JP2005114727A - 複合化された2重目的磁気抵抗センサならびに電流および温度の測定方法 - Google Patents

複合化された2重目的磁気抵抗センサならびに電流および温度の測定方法 Download PDF

Info

Publication number
JP2005114727A
JP2005114727A JP2004292146A JP2004292146A JP2005114727A JP 2005114727 A JP2005114727 A JP 2005114727A JP 2004292146 A JP2004292146 A JP 2004292146A JP 2004292146 A JP2004292146 A JP 2004292146A JP 2005114727 A JP2005114727 A JP 2005114727A
Authority
JP
Japan
Prior art keywords
current
sensor
temperature
resistance
dual purpose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004292146A
Other languages
English (en)
Other versions
JP4342415B2 (ja
Inventor
Randy K Rannow
ランディ・ケイ・ラノウ
Bradley D Winick
ブラッドレイ・ディー・ウィニック
Shaun L Harris
シャウン・エル・ハリス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Hewlett Packard Development Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co LP filed Critical Hewlett Packard Development Co LP
Publication of JP2005114727A publication Critical patent/JP2005114727A/ja
Application granted granted Critical
Publication of JP4342415B2 publication Critical patent/JP4342415B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/36Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using magnetic elements, e.g. magnets, coils

Abstract

【課題】電子装置の動作を監視する手段のサイズを低減する。
【解決手段】本発明は、単一の磁気抵抗センサ(110,210)の抵抗測定(320,340)から温度と電流を求める。両目的センサ(100)は、一対の端子(112,113)を有する磁気抵抗センサ(110,210)を備える。センサ(110,210)は、別個の電流条件下で多重化されて(300)、センサの近傍における温度測定値と電流測定値の両方を生成する。センサシステム(200)は、両目的センサ(100)、抵抗検知サブシステム(220)、及び、電流条件を制御するコントローラ(230)を備える。温度と電流を測定する方法(300)は、第1の電流がセンサに近接する導体(102,202)に流れている間に両目的センサ(100)の第1の抵抗を測定するステップと、第2の電流が導体に流れている間にセンサの第2の抵抗を測定するステップを含む。温度と電流は、第1の抵抗の測定値と第2の抵抗の測定値からそれぞれ求められる。
【選択図】図3

Description

本発明は、電子デバイスに関する。特に、本発明は、電子デバイスの動作特性を監視するのに使用されるセンサに関する。
電子デバイスおよびそれらの構成部品は、ますます複雑になってきている。複雑さに伴い、このようなデバイスおよび部品のさまざまな性能パラメータを監視する必要性が増大している。特に、回路密度の増加により、多くの場合、回路の温度を監視する必要性が増大している。複雑な回路による電力利用によって、多くの場合、回路に流れ込む電流および/または回路から流れ出す電流に加えて、回路内を流れる電流も監視することが必要となる。このことは、電池を使用するデバイス等、電力が制限されるデバイスが関与するアプリケーションを考える場合に特に当てはまる。
従来、温度を測定する場合に、温度センサが使用される。同様に、電流を測定する場合には、電流センサが使用される。あいにく、このようなセンサは、特に監視対象の回路に一体化されると、かなりの回路面積を占有するおそれがある。加えて、センサが回路に一体化されるかどうかにかかわらず、センサの使用は、製造コストの一因にもなるおそれがある。このように、温度および電流の双方を測定する際に、温度用に1つのセンサと電流用に1つのセンサの2つのセンサを使用すると、一般に、単一のセンサの場合よりも2倍の回路面積と単一のセンサの場合よりも多くのコストが消費される。
米国特許第4,385,273号明細書 米国特許第4,414,510号明細書 米国特許第4,937,521号明細書 米国特許第5,502,325号明細書 米国特許第5,206,590号明細書 米国特許第6,002,553号明細書 米国特許第6,215,301B1号明細書 米国特許第6,473,275号明細書 米国特許第6,429,640B1号明細書 米国特許出願第2003/0117254A1号明細書 Michael J. Caruso等による「A New Perspective on Magnetic Field Sensing」、Honeywell, Inc., 5/98, pp. 1-19 S. TumanskiによるThin Film Magnetoresistive Sensors, Inst. of Physics Publication Ltd., Bristol and Philadelphia, 2001, pp. 1-163
本発明の1つの目的は、電子装置の動作を監視する手段のサイズを低減することである。
本発明のいくつかの実施形態では、2重目的センサが提供される。この2重目的センサは、単一対の端子を有する磁気抵抗電流センサを備える。このセンサは、当該センサに隣接する導体の個々の電流状況下で、該センサの近傍の温度測定値および電流測定値の双方を生成するように複合化される。
本発明の他の実施形態では、電流測定値および温度測定値を生成するセンサシステムが提供される。このセンサシステムは、磁気抵抗率(または磁気抵抗電流)を検知する手段と、この電流検知手段の抵抗値を測定する手段と、この電流検知手段に隣接する導体の電流を制御する手段とを備える。
本発明のさらに別の実施形態では、温度および電流を測定する方法が提供される。この方法は、第1の電流が磁気抵抗センサに隣接する導体に流れている間に、磁気抵抗センサの第1の抵抗値を測定するステップを含む。第1の電流は、既知の値を有し、第1の抵抗値は、センサの単一対の端子を使用して測定される。この方法は、さらに、第2の電流が導体に流れている間に、磁気抵抗センサの第2の抵抗値を測定するステップを含む。第2の電流は、未知の値を有し、第2の抵抗値は、センサの上記単一対の端子を使用して測定される。測定された第1の抵抗値は、温度測定値を生成するのに使用される一方、測定された第2の抵抗値は、電流測定値を生成するのに使用される。
本発明のいくつかの実施形態は、上述した特徴以外の他の特徴および上述した特徴に代わる他の特徴を有する。本発明のこれらの特徴及び利点並びに他の特徴及び利点を、添付図面を参照して以下に詳述する。
本発明のさまざまな特徴および利点は、添付図面と共に以下の詳細な説明を参照することによって、より簡単に理解することができる。添付図面において、同じ参照符号は、同じ構造上の要素を示す。
実施形態
本発明は、磁気抵抗電流センサを複合化して、電子デバイスまたはその構成要素に2重目的の検知機能を提供する(以下では、複合化とは、たとえば、機能的に複合化または多重化することを意味する)。詳細には、センサに隣接して流れる電流およびセンサの近傍の温度の双方を、本発明の単一の磁気抵抗電流センサを使用して求めることができる。したがって、このような測定に2つまたは3つ以上の従来のセンサを使用する代わりに、1つの2重目的センサを使用することができる。さらに、センサの温度測定能力は、電流測定を補正するのに使用することもできるし、電流測定の調整を可能にするのに使用することもできる。それによって、2重目的センサの電流測定の精度が改善される。
本発明による2重目的センサは、スタンドアロンセンサ(独立型センサ)として実現することもできるし、一体化センサとして実現することもできる。さらに、2重目的センサは、集積回路、集積回路パッケージ、プリント回路基板、および電子デバイスに使用される関連した回路素子もしくは部品のうちの、1つまたは2つ以上のものの温度および電流の双方を測定するのに使用することもできる。例えば、いくつかの2重目的センサは、本発明に従って、集積回路(IC)内に一体化されて、そのICの電力消費を監視し、および電力消費の制御を支援することができる。加えて、いくつかの一体化された2重目的センサは、例えばVLSIデバイスの性能向上または最適化を促進するのに使用することもできる。別の例では、本発明に従って、2重目的センサのアレイを使用して、設計目的または診断目的(例えば、欠陥または故障の検出)で回路の電流/温度および/または電力利用度をマッピングする(例えば図に表す)ことができる。
図1は、本発明の一実施形態による2重目的センサ100の一実施形態のブロック図を示している。この2重目的センサ100は、磁気抵抗(MR)電流センサ110を備える。このMR電流センサ110は、当該MR電流センサ110に関連付けられた、または、当該MR電流センサ110から延びる1対の端子112、113を有する。MR電流センサ110は、当該MR電流センサ110に隣接した導体102に流れる電流104の状態または状況(または条件。以下同じ)を制御することによって複合化される。電流104の状況が制御され、その結果、電流104は、事前に知られた値または未知の値のいずれかをとる。事前に知られた値を有する電流104が、隣接する導体102に流れている場合には、2重目的センサ100は、温度測定値を生成する。未知の値を有する電流104が、隣接する導体102に流れている場合には、2重目的センサ100は、電流104の電流測定を行う。このように、本発明によると、電流の状況を制御することによって2重目的センサ100のMR電流センサ110を複合化することにより、2重目的センサ100による測定は、センサ100の近傍の温度測定と、隣接する導体102の電流104の未知の値の電流測定との双方を与えることができる。さらに、電流104の未知の値は、時間と共に一定であってもよいし、電流計測中に時間の関数として変化してもよい。
既述したように、温度測定値および電流測定値は共に、MR電流センサ110の単一対の端子(112、113)間で行われる測定によって生成される。詳細には、この1対の端子(112、113)間で、第1の抵抗値が測定され、温度測定値を求めるのに使用される。この第1の抵抗値は、隣接する導体102の事前に知られた値の電流状況について測定されるものである。事前に知られた電流状況は、導体102に流れる特定の電流であり、その特定の電流の値は、第1の抵抗値が測定された時に分かる。したがって、事前に知られた電流状況は、任意の特定の電流104とすることができる。この任意の特定の電流104は、例えば、ゼロアンペア(0A)等であるが、これに限定されるものではない。換言すると、例示的な状況では、第1の抵抗値は、導体102の電流104が「OFFにされている」時、すなわち実質的に0Aに設定されている時に測定することができる。あるいは、第1の抵抗値は、電流104が、別の非ゼロの値に設定されている時の電流状況において測定することもできる。この値は、例えば1A等であるが、これに限定されるものではない。
測定された抵抗値とMR電流センサ110の温度との既知の関係を使用すると、測定された抵抗値から温度測定値が求められる。例えば、「校正」曲線を使用することができる。この校正曲線は、製造中に電流センサ110について測定または求められる、温度と抵抗値との間の経験的関係(または実験的に求められた関係)である。校正曲線は、さまざまな形式で表現して使用することができる。このさまざまな形式には、グラフ形式、表形式(例えばルックアップテーブル)、および関数形式が含まれるが、これらに限定されるものではない。
例えば、MR電流センサ110の動作温度範囲にわたる一連の離散的な温度のそれぞれにおいて、MR電流センサ110の端子(112、113)間の一連の抵抗値を測定することができる。このように作成された抵抗値/温度の対は、ルックアップテーブルに記憶することもできるし、温度が第1の軸に関連付けられ、抵抗値が第2の軸に関連付けられたグラフとしてプロットすることもできる。測定された対の間の抵抗値/温度の関係を求めるのに、補間および「最良適合」曲線当てはめを含む技法を使用できるが、使用できる技法は、これらに限定されるものではない。校正曲線の抵抗値/温度の測定は、上述した隣接する導体102の事前に知られた電流状況の下で行われるのが好ましい。
その結果生成された校正曲線は、電流センサ110の事前に知られた電流状況の下での抵抗値を、動作温度範囲にわたる温度に関係付ける、すなわちマッピングする。このように、測定された抵抗値から、校正曲線を使用して、対応する温度を求めることができる。別の例では、既知の抵抗温度係数(TCR)を使用して、温度の関数として抵抗値の変化を求めることができる。TCRを使用すると、電流センサ110について測定された抵抗値と、ベースライン温度(基準温度)において電流センサ110について測定されたベースライン抵抗値(基準抵抗値)とから温度を計算することができる。TCRを使用して電流センサ110の測定値から温度を求めることも、事前に知られた電流状況が、抵抗値の測定およびベースライン抵抗値の測定中に、隣接した導体102において維持されていることを前提とする。
測定された第1の抵抗値を使用して温度を求めると、端子対(112、113)の端子間で測定された第2の抵抗値を使用して、電流測定値を求めることができる。この第2の抵抗値は、決定される未知の電流104が導体102に流れている時に測定される。抵抗値と、隣接する導体102に流れる電流104によって生成される磁界との間の関係が、電流測定の計算に使用される。温度と同様に、流れる電流104を測定された抵抗値に関係付ける校正曲線を経験的に求めることができ、この校正曲線が、関係付けとしての機能を果たす。あるいは、この関係付けは、例えば、製造中に測定して、決定されたベースライン抵抗値を使用して、解析的に求めることもできる。
抵抗値または抵抗値の変化と電流104との間の1群または1組の関係を使用できることは、好都合である。特に、この1組の個々のメンバの関係は、電流センサによって決定された温度に応じて異なることがある。事前に知られた電流104について決定された温度を使用すると、適切なメンバの関係を決定された温度に基づいて選択することによって、決定された温度について、未知の電流104の値を補正することができる。上記のように、補間、曲線当てはめ、および関連技法をメンバの関係間で(例えば、校正データに明示的に含まれていない抵抗値から電流値を計算するのに)使用することができる。
磁気抵抗(MR)電流センサ110は、磁気抵抗材から構成される磁界センサを備える。磁気抵抗材は、印加される磁界の強度および/または方向に従って変化する抵抗率を有する材料である。したがって、磁界センサ(以下「MRセンサ」)は、印加された磁界に応じて変化する抵抗値を示す。MRセンサは、MR電流センサ110として使用されると、当該MRセンサに隣接する導体に流れる電流によって生成される磁界を検知するか、または、磁界に反応する。通常、MRセンサは、ベースライン抵抗値と比較したセンサ抵抗値の変化の点から電流を測定する。電流測定値は、解析的に求めることができ、かつ/または、MRセンサの校正を使用して経験的に求めることができる。したがって、本発明のMR電流センサ110は、一般に、1対の端子112、113の第1の端子112と第2の端子113との間で測定される抵抗値の変化の点から、隣接する導体102に流れる電流104を測定するMRセンサである。
実際には、どの磁気抵抗(MR)センサも、本発明のMR電流センサ110として使用することができる。詳細には、例えば「異方性磁気抵抗(AMR)」センサとして知られている第1の部類のMRセンサ、および/または、「巨大磁気抵抗(GMR)」センサとして知られている第2の部類のMRセンサを、本発明によるMR電流センサ110として使用することができる。
AMRセンサは、通常、基板上に堆積されて第1の端子と第2の端子との間を接続する磁気抵抗材料の薄膜を備える。例えば、集積回路(IC)の製造に使用されるシリコンウェハまたは別の基板材料上に、鉄材料(または強磁性材料)を薄膜として堆積させることができる。この鉄材料は、ニッケル鉄合金(Ni−Feまたはパーマロイ)等であるが、これに限定されるものではない。次いで、このMR材料の薄膜は、第1の端子を第2の端子に接続する1つまたは複数の抵抗性ストリップにパターン形成される。さらに、製造中に、通常、強磁界が印加されて、「容易軸」またはMR材料の磁化(M)ベクトルの好ましい向きが、設定または確立される。
第1の端子と第2の端子との間で測定されるAMRセンサの抵抗値は、Mベクトルと、センサを通って流れる検知電流の方向との間の角度差θの関数として変化する。この検知電流は、AMRセンサ内の電流であり、抵抗値の測定に使用される。一般に、最大抵抗値は、検知電流がMベクトルに平行な方向に流れる時に生成される一方、最小抵抗値は、検知電流の流れが、Mベクトルと実質的に直角である時に生成される。
外部磁界が、AMRセンサに印加されると、MR材料のMベクトルは、回転することができ、その結果、角度差θが変化する。Mベクトルの回転によって生成される角度差θの変化の結果、AMRセンサの抵抗値は変化する。図1では、太線の矢印が、例示的な容易軸のMベクトルを示している。外部磁界の作用によって生成される回転したMベクトルを、図1の破線の矢印で例示する。このように、AMRセンサの抵抗は、外部磁界の印加に応答して変化する。
外部磁界の影響による抵抗の変化は、当業者には「磁気抵抗効果」として知られている。電流を検知するAMRセンサならびにその製造および使用に関するさらなる背景情報は、Michael J. Caruso等による「A New Perspective on Magnetic Field Sensing」、Honeywell, Inc., 5/98, pp. 1-19およびS. TumanskiによるThin Film Magnetoresistive Sensors, Inst. of Physics Publishing Ltd., Bristol and Philadelphia, 2001, pp. 1-163に見ることができる。
AMRセンサが、電流センサとして使用されると、一般に、AMRセンサに隣接する導体に流れる電流が、外部磁界を生成する。マックスウェルの方程式は、導体に流れる電流と、その流れる電流によって生成される磁界との間の特有の関係を一意に画定する。したがって、導体に流れる電流の大きさは、AMRセンサによって測定された磁界から計算により、あるいは、他の方法で求めることができる。Lienhard他の米国特許第4,385,273号、Milkovicの米国特許第4,414,510号、Yoshino他の米国特許第4,937,521号、およびSokolich他の米国特許第5,502,325号は、それぞれ、本発明によるMR電流センサ110として使用できるさまざまな例示的なMR電流センサおよび/またはAMR電流センサを開示している。
GMRセンサは、いわゆる「巨大磁気抵抗」効果を使用して、印加された磁界を測定するMRセンサである。フランスのAlbert Fertおよび彼の協力者、ドイツのPeter Grunbergおよび彼の協力者は、それぞれれ別々に1988年頃に巨大磁気抵抗効果を発見した。GMRセンサは、交互に積み重ねられた、すなわち、層構造をなす1組の薄膜の磁性材料および非磁性材料を備える。例えば、銅(Cu)およびNi−Fe(パーマロイ)の薄膜層が交互に積み重なったものを使用して、GMRセンサを製作することができる。この1組の交互の薄膜層は、巨大磁気抵抗効果を生成し、したがって、AMRセンサと比較すると、印加された磁界に対するGMRセンサの抵抗変化の感度が大幅に向上する。さらに、上述したAMRセンサと同様に、GMRセンサは、検知または求められる電流を運ぶ導体に隣接して当該GMRセンサを配置して当該GMRセンサの抵抗を測定することによって、電流センサとして使用することができる。次に、測定された抵抗を使用して、電流により生成された磁界が求められる。次いで、求めた磁界から、電流測定値が計算されるか、あるいは、他の方法で求められる。
本発明のMR電流センサ110に適用可能なGMRセンサのさまざまな構成には、膜面平行電流(CIP(current in plane))構成および膜面垂直電流(CPP(current perpendicular to plane))構成が含まれるが、これらに限定されるものではない。さらに、さまざまな種類のGMRセンサを、本発明によるMR電流センサ110として使用することができ、これらには、ピン止めされていないサンドイッチGMRセンサ(unpinned sandwich GMR sensor)、反強磁性多層GMRセンサ、スピンバルブGMRセンサ、およびスピン依存トンネル効果(SDT)を使用するGMRセンサが含まれるが、これらに限定されるものではない。このようなさまざまなGMRセンサの種類およびそれらの動作は、Michael J. Caruso等による上記引用文献およびS. Tumanskiによる上記文献の第165〜324ページに記載されている。さらに、適用可能なさまざまなGMR電流センサおよびそれらの製造は、Dieny他の米国特許第5,206,590号、Stearns他の米国特許第6,002,553号、Lenssenの米国特許第6,215,301 B1号、Gillの米国特許第6,473,275号、Daughton他の米国特許第6,429,640 B1号、およびWan他の米国特許出願公開第2003/0117254 A1号によって開示されている。
図2は、図1に示す2重目的センサ100の例示的な実施形態の斜視図を示している。この例示的な2重目的センサ100は、CIP構成を有するMR電流センサ110としてGMR型センサを使用する。図示するように、GMR電流センサ110のMベクトルは、隣接する導体102に流れる電流104によって生成される磁界106に応答して回転する。Mベクトルの回転により、端子112、113間で測定される例示的なGMR電流センサ110の抵抗値は変化する。この抵抗値の変化は、電流104に比例する。より正確には、この抵抗値の変化は、隣接する導体102に流れる電流104によって生成され、かつ電流104に比例する磁界に比例する。
図2に示す例示的な2重目的センサ100を使用する前に、1組の校正曲線が生成される。詳細には、隣接する導体102にゼロアンペアの電流104が流れている間、例示的なGMR電流センサ110を1組の既知の温度にさらすことができる。この1組の各温度において、GMR電流センサ110の抵抗値が測定される。測定された抵抗値は、温度に対してプロットされ、温度校正(TC)曲線が生成される。次いで、GMR電流センサ110は、第1の既知の温度にさらされ、1組の既知の電流104が、隣接する導体102に流される。この1組の各電流について、GMR電流センサ110の抵抗値が測定される。測定された抵抗値は、電流に対してプロットされ、第1の温度に対応する第1の電流校正(CC)曲線が生成される。例示のGMR電流センサ110は、第2の既知の温度にさらされ、第2の温度に対応する第2のCC曲線が、同様にして生成される。対象とする温度範囲をカバーする、すなわち、当該温度範囲にわたる1組のCC曲線が生成されるまで、この電流校正プロセスは繰り返される。この時点で、例示的な2重目的センサ100は、「校正された」と言われる。
校正されると、図2に示す例示的な2重目的センサ100は、隣接する導体102の近傍の他の未知の温度、および、隣接する導体102に流れる他の未知の電流を測定するまたは求めるのに使用することができる。例えば、この未知の電流は、超大規模集積(VLSI)回路の一部に流れ込む電流および一部から流れ出す電流とすることができる。さらに、例示的な2重目的センサ100は、VLSI回路に一体化することができ、VLSI回路の他の部分と共に製造することができる。
製造に続いて電流および温度の測定または決定を行うために、隣接する導体102の電流104がOFFにされ、例示的なGMR電流センサ110の抵抗値が測定される。測定された抵抗値を温度測定値に変換するのに、TC曲線が使用される。次いで、隣接する導体102の電流104がONにされて、GMR電流センサ110の抵抗値が再び測定される。前に求めた温度測定値を使用して、対応するCC曲線が選択される。選択されたCC曲線を用いて、測定された抵抗値が電流測定値に変換される。2重目的センサ100を使用する温度測定および/または電流測定は、任意の特定の監視状況に応じて、所望の回数だけ繰り返すことができる。例えば、温度はほぼ1分毎に決定でき、電流は1秒間隔で求めることができる。
このように生成された電流計測値が、本質的には、温度補正された電流測定値であることは好都合である。さらに、上述したように、特定のTC曲線またはCC曲線には見当たらない温度測定値および/または電流測定値を生成するために、補間または他の類似の技法を使用することもできる。
図3は、本発明の一実施形態によるセンサシステム200の一実施形態を示している。このセンサシステム200は、電流を運ぶ隣接する導体202の電流を検知する手段を備える。この手段は、磁気抵抗(MR)効果を使用する。センサシステム200は、この電流検知手段の抵抗値を測定または検知する手段をさらに備える。センサシステム200は、隣接する導体202の電流を制御する手段をさらに備える。具体的には、この制御手段は、第1の動作フェーズ、すなわち温度測定動作フェーズの間に、導体202の電流を既知の値に設定し、第2の動作フェーズ、すなわち電流測定動作フェーズの間、電流が未知の値を有することを可能にする。この未知の電流値は、電流測定フェーズの間にセンサシステム200によって測定される一方、センサシステム200の温度は、温度測定フェーズの間に測定される。
具体的には、図3に示すように、センサシステム200は、導体202に隣接した磁気抵抗(MR)電流センサ210と、抵抗検知サブシステム220と、コントローラ230とを備える。抵抗検知サブシステム220は、MR電流センサ210の1対の端子に接続され、端子間の抵抗の測定値を生成する。コントローラ230は、温度測定フェーズおよび電流測定フェーズの間、導体202に流れる電流を制御する。また、コントローラ230は、抵抗検知サブシステム220によって生成された抵抗測定値を受け取って処理するように接続することもできる。
MR電流センサ210は、基本的には、2重目的センサ100と同様のものであり、特に、2重目的センサ100について上述したMR電流センサ110と同様のものである。MRセンサ210は、電流を運ぶ導体202によって生成された磁界に磁気的に結合される任意のMRセンサとすることができる。したがって、MR電流センサ210は、例えば、AMR電流センサおよび/またはGMR電流センサとすることができる。さらに、MR電流センサ210は、回路または回路パッケージの要素として、導体202と共に回路または回路パッケージ内に一体化されたセンサとすることもできる。あるいは、MR電流センサ210は、回路または回路パッケージに適用される個別のセンサとすることもできる。本明細書で使用されるように、「一体化」センサは、回路の一部として製造されるセンサである一方、「個別の」センサは、一般に、別々に製造されて、後で回路内に組み立てられるものである。
抵抗検知サブシステム220は、MR電流センサ210の抵抗または抵抗の変化を検知して測定することができる任意のサブシステムとすることができる。例えば、図3に示すように、抵抗検知サブシステム220は、定電流源222およびセンス増幅器224を備えることができる。この定電流源222は、MR電流センサ210と、一対の端子間で接続され、実質的に一定の電流をMR電流センサ210に供給する。さらに、センス増幅器224は、MR電流センサ210と一対の端子で接続される。センス増幅器224は、供給された定電流の結果として生じるMR電流センサ210の両端の電圧を測定する。センス増幅器224は、出力を生成することができる。この出力は、電圧V等であるが、これに限定されるものではない。この電圧Vは、測定された抵抗値に比例する。あるいは、センス増幅器224は、測定された電圧を、測定された抵抗値のデジタル表現に変換することができる。測定された電圧は、電流源222からの定電流の既知の値およびオームの法則を使用して、抵抗値に変換される。当業者は、このような抵抗検知サブシステムを実現するのに使用される多くの手法および回路に詳しい。これらの手法および回路のすべては、本発明の範囲内に含まれる。
コントローラ230は、温度測定フェーズおよび電流測定フェーズの間、導体202の電流の制御を容易にすることができる任意のコントローラとすることができる。詳細には、コントローラ230は、温度測定フェーズの間、電流を既知の値または状況(例えば、〜0A)に設定し、電流測定フェーズの間、未知の電流値または電流状況が導体202に流れることが可能にする。
例えば、コントローラ230は、回路、コンポーネント、またはサブシステムの一部に流れる電流を制御するマイクロプロセッサとすることができる。これらの回路、コンポーネント、またはサブシステムは、多機能VLSI回路等であるが、これに限定されるものではない。あるいは、このマイクロプロセッサは、例えば、節電の理由から、当該マイクロプロセッサ自身の一部または複数の部分に流れる電流を制御することもできる。別の例では、コントローラ230は、導体202上に2値データシーケンスを生成する通信ドライバ回路とすることもできる。この2値データシーケンスが、第1の状態が「オフ」電流状況であり、第2の状態が「オン」電流状況である2つの状態を備える場合に、通信ドライバ回路は、上述したような既知の状況と未知の状況との間で導体の電流を切り換えるコントローラ230とみなすことができる。具体的には、「オフ」電流状況の間、センサシステム200は、温度を測定できる一方、「オン」状況の間、センサシステム200は、導体202に流れる未知の電流を測定することができる。電源コントローラやバッテリ充電サブシステム等、他のさまざまなコントローラおよびサブシステムも、本発明に従って、コントローラ230として使用することができる。
このように、コントローラ230、抵抗検知サブシステム220、およびMR電流センサ210の協働動作を通じて、温度および電流の双方が、測定または求められる。具体的には、温度および電流は、2重目的センサ100について上述したのと実質的に同様の方法で、センサシステム200によって求められる。
図3に示すように、スイッチ232が、コントローラ230によって制御されて、導体202の電流を設定する。このスイッチ232は、一例として図3に示されており、本発明の範囲を限定するためのものではない。スイッチ232の機能を、図4を参照して以下にさらに説明する。
図4は、導体202に流れる例示的な電流Iが、時間Tの関数としてプロットされたグラフを示している。導体202は、図3に示すセンサシステム200の電流センサ210に磁気的に結合される。時間の第1の部分の間、電流Iは、コントローラ230によって0Aに設定される。例えば、コントローラ230は、スイッチ232を切る、すなわち「開放」にして電流を0Aに設定することができる。
時間Tの第1の部分において、センサシステム200は、電流センサ210の抵抗値を測定する。第1の時間部分の間にセンサシステム200によって測定された抵抗値は、電流センサ210の近傍の温度に比例する。このため、時間Tの第1の部分は、図4では、「温度測定」というラベルが付けられている。
測定された抵抗値は、温度測定値に変換される。例えば、MR電流センサ210の温度校正曲線を使用して、測定された抵抗値を温度測定値に変換することができる。第1の時間の期間内に、1つまたは2つ以上の抵抗測定を行って、温度測定値に変換することができる。したがって、いくつかの温度測定値を平均して、温度測定値の精度を改善することができる。
いくつかの実施形態では、図3の破線で示すように、測定された抵抗値を抵抗検知サブシステム220からコントローラ230に伝達することができる。コントローラ230は、メモリに記憶された温度校正曲線にアクセスして、測定された抵抗値を温度測定値に変換するコンピュータプログラムを実行することができる。
図4を再び参照して、時間Tの第2の部分の間、コントローラ230によって、電流Iが未知の値を有することが可能になる。例えば、コントローラ230は、スイッチ232をオンにすることができ、それによって、電流Iが導体202に流れることを可能にする。時間の第2の部分は、図4では、「電流測定」というラベルが付けられている。時間Tの第2の部分において、センサシステム200は、電流センサ210の抵抗値を測定する。時間の第2の部分の間に測定された抵抗値は、導体202に流れる電流の未知の値に比例する。測定された抵抗値は、未知の電流値の電流測定値に変換される。
例えば、温度測定に関連して使用されるのと同様の方法で、MR電流センサ210の電流校正曲線を使用して、測定された抵抗値を電流測定値に変換することができる。第2の時間部分内に、1つまたは2つ以上の抵抗測定を行って、電流測定値に変換することができる。したがって、いくつかの電流測定値を平均して、電流測定値の精度を改善することができる。これに代えて、または、これに加えて、第2の時間部分の間に取得されたいくつかの電流測定値を使用して、時間と共に変化する電流を追跡または求めることができる。
この場合も、いくつかの実施形態では、図3の破線で示すように、測定された抵抗値を抵抗検知サブシステム220からコントローラ230に伝達することができる。コントローラ230のコンピュータプログラムは、コントローラ230によって記憶された電流校正曲線にさらにアクセスして、電流測定の間、すなわち第2の時間部分の間に取得されて伝達された測定抵抗値から電流測定値を計算することができる。
図5は、本発明の一実施形態による、磁気抵抗(MR)センサを使用した電流および温度の測定方法300の一実施形態を示している。具体的には、この測定方法300は、単一のMRセンサから電流測定値および温度測定値の双方を生成することができる。さらに、方法300は、単一対の端子を有する単一のMRセンサを使用して、当該MRセンサの近傍の電流測定値および温度測定値を求める。測定された電流は、MRセンサに隣接する導体に流れる電流である。具体的には、隣接する導体は、MRセンサに磁気的に結合される。測定された温度は、MRセンサの温度またはその近傍の温度である。
測定方法300は、隣接する導体の電流を既知の値または状況に設定するステップ310を含む。例えば、電流を、既知の値として実質的に0Aに設定することができる。
測定方法300は、さらに、MRセンサの抵抗値を測定して、ベースライン抵抗測定値を確定するステップ320も含む。導体に流れる電流は、既知の値を有するので、測定された(310)抵抗値の変化は、MRセンサの抵抗温度係数(TCR)の関数である。したがって、TCRまたはその経験的な表現(例えば、温度校正曲線)は、測定された(320)抵抗値をMRセンサの温度に関係付ける。
方法300は、さらに、電流が未知の値または状況を有することを可能にするステップ330も含む。この未知の値は、方法300に従って求められるまたは測定される電流値である。例えば、未知の値は、方法300によって監視されているシステムまたはサブシステムの一部により消費される電流または当該一部に供給される電流とすることができる。監視を使用して、例えば、システムまたはサブシステムの動作状況を決定することもできるし、システムまたはサブシステムによる全体の電力利用を制御することもできる。
方法300は、さらに、電流が未知の値を有することが可能である(330)の間、MRセンサの抵抗値を測定するステップ340も含む。MRセンサの測定(340)された抵抗値は、隣接する導体に流れる電流に比例するので、測定された(340)抵抗値により、未知の電流値が求められる。
本発明は、単一の磁気抵抗センサ(110,210)の抵抗測定(320,340)から温度と電流を求める。両目的(2重目的)センサ(100)は、一対の端子(112,113)を有する磁気抵抗センサ(110,210)を備える。センサ(110,210)は、別個の電流条件下で多重化されて(300)、センサの近傍における温度測定値と電流測定値の両方を生成する。センサシステム(200)は、両目的センサ(100)、抵抗検知サブシステム(220)、及び、電流条件を制御する(310,330)コントローラ(230)を備える。温度と電流を測定する方法(300)は、第1の電流がセンサに近接する導体(102,202)に流れている(310)間に両目的センサ(100)の第1の抵抗値を測定するステップ(320)と、第2の電流が導体に流れている(330)間にセンサの第2の抵抗を測定するステップ(340)を含む。第1の電流は既知の値を有し、第2の電流は未知の値を有する。温度と電流は、第1の抵抗の測定値と第2の抵抗の測定値からそれぞれ求められる。
以上、単一のMRセンサを複合化することを使用して、温度および電流の双方を測定する2重目的電流センサ100およびセンサシステム200を説明してきた。さらに、MRセンサを使用して温度および電流を測定する方法も説明してきた。上述した実施形態は、本発明の原理を表す多くの具体的な実施形態の一部を例示したものにすぎないことが理解されるべきである。当業者であれば、添付の特許請求の範囲によって画定される本発明の範囲から逸脱することなく、他の多数の構成を容易に考え出すことが可能であることは明かである。
本発明の一実施形態による2重目的センサの一実施形態のブロック図を示す。 図1に示す2重目的センサの例示的な実施形態の斜視図を示す。 本発明の一実施形態によるセンサシステムの一実施形態のブロック図を示す。 図3に示すセンサシステムに磁気的に結合された導体に流れる例示的な電流が、時間の関数としてプロットされたグラフを示す。 本発明の一実施形態による、磁気抵抗センサを使用した電流および温度の測定方法の一実施形態のフローチャートを示す。
符号の説明
110、210 磁気抵抗電流センサ
112、113 一対の端子
102、202 導体
220 抵抗検知サブシステム
230 コントローラ

Claims (10)

  1. 2重目的センサ(100)において、
    単一対の端子(112、113)を有する磁気抵抗電流センサ(110、210)であって、別個の電流状況下で、該単一対の端子(112、113)間で行われる個々の抵抗測定から、該センサ(110、210)の近傍の温度測定値と、該センサ(110、210)に隣接する導体(102、202)の電流測定値との両方を生成するように複合化(300)された磁気抵抗電流センサ(110、210)を備える、2重目的センサ。
  2. 前記温度測定値および前記電流測定値は、前記隣接する導体(102、202)に流れる個々の電流に関して求められることからなる、請求項1に記載の2重目的センサ。
  3. 前記別個の電流状況は、前記隣接する導体(102、202)を流れる電流(310)が事前に知られた値を有する第1の状況と、前記隣接する導体(102、202)を流れる電流(330)が未知の値を有する第2の状況とを含むことからなる、請求項1または2に記載の2重目的センサ。
  4. 第1の抵抗値が、前記第1の状況の間に前記単一対の端子(112、113)間で測定(320)されて、前記温度測定値が生成される、請求項1乃至3のいずれかに記載の2重目的センサ。
  5. 第2の抵抗値が、前記第2の状況の間に前記単一対の端子(112、113)間で測定(340)されて、前記隣接する導体(102、202)の前記電流測定値が生成されることからなる、請求項1乃至4のいずれかに記載の2重目的センサ。
  6. 前記磁気抵抗センサ(110、210)は巨大磁気抵抗センサである、請求項1乃至5のいずれかに記載の2重目的センサ。
  7. 前記磁気抵抗センサ(110、210)は異方性磁気抵抗センサである、請求項1乃至5のいずれかに記載の2重目的センサ。
  8. 電流測定値および温度測定値を提供するセンサシステム(200)に使用される請求項1乃至7のいずれかに記載の2重目的センサであって、
    前記センサシステム(200)が、
    前記電流センサ(110、210)の前記単一対の端子(112、113)に接続された抵抗検知サブシステム(220)と、
    前記導体(102、202)に流れる電流を制御するように接続されたコントローラ(230)
    を備えることからなる、2重目的センサ。
  9. 前記コントローラ(230)は、前記別個の電流状況の間に、前記導体(102、202)に流れる電流を制御(310、330)し、
    前記抵抗検知サブシステム(220)は、前記別個の電流状況の間に、前記導体(102、202)に流れる電流に応答して、前記電流センサ(110、210)の前記単一対の端子(112、113)間の抵抗値を測定する(320、340)ことからなる、請求項8に記載の2重目的センサ。
  10. 前記コントローラ(230)は、前記抵抗検知サブシステム(220)のサブシステム(220)出力に接続され、前記コントローラ(230)は、コンピュータプログラムを含み、該コンピュータプログラムは、実施されると、前記サブシステム(220)出力からの前記抵抗測定値を、前記電流状況に応じて温度測定値または電流測定値のいずれかに変換することからなる、請求項8または9に記載の2重目的センサ。
JP2004292146A 2003-10-09 2004-10-05 センサシステム Expired - Fee Related JP4342415B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/682,344 US7239123B2 (en) 2003-10-09 2003-10-09 Multiplexed dual-purpose magnetoresistive sensor and method of measuring current and temperature

Publications (2)

Publication Number Publication Date
JP2005114727A true JP2005114727A (ja) 2005-04-28
JP4342415B2 JP4342415B2 (ja) 2009-10-14

Family

ID=34422496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004292146A Expired - Fee Related JP4342415B2 (ja) 2003-10-09 2004-10-05 センサシステム

Country Status (2)

Country Link
US (1) US7239123B2 (ja)
JP (1) JP4342415B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009531706A (ja) * 2006-03-30 2009-09-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 温度センサとしての磁気抵抗センサ
JP2013113757A (ja) * 2011-11-30 2013-06-10 Ricoh Co Ltd 電流センサ
JP2013113799A (ja) * 2011-11-30 2013-06-10 Ricoh Co Ltd 電流検知装置、電流検知素子および電流検知方法
JP2018179673A (ja) * 2017-04-10 2018-11-15 日立化成株式会社 デバイス状態検知装置、電源システムおよび自動車

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078750A (ja) * 2003-09-02 2005-03-24 Toshiba Corp 磁気記録再生装置
JP2005151631A (ja) * 2003-11-12 2005-06-09 Mitsubishi Electric Corp 半導体装置および過電流の基準レベルのデータ設定方法
DE102004062474A1 (de) * 2004-03-23 2005-10-13 Siemens Ag Vorrichtung zur potenzialfreien Strommessung
US7397234B2 (en) * 2005-12-19 2008-07-08 Silicon Laboratories Inc. Current sensor with reset circuit
US7679162B2 (en) * 2005-12-19 2010-03-16 Silicon Laboratories Inc. Integrated current sensor package
US7362086B2 (en) * 2005-12-19 2008-04-22 Silicon Laboratories Inc. Integrated current sensor
US7388372B2 (en) * 2006-05-31 2008-06-17 Caterpillar Inc. Electrical system with magnetoresistive sensors
US7990132B2 (en) * 2006-06-30 2011-08-02 Silicon Laboratories Inc. Current sensor including an integrated circuit die including a first and second coil
US7622910B2 (en) * 2006-10-06 2009-11-24 Honeywell International Inc. Method and apparatus for AC integrated current sensor
US7821251B2 (en) * 2006-12-12 2010-10-26 Silicon Laboratories Inc. Current sensor
JP2009229112A (ja) * 2008-03-19 2009-10-08 Tdk Corp 電圧検出回路
US8058876B2 (en) * 2008-04-24 2011-11-15 Honeywell International, Inc. Low cost current and temperature sensor
US7728578B2 (en) * 2008-05-15 2010-06-01 Silicon Laboratories Inc. Method and apparatus for high current measurement
CN102356329B (zh) * 2009-03-10 2015-04-08 小利兰·斯坦福大学托管委员会 磁阻传感器中的温度和漂移补偿
CN102095519A (zh) * 2011-01-26 2011-06-15 佛山市川东热敏磁电有限公司 Mr磁敏温度传感器
DE102011102978B4 (de) * 2011-05-23 2018-05-17 Phoenix Contact Gmbh & Co. Kg Strommessumformer
US9310398B2 (en) * 2011-11-29 2016-04-12 Infineon Technologies Ag Current sensor package, arrangement and system
FR2989171B1 (fr) 2012-04-06 2014-05-02 Commissariat Energie Atomique Procede et dispositif de mesure d'un champ magnetique et de la temperature d'un transducteur magneto-resistif
US9671486B2 (en) * 2013-06-18 2017-06-06 Infineon Technologies Ag Sensors, systems and methods for compensating for thermal EMF
US20170148039A1 (en) * 2014-05-23 2017-05-25 Singapore University Of Technology And Design Power monitoring apparatus, a method for power monitoring and a base station used with the aforementioned
JP6493259B2 (ja) * 2016-03-11 2019-04-03 オムロン株式会社 温度監視装置、温度監視方法、情報処理プログラム、および記録媒体
WO2017158628A1 (en) * 2016-03-13 2017-09-21 HAMPIðJAN HF. Heat indicating fiber rope
US10365329B2 (en) * 2016-05-26 2019-07-30 Infineon Technologies Ag Measurements in switch devices
DE102017127578B4 (de) * 2017-11-22 2020-11-05 Helmholtz-Zentrum Berlin für Materialien und Energie Gesellschaft mit beschränkter Haftung Vorrichtung und Verfahren zur Nutzung eines anisotrop magnetoresistiven Sensors zur Bestimmung von Magnetfeldern und Temperaturen
KR102072065B1 (ko) * 2018-08-24 2020-01-31 홍기철 코어리스(Coreless) 비접촉식 전류 계측 시스템

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255629B2 (ja) * 1979-05-22 1987-11-20 Nippon Denso Co
JPH03261869A (ja) * 1990-03-13 1991-11-21 Omron Corp ホール素子の出力信号補正装置
JPH1026639A (ja) * 1996-07-11 1998-01-27 Hitachi Ltd 電流センサ及びこれを内蔵した電気装置
JPH11205903A (ja) * 1998-01-19 1999-07-30 Yazaki Corp 温度電圧検出ユニット
JP2000310654A (ja) * 1999-04-28 2000-11-07 Mitsubishi Electric Corp 電流検出システム
JP2002267694A (ja) * 2001-03-14 2002-09-18 Yazaki Corp センサ装置
WO2003058173A1 (en) * 2001-12-26 2003-07-17 Honeywell International Inc. System and method for using magneto-resistive sensors as dual purpose sensors

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2836791A (en) * 1952-07-31 1958-05-27 Cfcmug Magnetometers
US4448078A (en) * 1982-11-23 1984-05-15 The United States Of America As Represented By The Secretary Of The Air Force Three-wire static strain gage apparatus
EP0300635B1 (en) * 1987-07-07 1995-09-13 Nippondenso Co., Ltd. Current detecting device using ferromagnetic magnetoresistance element
US5351555A (en) * 1991-07-29 1994-10-04 Magnetoelastic Devices, Inc. Circularly magnetized non-contact torque sensor and method for measuring torque using same
JPH05126865A (ja) 1991-10-22 1993-05-21 Hitachi Ltd 電流検出装置あるいは電流検出方法
JP2551321B2 (ja) 1993-04-21 1996-11-06 日本電気株式会社 集積化磁気抵抗効果センサ
FR2710753B1 (fr) 1993-09-27 1995-10-27 Commissariat Energie Atomique Capteur de courant comprenant un ruban magnétorésistif et son procédé de réalisation.
FR2729790A1 (fr) 1995-01-24 1996-07-26 Commissariat Energie Atomique Magnetoresistance geante, procede de fabrication et application a un capteur magnetique
US6469927B2 (en) 2000-07-11 2002-10-22 Integrated Magnetoelectronics Magnetoresistive trimming of GMR circuits
US6781359B2 (en) * 2002-09-20 2004-08-24 Allegro Microsystems, Inc. Integrated current sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255629B2 (ja) * 1979-05-22 1987-11-20 Nippon Denso Co
JPH03261869A (ja) * 1990-03-13 1991-11-21 Omron Corp ホール素子の出力信号補正装置
JPH1026639A (ja) * 1996-07-11 1998-01-27 Hitachi Ltd 電流センサ及びこれを内蔵した電気装置
JPH11205903A (ja) * 1998-01-19 1999-07-30 Yazaki Corp 温度電圧検出ユニット
JP2000310654A (ja) * 1999-04-28 2000-11-07 Mitsubishi Electric Corp 電流検出システム
JP2002267694A (ja) * 2001-03-14 2002-09-18 Yazaki Corp センサ装置
WO2003058173A1 (en) * 2001-12-26 2003-07-17 Honeywell International Inc. System and method for using magneto-resistive sensors as dual purpose sensors

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009531706A (ja) * 2006-03-30 2009-09-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 温度センサとしての磁気抵抗センサ
JP2013113757A (ja) * 2011-11-30 2013-06-10 Ricoh Co Ltd 電流センサ
JP2013113799A (ja) * 2011-11-30 2013-06-10 Ricoh Co Ltd 電流検知装置、電流検知素子および電流検知方法
JP2018179673A (ja) * 2017-04-10 2018-11-15 日立化成株式会社 デバイス状態検知装置、電源システムおよび自動車

Also Published As

Publication number Publication date
US7239123B2 (en) 2007-07-03
JP4342415B2 (ja) 2009-10-14
US20050077890A1 (en) 2005-04-14

Similar Documents

Publication Publication Date Title
JP4342415B2 (ja) センサシステム
JP4105142B2 (ja) 電流センサ
US10295578B2 (en) Current sensor and smart meter
JP4458849B2 (ja) 多重目的センサとして磁気抵抗センサを使用するシステム及び装置
EP2442117B1 (en) Magnetic balance current sensor
US7504927B2 (en) Current sensor
JP6415813B2 (ja) 電流センサ、電流測定モジュール及びスマートメータ
KR100642114B1 (ko) 자기 센서
JP4513804B2 (ja) 磁界検出器、これを用いた電流検出装置、位置検出装置および回転検出装置
US8487612B2 (en) Current sensor
EP2891892A2 (en) Current sesnor, current measuring module, and smart meter
EP2801834A1 (en) Current sensor
US8519703B2 (en) Magnetic sensor device and method of determining resistance values
JP5888402B2 (ja) 磁気センサ素子
JP2006105693A (ja) 電流センサ
WO2010098967A1 (en) Magnetic field sensing device
JP7273876B2 (ja) 磁気センサ装置、インバータ装置およびバッテリ装置
JP6116694B2 (ja) 磁気抵抗効果素子を備えた磁界検出器、および電流検出器
JP6040523B2 (ja) 電力検知センサ
JP2017058376A (ja) 電力検知センサ
JP6629413B2 (ja) 電流センサ、電流測定モジュール及びスマートメータ
JP5849654B2 (ja) 電流センサ
CN117826038A (zh) 磁电阻敏感传感器和操作磁电阻敏感传感器的方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071128

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090603

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees