WO2011057529A1 - 一种非晶硅薄膜太阳能电池及制备方法 - Google Patents

一种非晶硅薄膜太阳能电池及制备方法 Download PDF

Info

Publication number
WO2011057529A1
WO2011057529A1 PCT/CN2010/077922 CN2010077922W WO2011057529A1 WO 2011057529 A1 WO2011057529 A1 WO 2011057529A1 CN 2010077922 W CN2010077922 W CN 2010077922W WO 2011057529 A1 WO2011057529 A1 WO 2011057529A1
Authority
WO
WIPO (PCT)
Prior art keywords
amorphous silicon
transparent conductive
dimensional
conductive film
back electrode
Prior art date
Application number
PCT/CN2010/077922
Other languages
English (en)
French (fr)
Inventor
白志民
Original Assignee
北京北方微电子基地设备工艺研究中心有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方微电子基地设备工艺研究中心有限责任公司 filed Critical 北京北方微电子基地设备工艺研究中心有限责任公司
Publication of WO2011057529A1 publication Critical patent/WO2011057529A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to the field of solar energy development technologies, and in particular, to an amorphous silicon thin film solar cell and a preparation method thereof. Background technique
  • amorphous silicon thin film solar cells In the development and utilization of solar energy, amorphous silicon thin film solar cells have received widespread attention.
  • the silicon material used in the amorphous silicon thin film solar cell is less than 1% of the material used for the crystalline silicon battery, the cost is low, the structure is relatively simple, the conversion efficiency is high, and it is convenient for mass production, and has great development potential.
  • amorphous silicon thin film solar cells The working principle of amorphous silicon thin film solar cells is similar to that of crystalline silicon solar cells.
  • the cross-sectional structure and current path of typical amorphous silicon thin film solar cells are shown in Fig. 1.
  • a 800-1000 nm thick TCO film transparent conductive film
  • float glass or ultra-white glass substrate
  • FTO F-doped SnO
  • this layer acts as the front electrode of the pn junction, the main role is to lead to photo-generated Flow, and light transmission and light trapping.
  • a pn junction was then prepared on the TCO film 1 using PEC VD (plasma chemical vapor deposition).
  • PEC VD plasma chemical vapor deposition
  • p and n respectively represent P (phosphorus) doped and B (boron) doped doped regions, the thickness of which is less than 30 nm; i represents the intrinsic absorption layer, and the thickness is 0.2 to 0.3 um.
  • Reference numeral 2 in Fig. 1 is a p-type doped region, reference numeral 3 is an absorbing layer, and reference numeral 4 is an n-type doping region.
  • the pn doped region provides an internal voltage to drive the collection of carriers, and the absorbing layer absorbs photons into electron-hole pairs.
  • the material is mainly Ag (silver) or Al (aluminum), which can specularly reflect the unabsorbed light and serve as the terminal for the carrier.
  • each scribing width is 50 ⁇ : lOOum, as indicated by numeral 7 in Fig. 1.
  • Each battery unit has a width of about 10 mm.
  • the TCO film 1 shows the flow direction of the photo-generated current
  • the TCO film 1 transmits and sinks light
  • the photo-generated carriers are extracted
  • the p-type doping region 2 and the n-type doping region 4 provide internal voltage-driven carriers.
  • the absorption layer 3 absorbs photons and converts them into electron-hole pairs, and when the circuit is turned on, a current is formed.
  • amorphous silicon thin film batteries limits the conversion efficiency of batteries.
  • the conversion efficiency of single-junction amorphous silicon thin-film batteries is less than half that of crystalline silicon batteries, so to achieve the same power generation, amorphous silicon
  • the area of thin-film batteries tends to be more than double that of crystalline silicon cells.
  • the present invention provides an amorphous silicon thin film solar cell which can increase the light receiving area of the battery, thereby improving the conversion efficiency of the battery.
  • An amorphous silicon thin film solar cell comprising a glass substrate, at least one three-dimensional battery unit is disposed on the glass substrate; wherein the three-dimensional battery unit comprises: deposited on the glass substrate And a TCO film having a three-dimensional convex shape, and an amorphous silicon layer and a metal back electrode sequentially deposited on the TCO film.
  • the amorphous silicon thin film solar cell of the present invention comprises a three-dimensional battery unit, and the surface extending longitudinally by the three-dimensional battery unit is compared with the conventional amorphous silicon thin film battery.
  • the product can also absorb light energy and produce a photoelectric effect, thereby increasing the light-receiving area of the battery, thereby improving the photoelectric conversion efficiency of the battery.
  • the present invention also provides a method of preparing an amorphous silicon thin film solar cell, which is also capable of increasing the light receiving area of the produced battery, thereby improving the conversion efficiency of the battery.
  • the present invention employs the following technical solutions:
  • a method for preparing an amorphous silicon thin film solar cell comprising:
  • TCO film Forming a TCO film into a three-dimensional convex shape by photolithography and etching
  • a metal back electrode is deposited on the amorphous silicon layer.
  • the three-dimensional amorphous silicon thin film solar cell structure can be obtained by the preparation method provided by the present invention, and the three-dimensional structure increases the light receiving area of the battery, thereby improving the photoelectric conversion efficiency of the battery.
  • FIG. 1 is a cross-sectional structure and a current path of an amorphous silicon thin film solar cell unit in the prior art
  • FIG. 2 is a cross-sectional structural view of a three-dimensional battery cell according to an embodiment of the present invention
  • FIG. 3 is a schematic view showing the operation of a three-dimensional battery unit according to an embodiment of the present invention.
  • FIG. 4 is a schematic circuit diagram of a connection between three-dimensional battery cells according to an embodiment of the present invention
  • FIG. 5 is a schematic circuit diagram of a three-dimensional battery cell in a damaged connection according to an embodiment of the present invention
  • Figure 7 is a process flow diagram of a specific embodiment of the preparation method of the present invention.
  • FIG. 8 is a schematic view of a TCO film unit after photolithography
  • Figure 9 is a schematic view of a three-dimensional stepped TCO film unit
  • Figure 10 is a top plan view showing the deposition of an amorphous silicon layer over the TCO film
  • Figure 11 is a plan view of a three-dimensional battery fabricated according to a specific embodiment of the preparation method of the present invention. Schematic. detailed description
  • an embodiment of the amorphous silicon thin film solar cell of the present invention comprises a glass substrate 10 on which at least one solid battery cell is disposed; wherein the three-dimensional battery cell comprises: deposited on the glass substrate 10
  • the TCO film 1 is formed in a three-dimensional convex shape, and the amorphous silicon layer 8 and the metal back electrode 5 which are sequentially deposited on the TCO film 1.
  • the amorphous silicon thin film solar cell of the present invention includes a stereoscopic photoelectric effect, thereby increasing the light receiving area of the battery, thereby improving the photoelectric conversion efficiency of the battery.
  • the TCO film 1 is formed in a three-dimensional step shape, and a three-dimensional battery cell structure is formed by sequentially depositing the amorphous silicon layer 8 and the metal back electrode 5.
  • the thickness of the three-dimensional stepped TCO film 1 perpendicular to the glass substrate 10 is 100 ⁇ m, the width along the glass substrate 10 in a direction perpendicular to the thickness direction is 10 mm, and the amorphous silicon layer 8 is an amorphous silicon pin structure.
  • the p-type amorphous silicon layer is connected to the TCO film 1, the intrinsic absorption i layer on the p-type layer and the n-type amorphous silicon layer on the i-layer; the metal back electrode 5 covers the entire amorphous silicon layer 8.
  • the embodiment includes at least two three-dimensional battery cells, the unit having a width of 10 mm, and the cells are arranged horizontally or vertically between the cells.
  • the TCO film 1, the amorphous silicon layer 8 and the metal back electrode 5 of the adjacent three-dimensional battery cells are isolated from each other; in each of the three-dimensional battery cells, the metal back electrode 5 and the stepped TCO film 1 and the glass substrate 10 The parallel portions are connected; the metal back electrode 5 of each of the three-dimensional battery cells is also connected to a portion of the TCO film 1 of the preceding adjacent three-dimensional battery cell that is parallel to the glass substrate 10.
  • the above structural feature has a dead zone 7 between adjacent stereoscopic battery cells, and the width of the dead zone 7 is
  • the dead zone 7 can isolate the three-dimensional units from each other without affecting their respective work, and can realize the series-parallel relationship between the battery cells, forming a series connection between the three-dimensional battery cells of each row or column.
  • the current path I shown in Fig. 2, and the photovoltaic cells of each row or column are electrically connected in parallel with each other. Referring to the circuit diagram of the connection of the three-dimensional battery unit shown in FIG.
  • each battery in the figure represents a three-dimensional battery unit
  • the metal back electrode 5 at the dead zone 7 is connected to the TCO film 1 of the previous adjacent three-dimensional battery unit, so that each The row or each column of the three-dimensional battery cells are connected in series with each other, and the rows or columns of the three-dimensional battery cells are connected in parallel with each other.
  • the metal back electrode 5 is connected to the stepped TCO film 1 in each of the three-dimensional battery cells, it is also connected to the TCO film 1 of the previous adjacent three-dimensional battery unit.
  • the battery unit is equivalent to the function of the wire, as shown in Figure 5, does not affect the operation of other battery units.
  • 11 is an EVA (ethylene and vinyl acetate) protective layer.
  • Sunlight is incident on the amorphous silicon layer 8 from the TCO film 1, and can be emitted not only in the amorphous silicon layer 8 parallel to the glass substrate 10 but also in the amorphous silicon layer 8 perpendicular to the glass substrate 10. It is also possible to emit multiple times in the amorphous silicon layer 8 at the boundary parallel and perpendicular to the glass substrate 10, thereby increasing the optical path, improving the utilization of light, and further increasing the photoelectric conversion efficiency.
  • EVA ethylene and vinyl acetate
  • An embodiment of the amorphous silicon thin film solar cell of the present invention comprises a three-dimensional battery cell, and the cross-sectional shape of the longest side of the stereo cell unit is analyzed.
  • the width of the battery cell has no electrical conversion effect.
  • the theoretically calculated light-receiving area is 2% more than that of a conventional battery, so theoretically the efficiency of the battery can be increased by 2%.
  • the conversion efficiency of the actual battery should not increase by 2%.
  • the present invention also discloses a method of preparing the above amorphous silicon thin film solar cell, which will be described in detail below in conjunction with the flow chart shown in FIG. As shown in FIG. 6, the method for preparing an amorphous silicon thin film solar cell provided by the present invention comprises the following steps: 511. Depositing a TCO film on the glass substrate.
  • the TCO film is formed into a three-dimensional convex shape by photolithography and etching.
  • step S12 is specifically:
  • the TCO film is subjected to photolithography and etching to form a three-dimensionally convex TCO film array composed of at least two three-dimensional convex TCO film units, and each TCO film unit will form a three-dimensional battery unit.
  • the amorphous silicon layer between adjacent cells is etched away by laser scribing.
  • the metal back electrode between the adjacent cells is etched away by laser scribing, so that the metal back electrodes of the adjacent three-dimensional battery cells are isolated from each other, and in each unit, the metal back electrode and the TCO The membrane is connected and is also connected to the TCO membrane of the previous adjacent unit.
  • a layer of lOOum TCO was deposited on the glass substrate by PVD equipment.
  • the deposition conditions were as follows: pressure 0.5Pa; power 5kw; temperature 250°C; process gas was Ar and 02, flow rates were 300 and lOSccm respectively ( Standard condition cc per minute).
  • the photoresist is coated on the TCO film, and the positive gel is taken as an example, and photolithographically developed into the shape shown by the numeral 1 in FIG. 10, and a horizontal or vertical arrangement composed of at least two " ⁇ "-shaped cells is formed on the TCO film.
  • the " ⁇ "-like array, the width of each " ⁇ "-like unit along the direction of the glass substrate is
  • each " ⁇ " shaped unit will form a TCO membrane unit, and a TCO membrane unit will form a solid battery unit.
  • a stepped TCO film Form a stepped TCO film. ⁇ Using the methods in the two steps S22 and S23, the graph will be The lateral side of the three-dimensional " ⁇ "-shaped TCO film unit structure shown in Fig. 8 continues to corrode, and by controlling the etching time, a stepped TCO film unit as shown in Fig. 9 is formed. At this time, an array of TCO films arranged in a lateral or longitudinal direction composed of at least two three-dimensional stepped TCO film units is formed.
  • an amorphous silicon layer 8 is deposited on the array of stepped TCO films 1 using a PECVD apparatus.
  • the amorphous silicon layer 8 is a pin layer structure including a p-type amorphous silicon layer connected to the TCO film 1, an intrinsic i layer deposited on the p layer, and an n-type amorphous silicon layer on the i layer.
  • the deposition conditions are: pressure 80Pa; power 1000W; temperature 200°C; p-type process gas is Si3 ⁇ 4 and P3 ⁇ 4, flow rate is 2000 and 500sccm respectively; i-layer process gas is Si3 ⁇ 4, flow rate is 2000sccm; n-type process gas is Si3 ⁇ 4 And B 2 3 ⁇ 4, the flow rate is 500sccm.
  • a metal back electrode 5 is deposited on the amorphous silicon layer 8 by using a PVD method.
  • the material of the metal back electrode 5 is AL, Ag or Ni, and the deposition conditions are: a pressure of 0.5 Pa; a power of 3 kw; Gas, flow rate is 200sccm.
  • reference numeral 9 is a laser scribing corrosion region, so that the metal back electrodes 5 between each adjacent unit are isolated from each other, and the metal back electrode 5 is both with the TCO film 1 of the unit. Connected, it is also connected to the TCO film 1 of the previous adjacent unit. This forms a dead zone 7 between adjacent cells. So far, the fabrication process was completed, and an amorphous silicon thin film battery including a plurality of vertical battery cells was formed.
  • test package test package.
  • the test encapsulation steps are the same as the conventional methods and will not be described here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Description

一种非晶硅薄膜太阳能电池及制备方法
技术领域
本发明涉及太阳能开发技术领域, 尤其涉及一种非晶硅薄膜太阳能电池 及制备方法。 背景技术
在对太阳能的开发和利用中, 非晶硅薄膜太阳能电池受到了人们的广泛 关注。 非晶硅薄膜太阳能电池所使用的硅材料不到晶硅电池用料的 1%, 成 本低且结构比较简单, 转换效率较高, 便于大规模生产, 具有极大的发展潜 力。
非晶硅薄膜太阳能电池的工作原理与晶硅太阳能电池比较类似, 典型的 非晶硅薄膜太阳能电池单元的剖面结构和电流路径如图 1所示。首先在 3mm 厚的浮法玻璃(或者超白玻璃)基板上生长一层 800~1000nm厚的 TCO膜(透 明导电薄膜), 如图 1中的标号 1所示, 一般是 FTO (掺 F的 SnO, 在玻璃 的生产过程中沉积)或者 AZO (掺 A1的 ZnO, 离线 LPCVD (低压化学气相 沉积 )或者 PVD (物理气相沉积 )沉积 ), 这层作为 pn结的前电极, 主要作 用是引出光生载流子, 以及透光和陷光作用。 然后在 TCO 膜 1 上使用 PEC VD (等离子化学气相沉积)制备 pn结。与晶硅电池不同的是由于薄膜电池 沉积的是非晶硅材料, 杂质缺陷密度比晶硅材料要大, 载流子复合程度高。 为了提高电流密度, 人们设计了 pin结构。 其中 p和 n分别代表 P (磷)掺杂 和 B (硼)掺杂的掺杂区, 其厚度小于 30nm; i代表本征吸收层, 厚度在 0.2~0.3um。 图 1中的标号 2为 p型掺杂区, 标号 3为本证吸收层, 标号 4为 n型掺杂区。 pn掺杂区提供内电压驱动载流子的收集, 吸收层吸收光子转化 成电子空穴对。 形成了 pin结构后还需要使用 PVD制备背电极 5, 背电极 5 的材料主要是 Ag (银)或 Al (铝), 既能够镜面反射没有吸收的光线, 又作 为载流子的引出端。
在实际非晶硅薄膜电池生产过程中, 为了实现电池模块之间串并联关 系, 通常使用激光划线步骤。 激光划线实现了背电极 5和前电极 TCO膜 1 互相连接, 同时自身进行隔离, 这个区域对电流没有任何贡献, 我们称之为 "死区", 每个电池单元 "死区" 的宽度在 500um之间, 包含 3次激光划线 工艺, 每次划线宽度在 50〜: lOOum, 如图 1中的标号 7所示。每个电池单元的 宽度在 10mm左右。 图 1中的标号 6所示为光生电流的流动方向, TCO膜 1 透光和陷光, 引出光生载流子, p型掺杂区 2和 n型参杂区 4提供内电压驱 动载流子的收集, 吸收层 3吸收光子转化成电子空穴对, 接通电路后就形成 电流。
与晶硅电池相比, 非晶硅薄膜电池的材料限制了电池的转换效率, 目前 单结非晶硅薄膜电池的转换效率不及晶硅电池的一半, 因此要实现同样的发 电量, 非晶硅薄膜电池的面积往往要达到晶硅电池的一倍以上, 这样, 在诸 如安装在居民屋顶上发电这样的非晶硅薄膜电池应用中, 非晶硅薄膜电池的 劣势就体现出来, 这直接影响了它的发展和实际应用。 发明内容
本发明提供了一种非晶硅薄膜太阳能电池, 其可增加电池的受光面积、 从而提高电池的转换效率。
为实现上述目的, 本发明釆用了如下技术方案: 一种非晶硅薄膜太阳能 电池, 包括玻璃基板, 在玻璃基板上设有至少一个立体电池单元; 其中立体 电池单元包括: 沉积在玻璃基板上、 且设为立体凸起状的 TCO膜, 以及在 TCO膜上依次沉积的非晶硅层及金属背电极。
釆用上述技术方案后, 与传统非晶硅薄膜电池相比, 本发明的非晶硅薄 膜太阳能电池由于包含立体电池单元, 借助立体电池单元纵向伸展出来的面 积同样可以吸收光能并产生光电效应, 因而增加了电池的受光面积, 进而提 高了电池的光电转换效率。
本发明还提供了一种非晶硅薄膜太阳能电池的制备方法, 其同样能够增 加所制得的电池的受光面积、 从而提高电池的转换效率。
为实现上述目的, 本发明釆用了如下技术方案:
一种非晶硅薄膜太阳能电池的制备方法, 包括:
在玻璃基板上沉积 TCO膜;
通过光刻和刻蚀, 使 TCO膜形成立体凸起状;
在立体凸起状的 TCO膜上沉积非晶硅层;
在非晶硅层上沉积金属背电极。
釆用上述技术方案后, 由本发明提供的制备方法可以获得立体的非晶硅 薄膜太阳能电池结构, 该立体结构增加了电池的受光面积, 进而提高了电池 的光电转换效率。 附图说明
图 1为现有技术中非晶硅薄膜太阳能电池单元的剖面结构和电流路径; 图 2为本发明实施例的立体电池单元的剖面结构示意图;
图 3为本发明实施例的立体电池单元的工作示意图;
图 4为本发明实施例的立体电池单元之间连接的电路示意图; 图 5为本发明实施例中某一立体电池单元损坏连接的电路示意图; 图 6为本发明制作方法的工艺流程图;
图 7为本发明制备方法的一个具体实施例的工艺流程图;
图 8为光刻后的 TCO膜单元示意图;
图 9为立体台阶状的 TCO膜单元示意图;
图 10为 TCO膜上方沉积非晶硅层的俯视示意图;
图 11 为根据本发明制备方法一个具体实施例而制作的立体电池的俯视 示意图。 具体实施方式
下面结合附图对本发明的实施方式做进一步详细说明。 其中所描述的实 施例仅仅是本发明的部分实施例, 而不是全部的实施例。 基于本发明中的实 施例, 本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。
如图 2和图 3所示, 本发明非晶硅薄膜太阳能电池的实施例, 包括玻璃 基板 10, 在玻璃基板 10上设有至少一个立体电池单元; 其中立体电池单元 包括: 沉积在玻璃基板 10上、 且设为立体凸起状的 TCO膜 1 , 以及在 TCO 膜 1上依次沉积的非晶硅层 8及金属背电极 5。
与传统非晶硅薄膜电池相比, 本发明的非晶硅薄膜太阳能电池包括立体 生光电效应, 因而增加了电池的受光面积,进而提高了电池的光电转换效率。
本实施例中, 如图 2所示, TCO膜 1设置为立体台阶状, 进而通过依次 沉积非晶硅层 8及金属背电极 5, 形成了立体的电池单元结构。 其中, 立体 台阶状的 TCO膜 1垂直于玻璃基板 10方向的厚度为 lOOum, 沿着玻璃基板 10、与厚度方向相垂直的方向的宽度为 10mm;非晶硅层 8为非晶硅 pin结构, 包括与 TCO膜 1相接的 p型非晶硅层, p型层上的本征吸收 i层和 i层上的 n 型非晶硅层; 金属背电极 5将非晶硅层 8全部覆盖。
进一步地, 本实施例包括至少两个立体电池单元,单元的宽度为 10mm, 单元与单元之间横向或纵向排列。 其中, 相邻的立体电池单元的 TCO膜 1、 非晶硅层 8及金属背电极 5均彼此隔离; 在每个立体电池单元中, 金属背电 极 5与台阶状的 TCO膜 1与玻璃基板 10平行的部分相连; 每个立体电池单 元的金属背电极 5还与前一相邻立体电池单元的 TCO膜 1与玻璃基板 10平 行的部分相连。 上述结构特征使相邻的立体电池单元之间存在死区 7 , 死区 7的宽度为
500um。 死区 7既可以使立体单元之间彼此隔离, 互不影响各自的工作, 又 可以实现电池单元之间的串并联关系, 形成了每排或每列的立体电池单元之 间相互串联, 见图 2所示的电流路径 I , 而各排或者各列的立体电池单元相 互并联的电连接。 见图 4所示的立体电池单元连接的电路示意图, 图中每一 个电池代表一个立体电池单元, 死区 7处的金属背电极 5与前一相邻立体电 池单元的 TCO膜 1相连,使每排或每列的立体电池单元之间相互串联, 而各 排或者各列的立体电池单元相互并联。 而当某个立体电池单元损坏时, 由于 在每个立体电池单元中,金属背电极 5与台阶状的 TCO膜 1相连,还与前一 相邻立体电池单元的 TCO膜 1相连,此时,该电池单元就相当于导线的作用, 如图 5所示, 不会影响其它电池单元的工作。
当立体电池单元工作时, 如图 3所示的工作示意图, 11为 EVA (乙烯及 乙烯基醋酸盐 )保护层。 阳光从 TCO膜 1射入非晶硅层 8, 不仅可以在与玻 璃基板 10平行的非晶硅层 8内多次发射, 也可以在与玻璃基板 10垂直的非 晶硅层 8内多次发射,还可以在与玻璃基板 10平行及垂直方向交界处的非晶 硅层 8内多次发射, 增加了光程, 提高了对光的利用率, 进而增加了光电转 换效率。
本发明非晶硅薄膜太阳能电池的实施例, 包括立体电池单元, 以立体电 池单元最长边的剖面形状分析, 与传统电池相比, 电池单元的宽度并没有变 电效应。 这样理论计算出来的受光面积比传统电池多了 2%, 所以理论上电 池的效率也可以提高 2%。 但是, 由于侧面受光面的电池接受不到直射的阳 光, 所以实际电池的转化效率的增幅应该达不到 2%。
此外, 本发明还公开了上述非晶硅薄膜太阳能电池的制备方法, 下面结 合图 6所示的流程图对此予以详细说明。 如图 6所示, 本发明提供的非晶硅 薄膜太阳能电池的制备方法包括以下步骤: 511、 在玻璃基板上沉积 TCO膜。
512、 通过光刻和刻蚀, 使 TCO膜形成立体凸起状。
513、 在立体凸起状的 TCO膜上沉积非晶硅层。
514、 在非晶硅层上沉积金属背电极。
进一步地, S12步骤具体为:
使 TCO膜通过光刻和刻蚀, 形成由至少二个立体凸起状 TCO膜单元组 成的、 横向或纵向排列的立体凸起状 TCO膜阵列, 每个 TCO膜单元将形成 一个立体电池单元。
进一步地, 在 S13步骤后, 釆用激光划线腐蚀掉相邻单元之间的非晶硅 层。 在 S14步骤后, 釆用激光划线腐蚀掉相邻的单元之间的金属背电极, 使 相邻的立体电池单元的金属背电极彼此隔离, 并使在每个单元中, 金属背电 极与 TCO膜相连, 还与前一相邻单元的 TCO膜相连。
下面对本发明制备方法的实施例进行具体描述, 形成上述非晶硅薄膜电 池实施例的制备方法如图 7所示的流程图, 包括下列步骤:
S21、 沉积 TCO膜。 首先在玻璃基板上利用 PVD设备沉积一层厚度为 lOOum的 TCO ( AZO ), 沉积条件如下: 压强 0.5Pa; 功率 5kw; 温度 250°C ; 工艺气体为 Ar和 02 , 流量分别为 300和 lOSccm (标况毫升每分)。
522、 光刻。 在 TCO膜上铺光刻胶, 以正胶为例, 光刻显影成图 10中 标号 1所示的形状, 在 TCO膜上形成由至少二个 "匚"状单元组成的、 横向 或纵向排列的 "匚" 状阵列, 每个 "匚" 状单元沿着玻璃基板方向的宽度为
10mm, 每个 "匚"状单元将形成一个 TCO膜单元, 一个 TCO膜单元将形成 一个立体电池单元。
523、 湿法腐蚀。 使用湿法腐蚀设备, 在 HCL溶液中将没有光刻胶覆盖 的 TCO膜腐蚀掉, 使每个 "匚" 状单元形成如图 8所示的 TCO膜单元的结 构。
524、 形成台阶状的 TCO膜。 釆用 S22和 S23两个步骤中的方法, 将图 8所示的立体 "匚"形 TCO膜单元结构的横边继续腐蚀,通过控制腐蚀时间, 形成如图 9所示的台阶状的 TCO膜单元。此时,形成了由至少二个立体台阶 状 TCO膜单元组成的、 横向或纵向排列的 TCO膜阵列。
S25、沉积非晶硅层。如图 10所示,在台阶状 TCO膜 1阵列上使用 PECVD 设备, 沉积非晶硅层 8。 本实施例中非晶硅层 8为 pin层结构, 包括与 TCO膜 1 连接的 p型非晶硅层, 沉积在 p层上的本征 i层和 i层上的 n型非晶硅层。 沉积 条件为: 压强 80Pa; 功率 1000W; 温度 200°C ; p型层工艺气体为 Si¾和 P¾, 流量分别为 2000和 500sccm; i层工艺气体为 Si¾, 流量为 2000sccm; n型层 工艺气体为 Si¾和 B2¾, 流量为 500sccm。
S26、 激光划线。 使用绿激光划线, 将每个单元的非晶硅层 8彼此隔离 开, 形成图 10所示结构, 标号 9为激光划线腐蚀区域。
S27, 沉积金属背电极。 如图 11所示, 使用 PVD方法在非晶硅层 8上 沉积金属背电极 5, 金属背电极 5的材料为 AL、 Ag或 Ni等, 沉积条件为: 压强 0.5Pa; 功率 3kw; 通入 Ar气, 流量为 200sccm。
S28, 激光划线。 使用绿激光划线, 见图 11所示结构, 标号 9为激光划 线腐蚀区域, 使每个相邻单元之间金属背电极 5彼此隔离, 而且金属背电极 5既与本单元的 TCO膜 1相连, 还与前一相邻单元的 TCO膜 1相连。 这样 形成了相邻单元之间的死区 7。 至此, 完成了制作过程, 形成了包括若干立 体电池单元的非晶硅薄膜电池。
S29, 测试封装。 测试封装步骤与传统方法相同, 这里不作赘述。
S210, 结束。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以权利要求所述的保护范围为准。

Claims

UP-101065-00 利 要 求 书
1、 一种非晶硅薄膜太阳能电池, 包括玻璃基板, 其特征在于, 在所述玻璃基板上设有至少一个立体电池单元;
其中所述立体电池单元包括: 沉积在所述玻璃基板上、 且设为立体凸起 状的透明导电膜, 以及在所述透明导电膜上依次沉积的非晶硅层及金属背电 极。
2、 根据权利要求 1所述的非晶硅薄膜太阳能电池, 其特征在于, 所述立体凸起状为立体台阶状。
3、 根据权利要求 1或 2所述的非晶硅薄膜太阳能电池, 其特征在于, 所述至少一个立体电池单元为两个或两个以上;
所述立体电池单元与单元之间横向或纵向排列。
4、 根据权利要求 3所述的非晶硅薄膜太阳能电池, 其特征在于, 相邻的所述立体电池单元的所述透明导电膜、 所述非晶硅层及所述金属 背电极均彼此隔离;
在每个所述立体电池单元中, 所述金属背电极与所述透明导电膜相连; 每个所述立体电池单元的所述金属背电极与前一相邻所述立体电池单 元的透明导电膜相连。
5、 根据权利要求 4所述的非晶硅薄膜太阳能电池, 其特征在于, 相邻的所述立体电池单元之间存在死区, 所述死区的宽度为 500um。
6、 根据权利要求 2所述的非晶硅薄膜太阳能电池, 其特征在于, 所述透明导电膜垂直于所述玻璃基板方向的厚度为 lOOum, 沿着所述玻 璃基板、 与所述厚度方向相垂直的方向的宽度为 10mm。
7、 根据权利要求 1所述的非晶硅薄膜太阳能电池, 其特征在于, 所述立体电池单元的宽度为 10mm。
8、 一种非晶硅薄膜太阳能电池的制备方法, 其特征在于, 包括: 在玻璃基板上沉积透明导电膜;
通过光刻和刻蚀, 使所述透明导电膜形成立体凸起状;
在所述立体凸起状的透明导电膜上沉积非晶硅层;
在所述非晶硅层上沉积金属背电极。
9、 根据权利要求 8所述的方法, 其特征在于,
所述通过光刻和刻蚀使所述透明导电膜形成立体凸起状具体为: 使所述透明导电膜通过光刻和刻蚀, 形成由至少二个所述立体凸起状透 明导电膜单元组成的、 横向或纵向排列的立体凸起状透明导电膜阵列。
10、 根据权利要求 9所述的方法, 其特征在于,
在所述在立体凸起状的透明导电膜上沉积非晶硅层后包括:
釆用激光划线腐蚀掉每个相邻的所述透明导电膜单元之间的非晶硅层; 在所述非晶硅层上沉积金属背电极的步骤后包括:
釆用激光划线腐蚀掉相邻的所述透明导电膜单元之间的所述金属背电 极, 使相邻所述单元的所述金属背电极彼此隔离, 并使在每个所述单元中, 所述金属背电极与所述透明导电膜相连, 所述金属背电极还与前一相邻单元 的透明导电膜相连。
PCT/CN2010/077922 2009-11-12 2010-10-20 一种非晶硅薄膜太阳能电池及制备方法 WO2011057529A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009102378659A CN102064212B (zh) 2009-11-12 2009-11-12 一种非晶硅薄膜太阳能电池及制备方法
CN200910237865.9 2009-11-12

Publications (1)

Publication Number Publication Date
WO2011057529A1 true WO2011057529A1 (zh) 2011-05-19

Family

ID=43991198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077922 WO2011057529A1 (zh) 2009-11-12 2010-10-20 一种非晶硅薄膜太阳能电池及制备方法

Country Status (2)

Country Link
CN (1) CN102064212B (zh)
WO (1) WO2011057529A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709156B (zh) * 2012-05-25 2016-09-07 中山大学 一种ZnO基透明导电薄膜湿法刻蚀方法
CN107342331B (zh) * 2013-08-02 2018-10-19 南通大学 一种t型顶电极背反射薄膜太阳电池的生产工艺
WO2017128540A1 (zh) * 2016-01-29 2017-08-03 周一珺 立体光伏电池基板结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6870088B2 (en) * 2002-03-15 2005-03-22 Sharp Kabushiki Kaisha Solar battery cell and manufacturing method thereof
JP2005101432A (ja) * 2003-09-26 2005-04-14 Sanyo Electric Co Ltd 光起電力装置
CN101017863A (zh) * 2007-02-08 2007-08-15 深圳市拓日新能源科技股份有限公司 非晶硅太阳能电池周边电极绝缘激光刻蚀的处理方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090145472A1 (en) * 2007-12-10 2009-06-11 Terra Solar Global, Inc. Photovoltaic devices having conductive paths formed through the active photo absorber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6870088B2 (en) * 2002-03-15 2005-03-22 Sharp Kabushiki Kaisha Solar battery cell and manufacturing method thereof
JP2005101432A (ja) * 2003-09-26 2005-04-14 Sanyo Electric Co Ltd 光起電力装置
CN101017863A (zh) * 2007-02-08 2007-08-15 深圳市拓日新能源科技股份有限公司 非晶硅太阳能电池周边电极绝缘激光刻蚀的处理方法

Also Published As

Publication number Publication date
CN102064212B (zh) 2013-06-05
CN102064212A (zh) 2011-05-18

Similar Documents

Publication Publication Date Title
KR101426941B1 (ko) 태양전지 및 그의 제조방법
US6784361B2 (en) Amorphous silicon photovoltaic devices
US8895350B2 (en) Methods for forming nanostructures and photovoltaic cells implementing same
US20080156372A1 (en) Thin film solar cell module of see-through type and method of fabricating the same
JP2009503848A (ja) 組成傾斜光起電力デバイス及び製造方法並びに関連製品
WO2013061637A1 (ja) 光電変換装置とその製造方法、および光電変換モジュール
US20090120494A1 (en) Solar cell and method of manufacturing the same
JP2003069061A (ja) 積層型光電変換素子
JP2008181965A (ja) 積層型光電変換装置及びその製造方法
US8575472B2 (en) Photoelectric conversion device and method for producing same
CN101447518A (zh) 一种背点接触异质结太阳能电池及其制造方法
JP7109833B2 (ja) 半積層型フレキシブルシリコン系薄膜太陽電池、及びその製造方法
CN107195696A (zh) 一种mwt太阳能电池片及利用其制成的mwt太阳能电池组件
CN201323204Y (zh) 一种背点接触异质结太阳能电池
WO2011057529A1 (zh) 一种非晶硅薄膜太阳能电池及制备方法
TW201010115A (en) Method for depositing an amorphous silicon film for photovoltaic devices with reduced light-induced degradation for improved stabilized performance
KR20110079107A (ko) 박막 태양전지 기판용 글라스 및 그를 포함하는 박막 태양전지의 제조방법
TW201244144A (en) Improved a-Si:H absorber layer for a-Si single-and multijunction thin film silicon solar cell
JP2007059799A (ja) 太陽電池およびその製造方法
CN203839392U (zh) 一种太阳能电池
CN220796756U (zh) 硅异质结太阳能电池、太阳能光伏组件和光伏系统
KR101612805B1 (ko) 박막형 태양전지 모듈 및 그의 제조방법
WO2016163168A1 (ja) 光電変換素子
KR20130039896A (ko) 박막 태양 전지
JP2011176084A (ja) 光電変換モジュール及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10829493

Country of ref document: EP

Kind code of ref document: A1