JP2005101432A - 光起電力装置 - Google Patents
光起電力装置 Download PDFInfo
- Publication number
- JP2005101432A JP2005101432A JP2003335174A JP2003335174A JP2005101432A JP 2005101432 A JP2005101432 A JP 2005101432A JP 2003335174 A JP2003335174 A JP 2003335174A JP 2003335174 A JP2003335174 A JP 2003335174A JP 2005101432 A JP2005101432 A JP 2005101432A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor layer
- electrode
- back electrode
- photovoltaic device
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
【課題】 この発明は、微結晶或いは多結晶の薄膜半導体を用いた集積型光起電力装置のリーク電流を構造を複雑化することなく低減するとともに、出力特性を向上させることを課題とする。
【解決手段】 この発明は、絶縁性あるいは表面を絶縁性にするための処理を施した基板1上に、裏面電極2、n型微結晶シリコン半導体層31、i型微結晶シリコン半導体層32p型微結晶シリコン半導体層33、表面電極4の順に形成された光起電力装置において、裏面電極2とn型微結晶シリコン半導体層31間にはp型非晶質シリコン層5が形成される。裏面電極2とn型微結晶シリコン半導体層31は、完全に接することがない。
【選択図】 図1
【解決手段】 この発明は、絶縁性あるいは表面を絶縁性にするための処理を施した基板1上に、裏面電極2、n型微結晶シリコン半導体層31、i型微結晶シリコン半導体層32p型微結晶シリコン半導体層33、表面電極4の順に形成された光起電力装置において、裏面電極2とn型微結晶シリコン半導体層31間にはp型非晶質シリコン層5が形成される。裏面電極2とn型微結晶シリコン半導体層31は、完全に接することがない。
【選択図】 図1
Description
本発明は、結晶系薄膜半導体を発電層およびドープ層に使用した光起電力装置に関する。
非晶質シリコンを光活性層に用いた光起電力装置が電力用をはじめとして色々な用途に使用されている。
この非晶質シリコン光起電力装置は、ガラス等の透光性絶縁性基板上に、透明電極、非晶質シリコン層、裏面電極の順に形成されるか、あるいは絶縁性または表面を絶縁性にするための処理を施した基板上に裏面電極、非晶質シリコン層、透明電極をこの順序で積層して形成される。前者は、透光性の基板側から光電変換素子へ光を入射し、後者は基板上に形成した光電変換素子側から光を入射することになる。
これら非晶質シリコン光起電力装置は、一枚の基板上に多数の光電変換素子がカスケード接続された集積型構造をとることにより、高電圧を取り出すことが可能になる。図2は、従来の集積型光起電力装置の分離及び接続部の拡大断面図であって、2つの光電変換素子を電気的に直列接続する隣接間隔部を示している。ここでは一例として光電変換素子側から光を入射する逆タイプ構造を示しているが、透光性基板側から光を入射する順タイプ構造においても基本的に同様のプロセスで形成できる。以下、プロセスを順に説明する。
ポリイミドなどの絶縁性樹脂の表面に設けた基板101の一主面上に銀(Ag)などの金属膜を主体とする裏面電極102を形成し、例えば、レーザビームの照射により裏面電極2を任意の段数に短冊状に分割する。
そして、この分割された裏面電極102上に内部にnip接合を有する非晶質シリコン膜からなる半導体層103を堆積する。その後、裏面電極102の分割ラインに沿って、この分割ラインと重ならないようにして半導体層103を分割する。続いて、半導体層103上に酸化インジウム錫(ITO)や酸化錫(SnO2)などからなる透明電極104を形成して、透明電極102と裏面電極104とを接続する。その後、裏面電極102及び非晶質半導体層103の分割ラインに沿って、両分割ラインと重ならないようにして、透明電極104を除去し、隣接するセル間を分離する。ここで半導体層103、及び透明電極104の分離には、レーザビーム等による物理的な加工、エッチング等による化学的な加工、メカニカルスクライビング等の機械的な加工などが用いられる。
以上の方法で形成した非晶質シリコン光起電力装置は、シリコンウェハを用いた太陽電池と比べ、200℃前後の低温で形成でき、また発電層の膜厚が2000Å〜6000Åと薄いため、製造に要するエネルギーやシリコン材料費を大きく低減できる反面、光劣化対策や変換効率の向上が大きく要求されている。
これに対して、近年非晶質シリコンにかわる新たな薄膜太陽電池材料として、結晶系シリコン薄膜が各方面で盛んに取り上げられている。ここで、結晶系シリコン薄膜とは、多数の結晶粒を含む薄膜である。結晶系シリコン薄膜の一例である微結晶シリコンを用いた微結晶シリコン光起電力装置は、以上述べた非晶質シリコン光起電力装置製造のプロセスをほとんどそのまま利用できると同時に、集積型構造によって高電圧を得ることも可能である。また非晶質シリコン光起電力装置に比べて光劣化が大きく低減できることから各方面で注目されている。
非晶質シリコン光起電力装置においては、図2に示す裏面電極分離部に光導電率で1×10-5〜1×10-4Ω-1・cm-1の非晶質シリコンが形成される。
ここで、非晶質シリコンの膜厚を3000Å、裏面電極間の分離幅を100μmと仮定すると、裏面電極間に形成された非晶質シリコンの抵抗は分離長1cmあたり3.33MΩ〜33.3MΩとなる。この値は、太陽電池セル自体の並列抵抗(シャント抵抗)と比べて数桁高い値となっているため、この分離部を流れるリーク電流はほとんど無視できる。
一方、微結晶シリコン光起電力装置において、上述した非晶質シリコン光起電力装置と同様のプロセスを用いると、裏面電極分離部に微結晶シリコンが形成されることになる。微結晶シリコンの導電率は、1×10-1〜1×10-0Ω-1・cm-1となり、更に非晶質シリコンと比べて吸収係数が小さく10000Å以上の膜厚が必要となるため、裏面電極間の分離幅を同じく100μmと仮定すると、裏面電極間に形成された微結晶シリコンの抵抗は分離長1cmあたり100Ω〜1KΩとなる。この値は、太陽電池セル自体の並列抵抗と同等以下の値であるため、分離部における微結晶シリコンを流れる漏れ電流が生じ、光起電力装置の出力特性の低下を引き起こす。
光電変換層に微結晶あるいは多結晶シリコン膜を用いても、リーク電流による電力損失を低減して、発電電力を有効に出力できる集積型光起電力装置が特許文献1に開示されている。
この光起電力装置は、単位太陽電池が直列接続された集積型太陽電池において、上記単位太陽電池の第1電極は、第2電極との間に微結晶あるいは多結晶シリコン膜を挟持すると共に、隣接する上記単位太陽電池の第1電極と接続する領域近傍の第2電極との間に非晶質シリコン膜を挟持するように構成している。
特開20001−94133号公報
微結晶薄膜半導体を発電層に用いた光起電力装置は、従来の非晶質薄膜半導体を用いた光起電力と比較して光劣化が格段に少ないという特徴があるが、その一方で半導体材料の導電率の高さからリーク電流が多くなり、高電圧出力を得るための集積型構造を実現することが難しかった。
また、上記した特許文献1の構成では、第1電極と接続する領域近傍の第2電極との間に単に非晶質シリコン膜を設けるだけでは、十分にリーク電流を阻止することはできないという難点がある。
尚、基板上の電極分離部での漏れ電流は、順タイプ構造における透明電極分離部においても同様に発生する。またこの影響は、民生用途で蛍光灯下で使用する場合や、屋外設置において曇天、夕刻、明方などの照射強度の低い場合に更に大きくなる。
そこで、この発明は、微結晶或いは多結晶の薄膜半導体を用いた集積型光起電力装置のリーク電流を構造を複雑化することなく低減するとともに、出力特性を向上させることを課題とする。
この発明は、絶縁性表面を有する基板上に、裏面電極、少なくとも第1の導電型結晶系薄膜半導体層、第2の導電型結晶系薄膜半導体層、表面電極とがこの順序で形成された光起電力装置において、前記裏面電極と第1の導電型結晶系薄膜半導体層間には前記第1導電型結晶系薄膜半導体層とは逆の導電型を示す非晶質薄膜半導体層が形成され、前記裏面電極と第1の導電型結晶系薄膜半導体層は、完全に接することがないことを特徴とする。
この発明によれば、裏面電極の分離部には、第1の導電型(p)/第2の導電型(n)接合による逆流防止部分が形成され、リーク電流の発生が防止できる。また、この非晶質シリコン膜自体は低導電率であり、非晶質シリコン膜を通じたリークはなく、出力特性を向上させることができる。
以下、この発明の実施の形態につき図面を参照して説明する。図1は、本発明の第1の実施形態の光起電力装置の分離及び接続部の拡大断面図であって、2つの光電変換素子を電気的に直列接続する隣接間隔部を示している。
基板1として厚み200μm程度のステンレス板(SUS)からなる基板上に概略20μmのポリイミド(PI)樹脂を蒸着重合して絶縁層を形成したものを用いている。基板1の絶縁性表面上に裏面電極2をスパッタ法などにより形成し、その後、裏面電極2を任意の段数に短冊状に分割される。そして、この裏面電極2上に、p型非晶質シリコン膜5を形成するが、逆流防止部を形成するために必要な膜厚を実現する必要がある。
この実施形態では、裏面電極分離のためにレーザ加工を用いることにより、加工断面が微小に凹凸化され、この部分での成膜速度を向上させることができ、さらにCVD装置内において、放電方向に対して、基板1を斜めに固定することにより、逆流防止部分8により厚く成膜させる。また、裏面電極2としては、Au、Ag、Al、Cu、Ti、W、Ni等の常温(300K)の電気抵抗率が50.0μΩ・cm以下の材料から選択される金属膜や、透明導電膜/金属膜または金属膜/透明導電膜または透明導電膜/金属膜/透明導電膜のような構造が用いられるが、p型非晶質シリコン膜5との接続特性は金属膜/透明導電膜構造が良好であり、中でも金属膜/ITOが望ましい。本実施形態では、Ag/ITOを用いた)。
次に、このp型シリコン膜5上に内部にn型μc−Si:H(50nm)31/真性(i型)μc−Si:H(2μm)32/p型μc−Si:H(15nm)33からなる光電変換層3をプラズマCVD法により積層形成する。前記したp型非晶質シリコン膜5及び光電変換層3は、以下の表1に示す条件により形成した。
その後、基板1の成膜面側から、裏面電極2の分割ラインに沿って、この分割ラインと重ならないようにしてレーザビームを照射し、p型非晶質シリコン膜5と微結晶シリコン光電変換層3を同時に分割する。なお、このレーザバターニングによるp型シリコン膜5と微結晶シリコン光電変換層3の分離が十分でなくても、裏面電極2の一部が露出していれば、次の工程で形成される透明電極4との電気的接続が行えるので、問題にはならない。
続いて、微結晶シリコンからなる光電変換層3上に膜厚0.1〜0.5μm、この実施の形態では、約0.3μmの膜厚のITOからなる透明電極4をスパッタ法などにより形成して、裏面電極2と透明電極4とを接続する。ここで、透明電極4の抵抗が高く、電流ロスが生じる場合は、透明電極4上にAg、Al等の櫛型電極からなる集電極を形成しても良い。
その後、裏面電極2、及びp型非晶質シリコン膜5と微結晶シリコン光電変換層3の分割ラインに沿って、透明電極4、p型非晶質シリコン膜5と微結晶シリコン光電変換層3を除去して分離部6を設け、隣接するセル間を分離する。透明電極4等の分離には、レーザビーム等による物理的な加工、エッチング等による化学的な加工、メカニカルスクライビング等の機械的な加工などが用いられるが、この実施の形態においては、ウェットエッチングによる加工を用いた。
表2は微結晶シリコン集積型光起電力装置において、従来の非晶質シリコン光起電力装置と同じ方法で(裏面電極と微結晶シリコン光電変換層の間にp型シリコン膜を挿入しないで)形成した場合と、本発明を用いた場合とで、出力特性の比較を行ったものである。尚、この表2において、従来の非晶質シリコン光起電力装置と同じ方法で形成した場合の出力特性の値は、本発明により形成した場合の出力特性の値で規格化している。
この表2より、本発明を用いることにより、出力特性が大きく改善されていることが分かるが、これは、図1に示すように、裏面電極分離部において、p/n接合による逆流防止部分8が形成されるため、裏面電極間において微結晶シリコン層を通じたリーク電流の発生を防止できたからである。
尚、上記実施形態においては、光電変換層3として、内部にnip接合を有する微結晶シリコンを用いたが他の薄膜半導体を用いても良い。例えば、多結晶シリコン、CdS、CuInSe2などの薄膜半導体を用いても良い。尚、多結晶シリコンの場合には、np接合を有する光電変換層で構成できる。
1 基板
2 裏面電極
3 光電変換層
31 n型微結晶シリコン半導体層
32 i型微結晶シリコン半導体層
33 p型微結晶シリコン半導体層
4 透明電極
5 p型非晶質シリコン膜
2 裏面電極
3 光電変換層
31 n型微結晶シリコン半導体層
32 i型微結晶シリコン半導体層
33 p型微結晶シリコン半導体層
4 透明電極
5 p型非晶質シリコン膜
Claims (1)
- 絶縁性表面を有する基板上に、裏面電極、少なくとも第1の導電型結晶系薄膜半導体層、第2の導電型結晶系薄膜半導体層、表面電極とがこの順序で形成された光起電力装置において、前記裏面電極と第1の導電型結晶系薄膜半導体層間には前記第1導電型結晶系薄膜半導体層とは逆の導電型を示す非晶質薄膜半導体層が形成され、前記裏面電極と第1の導電型結晶系薄膜半導体層は、完全に接することがないことを特徴とする光起電力装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003335174A JP2005101432A (ja) | 2003-09-26 | 2003-09-26 | 光起電力装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003335174A JP2005101432A (ja) | 2003-09-26 | 2003-09-26 | 光起電力装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005101432A true JP2005101432A (ja) | 2005-04-14 |
Family
ID=34462628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003335174A Pending JP2005101432A (ja) | 2003-09-26 | 2003-09-26 | 光起電力装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005101432A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011057529A1 (zh) * | 2009-11-12 | 2011-05-19 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 一种非晶硅薄膜太阳能电池及制备方法 |
JPWO2010029751A1 (ja) * | 2008-09-12 | 2012-02-02 | 株式会社アルバック | 太陽電池及び太陽電池の製造方法 |
WO2013146851A1 (ja) * | 2012-03-30 | 2013-10-03 | 小島プレス工業株式会社 | リチウムイオン二次電池の製造方法及び製造装置 |
WO2021166570A1 (ja) | 2020-02-21 | 2021-08-26 | ニッポン高度紙工業株式会社 | アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ |
-
2003
- 2003-09-26 JP JP2003335174A patent/JP2005101432A/ja active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2010029751A1 (ja) * | 2008-09-12 | 2012-02-02 | 株式会社アルバック | 太陽電池及び太陽電池の製造方法 |
WO2011057529A1 (zh) * | 2009-11-12 | 2011-05-19 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 一种非晶硅薄膜太阳能电池及制备方法 |
WO2013146851A1 (ja) * | 2012-03-30 | 2013-10-03 | 小島プレス工業株式会社 | リチウムイオン二次電池の製造方法及び製造装置 |
WO2021166570A1 (ja) | 2020-02-21 | 2021-08-26 | ニッポン高度紙工業株式会社 | アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107710419B (zh) | 太阳能电池和太阳能电池模块 | |
US8053666B2 (en) | Solar cell and manufacturing method of the solar cell | |
RU2435251C2 (ru) | Передний электрод со слоем тонкой металлической пленки и буферным слоем с высокой работой выхода для применения в фотоэлектрическом приборе и способ получения таковых | |
KR101031246B1 (ko) | 박막형 태양전지 및 그 제조방법, 및 그를 이용한 박막형 태양전지 모듈 및 태양광 발전 시스템 | |
JP5171490B2 (ja) | 集積型薄膜太陽電池 | |
US8039292B2 (en) | Holey electrode grids for photovoltaic cells with subwavelength and superwavelength feature sizes | |
KR101895025B1 (ko) | 태양 전지 모듈 및 그의 제조 방법 | |
US10236401B2 (en) | Solar cell module and method of producing the same | |
JPH04276665A (ja) | 集積型太陽電池 | |
JP2011035092A (ja) | 裏面接合型太陽電池及びそれを用いた太陽電池モジュール | |
TWI424582B (zh) | 太陽能電池的製造方法 | |
JP4229858B2 (ja) | 光電変換装置 | |
JP2015119634A (ja) | 光起電性装置及びその製造方法 | |
KR20100021045A (ko) | 박막형 태양전지 및 그 제조방법 | |
US8658883B2 (en) | Solar cell module and method for manufacturing the same | |
JP5232362B2 (ja) | 集積化薄膜光電変換装置の製造方法および、その製造方法で得られうる集積化薄膜光電変換装置。 | |
JP2006222384A (ja) | 集積型薄膜太陽電池及びその製造方法 | |
JP6706779B2 (ja) | 太陽電池および太陽電池モジュール | |
JP2005101432A (ja) | 光起電力装置 | |
JP2005322707A (ja) | 集積型太陽電池 | |
JPWO2006049003A1 (ja) | 薄膜光電変換装置の製造方法 | |
JP2001068696A (ja) | 薄膜光電変換モジュール | |
JP2014132604A (ja) | 光電変換素子および光電変換素子の製造方法 | |
JP5373045B2 (ja) | 光電変換装置 | |
JP2013030627A (ja) | 光電変換装置 |