JP4110801B2 - Semiconductor wafer polishing method - Google Patents

Semiconductor wafer polishing method Download PDF

Info

Publication number
JP4110801B2
JP4110801B2 JP2002057634A JP2002057634A JP4110801B2 JP 4110801 B2 JP4110801 B2 JP 4110801B2 JP 2002057634 A JP2002057634 A JP 2002057634A JP 2002057634 A JP2002057634 A JP 2002057634A JP 4110801 B2 JP4110801 B2 JP 4110801B2
Authority
JP
Japan
Prior art keywords
polishing
wafer
thin film
cloth
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002057634A
Other languages
Japanese (ja)
Other versions
JP2003257900A (en
Inventor
徹 谷口
隆志 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2002057634A priority Critical patent/JP4110801B2/en
Publication of JP2003257900A publication Critical patent/JP2003257900A/en
Application granted granted Critical
Publication of JP4110801B2 publication Critical patent/JP4110801B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、低コストで超高平坦度を得ることができる半導体ウェーハの研磨方法に関する。
【0002】
【従来の技術】
半導体ウェーハ、例えばシリコンウェーハの製造工程は、引上げたシリコン単結晶インゴットから切出し、スライスして得られたウェーハを面取り、機械研磨(ラッピング)、エッチング、鏡面研磨(ポリッシング)及び洗浄する工程から構成され、高精度の平坦度を有するウェーハとして生産される。これらの工程は目的により、その一部の工程が入替えられたり、複数回繰返されたり、或いは熱処理、研削等他の工程が付加、置換されたりして種々の工程が行われる。
【0003】
このうち鏡面研磨は、光学的光沢をもち加工歪みのない鏡面ウェーハを製造するプロセスである。従来、一般的にシリコンウェーハの鏡面研磨は片面研磨法により行われていた。
【0004】
しかしながら半導体デバイスの微細化と高集積化が進むに従って、更に高精度の平坦度を有するシリコンウェーハ製造が要求されており、従来のシリコンウェーハの片面鏡面研磨方法では限界が指摘されている。この問題を解決する1つの方策としてシリコンウェーハの両面鏡面研磨方法が提案された。これは、シリコンウェーハを仕上げ厚さより若干薄いキャリアの中に装填し、両面ラッピングと同様の機構で鏡面研磨する方法である。この両面研磨装置によりウェーハの表裏面ともに鏡面研磨され、極めて高精度の平坦度、均一厚みが得られる。
【0005】
【発明が解決しようとする課題】
しかし、上記両面研磨装置による鏡面研磨方法は高精度の平坦度が得られるため非常に有用な方法であるが、現状の半導体デバイスプロセスでは片面のみを鏡面研磨した、片面鏡面ウェーハを使用することが殆どであり、両面同時研磨で得られる両面鏡面ウェーハはウェーハの表裏面を同時に鏡面研磨することにより作製されるため、表裏面の区別がつき難く、例えば、デバイスプロセスでの搬送系でのウェーハ有無の検知が裏面が研磨されているために、検査困難や誤検知する等の問題を生じていた。
【0006】
このため、ウェーハ表裏面が鏡面研磨されたものではなく、片面のみが鏡面研磨され、両面鏡面研磨されたものと同様の高い平坦度を有するウェーハが要望されている。このような要望に対応するため、高平坦化加工法として有効である両面研磨装置を用い、片面のみを研磨する技術が提案されている。例えば、両面鏡面研磨を施す前にウェーハの非研磨予定面に酸化膜又は窒化膜を形成し、ウェーハに両面研磨を施してウェーハの予定面のみに鏡面加工を行う方法が提案されている(特開平10−303154)。この方法では、保護膜である酸化膜又は窒化膜をCVD法や熱酸化処理により形成している。
【0007】
しかし、上記公報に示された研磨技術では、成膜及び除去の工程が追加されるため製造コストが増大し、スループットが低下してしまう問題があった。また、熱工程による汚染や膜除去時のパーティクルの発生等の問題が生じるおそれもあった。
【0008】
一方、研磨に用いられる研磨布は、通常その研磨能力を備えるために親水性にされている。しかし両面研磨装置を用いて片面のみを研磨する際に、研磨布と非研磨予定面との間に水素結合を生じて、研磨時の接触抵抗が大きくなり、加工における安定性が低下する不具合を生じていた。
【0009】
本発明の目的は、低コストで高精度の平坦度を有する片面鏡面ウェーハを得ることができる半導体ウェーハの研磨方法を提供することにある。
【0010】
【課題を解決するための手段】
請求項1に係る発明は、図1に示すように、キャリアプレート16に形成されたキャリアホール16a内に自然放置中又は洗浄中に生じた薄膜を両面に有する半導体ウェーハ19を保持し、研磨液をウェーハ19表面に供給しながら、第1研磨布13が貼り付けられた上定盤11及び第2研磨布14が貼り付けられた下定盤12の間で、キャリアプレート16の表面と平行な面内でプレート16を運動させてウェーハ19を平面研磨する半導体ウェーハの研磨方法の改良である。この特徴ある構成は、ウェーハ19の表裏面の薄膜のうち下定盤12と接するウェーハ裏面に薄膜を残留させて、上定盤11と接するウェーハ表面の薄膜を除去する工程を含み、研磨液はウェーハの材料に対する研磨速度が薄膜に対する研磨速度よりも高く、第1研磨布13が親水性を有し、第2研磨布14が撥水性を有するところにある。
請求項2に係る発明は、キャリアプレートに形成されたキャリアホール内に自然放置中又は洗浄中に生じた薄膜を両面に有する半導体ウェーハを保持し、研磨液をウェーハ表面に供給しながら、第1研磨布が貼り付けられた上定盤及び第2研磨布が貼り付けられた下定盤の間で、キャリアプレートの表面と平行な面内でプレートを運動させてウェーハを平面研磨する半導体ウェーハの研磨方法の改良である。その特徴ある構成は、ウェーハの表裏面の薄膜のうち上定盤と接するウェーハ裏面に薄膜を残留させて、下定盤と接するウェーハ表面の薄膜を除去する工程を含み、研磨液はウェーハの材料に対する研磨速度が薄膜に対する研磨速度よりも高く、第1研磨布が撥水性を有し、第2研磨布が親水性を有するところにある
請求項1又は2に係る発明では、ウェーハの材料に対する研磨速度が薄膜に対する研磨速度よりも高い研磨液を供給して半導体ウェーハの表面側を選択的に研磨することにより、薄膜が残留するウェーハ裏面側は研磨レートが低く、研磨は殆ど進行しないのに対して、薄膜が除去されたウェーハ表面側は研磨レートが高く、良好な研磨が行われる。更に、第2研磨布14に撥水性を持たせることにより、この非研磨面である薄膜が残留するウェーハ裏面との間に水素結合を生じることがないため、研磨時の薄膜との接触抵抗を小さくすることができる。従って、自然放置中又は洗浄中に生じた薄膜でも保護膜として十分に機能し、特に酸化膜を設ける工程を必要としないため、成膜や除去における工程追加によるコストの増大を抑制でき、熱工程による汚染や膜除去に伴うパーティクルの発生も抑えることができる。その結果、加工における安定性が向上し、高精度の平坦度を有するウェーハを高収率で得ることができる。
【0011】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいてシリコンウェーハの研磨を例に挙げて説明する。
図1に示すように、両面研磨装置10は、相対する上定盤11及び下定盤12に上定盤11には第1研磨布13を下定盤12には第2研磨布14をそれぞれ貼付け、その間に自然放置中又は洗浄中に生じた薄膜を有するシリコンウェーハを仕上げ厚さより若干薄いキャリアプレート16と称する薄円盤を定盤全体で4〜5枚セットする。図1中の符号21は上定盤と下定盤との間に研磨液を供給する配管を示す。キャリアプレートは、図2に示すように、ウェーハ外径より0.5〜2mm程度大きい直径のキャリアホール16aが4個設けられ、このキャリアホール16a内にウェーハ19が装填可能な構造をとっている。
図3に示すように、キャリアプレート16は定盤12の中心に位置するサンギア17と定盤の外周周囲に位置するインターナルギア18とそれぞれかみ合って保持される。そのキャリアホール16aにシリコンウェーハ19をセットした後、上定盤11と下定盤12の間にウェーハ19を挟んで所定圧力を加えながら、上下定盤の回転、キャリアの公転及びウェーハ自体の自転という複雑な運動を利用してウェーハの表裏面の研磨を行う。なお図3では、定盤に保持されたキャリアプレートは1枚のみ示している。
【0012】
本発明の特徴ある構成は、ウェーハ19の表裏面の薄膜のうち下定盤12と接するウェーハ裏面に薄膜を残留させて、上定盤11と接するウェーハ表面の薄膜を除去する工程を含み、研磨液はウェーハの材料に対する研磨速度が薄膜に対する研磨速度よりも高く、第1研磨布13が親水性を有し、第2研磨布14が撥水性を有するところにある。
【0013】
研磨を施す前のオゾン洗浄等による洗浄や自然酸化により生じたシリコンウェーハの酸化膜のうち、上定盤11と接するウェーハ表面の酸化膜はフッ酸系エッチング液により予め除去される。この酸化膜は、極めて薄い酸化膜であるので、フッ酸系エッチング液で容易に除去できる。ウェーハの材料に対する研磨速度が薄膜に対する研磨速度よりも高い研磨液としては、研磨砥粒濃度が1重量%以下のアルカリ性溶液が使用される。この研磨液は、砥粒による機械的研磨作用が殆どなく、アルカリ性溶液による化学的研磨作用即ち、エッチング作用のみを有するため、この研磨液を用いて研磨を施してもウェーハ裏面に残留する酸化膜は殆ど研磨されず、酸化膜を除去して露出したウェーハ表面のみが研磨される。
【0014】
研磨装置は、通常上定盤及び下定盤に貼り付けた研磨布は研磨能力を持たせるために親水性とされている。従って、研磨布に親水性を持たせず、逆に撥水性とすることにより研磨時における抵抗を小さくできる。そこで、ウェーハ19裏面と接触する下定盤12に貼付された第2研磨布14を撥水性とし、ウェーハ表面と接触する上定盤11に貼付された第1研磨布13を親水性とすることにより、ウェーハ19裏面に残留する酸化膜19aと第2研磨布14との間には水素結合を生じることなく研磨抵抗は小さくなるため、研磨による酸化膜19aの脱離や欠落等を抑制でき、ウェーハ19表面は親水性を有する第1研磨布13との間に大きな研磨抵抗が得られるため、鏡面に研磨される。従って、高精度の平坦度を維持した一方のみが鏡面研磨されたウェーハを作製することができる。
本発明の撥水性の研磨布は不織布にフッ素系樹脂を含浸させた不織布やその表面をフッ素系樹脂によりコーティングされた不織布、発泡ウレタン、スエード等が挙げられる。親水性の研磨布は樹脂加工或いは化学薬品加工を特別に施さない不織布、発泡ウレタン、スエード等が挙げられる。スエードとはスエード皮に似せた表面仕上げを施した織物又は編物や、ポリエステルフェルトにポリウレタンを含浸させたシート等を用いた基材にポリウレタンを積層し、ポリウレタン内に発泡層を成長させ、表面部位を除去して発泡層に羽毛状の開口部を設けたものをいう。
【0015】
なお、本実施の形態ではサンギアが組み込まれた両面研磨装置を用いて説明したが、サンギアが組み込まれていない両面研磨装置を用いてもよい。
【0016】
また、下定盤12と接するウェーハ裏面に薄膜19aを残留させて、上定盤11と接するウェーハ表面の薄膜を除去し、親水性を有する第1研磨布13と撥水性を有する第2研磨布14によりウェーハを研磨したが、上定盤11と接するウェーハ裏面に薄膜19aを残留させて、下定盤12と接するウェーハ表面の薄膜を除去し、撥水性を有する第1研磨布13と親水性を有する第2研磨布14によりウェーハを研磨しても良い。
【0017】
【発明の効果】
以上述べたように、本発明によれば、ウェーハの材料に対する研磨速度が薄膜に対する研磨速度よりも高い研磨液を供給して半導体ウェーハの表面側を選択的に研磨することにより、薄膜が残留するウェーハ裏面側は研磨レートが低く、研磨は殆ど進行しないのに対して、薄膜が除去されたウェーハ表面側は研磨レートが高く、良好な研磨が行われる。更に、第2研磨布に撥水性を持たせることにより、この非研磨面である薄膜が残留するウェーハ裏面との間に水素結合を生じることがないため、研磨時の薄膜との接触抵抗を小さくすることができる。従って、自然放置中又は洗浄中に生じた薄膜でも保護膜として十分に機能し、特に酸化膜を設ける必要がないため、成膜や除去における工程追加によるコストの増大を抑制でき、パーティクルの発生も抑えることができる。その結果、加工における安定性が向上し、高精度の平坦度を有するウェーハを高収率で得ることができる。
【図面の簡単な説明】
【図1】本実施の形態に用いる両面研磨装置の部分断面図。
【図2】両面研磨装置におけるキャリアの上面説明図。
【図3】両面研磨装置におけるキャリアをセットした定盤の上面説明図。
【符号の説明】
10 両面研磨装置
11 上定盤
12 下定盤
13 第1研磨布
14 第2研磨布
16 キャリアプレート
16a キャリアホール
17 サンギア
18 インターナルギア
19 シリコンウェーハ
21 配管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for polishing a semiconductor wafer capable of obtaining ultrahigh flatness at low cost.
[0002]
[Prior art]
The manufacturing process of a semiconductor wafer, such as a silicon wafer, consists of chamfering, mechanical polishing (lapping), etching, mirror polishing (polishing) and cleaning of a wafer obtained by cutting and slicing from a pulled silicon single crystal ingot. , Produced as a wafer with high precision flatness. Depending on the purpose, some of these steps are replaced, repeated a plurality of times, or other steps such as heat treatment and grinding are added or replaced to perform various steps.
[0003]
Of these, mirror polishing is a process for producing a mirror-surface wafer having optical gloss and no processing distortion. Conventionally, mirror polishing of silicon wafers has generally been performed by a single-side polishing method.
[0004]
However, as the miniaturization and high integration of semiconductor devices progress, it is required to manufacture a silicon wafer having higher precision flatness, and there is a limit in the conventional silicon wafer single-side mirror polishing method. As one measure for solving this problem, a double-sided mirror polishing method for silicon wafers has been proposed. This is a method in which a silicon wafer is loaded into a carrier slightly thinner than the finished thickness and mirror-polished by a mechanism similar to double-sided lapping. With this double-side polishing apparatus, both the front and back surfaces of the wafer are mirror-polished to obtain extremely high accuracy flatness and uniform thickness.
[0005]
[Problems to be solved by the invention]
However, the mirror polishing method using the above-described double-side polishing apparatus is a very useful method because high-accuracy flatness is obtained. However, in the current semiconductor device process, it is possible to use a single-sided mirror wafer in which only one side is mirror-polished. In most cases, double-sided mirror wafers obtained by double-sided simultaneous polishing are manufactured by mirror-polishing the front and back surfaces of the wafer at the same time, making it difficult to distinguish between the front and back surfaces. For example, the presence or absence of a wafer in the transport system in the device process Since the back surface is polished, problems such as difficulty in inspection and erroneous detection occur.
[0006]
For this reason, there is a demand for a wafer having high flatness similar to that obtained by mirror-polishing only one side and not both surfaces of the wafer being mirror-polished. In order to meet such a demand, a technique for polishing only one side using a double-side polishing apparatus effective as a high planarization processing method has been proposed. For example, a method has been proposed in which an oxide film or a nitride film is formed on a non-polished planned surface of a wafer before performing double-sided mirror polishing, and mirror polishing is performed only on the planned surface of the wafer by performing double-side polishing on the wafer. Kaihei 10-303154). In this method, an oxide film or a nitride film which is a protective film is formed by a CVD method or a thermal oxidation process.
[0007]
However, the polishing technique disclosed in the above publication has a problem in that the manufacturing cost increases and the throughput decreases because the film forming and removing steps are added. In addition, there is a possibility that problems such as contamination due to the heat process and generation of particles during film removal may occur.
[0008]
On the other hand, the polishing cloth used for polishing is usually made hydrophilic in order to have the polishing ability. However, when only one side is polished using a double-side polishing machine, hydrogen bonding occurs between the polishing cloth and the non-polished surface, increasing the contact resistance during polishing and reducing the stability in processing. It was happening.
[0009]
An object of the present invention is to provide a semiconductor wafer polishing method capable of obtaining a single-sided mirror wafer having a high degree of flatness at low cost.
[0010]
[Means for Solving the Problems]
As shown in FIG. 1, the invention according to claim 1 holds a semiconductor wafer 19 having a thin film formed on both sides in a carrier hole 16a formed in a carrier plate 16 on its both surfaces, and is a polishing liquid. A surface parallel to the surface of the carrier plate 16 between the upper surface plate 11 to which the first polishing cloth 13 is attached and the lower surface plate 12 to which the second polishing cloth 14 is attached. This is an improvement of a method for polishing a semiconductor wafer in which the plate 16 is moved in the wafer to planarly polish the wafer 19. This characteristic configuration includes a step of removing the thin film on the wafer surface in contact with the upper surface plate 11 by leaving the thin film on the wafer back surface in contact with the lower surface plate 12 among the thin films on the front and back surfaces of the wafer 19. The polishing rate for the material is higher than the polishing rate for the thin film, the first polishing cloth 13 has hydrophilicity, and the second polishing cloth 14 has water repellency.
According to the second aspect of the present invention , a semiconductor wafer having a thin film formed on both sides thereof in a carrier hole formed in a carrier plate is held on the both surfaces, and a first polishing liquid is supplied to the wafer surface while supplying a polishing liquid to the wafer surface. Polishing of a semiconductor wafer in which the wafer is planarly polished by moving the plate in a plane parallel to the surface of the carrier plate between the upper surface plate to which the polishing cloth is attached and the lower surface plate to which the second polishing cloth is attached. It is an improvement of the method. The characteristic configuration includes a step of removing the thin film on the wafer surface in contact with the lower surface plate by leaving the thin film on the wafer back surface in contact with the upper surface plate among the thin films on the front and back surfaces of the wafer, and the polishing liquid is applied to the material of the wafer. higher than the polishing rate polishing rate for the thin film, the first polishing cloth has a water repellency, the second polishing cloth is in place with a hydrophilic.
In the invention according to claim 1 or 2, the back surface of the wafer on which the thin film remains by selectively polishing the front surface side of the semiconductor wafer by supplying a polishing liquid whose polishing rate for the material of the wafer is higher than the polishing rate for the thin film On the side, the polishing rate is low and polishing hardly progresses, whereas the wafer surface side from which the thin film has been removed has a high polishing rate and good polishing is performed. Further, by imparting water repellency to the second polishing cloth 14, hydrogen bonding does not occur between the back surface of the wafer where the thin film, which is a non-polished surface, remains, and therefore contact resistance with the thin film during polishing is reduced. Can be small. Therefore, even a thin film generated during natural standing or during cleaning functions sufficiently as a protective film, and does not require a process for providing an oxide film in particular, so that it is possible to suppress an increase in cost due to additional processes in film formation and removal, and a thermal process. It is possible to suppress the generation of particles due to contamination and film removal. As a result, the stability in processing is improved, and a wafer having high precision flatness can be obtained in high yield.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described based on an example of polishing a silicon wafer based on the drawings.
As shown in FIG. 1, the double-side polishing apparatus 10 affixes a first polishing cloth 13 to the upper surface plate 11 and a second polishing cloth 14 to the lower surface plate 12 on the upper surface plate 11 and the lower surface plate 12, respectively. In the meantime, a thin disk called a carrier plate 16 having a thin film slightly thinner than the finished thickness of a silicon wafer having a thin film generated during natural standing or cleaning is set on the entire surface plate. Reference numeral 21 in FIG. 1 indicates a pipe for supplying a polishing liquid between the upper surface plate and the lower surface plate. As shown in FIG. 2, the carrier plate has four carrier holes 16a having a diameter about 0.5 to 2 mm larger than the outer diameter of the wafer, and has a structure in which the wafer 19 can be loaded into the carrier hole 16a. .
As shown in FIG. 3, the carrier plate 16 is held in mesh with a sun gear 17 located at the center of the surface plate 12 and an internal gear 18 located around the outer periphery of the surface plate. After the silicon wafer 19 is set in the carrier hole 16a, while the wafer 19 is sandwiched between the upper surface plate 11 and the lower surface plate 12 and a predetermined pressure is applied, rotation of the upper and lower surface plates, rotation of the carrier, and rotation of the wafer itself are referred to. Polishing the front and back of the wafer using complex motion. FIG. 3 shows only one carrier plate held on the surface plate.
[0012]
The characteristic configuration of the present invention includes a step of removing the thin film on the wafer surface in contact with the upper surface plate 11 by leaving the thin film on the back surface of the wafer in contact with the lower surface plate 12 among the thin films on the front and back surfaces of the wafer 19. The polishing rate for the material of the wafer is higher than the polishing rate for the thin film, the first polishing pad 13 has hydrophilicity, and the second polishing pad 14 has water repellency.
[0013]
Of the oxide film of the silicon wafer produced by cleaning by ozone cleaning or the like before polishing or natural oxidation, the oxide film on the wafer surface in contact with the upper surface plate 11 is removed in advance by a hydrofluoric acid-based etching solution. Since this oxide film is an extremely thin oxide film, it can be easily removed with a hydrofluoric acid-based etching solution. An alkaline solution having a polishing abrasive concentration of 1% by weight or less is used as the polishing liquid whose polishing rate for the wafer material is higher than that for the thin film. Since this polishing liquid has almost no mechanical polishing action by the abrasive grains and has only a chemical polishing action by an alkaline solution, that is, an etching action, an oxide film remaining on the back surface of the wafer even if polishing is performed using this polishing liquid. Is hardly polished, and only the wafer surface exposed by removing the oxide film is polished.
[0014]
In the polishing apparatus, the polishing cloth attached to the upper surface plate and the lower surface plate is usually hydrophilic so as to have a polishing ability. Accordingly, the resistance during polishing can be reduced by making the polishing cloth hydrophilic without conferring hydrophilicity. Therefore, by making the second polishing cloth 14 attached to the lower surface plate 12 in contact with the back surface of the wafer 19 water-repellent and making the first polishing cloth 13 attached to the upper surface plate 11 in contact with the wafer surface hydrophilic. Since the polishing resistance is reduced without generating a hydrogen bond between the oxide film 19a remaining on the back surface of the wafer 19 and the second polishing pad 14, it is possible to suppress detachment or loss of the oxide film 19a due to polishing. Since a large polishing resistance is obtained between the surface 19 and the first polishing cloth 13 having hydrophilicity, the surface is polished to a mirror surface. Therefore, it is possible to manufacture a wafer in which only one of which maintains high precision flatness is mirror-polished.
Examples of the water-repellent abrasive cloth of the present invention include a nonwoven fabric in which a nonwoven fabric is impregnated with a fluorine-based resin, a nonwoven fabric whose surface is coated with a fluorine-based resin, urethane foam, and suede. Examples of hydrophilic abrasive cloth include nonwoven fabric, urethane foam, and suede that are not specially subjected to resin processing or chemical processing. Suede is a fabric or knitted fabric with a surface finish resembling suede leather, or a base material using a sheet of polyester felt impregnated with polyurethane. And a foamed layer provided with a feather-like opening.
[0015]
In this embodiment, the double-side polishing apparatus in which the sun gear is incorporated is described. However, a double-side polishing apparatus in which the sun gear is not incorporated may be used.
[0016]
Further, the thin film 19a is left on the back surface of the wafer in contact with the lower surface plate 12, the thin film on the wafer surface in contact with the upper surface plate 11 is removed, and the first polishing cloth 13 having hydrophilicity and the second polishing cloth 14 having water repellency. However, the thin film 19a remains on the back surface of the wafer in contact with the upper surface plate 11, the thin film on the surface of the wafer in contact with the lower surface plate 12 is removed, and the first polishing cloth 13 having water repellency has hydrophilicity. The wafer may be polished with the second polishing cloth 14.
[0017]
【The invention's effect】
As described above, according to the present invention, the thin film remains by selectively polishing the surface side of the semiconductor wafer by supplying a polishing liquid whose polishing rate for the wafer material is higher than the polishing rate for the thin film. While the polishing rate is low on the back side of the wafer and polishing hardly proceeds, the polishing rate is high on the front side of the wafer from which the thin film has been removed, and good polishing is performed. Further, by providing the second polishing cloth with water repellency, hydrogen bonding does not occur between the non-polished thin film and the wafer back surface, so that the contact resistance with the thin film during polishing is reduced. can do. Therefore, even a thin film generated during natural standing or during cleaning functions sufficiently as a protective film, and it is not necessary to provide an oxide film. Can be suppressed. As a result, the stability in processing is improved, and a wafer having high precision flatness can be obtained in high yield.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view of a double-side polishing apparatus used in the present embodiment.
FIG. 2 is an explanatory top view of a carrier in a double-side polishing apparatus.
FIG. 3 is a top view of a surface plate on which a carrier is set in a double-side polishing apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Double-side polish apparatus 11 Upper surface plate 12 Lower surface plate 13 1st polishing cloth 14 2nd polishing cloth 16 Carrier plate 16a Carrier hole 17 Sun gear 18 Internal gear 19 Silicon wafer 21 Piping

Claims (8)

キャリアプレート(16)に形成されたキャリアホール(16a)内に自然放置中又は洗浄中に生じた薄膜を両面に有する半導体ウェーハ(19)を保持し、研磨液を前記ウェーハ(19)表面に供給しながら、第1研磨布(13)が貼り付けられた上定盤(11)及び第2研磨布(14)が貼り付けられた下定盤(12)の間で、前記キャリアプレート(16)の表面と平行な面内で前記プレート(16)を運動させて前記ウェーハ(19)を平面研磨する半導体ウェーハの研磨方法において、
前記ウェーハ(19)の表裏面の薄膜のうち下定盤(12)と接するウェーハ裏面に薄膜(19a)を残留させて、上定盤(11)と接するウェーハ表面の薄膜を除去する工程を含み、
前記研磨液は前記ウェーハの材料に対する研磨速度が前記薄膜に対する研磨速度よりも高く、
前記第1研磨布(13)が親水性を有し、前記第2研磨布(14)が撥水性を有する
ことを特徴とする半導体ウェーハの研磨方法。
The semiconductor wafer (19) having a thin film formed on both sides in the carrier hole (16a) formed in the carrier plate (16) is held on the both sides, and the polishing liquid is supplied to the surface of the wafer (19). However, between the upper surface plate (11) to which the first abrasive cloth (13) is adhered and the lower surface plate (12) to which the second abrasive cloth (14) is adhered, the carrier plate (16) In the semiconductor wafer polishing method of polishing the wafer (19) by moving the plate (16) in a plane parallel to the surface,
Leaving the thin film (19a) on the wafer back surface in contact with the lower surface plate (12) among the thin films on the front and back surfaces of the wafer (19), and removing the thin film on the wafer surface in contact with the upper surface plate (11),
The polishing liquid has a higher polishing rate for the wafer material than the polishing rate for the thin film,
A method for polishing a semiconductor wafer, wherein the first polishing cloth (13) has hydrophilicity and the second polishing cloth (14) has water repellency.
キャリアプレート (16) に形成されたキャリアホール (16a) 内に自然放置中又は洗浄中に生じた薄膜を両面に有する半導体ウェーハ (19) を保持し、研磨液を前記ウェーハ (19) 表面に供給しながら、第1研磨布 (13) が貼り付けられた上定盤 (11) 及び第2研磨布 (14) が貼り付けられた下定盤 (12) の間で、前記キャリアプレート (16) の表面と平行な面内で前記プレート (16) を運動させて前記ウェーハ (19) を平面研磨する半導体ウェーハの研磨方法において、
前記ウェーハ(19)の表裏面の薄膜のうち上定盤(11)と接するウェーハ裏面に薄膜(19a)を残留させて、下定盤(12)と接するウェーハ表面の薄膜を除去する工程を含み、
前記研磨液は前記ウェーハの材料に対する研磨速度が前記薄膜に対する研磨速度よりも高く、
前記第1研磨布(13)が撥水性を有し、前記第2研磨布(14)が親水性を有する
ことを特徴とする半導体ウェーハの研磨方法。
The semiconductor wafer (19) having a thin film formed on both sides in the carrier hole (16a) formed in the carrier plate (16) is held on the both sides, and the polishing liquid is supplied to the surface of the wafer (19). while, between the first polishing cloth (13) is pasted on the surface plate (11) and the second polishing cloth (14) is pasted lower surface plate (12), said carrier plate (16) In the semiconductor wafer polishing method of polishing the wafer (19) by moving the plate (16) in a plane parallel to the surface ,
Said back surface of the wafer in contact with the surface plate (11) out of the thin film on the front and back surfaces of the wafer (19) leaving a thin film (19a), comprising the step of removing the thin film of the wafer surface in contact with the lower surface plate (12),
The polishing liquid has a higher polishing rate for the wafer material than the polishing rate for the thin film,
The first abrasive cloth (13) has water repellency, and the second abrasive cloth (14) has hydrophilicity.
A method for polishing a semiconductor wafer .
半導体ウェーハ(19)がシリコンウェーハであって、薄膜(19a)が酸化膜である請求項1又は2記載の研磨方法。The polishing method according to claim 1 or 2, wherein the semiconductor wafer (19) is a silicon wafer and the thin film (19a) is an oxide film. 研磨液は研磨砥粒濃度が1重量%以下のアルカリ性溶液である請求項1又は2記載の研磨方法。The polishing method according to claim 1 or 2, wherein the polishing liquid is an alkaline solution having a polishing abrasive grain concentration of 1% by weight or less. ウェーハ(19)表面に生じた薄膜をフッ酸系エッチング液により除去する請求項1又は2記載の研磨方法。The polishing method according to claim 1 or 2, wherein the thin film formed on the surface of the wafer (19) is removed with a hydrofluoric acid-based etching solution. 撥水性の研磨布が不織布にフッ素系樹脂を含浸させた不織布である請求項1又は2記載の研磨方法。The polishing method according to claim 1 or 2, wherein the water-repellent polishing cloth is a nonwoven fabric obtained by impregnating a nonwoven fabric with a fluorine resin. 撥水性の研磨布がその表面をフッ素系樹脂によりコーティングされた不織布、発泡ウレタン又はスエードである請求項1又は2記載の研磨方法。The polishing method according to claim 1 or 2, wherein the water-repellent polishing cloth is a nonwoven fabric, urethane foam or suede whose surface is coated with a fluorine resin. 親水性の研磨布が不織布、発泡ウレタン又はスエードである請求項1又は2記載の研磨方法。The polishing method according to claim 1 or 2, wherein the hydrophilic polishing cloth is a non-woven fabric, urethane foam or suede.
JP2002057634A 2002-03-04 2002-03-04 Semiconductor wafer polishing method Expired - Lifetime JP4110801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002057634A JP4110801B2 (en) 2002-03-04 2002-03-04 Semiconductor wafer polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002057634A JP4110801B2 (en) 2002-03-04 2002-03-04 Semiconductor wafer polishing method

Publications (2)

Publication Number Publication Date
JP2003257900A JP2003257900A (en) 2003-09-12
JP4110801B2 true JP4110801B2 (en) 2008-07-02

Family

ID=28667848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002057634A Expired - Lifetime JP4110801B2 (en) 2002-03-04 2002-03-04 Semiconductor wafer polishing method

Country Status (1)

Country Link
JP (1) JP4110801B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7867877B2 (en) 2004-01-30 2011-01-11 Sumco Corporation Method for manufacturing SOI wafer
JP4880922B2 (en) * 2005-06-24 2012-02-22 帝人コードレ株式会社 Disc processing base fabric
JP5005372B2 (en) * 2007-01-31 2012-08-22 京セラクリスタルデバイス株式会社 Double-side polishing equipment
JP5839162B2 (en) * 2010-07-12 2016-01-06 Jsr株式会社 Chemical mechanical polishing pad and chemical mechanical polishing method

Also Published As

Publication number Publication date
JP2003257900A (en) 2003-09-12

Similar Documents

Publication Publication Date Title
JP6312976B2 (en) Manufacturing method of semiconductor wafer
US7582221B2 (en) Wafer manufacturing method, polishing apparatus, and wafer
JP6244962B2 (en) Manufacturing method of semiconductor wafer
JPH11277408A (en) Cloth, method and device for polishing mirror finished surface of semi-conductor wafer
JPWO2002005337A1 (en) Mirror chamfering wafer, polishing cloth for mirror chamfering, mirror chamfering polishing apparatus and method
JP4853042B2 (en) Wafer and manufacturing method thereof
JP3664676B2 (en) Wafer polishing method and polishing pad for wafer polishing
JP6027346B2 (en) Manufacturing method of semiconductor wafer
JP2002231669A (en) Polishing cloth for semiconductor wafer, and polishing method of semiconductor wafer using the polishing cloth
JP4110801B2 (en) Semiconductor wafer polishing method
JP2892215B2 (en) Wafer polishing method
WO2004109787A1 (en) Method for polishing wafer
US6969304B2 (en) Method of polishing semiconductor wafer
JP3916212B2 (en) Manufacturing method of semiconductor wafer
JP2002025950A (en) Manufacturing method for semiconductor wafer
JP2007035917A (en) Polishing pad, silicon wafer, and polishing machine
JP2004087522A (en) Process for producing semiconductor wafer
JP3521051B2 (en) Silicon wafer manufacturing method
JP2002299290A (en) Manufacturing method for semiconductor wafer
JP3584824B2 (en) High flatness semiconductor wafer and method of manufacturing the same
JP2004319717A (en) Method of manufacturing semiconductor wafer
JP2018032735A (en) Wafer surface treatment method
JP2003133264A (en) Manufacturing method of mirror face wafer
JP2002222781A (en) Method for manufacturing semiconductor wafer
JP2009135180A (en) Method for manufacturing semiconductor wafer

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20050225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

R150 Certificate of patent or registration of utility model

Ref document number: 4110801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term