JP2005114553A - 基板の品質検査方法および基板検査装置 - Google Patents

基板の品質検査方法および基板検査装置 Download PDF

Info

Publication number
JP2005114553A
JP2005114553A JP2003349161A JP2003349161A JP2005114553A JP 2005114553 A JP2005114553 A JP 2005114553A JP 2003349161 A JP2003349161 A JP 2003349161A JP 2003349161 A JP2003349161 A JP 2003349161A JP 2005114553 A JP2005114553 A JP 2005114553A
Authority
JP
Japan
Prior art keywords
substrate
temperature
board
measurement area
temperature distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003349161A
Other languages
English (en)
Inventor
Shigehiro Yokoyama
茂博 横山
Akita Masaya
明大 柾谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Clarion Electronics Co Ltd
Original Assignee
Xanavi Informatics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xanavi Informatics Corp filed Critical Xanavi Informatics Corp
Priority to JP2003349161A priority Critical patent/JP2005114553A/ja
Publication of JP2005114553A publication Critical patent/JP2005114553A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

【課題】基板の品質検査を精度高く行う。
【解決手段】情報処理装置20に、温度検出装置1が撮像した基板100の温度分布を示す画像データを取得する手段を設ける。そして、情報処理装置20に、基板の寸法、実装部品の寸法、および温度検出装置1が撮像できる該実装部品のサイズ毎の適正温度検出領域を用いて、基板100を少なくとも1以上の測定エリアに分割させ、基板100の通電した際の実装部品毎の許容温度を設定させ、基板100を通電させた上で、温度検出装置1に測定エリア毎の温度分布を測定させ、その測定エリア毎の温度分布を示す画像データを取得させる。さらに、情報処理装置20に、取得した測定エリア毎の温度分布を示す画像データを用いて測定エリア毎に実装部品毎の温度を推定させ、推定した実装部品の温度および設定した許容温度を用いて、基板が不良品か否かを判定させる。
【選択図】図1

Description

本発明は、ICやトランジスタ等の電子部品が実装された基板の品質検査の技術に関する。
ICやトランジスタ等の電子部品が実装されている基板(以下のおいて単に「基板」という)の品質検査の方法には、基板の実装部品の電極に検査ピンをあて、抵抗値を求めるものがある。しかし、この検査方法は、検査ピンの接触不良による検査のばらつきが生じるという問題を有している。また、実装部品の小型化や、基板の高集積化に伴い、上記検査方法では、検査ピンをあてるスペースが確保できないという問題が生じている。さらに、上記検査方法は、基板の設計変更のたびに、検査ピンの位置をセットし直す必要がある。
従来の基板の品質検査には、基板の通電前後のスルーホールの温度を非接触温度センサで測定し、その測定したスルーホールの温度上昇からスルーホールの抵抗値を推定するものがある(例えば特許文献1)。この方法によれば、検査ピンを被検査部分に接触させる必要がないため、検査ピンの接触不良により発生する検査のばらつきを防ぐことができる。また、この方法によれば、検査ピンをあてるスペースを確保する必要がない。
特開平6−347500号公報
上記特許文献1の基板の検査方法は、スルーホールの抵抗値の検査のような、基板の小径部分にスポットを当てた検査には適している。しかしながら、基板全体を検査する場合には、以下の問題がある。基板上には複数の電子部品が実装されているため、上記特許文献1のように部品毎に温度上昇を測定した場合、品質検査のための時間がかかり過ぎ、結果的に基板の生産性を低下させてしまう。
また、非接触温度センサを用いて、基板に実装された複数の電子部品の温度を一度に測定する検査方法も考えられる。しかしながら、一般的な性能の非接触温度センサを用いて基板全体の温度を測定した場合、小型の実装部品の温度を個々に識別することは出来ない場合がある。なお、基板に実装された複数の電子部品の温度を個々に識別することができる温度測定装置を開発することも考えられるが、その場合、装置のコストが高額となるため、結果的に基板の生産コストを上昇させてしまう。
本発明は上記事情に鑑みてなされたものであり、安価なシステムにより、電子部品が実装されている基板の品質検査を精度高くできるようにすることにある。
上記課題を解決するため、本発明の一態様の基板の品質検査方法は、基板の温度分布を撮像して、該基板の温度分布を示す画像データを出力する温度検出器を用いた、基板の品質検査方法であって、基板の寸法、該基板の実装部品の寸法、および該実装部品の位置データを少なくとも含む基板データと、前記温度検出器が撮像できる該実装部品のサイズ毎の適正温度検出領域を示すデータとを用いて、前記基板を少なくとも1以上の測定エリアに分割するステップと、正常な品質を有する前記基板の通電した際の実装部品毎の許容温度を設定するステップと、検査対象の基板を通電させた上で、前記温度検出器に、該基板の前記測定エリア毎の温度分布を撮像させ、該測定エリア毎の温度分布を示す画像データを取得するステップと、前記取得した測定エリア毎の温度分布を示す画像データおよび前記基板データを用いて、前記基板の測定エリア毎に実装部品毎の温度を推定するステップと、前記推定した実装部品毎の温度および前記設定した実装部品毎の許容温度を用いて、該基板が不良品か否かの判定するステップと、を行うようにする。
このように、本一態様では、検査する基板の寸法、該基板に実装される部品の寸法、および部品の位置のデータを少なくとも含む基板データと、該実装部品のサイズ毎の適正温度検出領域を示すデータとを用いて、基板を少なくとも1以上の測定エリアに分割し、該分割した測定エリア毎に基板の温度を測定するようにしている。なお、上記実装部品のサイズ毎の適正温度検出領域とは、温度検出器の撮像画素数と撮像する実装部品の寸法との関係により求められるものである(同じ撮像画素数でも測定エリアを小さくすれば、小さい寸法の実装部品の温度分布を撮像することができるようになる)。このため、本一態様によれば、撮像画素数の低い安価な温度検出器を用いた場合でも、狭い測定エリアに分割して基板を測定することにより、実装部品毎の温度分布を撮像することが可能になる。
このように本発明によれば、高性能(高価)な非接触温度センサを用いることなく、安価なシステムで、小型の部品が実装された基板や高集積化した基板の通電検査を行うことができる。
以下、本発明の実施の形態について図面を用いて説明する。
最初に本実施形態が適用された基板検査装置の概略について図1〜図3を用いて説明する。図1は、本実施形態が適用された基板検査装置の概略図である。図2は、本実施形態の基板検査装置で検査する基板を例示した図である。図3は、本実施形態の情報処理装置20が有する温度判定TB24のデータ構造の一例を模擬的に示したものである。
さて、図1に示すように、本実施形態の基板検査装置は、温度検出装置1と、温度検出装置1に接続線8を介し接続された情報処理装置20とを有している。また、図示する例では、情報処理装置20には、オペレータから各種データの入力を受付けるキーボードやマウス等の入力装置30と、設定画面や検査結果を画像表示する液晶ディスプレイやCRT等の表示装置40とが接続されている。そして、本実施形態の基板検査装置は、通電した基板の実装部品の温度を求めて、該求めた温度を用いて、基板の実装部品の中に不良があるか否かを判断するように構成されている。
温度検出装置1は、非接触温度センサ3と、非接触温度センサ3を保持するアーム6と、基板100を載置する基板置台5と、を有する。基板置台5には、図2に例示するように、複数の部品(111a〜n、121a〜n、131a〜n、141a〜n、151a〜n、161a〜n)が実装された基板100が載置される。なお、基板100は、図示しない電極に接続されて通電された状態で検査されるものとする。
非接触温度センサ3は、検出部7およびレンズ部4を有している。検出部7は、通電された基板(基板および実装部品)から放射された赤外線を、レンズ部4を介して撮像する。そして、検出部7は、撮像した赤外線をデジタル信号に変換し、変換したデジタル信号から温度分布を示す画像データを生成し、該生成した画像データを、接続線8を介して情報処理装置20に出力する。なお、本実施形態では、非接触温度センサ3の具体的な構成について特に限定しない。例えば、非接触温度センサ3には、赤外線を検知する2次元赤外線センサ(例えば、2次元InSb(インジウム・アンチモン))と、検知した赤外線をデジタル信号に変換するA/D変換器と、変換したデジタル信号から温度分布を示す画像データを生成する処理を行うCPU(中央演算装置)等を有する一般的な赤外線サーモグラフィを用いることができる。
アーム6は、非接触温度センサ3を、図示するX―Y方向に水平移動させる移動機構(図示しない)を有している。この移動機構は、後述する情報処理装置20と図示しない制御線で接続されていて、情報処理装置20からの制御信号によりその動作が制御される。そして、図示しない移動機構の動作により、非接触温度センサ3は、基板置台5に載置された基板100の任意のエリアの温度分布を撮像することができる(撮像するエリアについては後述する)。なお、本実施形態では、図示しない移動機構により非接触温度センサ3をX―Y方向に移動させる場合を例に説明するが、特にこれに限定するものではない。非接触温度センサ3が、基板100の任意のエリアの温度分布を撮像することができるように構成されていればよい。例えば、基板置台5の上に、X―Y方向に移動可能なX―Yテーブルを設け、非接触温度センサ3をアーム6の所定の位置に固定しておくようにしてもよい。このように構成しておけば、基板100を載置した上記X―YテーブルをX―Y方向に移動させることで、非接触温度センサ3は、基板100の任意のエリアの温度分布を撮像することができる。
続いて、情報処理装置20の構成について説明する。情報処理装置20は、設定部21、記憶部22、制御部26、判定部27、およびI/O部28を有する。
I/O部28は、外部との情報の送受信を制御するように構成されている。例えば、I/O部28は、温度検出装置1の検出部7が送信する温度分布を示す画像データを受信し、その受信した温度分布を示す画像データを後述する設定部21や判定部27に送信する。また、例えば、I/O部28は、入力装置30からの各種データを受信したり、表示装置40に各種データを出力したりする。
記憶部22は、基板情報TB23(図示しない)、温度判定TB24(図3参照)、および不良部品DB25(図示しない)を有している。
基板情報TB23には、温度検出装置1に撮像させる基板100の測定エリアの分割(測定エリアの分割については後述する)を判断するためのデータが格納される。具体的には、基板情報TB23には、検査する基板100の寸法、基板100に実装される各部品(111a〜n、121a〜n、131a〜n、141a〜n、151a〜n、161a〜n)の寸法、および各部品(111a〜n、121a〜n、131a〜n、141a〜n、151a〜n、161a〜n)の基板100上での位置データを少なくとも含む基板データが格納される。また、基板情報TB23には、非接触温度センサ3が実装部品のサイズ毎に該実装部品の温度分布を撮像することができるエリア(以下において「適正温度検出領域」という)を示すデータが格納される。この「適正温度検出領域」は、非接触温度センサ3の1画素あたりの撮像エリアが実装部品の寸法より小さくなるように設定されるもので、非接触温度センサ3の撮像画素数と実装部品の寸法との関係により定まる。
不良部品DB25には、後述する判定部27が異常であると判定した実装部品の部品名、基板上での位置、測定した温度データ等が格納される。
温度判定TB24は、基板100の品質を判断するためのデータを格納するテーブルであり、例えば、図3に示すように構成される。図示するように、温度判定TB24は、エリア分割TB50および許容温度TB60を有する。エリア分割TB50は、基板100の測定エリアを示す、「エリア名」を格納するエントリ51と、エントリ51に格納された「エリア名」の「基板上での位置」を格納するエントリ52と、エントリ51に格納される「エリア名」が示す基板上の領域の温度分布の撮像を行う「通電開始からの時間」を格納するエントリ53と、を有する。
許容温度TB60には、測定エリア毎にそのエリア内に実装されている部品の品質を判断するためのデータが格納される。具体的には、許容温度TB60は、測定エリアを示すエントリ61と、その測定エリアの中に実装されている部品の部品名を格納するエントリ62と、エントリ62に格納された部品の基板上での位置を格納するエントリ63と、エントリ62に格納された部品名に対応する「許容温度」を格納するエントリ64と、を有する
図1に戻り説明を続ける。設定部21は、表示装置40に検査対象の基板データを入力するための設定画面を表示し、オペレータが入力装置30から入力する「基板データ」、および「実装部品毎の適正温度検出領域を示すデータ」をI/O部28経由で受付ける。設定部21は、受付けた「基板データ」および「実装部品毎の適正温度検出領域を示すデータ」を基板情報TB23に格納する。
設定部21は、基板情報TB23に格納されたデータを利用して測定エリアの分割を行う(分割処理については後段で説明する)。例えば、設定部21は、図2に示すように、基板100を、6個の測定エリア(第1エリア110〜第6エリア160)に分割する。また、設定部21は、測定エリアを分割した後、図3に示すエリア分割TB50の各エントリ(51、52、53)に対応するデータを格納する。さらに、設定部21は、後述する制御部26に温度検出装置1の動作を制御させ、正常な基板100の上記エリア毎の温度分布を撮像させる。そして、設定部21は、正常基板のエリア毎の温度分布を示す画像データを取得し、基板情報TB23に格納している基板データと取得した温度分布を示す画像データとに基づいて、基板100の実装部品毎の温度を推定する。設定部21は、上記推定した実装部品毎の温度に所定の演算処理を施して実装部品毎の許容温度を算出する。なお、許容温度を算出するための上記所定の演算処理については、具体的に限定しない。例えば、推定した温度に所定率(例えば5%)
を乗じた値(例えば「5%」)を許容温度として算出するようにしてもよい(この場合、推定温度が「50℃」であれば、許容温度は、「47.5〜52.5℃」と算出される)。また、例えば、推定した温度に所定値(例えば「5℃」)を増減した値を許容温度として算出するようにしてもよい(この場合、推定温度が「50℃」であれば、許容温度は、「45〜55(50±5)℃」と算出される)。さらに、許容温度の範囲については、部品毎に定めるようにしてもよい(この場合、部品毎の許容温度の範囲を示すデータの入力を受付けて基板情報TBにそのデータを格納しておく)。設定部21は、算出した部品毎の許容温度を、許容温度TB60の各エントリ(61、62、63、64)に格納する。
制御部26は、温度検出装置1の動作を制御するように構成されている。具体的には、温度検出装置1の移動機構を制御し、エリア分割TB50のエントリ53に格納されている通電開始からの時間に、該当するエリアの温度分布を被接触センサ3が撮像できるように該非接触温度センサ3を移動させる。
判定部27は、制御部26を介し、温度検出装置1に、検査対象の基板100のエリア毎の温度分布を撮像させる(該当するエリアに対応するエントリ53に格納されている通電開始からの時間経過後に撮像させる)。また、判定部27は、撮像されたエリア毎の温度分布を示す画像データと、基板情報TB23に格納されている基板データとを用いて、実装部品毎の温度を推定し、該推定したエリア毎に温度と、許容温度TB60に格納された許容温度とを比較して、実装部品が正常か否かの判断を行う。
なお、本実施形態では、情報処理装置20の具体的な構成については特に限定しない。例えば、情報処理装置20には、CPU(中央演算処理装置)と、CPUが実行するプログラムやデータを一時的に記憶する主記憶装置と、上記機能を実現するためのプログラムが予め記憶されているハードディスク等の補助記憶装置と、温度検出装置1等の外部の装置とのデータの送受信の制御を行うインタフェースとを有する、一般的なコンピュータシステムを用いることができる。そして、上記各部(設定部21、記憶部22、制御部26、判定部27、およびI/O部28)の機能は、上記CPUが、上記補助記憶装置に記憶されている各プログラム(設定プログラム、記憶プログラム、制御プログラム、判定プログラム、およびI/Oプログラム)を、上記主記憶装置にロードして実行することで実現することができる。また、上記記憶部22が有する基板情報TB22、温度判定TB24、および不良部品DB25は、上記主記憶装置或いは上記補助記憶装置が有する記憶領域に格納されていることとする。
続いて、本実施形態の基板品質検査の処理のフローについて図4〜図6を用いて説明する。図4は、本実施形態の基板品質検査の処理のフローを説明するための図である。図5は、通電された際の正常な基板100に実装された部品の温度を説明するための図である。図6は、通電された際の検査対象の基板100に実装された部品の温度を説明するための図である。
さて、図4に示すように、最初に、情報処理装置20の設定部21は、オペレータが入力装置30から入力する検査対象の基板100の「基板データ」および非接触温度センサ3の「実装部品毎の適正温度検出領域を示すデータ」の入力を受付け、該受付けた「基板データ」および「実装部品毎の適正温度検出領域を示すデータ」を記憶部22が有する基板情報TB23に格納し、S2の処理に進む(S1)。
S2では、設定部21は、検査対象基板100を少なくとも1以上の測定エリアに分割する処理を行う(S2)。具体的には、設定部21は、基板情報TB23に格納された実装部品の寸法を示すデータの中から「最小寸法」を選択する。設定部21は、上記選択した最小寸法の部品の温度分布を撮像できる「適正温度検出領域」を、基板情報TB23に格納された適正温度検出領域を示すデータから特定する。なお、設定部21は、最小寸法の部品の温度分布を撮像できる適正温度検出領域を示すデータが、基板情報TB23に複数格納されている場合、その中で最大寸法の適正温度検出領域を選択する。例えば、実装部品の最小寸法が「0.6mm×0.3mm」であり、その最小寸法(「0.6mm×0.3mm」)の部品を撮像できる「適正温度検出領域を示すデータ」として、「0.3mm×0.3mm」の部品を撮像できる適正温度検出領域「85mm×80mm」のデータと、「0.1mm×0.1mm」の部品を撮像できる適正温度検出領域「25mm×20mm」のデータとが基板情報TB23に格納されていたとする。この場合には、設定部21は、「85mm×80mm」および「25mm×20mm」の中から、寸法の大きい「85mm×80mm」を適正温度検出領域として選択する。
その後、設定部21は、基板情報TB23の基板100の寸法と、上記特定した「適正温度検出領域」から測定エリアを分割し(基板100の寸法を上記選択した「適正温度検出領域」で除算して測定エリアを分割する)、分割した測定エリア数「K(1以上の整数)」を保持しておく。
S2の処理の後、設定部21は、S2で求めた測定エリアのデータを温度判定TB24が有するエリア分割TB50(図3参照)に設定する処理を行う(S3)。具体的にはエリア分割TB50のエントリ51にエリア名(図5参照)を格納し、エントリ52にエントリ51に格納されたエリア名が示すエリアを示す基板100上の位置データを算出して格納する(S2の処理に用いた基板100の寸法および「測定エリア」からエリアを示す位置データを算出する)。また、エントリ53には、エントリ51に格納したエリア毎に、デフォルトとして予め設定された通電開始からの時間を格納する。なお、エントリ53に格納するデータについては、デフォルトの時間を用いる代わりに、オペレータからの入力を受付け、その受付けた時間を格納するようにしてもよい(この場合、オペレータが基板100の特性を考慮した上で通電開始からの時間を設定することができる)。また、正常品の基板100のエリア毎の温度分布を撮像する際に、エリア毎の撮像時間(通電開始からの時間)を測定し、その測定した時間を保持し、その時間をエントリ53に格納するようにしてもよい。
S4では、設定部21は、正常な基板100の測定エリア毎の温度分布を取得し、温度判定TB24が有する許容温度TB60の設定を行う。具体的には、設定部21は、I/O部28を介して、正常な基板100を温度検出装置1の基板置台5に載置することを促す案内画面を表示装置40に表示する。設定部21は、基板置台5に基板100が載置されたことを検知した場合、制御部26を介して、温度検出装置1に載置された基板100の温度分布の撮像を行わせる。なお、本実施形態では、設定部21の正常な基板100が載置されたことを検知する具体的な手段については、特に限定しない。例えば、設定部21は、オペレータが入力装置30から入力する正常基板の設定完了を示すデータを受付けつけることで、基板置台5に正常な基板100が載置されたことを検知するようにしてもよい(或いは、センサを利用して検知するようにしてもよい)。
ここで、制御部26が温度検出装置1に行わせる基板100の温度測定について、図5を用いて説明する。制御部26は、タイマを有していて、基板100に接続された電極(図示しない)が通電されてからの時間を測定する。制御部26は、温度検出装置1の移動機構を動作させ、非接触温度センサ3を、図5に示す第1エリア110の温度分布を撮像できる位置まで移動させる。そして、制御部26は、エリア分割TB50のエントリ51の「第1エリア」に関連付けられたエントリ53の通電開始からの時間経過後(図示する例では「通電開始からX1秒経過後」)に合わせて、温度検出装置1に「第1エリア」の温度分布を撮像させる。さらに、制御部26は、非接触温度センサ3に第1エリアの温度分布を示す画像データを設定部21に送信させる。続いて、制御部26は、図示しない移動機構を動作させ、非接触温度センサ3を、図5に示す第2エリア120の温度分布を撮像できる位置まで移動させる。そして、制御部26は、上記と同様の手順で、第2エリアの温度分布を、エリア分割TB50のエントリ51の「第2エリア」に関連付けられたエントリ53の通電開始からの時間経過後(図示する例では「通電開始からX2秒経過後」)に合わせて撮像させ、その温度分布を示す画像データを設定部21に送信させる。その後、設定部26は、図5に示す第6エリアまで同様の手順で温度検出装置1にエリア毎の温度分布を、エリア分割TB50のエントリ53に格納された時間に合わせて撮像させる。
設定部21は、温度検出装置1から送信された正常な基板100のエリア毎の温度分布を示す画像データ、および基板情報TB22に格納された基板データを用いて、基板100の実装部品毎の温度を推定する。そして、推定した温度から許容温度を求めて、許容温度TB60の各エントリ(61、62、63、64)に該当するデータを格納する。例えば、図5に示すように、第1エリア110の部品111aの推定した温度が「30℃」である場合、この推定した温度「30℃」から、例えば許容温度「30℃±5℃」を求める。そして、設定部21は、例えば図3に示すように、許容温度TB60のエントリ61aに「第1エリア」を格納し、エントリ62、63に部品名「111a」、「部品111aの位置データ」をそれぞれ格納し、エントリ62に対応するエントリ64に許容温度「30℃±5℃」を格納する。
なお、上記説明では、一回の撮像で取得したエリア毎の温度分布を示す画像データを用いて、許容温度TB60のエントリ64に格納する許容温度データを算出するようにしているが、特にこれに限定するものではない。例えば、複数の正常基板の温度分布を撮像して、統計処理(平均値や分散値等)の結果を考慮した上で最適な許容温度を設定するようにしてもよい。
S4で許容温度TB60の設定が終了した場合、設定部21は、表示装置40に設定終了を示す画面を表示し、判定部27に設定が終了したことを示す信号を送信してS5の処理に進む。
S5では、判定部27は、I/O部28を介して、温度検出装置1の基板置台5に、検査対象の基板100を載置することを促す案内画面を表示装置40に表示する。判定部27は、図示しないカウンタ有していて、基板100が基板置台5の載置されたことを検知した場合、カウンタ(N)の値を「N=1」に設定し、S6の処理に進む。なお、判定部27が行う検知する具体的な手段については、S4の設定部21と同様、特に限定しない。
S6では、判定部27は、S4で正常基板100の温度分布を撮像した場合と同様の手順で、制御部26を介して、温度検出装置1を制御して載置された基板100のエリア毎の温度分布を撮像させ、エリア毎の温度分布を示す画像データを取得する。すなわち、図6に示す、第1エリアから第6エリアまでを、上記S4での処理と同様に手順により、温度検出装置1にエリア毎の温度分布を、エリア分割TB50のエントリ53に格納された時間に合わせて撮像させる。
S7では、判定部27は、取得したエリア毎の画像データと基板情報TB22に格納された基板データを用いて該当エリアに属する部品毎の温度を推定し、推定した部品毎の温度と許容温度TB60の対応するエリアの部品毎の許容温度のデータとを比較する。判定部27は、比較した結果、推定した部品毎の温度の中に許容温度TB60のエントリ64の許容温度範囲に入らないものを検出した場合、S8に進み、許容温度の範囲に入らないものが検出されない場合、S9に進む。
S8では、判定部27は、検査した基板を識別するための番号(以下において「基板ID」という)、許容温度の範囲外と判断された部品名、その部品の基板上での位置、測定した温度データ等の不良部品データを不良部品DB25に格納し、S9に進む。例えば、S4で許容温度TB60に設定した実装部品の許容温度が図5に示す値であり、S6で推定した検査基板の実装部品の温度が図6に示すものであるとする。この場合、判定部28は、第1エリア110については、部品111aが許容温度の範囲に属さないものと判定し(推定した実装部品の温度「10℃」が、許容温度範囲「30℃±5℃」に属さないため)、部品111aを不良品であると判断する。そして、判定部28は、部品111aのデータを不良部品DB25に格納する。また、判定部28は、第4エリア140については、部品141aが許容温度の範囲に属さないものと判定し(推定した実装部品の温度「80℃」が、許容温度範囲「50℃±5℃」に属さないため)、部品141aを不良品であると判断する。そして、判定部28は、部品141aのデータを不良部品DB25に格納する。
S9では、判定部27は、設定部21が保持する分割数「K」とカウンタの値「N」を比較して、「N」が「K」に到達したか否かを判定し、到達した場合にS11に進み、到達していない場合にS10に進む。なお、「N」が「K」に到達した場合とは、S2で分割した基板100のエリア毎の実装部品の品質検査が終了したことを示す。
S10では、判定部27は、カウンタの値「N」に「1」を加算し、S6に戻る。一方、S11の処理に進んだ場合、判定部27は、検査した基板100に不良部品があったか否かを、不良部品DB25を用いて判断し、不良部品がある場合には、S12に進み、不良部品が無い場合には、S13に処理を進める。
S12では、判定部27は、I/O部28を介して表示装置40に不良部品リスト画面を表示してオペレータに検査した基板100の異常を知らせ、検査が終了した旨を設定部21に通知する。なお、図示しない印刷装置が情報処理装置20に接続されている場合、判定部27は、上記不良部品リストを印刷するようにしてもよい。一方、S13では、判定部13は、I/O部28を介して表示装置40に検査した基板が正常品である旨を画面表示し、検査が終了した旨を設定部21に通知する。
S14では、設定部21は、I/O部28を介して表示装置40に検査を継続するか否か(次の基板を検査するか否か)を選択させるメニュー画面を表示して、オペレータからの選択を受付ける。設定部21は、検査を継続する選択を受付けた場合、S5の処理に戻り、検査を終了する選択を受付けた場合に検査を終了させる。
このように、本実施形態によれば、基板の通電検査を、非接触温度センサを利用して行っている。そのため、検査ピンを実装部品に当て抵抗を求める検査のように、検査ピンの接触不良により生じる検査結果のばらつきを防ぐことができ精度の高い品質検査を実現することが出来る。さらに、本実施形態によれば、検査ピンをあてるスペースを確保する必要がない。
また、本実施形態では、基板100の実装部品の中の最小寸法の部品の温度分布を撮像できる「適正温度検出領域」を特定し、上記特定した基板100の寸法を「適正温度検出領域」で除算して測定エリアを求めるようにしている(これにより、非接触温度センサ3の一画素辺りの撮像可能なエリアが最小部品の寸法以下になるような測定エリアが求められる)。なお、この「適正温度検出領域」は、上述したように、非接触温度センサ3の撮像画素数と実装部品の寸法との関係のより定まる。したがって、温度測定に用いる非接触温度センサ3の撮像画素数が低い場合でも、狭い測定エリアで部品の温度分布を撮像することで、実装部品毎の温度分布を求めることが可能となる。
すなわち、本実施形態によれば、撮像画素数の多い高価な非接触温度センサを用いることなく、安価なシステムで、小型部品を実装した基板や高集積化した基板の実装部品毎の温度分布を撮像し、基板の品質検査を行うことができる。
さらに、本実施形態では、正常な品質を有する基板の実装部品の温度分布を、
該温度分布を撮像した通電開始からの時間に関連付けて記憶するようにしている。そして、検査対象基板の該当エリアの温度分布を、上記記憶している通電開始からの時間で撮像し、上記記憶している正常基板の温度分布(温度分布から求めて許容温度)と比較するようにしている。すなわち、本実施形態では、実装部品の温度が一定になるのを待つことなく、基板の通電検査を行うことができるため、通電検査の効率を上げることができる(大型基板を検査する場合でも、効率よく通電検査を行うことができる)。
なお、本発明は以上で説明した実施形態に限定されるものではなく、本発明の要旨の範囲内において種々の変形が可能である。例えば、本実施形態では、図4のS12に示すように不良部品の通知を行い、処理を終了するようにしているが、不良部品を有する基板について、詳細な検査を行い、その結果を許容温度TB60の反映させるようにしてもよい。例えば、不良部品の詳細検査の結果、基板100の動作に異常がないと判断された場合、該当する部品の許容温度の範囲を広く設定するようにしてもよい(例えば、図3に示す許容温度TB60のエントリ64を「30℃±5℃」から「30℃±10℃」に再設定する)。
また、本実施形態では、温度測定装置1の基板置台への基板をセットする手段については、特に限定していないが、基板の搬入をロボットで行うようにしてもよいし、手動で行うようにしてもよい。
本実施形態が適用された基板検査装置の概略図である。 本実施形態の基板検査装置で検査する基板を例示した図である。 本実施形態の情報処理装置20が有する温度判定TB24のデータ構造の一例を模擬的に示したものである。 本実施形態の基板品質検査の処理のフローを説明するための図である。 通電された際の正常な基板100に実装された部品の温度を説明するための図である。 通電された際の検査対象の基板100に実装された部品の温度を説明するための図である。
符号の説明
1…温度検出装置、3…赤外線サーモグラフィ、4…レンズ部、5…基板置台、6…アーム、7…検出部、8…接続線、20…情報処理装置、21…設定部、22…記憶部、23…基板情報TB、24…温度判定TB、25…不良部品TB、26…制御部、27…判定部、28…I/O部、30…入力装置、40…表示装置、50…エリア分割TB、60…許容温度TB、100…基板

Claims (6)

  1. 基板の温度分布を撮像して、該基板の温度分布を示す画像データを出力する温度検出器を用いた、基板の品質検査方法であって、
    基板の寸法、該基板の実装部品の寸法、および該実装部品の位置データを少なくとも含む基板データと、前記温度検出器が撮像できる該実装部品のサイズ毎の適正温度検出領域を示すデータとを用いて、前記基板を少なくとも1以上の測定エリアに分割するステップと、
    正常な品質を有する前記基板の通電した際の実装部品毎の許容温度を設定するステップと、
    検査対象の基板を通電させた上で、前記温度検出器に、該基板の前記測定エリア毎の温度分布を撮像させ、該測定エリア毎の温度分布を示す画像データを取得するステップと、
    前記取得した測定エリア毎の温度分布を示す画像データおよび前記基板データを用いて、前記基板の測定エリア毎に実装部品毎の温度を推定するステップと、
    前記推定した実装部品毎の温度および前記設定した実装部品毎の許容温度を用いて、該基板が不良品か否かの判定するステップと、を行うこと
    を特徴とする品質検査方法。
  2. 基板の温度分布を撮像して、該基板の温度分布を示す画像データを出力する温度検出器を用いた、基板の品質検査方法であって、
    基板の寸法、該基板の実装部品の寸法、および該実装部品の位置データを少なくとも含む基板データと、前記温度検出器が撮像できる該実装部品のサイズ毎の適正温度検出領域を示すデータとを取得するステップと、
    前記取得した基板データおよび前記実装部品のサイズ毎の適正温度検出領域を示すデータを用いて、前記基板を少なくとも1以上の測定エリアに分割するステップと、
    正常の品質を有する正常基板を通電させた上で、前記温度検出器に、該正常基板の前記測定エリア毎の温度分布を撮像させ、該撮像した正常基板の測定エリア毎の温度分布を示す画像データを取得するステップと、
    前記取得した正常基板の測定エリア毎の温度分布を示す画像データおよび前記取得した基板データを用いて、前記測定エリア毎に実装された部品毎の許容温度を算出するステップと、
    検査基板を通電させた上で、前記温度検出器に、該検査基板の前記エリア毎の温度分布を撮像させ、該撮像させた該検査基板の該測定エリア毎の温度分布を示す画像データを取得するステップと、
    前記取得した前記検査基板の該測定エリア毎の温度分布を示す画像データおよび前記取得した基板データを用いて、前記測定エリア毎に実装された部品毎の温度を推定するステップと、
    前記検査基板のエリア毎に実装された部品毎の温度および前記部品毎の許容温度を用いて、該検査基板が不良品か否かの判定するステップと、を実行すること
    を特徴とする品質検査方法。
  3. 請求項2に記載の品質検査方法であって、
    前記正常基板の測定エリア毎の温度分布を示す画像データを取得するステップにおいて、該測定エリアの温度分布の撮像は、予め該測定エリア毎に対応付けられている前記通電開始から所定時間経過後に行い、
    前記検査基板の測定エリア毎の温度分布を示す画像データを取得するステップにおいて、該測定エリアの温度分布の撮像は、前記予め該測定エリア毎に対応付けられている前記通電開始から所定時間経過後に行うこと
    を特徴とする品質検査方法。
  4. 請求項2に記載の品質検査方法であって、
    前記正常基板の測定エリア毎の温度分布を示す画像データを取得するステップにおいて、該測定エリア毎の温度分布を撮像する際、前記通電開始からの時間を該測定エリア毎に測定し、
    前記検査基板の測定エリア毎の温度分布を示す画像データを取得するステップにおいて、前記測定エリア毎に測定された前記通電開始からの時間経過後に、対応する測定エリアの温度分布を撮像すること
    を特徴とする品質検査方法。
  5. 請求項1〜4のいずれか一項に記載の品質検査方法であって、
    前記基板を少なくとも1以上の測定エリアに分割するステップとは、
    前記基板データの前記基板の実装部品の寸法の中から最小の実装部品の寸法を特定し、該実装部品のサイズ毎の適正温度検出領域を示すデータの中から該特定した最小の実装部品の寸法を撮像できる適正温度検出領域を特定し、
    前記基板データに含まれる基板を複数の該特定した適正温度検出領域に分割することで前記基板を少なくとも1以上の測定エリアに分割すること
    を特徴とする方法。
  6. 基板の温度分布を撮像して、該基板の温度分布を示す画像データを出力する温度検出器から、該画像データを取得し、該取得した画像データを利用して基板の品質を判定する基板検査装置であって、
    検査する基板の寸法、該基板の実装部品の寸法、および部品の位置のデータを少なくとも含む基板データと、前記温度検出器が撮像できる該実装部品のサイズ毎の適正温度検出領域を示すデータとの入力を受付け、記憶する記憶部と、
    前記記憶部に記憶された基板データおよび前記実装部品のサイズ毎の適正温度検出領域を示すデータを用いて、前記基板を少なくとも1以上の測定エリアに分割する分割部と、
    正常な品質を有する正常基板の通電した際の実装部品毎の許容温度を設定する設定部と、
    前記温度検出器が出力する画像データを用いて基板の品質を判定する判定部と、を有し、
    前記判定部は、
    検査対象の基板を通電させた上で、前記温度検出器に、該基板の前記測定エリア毎の温度分布を撮像させ、該撮像させた基板の該測定エリア毎の温度分布を示す画像データを取得し、該取得した画像データおよび前記取得した基板データを用いて、前記基板の測定エリア毎に、実装部品毎の温度を推定し、
    前記推定した基板の実装部品毎の温度および前記設定した実装部品毎の許容温度を用いて、該検査対象の基板が不良品か否かの判定を行うこと
    を特徴とする基板検査装置。
JP2003349161A 2003-10-08 2003-10-08 基板の品質検査方法および基板検査装置 Pending JP2005114553A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003349161A JP2005114553A (ja) 2003-10-08 2003-10-08 基板の品質検査方法および基板検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003349161A JP2005114553A (ja) 2003-10-08 2003-10-08 基板の品質検査方法および基板検査装置

Publications (1)

Publication Number Publication Date
JP2005114553A true JP2005114553A (ja) 2005-04-28

Family

ID=34541101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003349161A Pending JP2005114553A (ja) 2003-10-08 2003-10-08 基板の品質検査方法および基板検査装置

Country Status (1)

Country Link
JP (1) JP2005114553A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005189115A (ja) * 2003-12-25 2005-07-14 Ricoh Co Ltd 基板解析装置
KR100783352B1 (ko) 2006-09-04 2007-12-10 한국표준과학연구원 Pcb 어셈블리 검사 장치와 방법
JP2009070889A (ja) * 2007-09-11 2009-04-02 Juki Corp 部品搭載装置
JP2014002234A (ja) * 2012-06-18 2014-01-09 Konica Minolta Inc 回路基板検査システム及び画像形成装置
JP2021129124A (ja) * 2017-02-27 2021-09-02 株式会社Fuji 荷重の分析方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005189115A (ja) * 2003-12-25 2005-07-14 Ricoh Co Ltd 基板解析装置
KR100783352B1 (ko) 2006-09-04 2007-12-10 한국표준과학연구원 Pcb 어셈블리 검사 장치와 방법
JP2009070889A (ja) * 2007-09-11 2009-04-02 Juki Corp 部品搭載装置
JP2014002234A (ja) * 2012-06-18 2014-01-09 Konica Minolta Inc 回路基板検査システム及び画像形成装置
JP2021129124A (ja) * 2017-02-27 2021-09-02 株式会社Fuji 荷重の分析方法
JP7236500B2 (ja) 2017-02-27 2023-03-09 株式会社Fuji 荷重の分析方法

Similar Documents

Publication Publication Date Title
US8654190B2 (en) Imaging position correction method, imaging method, and substrate imaging apparatus
US20150362552A1 (en) Probe Device
US20060086815A1 (en) Device and method for heat test
TWI758609B (zh) 影像生成裝置及影像生成方法
TW200842341A (en) Defect detection apparatus and defect detection method
JP2005292136A (ja) 多重解像度検査システム及びその動作方法
TWI612294B (zh) 基板檢查裝置及基板檢查方法
TW201344186A (zh) 熱成像裝置、熱成像方法及熱成像控制系統
KR20080089370A (ko) 화상 이치화 방법, 화상 처리 장치 및 컴퓨터 프로그램이 기록된 기록 매체
JP2013065809A (ja) 検査装置、検査方法及び検査プログラム
JP2006276454A (ja) 画像補正方法、およびこれを用いたパターン欠陥検査方法
CN112881786A (zh) 一种漏电检测方法、装置和系统
JP5886004B2 (ja) 配線検査方法および配線検査装置
US9442156B2 (en) Alignment support device and alignment support method for probe device
JP5178781B2 (ja) センサ出力データの補正装置及びセンサ出力データの補正方法
JP2005114553A (ja) 基板の品質検査方法および基板検査装置
JP2008300456A (ja) 被検査体の検査システム
JP2004144610A (ja) ウェハ欠陥検査装置
KR101661687B1 (ko) X-ray 기반의 PCB 불량 판정 방법 및 장치
JP4333349B2 (ja) 実装外観検査方法及び実装外観検査装置
JP2020088247A (ja) 検査装置、メンテナンス方法、及びプログラム
US8376209B2 (en) Non-destructive thermal conductivity detection of solder voids
JP2006337242A (ja) 端子又はプローブピンの表示方法、プローブ装置、及びプローブカード検査装置
JP4634478B2 (ja) 試料検査装置及び試料検査方法
KR20220056584A (ko) Pcba 검사장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100212

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20100603