CN102064212B - 一种非晶硅薄膜太阳能电池及制备方法 - Google Patents

一种非晶硅薄膜太阳能电池及制备方法 Download PDF

Info

Publication number
CN102064212B
CN102064212B CN2009102378659A CN200910237865A CN102064212B CN 102064212 B CN102064212 B CN 102064212B CN 2009102378659 A CN2009102378659 A CN 2009102378659A CN 200910237865 A CN200910237865 A CN 200910237865A CN 102064212 B CN102064212 B CN 102064212B
Authority
CN
China
Prior art keywords
amorphous silicon
solar cell
back electrode
nesa coating
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009102378659A
Other languages
English (en)
Other versions
CN102064212A (zh
Inventor
白志民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing North Microelectronics Co Ltd
Original Assignee
Beijing North Microelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing North Microelectronics Co Ltd filed Critical Beijing North Microelectronics Co Ltd
Priority to CN2009102378659A priority Critical patent/CN102064212B/zh
Priority to PCT/CN2010/077922 priority patent/WO2011057529A1/zh
Publication of CN102064212A publication Critical patent/CN102064212A/zh
Application granted granted Critical
Publication of CN102064212B publication Critical patent/CN102064212B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种非晶硅薄膜太阳能电池及制备方法,涉及太阳能开发技术领域,为提高光电转换效率而发明。所述非晶硅薄膜太阳能电池包括玻璃基板,在玻璃基板上设有至少一个立体电池单元;其中立体电池单元包括:沉积在玻璃基板上、且设为立体凸起状的透明导电膜,以及在透明导电膜上依次沉积的非晶硅层及金属背电极。所述非晶硅薄膜太阳能电池的制备方法,包括:在玻璃基板上沉积透明导电膜;通过光刻和刻蚀,使透明导电膜形成立体凸起状;在立体凸起状的透明导电膜上沉积非晶硅层;在非晶硅层上沉积金属背电极。本发明可用于太阳能发电技术中。

Description

一种非晶硅薄膜太阳能电池及制备方法
技术领域
本发明涉及太阳能开发技术领域,尤其涉及一种非晶硅薄膜太阳能电池及制备方法。
背景技术
在对太阳能的开发和利用中,非晶硅薄膜太阳能电池受到了人们的广泛关注。非晶硅薄膜太阳能电池所使用的硅材料不到晶硅电池用料的1%,成本低且结构比较简单,转换效率较高,便于大规模生产,具有极大的发展潜力。
非晶硅薄膜太阳能电池的工作原理与晶硅太阳能电池比较类似,典型的非晶硅薄膜太阳能电池单元的剖面结构和电流路径如图1所示。首先在3mm厚的浮法玻璃(或者超白玻璃)基板上生长一层800~1000nm厚的TCO膜(透明导电薄膜),如图1中1所示,一般是FTO(掺F的SnO,在玻璃的生产过程中沉积)或者AZO(掺Al的ZnO,离线LPCVD(低压化学气相沉积)或者PVD(物理气相沉积)沉积),这层作为pn结的前电极,主要作用是引出光生载流子,以及透光和陷光作用。然后在TCO膜1上使用PECVD(等离子化学气相沉积)制备pn结。与晶硅电池不同的是由于薄膜电池沉积的是非晶硅材料,杂质缺陷密度比晶硅材料要大,载流子复合程度高。为了提高电流密度,人们设计了pin结构。其中p和n分别代表P(磷)掺杂和B(硼)掺杂的掺杂区,其厚度小于30nm;i代表本征吸收层,厚度在0.2~0.3um。图1中2为p型掺杂区,3为本证吸收层,4为n型掺杂区。pn掺杂区提供内电压驱动载流子的收集,吸收层吸收光子转化成电子空穴对。形成了pin结构后还需要使用PVD制备背电极5,背电极5的材料主要是Ag(银)或Al(铝),即能够镜面反射没有吸收的光线,又作为载流子的引出端。
在实际非晶硅薄膜电池生产过程中,为了实现电池模块之间串并联关系,通常使用激光划线步骤。激光划线实现了背电极5和前电极TCO膜1互相连接,同时自身进行隔离,这个区域对电流没有任何贡献,我们称之为“死区”,每个电池单元“死区”的宽度在500um之间,包含3次激光划线工艺,每次划线宽度在50~100um,如图1中7所示。每个电池单元的宽度在10mm左右。图1中6所示为光生电流的流动方向,TCO膜1透光和陷光,引出光生载流子,p型掺杂区2和n型参杂区4提供内电压驱动载流子的收集,吸收层3吸收光子转化成电子空穴对,接通电路后就形成电流。
与晶硅电池相比,非晶硅薄膜电池的材料限制了电池的转换效率,目前单结非晶硅薄膜电池的转换效率不及晶硅电池的一半,因此要实现同样的发电量,非晶硅薄膜电池的面积往往要达到晶硅电池的一倍以上,这样在非晶硅薄膜电池的应用中例如安装在居民屋顶上发电,非晶硅薄膜电池的劣势就体现出来,直接影响了它的发展和实际应用。
发明内容
本发明提供了一种非晶硅薄膜太阳能电池,增加了电池的受光面积、从而提高了电池的转换效率。
为实现上述目的,本发明采用了如下技术方案:一种非晶硅薄膜太阳能电池,包括玻璃基板,在玻璃基板上设有至少一个立体电池单元;其中立体电池单元包括:沉积在玻璃基板上、且设为立体凸起状的TCO膜,以及在TCO膜上依次沉积的非晶硅层及金属背电极。
采用上述技术方案后,与传统非晶硅薄膜电池相比,本发明的非晶硅薄膜太阳能电池由于包含立体电池单元,立体电池单元纵向伸展出来的面积同样可以吸收光能并产生光电效应,即增加了电池的受光面积,进而提高了电池的光电转换效率。
本发明还提供了一种非晶硅薄膜太阳能电池的制备方法,增加了电池的受光面积、从而提高了电池的转换效率。
为实现上述目的,本发明采用了如下技术方案:
一种非晶硅薄膜太阳能电池的制备方法,包括:
在玻璃基板上沉积TCO膜;
通过光刻和刻蚀,使TCO膜形成立体凸起状;
在立体凸起状的TCO膜上沉积非晶硅层;
在非晶硅层上沉积金属背电极。
采用上述技术方案后,本发明的制备方法制备了立体的非晶硅薄膜太阳能电池结构,立体结构增加了电池的受光面积,进而提高了电池的光电转换效率。
附图说明
图1为现有技术中非晶硅薄膜太阳能电池单元的剖面结构和电流路径;
图2为本发明实施例的立体电池单元的剖面结构示意图;
图3为本发明实施例的立体电池单元的工作示意图;
图4为本发明实施例的立体电池单元之间连接的电路示意图;
图5为本发明实施例中某一立体电池单元损坏连接的电路示意图;
图6为本发明制作方法的工艺流程图;
图7为本发明制备方法实施例的工艺流程图;
图8为光刻后的TCO膜单元示意图;
图9为立体台阶状的TCO膜单元示意图;
图10为TCO膜上方沉积非晶硅层的俯视示意图;
图11为本发明制备方法实施例制作的立体电池俯视示意图。
具体实施方式
下面结合附图对本发明的实施方式做进一步详细说明。其中所描述的实施例仅仅是本发明的部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图2和图3所示,本发明非晶硅薄膜太阳能电池的实施例,包括玻璃基板10,在玻璃基板10上设有至少一个立体电池单元;其中立体电池单元包括:沉积在玻璃基板上、且设为立体凸起状的TCO膜1,以及在TCO膜上依次沉积的非晶硅层8及金属背电极5。
与传统非晶硅薄膜电池相比,本发明的非晶硅薄膜太阳能电池包括立体电池单元,立体电池单元纵向伸展出来的面积同样可以吸收光能并产生光电效应,即增加了电池的受光面积,进而提高了电池的光电转换效率。
本实施例中,如图2所示,TCO膜1设置为立体台阶状,进而通过依次沉积非晶硅层8及金属背电极5,形成了立体的电池单元结构。其中,立体台阶状的TCO膜1垂直于玻璃基板方向的厚度为100um,沿着玻璃基板、与厚度方向相垂直的方向的宽度为10mm;非晶硅层8为非晶硅pin结构,包括与TCO膜1相接的p型非晶硅层,p型层上的本征吸收i层和i层上的n型非晶硅层;金属背电极5将非晶硅层8全部覆盖。
进一步地,本实施例包括至少两个立体电池单元,单元的宽度为10mm,单元与单元之间横向或纵向排列。其中,相邻的立体电池单元的TCO膜1、非晶硅层8及金属背电极5均彼此隔离;在每个立体电池单元中,金属背电极5与台阶状的TCO膜1与玻璃基板平行的部分相连;每个立体电池单元的金属背电极5还与前一相邻立体电池单元的TCO膜1与玻璃基板平行的部分相连。
上述结构特征使相邻的立体电池单元之间存在死区7,死区7的宽度为500um。死区7既使立体单元之间彼此隔离,互不影响各自的工作,而且实现了电池单元之间的串并联关系,形成了每排或每列的立体电池单元之间相互串联,见图2所示的电流路径I,而各排或者各列的立体电池单元相互并联的电连接。见图4所示的立体电池单元连接的电路示意图,图中每一个电池代表一个立体电池单元,死区7处的金属背电极5与前一相邻立体电池单元的TCO膜1相连,使每排或每列的立体电池单元之间相互串联,而各排或者各列的立体电池单元相互并联。而当某个立体电池单元损坏时,由于在每个立体电池单元中,金属背电极5与台阶状的TCO膜1相连,还与前一相邻立体电池单元的TCO膜1相连,此时,该电池单元就相当于导线的作用,如图5所示,不会影响其它电池单元的工作。
当立体电池单元工作时,如图3所示的工作示意图,11为EVA(乙烯及乙烯基醋酸盐)保护层。阳光从TCO膜1射入非晶硅层8,不仅可以在与玻璃基板平行的非晶硅层8内多次发射,也可以在与玻璃基板垂直的非晶硅层8内多次发射,还可以在与玻璃基板平行及垂直方向交界处的非晶硅层8内多次发射,增加了光程,提高了对光的利用率,进而增加了光电转换效率。
本发明非晶硅薄膜太阳能电池的实施例,包括立体电池单元,以立体电池单元最长边的剖面形状分析,与传统电池相比,电池单元的宽度并没有变化,但是立体电池单元在纵向上伸展出来的面积同样可以吸收光能并产生光电效应。这样理论计算出来的受光面积比传统电池多了2%,所以理论上电池的效率也可以提高2%。但是,由于侧面受光面的电池接受不到直射的阳光,所以实际电池的转化效率的增幅应该达不到2%。
本发明还公开了上述非晶硅薄膜太阳能电池的制备方法,如图6所示的流程图,包括以下步骤:
S11、在玻璃基板上沉积TCO膜。
S12、通过光刻和刻蚀,使TCO膜形成立体凸起状。
S13、在立体凸起状的TCO膜上沉积非晶硅层。
S14、在非晶硅层上沉积金属背电极。
进一步地,S12步骤具体为:
使TCO膜通过光刻和刻蚀,形成由至少二个立体凸起状TCO膜单元组成的、横向或纵向排列的立体凸起状TCO膜阵列,每个TCO膜单元将形成一个立体电池单元。
进一步地,在S13步骤后,采用激光划线腐蚀掉相邻单元之间的非晶硅层。在S14步骤后,采用激光划线腐蚀掉相邻的单元之间的金属背电极,使相邻的立体电池单元的金属背电极彼此隔离,并使在每个单元中,金属背电极5与TCO膜相连,还与前一相邻单元的TCO膜相连。
下面对本发明制备方法的实施例进行具体描述,形成上述非晶硅薄膜电池实施例的制备方法如图7所示的流程图,包括下列步骤:
S21、沉积TCO膜。首先在玻璃基板上利用PVD设备沉积一层厚度为100um的TCO(AZO),沉积条件如下:压强0.5Pa;功率5kw;温度250℃;工艺气体为Ar和O2,流量分别为300和10Sccm(标况毫升每分)。
S22、光刻。在TCO膜上铺光刻胶,以正胶为例,光刻显影成图10中1的形状,在TCO膜上形成由至少二个“匚”状单元组成的、横向或纵向排列的“匚”状阵列,每个“匚”状单元沿着玻璃基板方向的宽度为10mm,每个“匚”状单元将形成一个TCO膜单元,一个TCO膜单元将形成一个立体电池单元。
S23、湿法腐蚀。使用湿法腐蚀设备,在HCL溶液中将没有光刻胶覆盖的TCO膜腐蚀掉,使每个“匚”状单元形成如图8所示的TCO膜单元的结构。
S24、形成台阶状的TCO膜。采用S22和S23两个步骤中的方法,将图8所示的立体“匚”形TCO膜单元结构的横边继续腐蚀,通过控制腐蚀时间,形成如图9所示的台阶状的TCO膜单元。此时,形成了由至少二个立体台阶状TCO膜单元组成的、横向或纵向排列的TCO膜阵列。
S25、沉积非晶硅层。如图10所示,在台阶状TCO膜1阵列上使用PECVD设备,沉积非晶硅层8。本实施例中非晶硅层8为pin层结构,包括与TCO膜1连接的p型非晶硅层,沉积在p层上的本征i层和i层上的n型非晶硅层。沉积条件为:压强80Pa;功率1000W;温度200℃;p型层工艺气体为SiH4和PH3,流量分别为2000和500sccm;i层工艺气体为SiH4,流量为2000sccm;n型层工艺气体为SiH4和B2H4,流量为500sccm。
S26、激光划线。使用绿激光划线,将每个单元的非晶硅层8彼此隔离开,形成图10所示结构,9为激光划线腐蚀区域。
S27,沉积金属背电极。如图11所示,使用PVD方法在非晶硅层8上沉积金属背电极5,金属背电极5的材料为AL、Ag或Ni等,沉积条件为:压强0.5Pa;功率3kw;通入Ar气,流量为200sccm。
S28,激光划线。使用绿激光划线,见图11所示结构,9为激光划线腐蚀区域,使每个相邻单元之间金属背电极5彼此隔离,而且金属背电极5既与本单元的TCO膜1相连,还与前一相邻单元的TCO膜1相连。这样形成了相邻单元之间的死区7。至此,完成了制作过程,形成了包括若干立体电池单元的非晶硅薄膜电池。
S29,测试封装。测试封装步骤与传统方法相同,这里不作赘述。
S210,结束。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求所述的保护范围为准。

Claims (10)

1.一种非晶硅薄膜太阳能电池,包括玻璃基板,其特征在于,
在所述玻璃基板上设有至少一个立体电池单元;
其中所述立体电池单元包括:沉积在所述玻璃基板上的透明导电膜,以及在所述透明导电膜上依次沉积的非晶硅层及金属背电极;
所述透明导电膜本身被设为立体凸起状以增加所述立体电池单元的受光面积。
2.根据权利要求1所述的非晶硅薄膜太阳能电池,其特征在于,
所述立体凸起状为立体台阶状。
3.根据权利要求1或2所述的非晶硅薄膜太阳能电池,其特征在于,
所述至少一个立体电池单元为两个或两个以上;
所述立体电池单元与单元之间横向或纵向排列。
4.根据权利要求3所述的非晶硅薄膜太阳能电池,其特征在于,
相邻的所述立体电池单元的所述透明导电膜、所述非晶硅层及所述金属背电极均彼此隔离;
在每个所述立体电池单元中,所述金属背电极与所述透明导电膜相连;
每个所述立体电池单元的所述金属背电极与前一相邻所述立体电池单元的透明导电膜相连。
5.根据权利要求4所述的非晶硅薄膜太阳能电池,其特征在于,
相邻的所述立体电池单元之间存在死区,所述死区的宽度为500um。
6.根据权利要求2所述的非晶硅薄膜太阳能电池,其特征在于,
所述透明导电膜垂直于所述玻璃基板方向的厚度为100um,沿着所述玻璃基板、与所述厚度方向相垂直的方向的宽度为10mm。
7.根据权利要求1所述的非晶硅薄膜太阳能电池,其特征在于,
所述立体电池单元的宽度为10mm。
8.一种权利要求1至权利要求7任一项所述的非晶硅薄膜太阳能电池的制备方法,其特征在于,包括:
在玻璃基板上沉积透明导电膜;
通过光刻和刻蚀,使所述透明导电膜形成立体凸起状;
在所述立体凸起状的透明导电膜上沉积非晶硅层;
在所述非晶硅层上沉积金属背电极。
9.根据权利要求8所述的方法,其特征在于,
所述通过光刻和刻蚀,使所述透明导电膜形成立体凸起状具体为:
使所述透明导电膜通过光刻和刻蚀,形成由至少二个所述立体凸起状透明导电膜单元组成的、横向或纵向排列的立体凸起状透明导电膜阵列。
10.根据权利要求9所述的方法,其特征在于,
在所述在立体凸起状的透明导电膜上沉积非晶硅层后包括:
采用激光划线腐蚀掉每个相邻的所述透明导电膜单元之间的非晶硅层;
在所述非晶硅层上沉积金属背电极的步骤后包括:
采用激光划线腐蚀掉相邻的所述透明导电膜单元之间的所述金属背电极,使相邻所述单元的所述金属背电极彼此隔离,并使在每个所述单元中,所述金属背电极与所述透明导电膜相连,所述金属背电极还与前一相邻单元的透明导电膜相连。
CN2009102378659A 2009-11-12 2009-11-12 一种非晶硅薄膜太阳能电池及制备方法 Active CN102064212B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009102378659A CN102064212B (zh) 2009-11-12 2009-11-12 一种非晶硅薄膜太阳能电池及制备方法
PCT/CN2010/077922 WO2011057529A1 (zh) 2009-11-12 2010-10-20 一种非晶硅薄膜太阳能电池及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009102378659A CN102064212B (zh) 2009-11-12 2009-11-12 一种非晶硅薄膜太阳能电池及制备方法

Publications (2)

Publication Number Publication Date
CN102064212A CN102064212A (zh) 2011-05-18
CN102064212B true CN102064212B (zh) 2013-06-05

Family

ID=43991198

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102378659A Active CN102064212B (zh) 2009-11-12 2009-11-12 一种非晶硅薄膜太阳能电池及制备方法

Country Status (2)

Country Link
CN (1) CN102064212B (zh)
WO (1) WO2011057529A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709156B (zh) * 2012-05-25 2016-09-07 中山大学 一种ZnO基透明导电薄膜湿法刻蚀方法
CN107342331B (zh) * 2013-08-02 2018-10-19 南通大学 一种t型顶电极背反射薄膜太阳电池的生产工艺
WO2017128540A1 (zh) * 2016-01-29 2017-08-03 周一珺 立体光伏电池基板结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6870088B2 (en) * 2002-03-15 2005-03-22 Sharp Kabushiki Kaisha Solar battery cell and manufacturing method thereof
CN101017863A (zh) * 2007-02-08 2007-08-15 深圳市拓日新能源科技股份有限公司 非晶硅太阳能电池周边电极绝缘激光刻蚀的处理方法
CN101459183A (zh) * 2007-12-10 2009-06-17 泰瑞太阳能国际有限公司 一种太阳能光伏模块及其制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101432A (ja) * 2003-09-26 2005-04-14 Sanyo Electric Co Ltd 光起電力装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6870088B2 (en) * 2002-03-15 2005-03-22 Sharp Kabushiki Kaisha Solar battery cell and manufacturing method thereof
CN101017863A (zh) * 2007-02-08 2007-08-15 深圳市拓日新能源科技股份有限公司 非晶硅太阳能电池周边电极绝缘激光刻蚀的处理方法
CN101459183A (zh) * 2007-12-10 2009-06-17 泰瑞太阳能国际有限公司 一种太阳能光伏模块及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2005-101432A 2005.04.14

Also Published As

Publication number Publication date
WO2011057529A1 (zh) 2011-05-19
CN102064212A (zh) 2011-05-18

Similar Documents

Publication Publication Date Title
US6784361B2 (en) Amorphous silicon photovoltaic devices
US7804023B2 (en) Bifacial thin film solar cell and method for making the same
CN101593779B (zh) 串联薄膜硅太阳能电池及其制造方法
CN100524846C (zh) 透光型薄膜太阳能电池模块及其制造方法
CN205863192U (zh) 一种采用双tco膜层的硅基异质结太阳能电池
CN101447518A (zh) 一种背点接触异质结太阳能电池及其制造方法
CN102237441B (zh) 应用振镜激光设备实现太阳能薄膜电池组件的透光方法
Lechner et al. Photovoltaic thin‐film technology based on hydrogenated amorphous silicon
CN102064212B (zh) 一种非晶硅薄膜太阳能电池及制备方法
CN103985778A (zh) 具有选择性发射极的异质结太阳能电池及其制备方法
CN103367472A (zh) 一种t型顶电极背反射薄膜太阳电池
CN201323204Y (zh) 一种背点接触异质结太阳能电池
CN102867889A (zh) 一种薄膜太阳能电池的制作工艺
CN103367514B (zh) 一种弧形底电极薄膜太阳电池
CN102157596B (zh) 一种势垒型硅基薄膜半叠层太阳电池
KR101166456B1 (ko) 태양전지 및 그 제조방법
KR20110079107A (ko) 박막 태양전지 기판용 글라스 및 그를 포함하는 박막 태양전지의 제조방법
CN101609852A (zh) 一种硅薄膜太阳电池及其制备方法
CN109309147B (zh) 一种n型单晶硅基太阳能电池及其制备方法
US20140238486A1 (en) Solar cell and method of fabricating the same
CN102017179A (zh) 集成有微型联接装置的绝缘玻璃部件
CN101820004A (zh) 一种光电分离的太阳能电池背反射器
CN204741024U (zh) 一种新型透光型光伏电池组件
CN103280496A (zh) 一种晶体硅异质结/微晶硅薄膜叠层光伏电池的制备方法
CN201838605U (zh) 用于农业大棚的可透光式非晶硅薄膜太阳能电池组件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP03 Change of name, title or address

Address after: 100176 No. 8 Wenchang Avenue, Beijing economic and Technological Development Zone

Patentee after: Beijing North China microelectronics equipment Co Ltd

Address before: 100026 Jiuxianqiao East Road, Chaoyang District, building, No. 1, M5

Patentee before: Beifang Microelectronic Base Equipment Proces Research Center Co., Ltd., Beijing

CP03 Change of name, title or address