed, a large amount of bubbles are generated on both sides of the silicon wafer. As a result, undulations with a period of about 0.5 to 20 mm appearing on both the front and back surfaces of the silicon wafer, with minute irregularities having a height of about several nm to 200 nm.
After this etching, the outer peripheral portion of the silicon wafer may be subjected to PCR processing. In this processing, a known PCR processing apparatus is used. For example, a device that rotates a cylindrical urethane buff with a motor.

次に、ラップ処理されたシリコンウェーハの表面を1次研磨する(S105)。
具体的には、対向配置された研磨ヘッドと下定盤とを有し、下定盤の上面だけに研磨布が展張された研磨装置を利用し、シリコンウェーハの表面だけを1次研磨する。すなわち、キャリアプレートに表面を下向きにしてシリコンウェーハを固定し、遊離砥粒を含むスラリーを供給しながら、不織布にウレタン樹脂を含浸・硬化させた研磨布により、ウェーハ表面を1次研磨する。研磨量は5〜20μm程度である。
Next, the lapped silicon wafer surface is first polished (S105).
Specifically, only the surface of the silicon wafer is subjected to primary polishing by using a polishing apparatus having a polishing head and a lower surface plate that are arranged to face each other and having a polishing cloth spread only on the upper surface of the lower surface plate. That is, the silicon wafer is fixed to the carrier plate with the surface facing downward, and the surface of the wafer is primarily polished with a polishing cloth in which a nonwoven fabric is impregnated and cured with urethane resin while supplying a slurry containing loose abrasive grains. The polishing amount is about 5 to 20 μm.

続いて、シリコンウェーハの表面の平坦度適用領域における板厚を検査する(S106)。この検査には、図2(a)に示す静電容量式の板厚測定機Aを使用する。この測定機Aは、ウェーハの表裏両面側に配置された2本の静電容量センサを用い、ウェーハの表面および裏面の位置をそれぞれ検出してウェーハの厚さを測定するものである。また、図2(b)に示す平坦度測定を兼用する板厚測定機Aも使用することができる。このタイプは、シリコンウェーハの表裏両面に対してそれぞれレーザ光を照射し、これを受光することにより各面の平坦度およびウェーハの板厚をそれぞれ測定する。
ただし、ここでは平坦度適用領域の最外周から半径方向に3mm内側(実測最外周)までの部分を実測し、それより外側の平坦度適用領域の外周部dは、実測最外周の部分的な板厚データに係数S=1.0〜1.5を乗算したものを、平坦度適用領域の外周部dの部分的な仮想板厚データとする。この外周部dは板厚測定不可能域である。
Subsequently, the plate thickness in the flatness application region on the surface of the silicon wafer is inspected (S106). For this inspection, a capacitance type plate thickness measuring machine A shown in FIG. 2A is used. This measuring machine A measures the thickness of the wafer by detecting the positions of the front and back surfaces of the wafer using two capacitance sensors arranged on both front and back sides of the wafer. Further, a plate thickness measuring machine A that also functions as a flatness measurement shown in FIG. 2B can be used. In this type, the front and back surfaces of a silicon wafer are respectively irradiated with laser light, and by receiving this, the flatness of each surface and the thickness of the wafer are measured.
However, here, a portion from the outermost periphery of the flatness application region to the inner side 3 mm in the radial direction (measured outermost periphery) is measured, and the outer peripheral portion d of the flatness application region outside the flatness application region is a part of the measured outermost periphery. The plate thickness data multiplied by a coefficient S = 1.0 to 1.5 is used as partial virtual plate thickness data of the outer peripheral portion d of the flatness application region. This outer peripheral part d is an area where plate thickness cannot be measured.

その後、得られたシリコンウェーハの板厚データ(仮想板厚データを含む)に基づき、ウェーハ表面の平坦度適用領域をプラズマエッチングする(S107)。
すなわち、図3に示すプラズマエッチング装置20により、プラズマアシスト化学エッチングされる。このプラズマエッチングは、吸引ポンプP1,P2により負圧化されたエッチング反応炉において、マイクロ波電源21を用いて、エッチングガスSF6 を100〜1000cc/分でエッチング反応炉内に流しながら、周波数2.45GHz、電力300〜600ワットのマイクロ波を連続的に印加する。これにより、プラズマ放電管22からエッチングガスSF6 が励起されてプラズマが発生する。すなわち、エッチングガスSF6 がプラズマ放電管22中で、プラズマのエネルギを受けて化学的に活性化する。
Thereafter, based on the obtained thickness data (including virtual thickness data) of the silicon wafer, the flatness application region on the wafer surface is plasma-etched (S107).
That is, plasma assisted chemical etching is performed by the plasma etching apparatus 20 shown in FIG. This plasma etching is performed at a frequency of 2 with an etching gas SF 6 flowing in the etching reaction furnace at a rate of 100 to 1000 cc / min using a microwave power source 21 in an etching reaction furnace that is made negative by suction pumps P1 and P2. A microwave of .45 GHz and a power of 300 to 600 watts is continuously applied. As a result, the etching gas SF 6 is excited from the plasma discharge tube 22 to generate plasma. That is, the etching gas SF 6 is chemically activated in the plasma discharge tube 22 by receiving plasma energy.

その後、シリコンウェーハWを保持したチャック23を、シリコンウェーハWの表面に沿って、このウェーハ表面のうねり部(起伏部)の厚さに合わせて移動速度を変更させながら動かす(図4参照)。これにより、プラズマにより励起されたラジカル種25が、シリコンウェーハWの所定位置へと順次供給される。その結果、プラズマ領域下のシリコンが、約1μm/秒のエッチングレート、エッチング量1〜5μmで、上記うねり部の厚さ(例えば1〜5μm)に合わせてエッチングされる。
その際、平坦度適用領域の外周部dは、実測最外周に係数を乗算して得られた仮想板厚データに基づき、平坦度適用領域の他の部分と一連にプラズマエッチングされる。これにより、外周部dを含む平坦度適用領域の全体から、凹凸が完全に除去される(図5参照)。
Thereafter, the chuck 23 holding the silicon wafer W is moved along the surface of the silicon wafer W while changing the moving speed in accordance with the thickness of the waviness (undulation) on the surface of the wafer (see FIG. 4). As a result, the radical species 25 excited by the plasma are sequentially supplied to a predetermined position of the silicon wafer W. As a result, the silicon under the plasma region is etched at an etching rate of about 1 μm / second and an etching amount of 1 to 5 μm according to the thickness of the waviness (for example, 1 to 5 μm).
At that time, the outer peripheral portion d of the flatness application region is plasma etched in series with other portions of the flatness application region based on virtual plate thickness data obtained by multiplying the measured outermost periphery by a coefficient. Thereby, the unevenness is completely removed from the entire flatness application region including the outer peripheral portion d (see FIG. 5).

従来法にあっては、平坦度適用領域の実測最外周の板厚データを、そのまま平坦度適用領域の外周部の仮想板厚データとみなし、プラズマエッチングを施していたので仮想板厚データの信頼性が低かった。これに対して、この一実施例では、実測最外周に係数を乗算したものを仮想板厚データとしたので、この仮想板厚データの信頼性が高まり、平坦度適用領域の外周部dを高い平坦度でプラズマエッチングすることができる。
また、ここでは1次研磨後にプラズマエッチングを施すので、鏡面化に必要な研磨量も低減し、シリコンウェーハWの表面の平坦度(GBIRで0.2μm以下)が高められる。
その後、シリコンウェーハWの表面に仕上げ研磨を施す(S108)。使用される研磨布は、仕上げ研磨用の不織布の基布の上にウレタン樹脂を発泡させたスェードタイプである。研磨量は0.1〜2μm程度である。
次に、シリコンウェーハWを仕上げ洗浄する(S109)。この洗浄は、SC−1とSC−2の2種類の洗浄液をベースとしたRCA洗浄である。
In the conventional method, the plate thickness data of the measured outermost circumference of the flatness application area is regarded as the virtual plate thickness data of the outer circumference of the flatness application area as it is, and plasma etching is performed. The sex was low. On the other hand, in this embodiment, since the virtual plate thickness data is obtained by multiplying the measured outermost circumference by a coefficient, the reliability of the virtual plate thickness data is increased, and the outer peripheral portion d of the flatness application region is high. Plasma etching can be performed with flatness.
In addition, since plasma etching is performed after the primary polishing here, the amount of polishing necessary for mirroring is reduced, and the flatness of the surface of the silicon wafer W (GBIR 0.2 μm or less) is increased.
Thereafter, finish polishing is performed on the surface of the silicon wafer W (S108). The polishing cloth used is a suede type in which a urethane resin is foamed on a non-woven base cloth for final polishing. The polishing amount is about 0.1 to 2 μm.
Next, the silicon wafer W is finished and cleaned (S109). This cleaning is RCA cleaning based on two types of cleaning liquids, SC-1 and SC-2.

ここで、図6および図7を参照しながら、この一実施例のプラズマエッチング方法を採用し、実際にシリコンウェーハの平坦度適用領域の外周部をプラズマエッチングしたときの、この外周部のサイト平坦度の結果を示す。
図6は、平坦度適用領域の外周部のサイトナンバーを示す模式図である。図7は、平坦度適用領域の外周部の各サイトにおける係数と平坦度とを関係を示すグラフである。
図7のグラフから明らかなように、係数S=1.0、係数S=1.2、係数S=1.5の場合に、平坦度適用領域の外周部のSBIR値が特に小さくなった。これにより、この外周部の平坦度が他の係数(S=0.5、S=0.8、S=2.0)のときよりも高まった。
Here, referring to FIG. 6 and FIG. 7, when the plasma etching method of this embodiment is adopted and the outer peripheral portion of the flatness application region of the silicon wafer is actually plasma etched, the site flatness of the outer peripheral portion is obtained. Degree result is shown.
FIG. 6 is a schematic diagram showing the site number of the outer periphery of the flatness application region. FIG. 7 is a graph showing the relationship between the coefficient and the flatness at each site in the outer peripheral portion of the flatness application region.
As is apparent from the graph of FIG. 7, the SBIR value in the outer peripheral portion of the flatness application region is particularly small when the coefficient S = 1.0, the coefficient S = 1.2, and the coefficient S = 1.5. Thereby, the flatness of this outer peripheral part increased more than the time of other coefficients (S = 0.5, S = 0.8, S = 2.0).

この発明の一実施例に係る半導体ウェーハのプラズマエッチング方法が適用された半導体ウェーハの製造方法を示すフローシートである。It is a flow sheet which shows the manufacturing method of the semiconductor wafer to which the plasma etching method of the semiconductor wafer concerning one example of this invention was applied. (a)この発明の一実施例に係る半導体ウェーハのプラズマエッチング方法に用いられるウェーハ板厚測定機の要部拡大図である。(b)この発明の一実施例に係る半導体ウェーハのプラズマエッチング方法に用いられる他のウェーハ板厚測定機の要部拡大図である。(A) It is a principal part enlarged view of the wafer board thickness measuring machine used for the plasma etching method of the semiconductor wafer concerning one Example of this invention. (B) It is a principal part enlarged view of the other wafer board thickness measuring machine used for the plasma etching method of the semiconductor wafer which concerns on one Example of this invention. この発明の一実施例に係る半導体ウェーハのプラズマエッチング方法に用いられるプラズマエッチング装置の模式図である。It is a schematic diagram of the plasma etching apparatus used for the plasma etching method of the semiconductor wafer concerning one Example of this invention. この発明の一実施例に係る半導体ウェーハのプラズマエッチング方法におけるプラズマエッチング中の半導体ウェーハの要部拡大断面図である。It is a principal part expanded sectional view of the semiconductor wafer during the plasma etching in the plasma etching method of the semiconductor wafer concerning one Example of this invention. この発明の一実施例に係る半導体ウェーハのプラズマエッチング方法を利用して作製された半導体ウェーハを等高線で示した斜視図である。It is the perspective view which showed the semiconductor wafer produced using the plasma etching method of the semiconductor wafer concerning one Example of this invention with the contour line. 平坦度適用領域の外周部のサイトナンバーを示す模式図である。It is a schematic diagram which shows the site number of the outer peripheral part of a flatness application area | region. 平坦度適用領域の外周部の各サイトにおける係数と平坦度とを関係を示すグラフである。It is a graph which shows the relationship between the coefficient in each site of the outer peripheral part of a flatness application area | region, and flatness.

符号の説明Explanation of symbols

W シリコンウェーハ(半導体ウェーハ)、
S 係数。
W Silicon wafer (semiconductor wafer),
S factor.

Claims (2)

半導体ウェーハのデバイスが形成される表面の平坦度適用領域中、該平坦度適用領域の外周部を除いた部分の板厚を測定する工程と、
測定された板厚データに基づいてプラズマエッチング量を制御しながら、前記平坦度適用領域をプラズマエッチングする工程とを備えた半導体ウェーハのプラズマエッチング方法において、
前記平坦度適用領域の測定部分の最外周の板厚データに所定の係数を乗算して、前記平坦度適用領域の外周部の仮想板厚データを求め、
得られた仮想板厚データに基づいてプラズマエッチング量を制御しながら、前記平坦度適用領域の外周部をプラズマエッチングする半導体ウェーハのプラズマエッチング方法。
Measuring the plate thickness of the portion excluding the outer peripheral portion of the flatness application region in the flatness application region of the surface on which the device of the semiconductor wafer is formed;
In the plasma etching method of a semiconductor wafer comprising the step of plasma etching the flatness application region while controlling the plasma etching amount based on the measured plate thickness data,
Multiplying a predetermined coefficient to the outermost plate thickness data of the measurement portion of the flatness application region to obtain virtual plate thickness data of the outer peripheral portion of the flatness application region,
A plasma etching method for a semiconductor wafer, in which an outer peripheral portion of the flatness application region is plasma etched while controlling a plasma etching amount based on the obtained virtual plate thickness data.
測定された板厚データに半導体ウェーハの形状を考慮した前記係数が0.5〜1.5である請求項1に記載の半導体ウェーハのプラズマエッチング方法。   The plasma etching method for a semiconductor wafer according to claim 1, wherein the coefficient in consideration of the shape of the semiconductor wafer in the measured plate thickness data is 0.5 to 1.5.
JP2003358555A 2003-10-17 2003-10-17 Plasma-etching method of semiconductor wafer Pending JP2005123483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003358555A JP2005123483A (en) 2003-10-17 2003-10-17 Plasma-etching method of semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003358555A JP2005123483A (en) 2003-10-17 2003-10-17 Plasma-etching method of semiconductor wafer

Publications (1)

Publication Number Publication Date
JP2005123483A true JP2005123483A (en) 2005-05-12

Family

ID=34615050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003358555A Pending JP2005123483A (en) 2003-10-17 2003-10-17 Plasma-etching method of semiconductor wafer

Country Status (1)

Country Link
JP (1) JP2005123483A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181443A1 (en) * 2018-03-22 2019-09-26 信越半導体株式会社 Method for producing silicon wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181443A1 (en) * 2018-03-22 2019-09-26 信越半導体株式会社 Method for producing silicon wafer

Similar Documents

Publication Publication Date Title
JPH06104229A (en) Manufacture of wafer
WO2001011671A1 (en) Process for reducing waviness in semiconductor wafers
WO2018116558A1 (en) Method for polishing silicon wafer and method for manufacturing silicon wafer
JPWO2005055302A1 (en) Manufacturing method for single-sided mirror wafer
JP2005123483A (en) Plasma-etching method of semiconductor wafer
JP2002329690A (en) Semiconductor wafer manufacturing method
JP3596363B2 (en) Manufacturing method of semiconductor wafer
JP4615182B2 (en) Manufacturing method of semiconductor wafer
JP2009027095A (en) Method of evaluating semiconductor wafer, method of grinding semiconductor wafer, and method of processing semiconductor wafer
JP2004200240A (en) Manufacturing method for single-sided mirror finished wafer
JP2003142434A (en) Method of manufacturing mirror-surface wafer
JP2001044154A (en) Manufacture of semiconductor wafer
JP3430499B2 (en) Semiconductor wafer and method of manufacturing the same
JP2002025950A (en) Manufacturing method for semiconductor wafer
JP3916212B2 (en) Manufacturing method of semiconductor wafer
JP2004087522A (en) Process for producing semiconductor wafer
JP4110801B2 (en) Semiconductor wafer polishing method
JP2002299290A (en) Manufacturing method for semiconductor wafer
JP2004319717A (en) Method of manufacturing semiconductor wafer
JP2000091282A (en) Manufacture of high flatness wafer
JP3584824B2 (en) High flatness semiconductor wafer and method of manufacturing the same
JP2003068996A (en) Method for manufacturing laminated silicon substrate
JP3596405B2 (en) Manufacturing method of semiconductor wafer
JP3525836B2 (en) Method for manufacturing high flatness semiconductor wafer and high flatness semiconductor wafer
JP2003298030A (en) Pasted board and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060113

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Effective date: 20080602

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

A02 Decision of refusal

Effective date: 20090224

Free format text: JAPANESE INTERMEDIATE CODE: A02