JP2005101255A - 高耐圧半導体装置 - Google Patents

高耐圧半導体装置 Download PDF

Info

Publication number
JP2005101255A
JP2005101255A JP2003332819A JP2003332819A JP2005101255A JP 2005101255 A JP2005101255 A JP 2005101255A JP 2003332819 A JP2003332819 A JP 2003332819A JP 2003332819 A JP2003332819 A JP 2003332819A JP 2005101255 A JP2005101255 A JP 2005101255A
Authority
JP
Japan
Prior art keywords
silicon carbide
layer
type
nisi
carbide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003332819A
Other languages
English (en)
Other versions
JP4230869B2 (ja
Inventor
Seiji Imai
聖支 今井
Takashi Shinohe
孝 四戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003332819A priority Critical patent/JP4230869B2/ja
Publication of JP2005101255A publication Critical patent/JP2005101255A/ja
Application granted granted Critical
Publication of JP4230869B2 publication Critical patent/JP4230869B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】 SiCの高耐圧半導体装置において、超低オン抵抗の優れた性能を得るとともに、スイッチング損失を大幅に引き下げること。
【解決手段】 高抵抗炭化珪素層102と、低抵抗の第1導電型の第1の炭化珪素層105a、105b、105cと、この層に隣接して設けられたトレンチ104a、104bと、トレンチ底面に設けられた第2導電型の第1の炭化珪素領域106a、106bと、トレンチ側面に設けられた絶縁層パターン115と、低抵抗の第2の炭化珪素層101と、Ni2Si及びNiSiを主成分とする層116bを有するソース電極109a、109b、109cと、Ni2Si及びNiSiを主成分とする層116aを有するゲート電極107a、107bと、ドレイン電極108とを具備することを特徴とする高耐圧半導体装置。
【選択図】 図1

Description

本発明は、高耐圧半導体装置及びその製造方法に係わり、特に電力制御用の静電誘導トランジスタやバイポーラトランジスタ等の高耐圧半導体装置に関する。
次世代のパワー半導体デバイス材料として炭化珪素(SiC)が期待されている。SiCはSiと比較して、バンドギャップが3倍、破壊電界強度が約10倍、及び熱伝導率が約3倍と優れた物性を有し、この特性を活用すれば超低損失かつ高温動作可能なパワー半導体デバイスを実現することができる。
かかるSiCの特性を利用した高耐圧半導体装置は種々存在するが、例えば静電誘導トランジスタ(以下SITと略す。)が知られている。SITは特性の優れた素子であるが、特にトレンチゲート型のものがスイッチングの特性に優れている。SiCを利用したトレンチゲート型SITとしては、特許文献1に記載されたものがある。
特開平9−172187号公報(図1等)
特許文献1に記載されたトレンチゲート型SITでは、以下のような問題点がある。すなわち、トレンチゲート電極とトレンチ底部に設けられたp型SiC(ゲート領域)との間に大きなバンド不連続が生じ、結果としてゲート電極界面に例えば10-2Ω・cm2以上の接触抵抗が発生してしまう。このような大きな接触抵抗はゲート領域の充放電時定数RCを増加させてしまうため、SITのスイッチングの高速化を妨げてしまう。
ここで、パワー半導体デバイスの代表的な応用装置であるインバータ回路を考えた場合、一般にその電力損失の約半分はトランジスタのスイッチング損失によって占められる。すなわち、トランジスタの高速なスイッチング動作を実現できなければ、インバータ回路等ではSiCの物性を活かした低損失化を十分に図ることができないのである。
なお、上記した接触抵抗は、他の素子、例えばトレンチベース型のバイポーラトランジスタやジャンクションバリアショットキーダイオード(JBS)等においても同様に存在し、高速なスイッチング動作を実現する上で問題である。
本発明は、上述した課題に鑑みてなされたものであり、SiCの物性を活用して超低オン抵抗の優れた性能を得るとともに、スイッチング損失を大幅に引き下げることが可能な高耐圧半導体装置及びその製造方法を提供することを目的とする。
(構成)
上記課題を解決するために、本発明は以下の構成を採用している。
本発明の第1の高耐圧半導体装置は、第1導電型の高抵抗炭化珪素層と、前記高抵抗炭化珪素層の一方の面上に部分的に設けられ前記高抵抗炭化珪素層よりも低抵抗の第1導電型の第1の炭化珪素層と、前記第1の炭化珪素層を挟んで前記高抵抗炭化珪素層に設けられたトレンチと、前記トレンチの底面に設けられた第2導電型の第1の炭化珪素領域と、前記トレンチの側面に設けられた絶縁層パターンと、前記高抵抗炭化珪素層の他方の面に
設けられ前記高抵抗炭化珪素層よりも低抵抗の第2の炭化珪素層と、前記第1の炭化珪素層上に設けられたNi2Si及びNiSiを主成分とする層を有するソース電極と、前記第1の炭化珪素領域上に設けられたNi2Si及びNiSiを主成分とする層を有するゲート電極と、前記第2の炭化珪素層に設けられたドレイン電極とを具備することを特徴とする。
本発明の第2の高耐圧半導体装置は、第1導電型の高抵抗炭化珪素層と、前記高抵抗炭化珪素層の一方の面上に部分的に設けられ前記高抵抗炭化珪素層よりも低抵抗の第1導電型の第1の炭化珪素層と、前記第1の炭化珪素層を挟んで前記高抵抗炭化珪素層に設けられたトレンチと、前記トレンチの底面に設けられた第2導電型の第1の炭化珪素領域と、前記トレンチの側面に設けられた絶縁層パターンと、前記高抵抗炭化珪素層の前記一方の面に前記第1の炭化珪素層と離間して設けられ前記高抵抗炭化珪素層よりも低抵抗の第2の炭化珪素層と、前記第1の炭化珪素層上に設けられたNi2Si及びNiSiを主成分とする層を有するソース電極と、前記第1の炭化珪素領域上に設けられたNi2Si及びNiSiを主成分とする層を有するゲート電極と、前記第2の炭化珪素層に設けられたドレイン電極とを具備することを特徴とする。
かかる本発明の第1、第2の高耐圧半導体装置において、以下の構成を備えることが好ましい。
(1)前記第2の炭化珪素層は第1導電型であり、前記高耐圧半導体装置は静電誘導トランジスタであること。
(2)前記第2の炭化珪素層は第2導電型であり、前記高耐圧半導体装置は静電誘導サイリスタであること。
本発明の第3の高耐圧半導体装置は、第1導電型の高抵抗炭化珪素層と、前記高抵抗炭化珪素層の一方の面上に設けられた第2導電型の第1の炭化珪素層と、前記第1の炭化珪素層上に部分的に設けられ前記高抵抗炭化珪素層よりも低抵抗の第1導電型の第2の炭化珪素層と、前記第2の炭化珪素層を挟みかつ前記第1の炭化珪素層に達して設けられたトレンチと、前記トレンチの側面に設けられた絶縁層パターンと、前記トレンチの底面に設けられ前記第1の炭化珪素層よりも低抵抗の第2導電型の第1の炭化珪素領域と、前記高抵抗炭化珪素層の他方の面に設けられ前記高抵抗炭化珪素層よりも低抵抗の第1導電型の第3の炭化珪素層と、前記第2の炭化珪素層上に設けられたNi2Si及びNiSiを主成分とする層を有するエミッタ電極と、前記第1の炭化珪素領域上に設けられたNi2Si及びNiSiを主成分とする層を有するベース電極と、前記第3の炭化珪素層に設けられたコレクタ電極とを具備することを特徴とする。
本発明の第4の高耐圧半導体装置は、高抵抗炭化珪素層と、この高抵抗炭化珪素層の第1の表面領域に設けられた炭化珪素からなる第1導電型ソース領域及び第1導電型ドレイン領域と、前記第1導電型ソース領域と第1導電型ドレイン領域の間に設けられた炭化珪素からなる第1のチャネル領域と、この第1のチャネル領域上に第1のゲート絶縁膜を介して設けられた第1のゲート電極と、前記第1導電型ソース領域及び第1導電型ドレイン領域の上にそれぞれ設けられたNi2Si及びNiSiを主成分とする層をそれぞれ有する第1のソース電極及びドレイン電極と、を備えた第1のトランジスタと、前記高抵抗炭化珪素層の第2の表面領域に設けられた炭化珪素からなる第2導電型ソース領域及び第2導電型ドレイン領域と、前記第2導電型ソース領域と第2導電型ドレイン領域の間に設けられた炭化珪素からなる第2のチャネル領域と、この第2のチャネル領域上に第2のゲート絶縁膜を介して設けられた第2のゲート電極と、前記第2導電型ソース領域及び第2導電型ドレイン領域の上にそれぞれ設けられたNi2Si及びNiSiを主成分とする層を
それぞれ有する第2のソース電極及びドレイン電極と、を備えた第2のトランジスタと、を具備することを特徴とする。
上記した本発明の第1乃至第4の高耐圧半導体装置において、以下の構成を備えることが好ましい。
(1)前記Ni2Si及びNiSiを主成分とする各層においてNi2SiとNiSiの和に対するNiSiの割合が3〜10重量%であること。
(2)前記第1導電型はN型、前記第2導電型はP型であり、前記低抵抗の第1導電型の第1の炭化珪素層は5x1019cm-3以上のN型不純物濃度を有し、前記Ni2Si及びNiSiを主成分とする各層においてNi2SiとNiSiの和に対するNiSiの割合が3〜10重量%であること。
(3)前記第1導電型はN型、前記第2導電型はP型であり、前記低抵抗の第1導電型の第2の炭化珪素層は5x1019cm-3以上のN型不純物濃度を有し、前記Ni2Si及びNiSiを主成分とする各層においてNi2SiとNiSiの和に対するNiSiの割合が3〜10重量%であること。
(4)前記第1導電型はN型、前記第2導電型はP型であり、前記第1導電型ソース領域及び第1導電型ドレイン領域は5x1019cm-3以上のN型不純物濃度を有し、前記Ni2Si及びNiSiを主成分とする各層においてNi2SiとNiSiの和に対するNiSiの割合が3〜10重量%であること。
(5)前記高抵抗炭化珪素層の主面が[0001]面であり、前記トレンチの側壁面が[11−20]面、又は[1−100]のいずれかであること。
(6)前記トレンチはストライプ形状を有し、その長手方向は<1−100>方向軸、又は<11−20>方向軸のいずれかであること。
(作用)
本発明によれば、Ni2Si及びNiSiを主成分とする電極が、トレンチ型静電誘導トランジスタやトレンチ型静電誘導サイリスタ等においてはソース電極及びゲート電極として、またトレンチ型バイポーラトランジスタにおいてはエミッタ電極及びベース電極として各々用いられている。そのため各電極の接触抵抗をP、N型電極のいずれにおいても十分に低減することができ、トレンチゲート等を用いた充放電を円滑且つ高速に行うことができる。従って、上記した各素子において、SiCの物性を活用して超低オン抵抗の優れた性能を得るとともに、スイッチング損失を大幅に引き下げ、スイッチング特性を向上させることが可能となる。
また、トレンチの側面に絶縁層パターンが形成されており、Ni2Si及びNiSiを主成分とする電極がトレンチの底面の一導電型の炭化珪素領域に選択的に(自己整合的に)形成されているので、当該炭化珪素領域に対して選択的にゲート電位を印加することができる。一方、トレンチの側面に対しては絶縁膜パターンが存在するため直接ゲート電位が印加されない。このため、トレンチの底面の角部に隣接して位置する炭化珪素領域部分に対してゲート電圧を優先的に印加することができ、当該部分に隣接する高抵抗炭化珪素層内の空乏層の延びを支配的なものとすることができるので、スイッチング特性を向上させることが可能である。
また、相補型MOSFETにおいても、各電極の接触抵抗をP、N型電極のいずれにお
いても十分に低減することができ、各電極を通じた充放電を円滑且つ高速に行うことができるので、SiCの物性を活用して超低オン抵抗の優れた性能を得るとともに、スイッチング損失を大幅に引き下げ、スイッチング特性を向上させることが可能となる。
本発明によれば、SiCの物性を活用して超低オン抵抗の優れた性能を得るとともに、スイッチング損失を大幅に引き下げ、スイッチング特性を向上させることが可能となる。
以下、本発明の実施形態について図面を参照して詳細に説明する。
(第1の実施形態)
図1は、本発明の第1の実施形態に係わるトレンチゲート型の静電誘導トランジスタ(以下SITと略す。)の構成を示す断面図である。図2乃至図4は、図1に示す素子の製造方法を示す工程断面図である。本実施形態においては、第1導電型としてN型を、また第2導電型としてP型を用いた。
図1に示すように、本実施形態のトレンチゲート型SITは、N型高抵抗SiC層102と、N型高抵抗SiC層102の一面に設けられた低抵抗のN型のソース領域105a、105b、105cと、トレンチ104a、104bと、トレンチ104a、104bの底面に設けられたP型拡散領域106a、106bと、トレンチ104a、104bの側面に設けられたシリコン酸化膜115と、N型高抵抗SiC層102の他面に設けられた低抵抗のN型のドレイン領域101とを備えている。さらに、Ni2Si及びNiSiを主成分とする層116bとこの上に設けられたAl層はソース電極109a、109b、109cを構成し、Ni2Si及びNiSiを主成分とする層116aとこの上に設けられたポリシリコン層117はゲート電極107a、107bを構成し、ドレイン領域101にはドレイン電極108が設けられている。
次に、図1に示すトレンチゲート型SITの製造方法について説明する。
最初に、図2(a)に示すように不純物濃度1×1019cm-3、厚さ300μmのN型低抵抗六方晶炭化珪素(SiC)基板(又は層)101(後のドレイン領域)上に、エピタキシャル成長法により不純物濃度5×1015cm-3、厚さ8μmのN型高抵抗SiC層102と、不純物濃度5×1018cm-3〜1×1020cm-3、厚さ0.3〜1μmのN型低抵抗SiC層103を順次形成する。但し、ここではN型不純物としては窒素を用いたが、別の不純物、例えば燐等を用いてもよい。また、両不純物を同時に用いてもよい。また、N型低抵抗層を形成するかわりに、N型高抵抗層102の表面に燐や窒素を、基板温度500℃程度の下で加速エネルギー10〜200keV、総ドーズ5×1015cm-2の条件で選択的に多段イオン注入し、その後、1600℃程度の活性化熱処理により表面から深さ約0.3μmの領域に不純物濃度1×1020cm-3のN型低抵抗領域を形成してもよい。
次に、N型低抵抗層103の表面にシリコン酸化膜111を形成する。その後、酸化膜111の表面にレジスト112をスピン塗布し、フォトリソグラフィ技術により、図2(a)に示すように、レジスト112をパターニングする。パターニングされたレジスト112をエッチングマスクとして用い、図2(b)に示すように、RIE等の異方性エッチング及びこれに続くCDE等によるトレンチ内の平滑化処理によりN型低抵抗層103を貫通し、底部がN型高抵抗層102に達するトレンチ104a、104bを形成する。図面ではトレンチは2個しか記載されていないが、より多数のトレンチが存在する。トレンチ104a、104bの形成により、N型低抵抗層103はストライプ状のソース領域10
5a、105b、105cにパターニングされる。ここで例えば、トレンチ間のメサの幅は2μmであり、またトレンチの幅は0.6μmとした。
そして、レジスト112を除去した後、図2(c)に示すように、トレンチ104a、104bの内部にシリコン酸化膜113を形成する。この後、RIE等の異方性エッチングにより、トレンチ104a、104bの底部の酸化膜113を除去する。この時同時にトレンチ間のメサの上の酸化膜113も除去されてしまうが、その下の酸化膜111及びトレンチ側壁の酸化膜が残る。これにより、以下に続く工程のイオン注入マスク113Aが形成される。
次に、イオン注入マスク113Aを介して、図3(a)に示すように、底部に露出したN型高抵抗層102に対して27Al+の選択イオン注入を行う。27Al+は、基板温度Tsub=室温〜700℃、ここでは500℃程度で、加速エネルギーEacc=10〜150keV、総ドーズ量Φ=2×1013cm-2の条件で多段注入する。この結果、表面から深さ0.3μmの領域に、不純物濃度1×1018cm-327Al+注入層114が形成される。
その後、酸化膜113Aを除去し、基板温度Tsub=1600℃程度の活性化熱処理により、図3(b)に示すように選択的にP型拡散領域106a、106bを形成する。このp型SiC拡散領域106a、106bは、トレンチゲート型SITのゲート領域である。
次に、基板表面及びトレンチ104a、104bの内部にシリコン酸化膜115を形成する。その後、基板表面全体をレジスト(図示せず。)でカバーして、低抵抗SiC基板101の裏面に存在する薄い酸化膜(自然酸化膜等)を、希釈した弗酸(HF)若しくは緩衝HF等でエッチング除去する。さらに、n型低抵抗SiC基板101の裏面に、Ni膜を約1μmの厚さで蒸着し、ドレイン電極108を形成する(図4(a))。
次に、基板表面のレジストを除去した後、基板温度Tsub=800〜1100℃、例えば950℃で5分程度シンター処理し、ドレイン電極108のオーミック接触を良好なものにする。その後、RIE等の異方性エッチングにより、ソース領域105a、105b、105cの上部のシリコン酸化膜115及びトレンチ104a、104bの底部のシリコン酸化膜115を同時に除去する。これにより、トレンチ104a、104bの側面に選択的にシリコン酸化膜115が残置される。
次に、基板表面全体にスパッタ法等によりNi膜を5〜80nm、望ましくは10〜50nm程度の厚さで形成する。その後、基板温度Tsub=850〜950℃、望ましくは900℃程度の熱処理により、上記Ni膜とソース領域105a、105b、105cとを、また上記Ni膜とP型拡散領域106a、106bとをそれぞれ熱反応させる。次に、基板を硫酸と過酸化水素水の混合液を用いて洗浄することにより、酸化膜115上にある未反応なNi膜のみが除去される。上述のごとくいわゆるNiサリサイドプロセスの結果、Ni2Si及びNiSiを主成分とする層116a(ゲート電極の一部)、116b(ソース電極の一部)が各々選択的に形成される。
本実施形態では、N型及びP型ともに実用的な低い接触抵抗を得るために、N型オーミック界面(本実施形態ではソース領域105a、105b、105cと層116b間の界面に対応。)及びP型オーミック界面(本実施形態ではP型拡散領域106a、106bと層116a間の界面に対応。)においてNi2Si及びNiSiを電極の主成分としている。特に、850〜950℃の熱処理によりNi2SiとNiSiの和に対するNiSiの割合が電極界面近傍で3〜10重量%となるように調節することが望ましい。ここで、熱処理温度が850℃から950℃へと高くなるにともない、Ni2SiとNiSiの
和に対するNiSiの割合は10重量%から3重量%へと減少していく。
ここで、Ni2SiとNiSiの和に対するNiSiの割合と、P型及びN型オーミックの接触抵抗と、N型コンタクト層の不純物濃度と、の関係を示す特性図を、図10乃至図12に示す。図10乃至図12において、横軸はNi2SiとNiSiの和に対するNiSiの割合を、縦軸はP型及びN型オーミックの接触抵抗を示し、図10はN型コンタクト層(ソース領域105a、105b、105c)の不純物濃度が5x1019cm-3の場合の図を、図11はN型コンタクト層の不純物濃度が1x1020cm-3の場合の図を、図12はN型コンタクト層の不純物濃度が4x1019cm-3の場合の図を、それぞれ示す。
電極を上記構成にすることにより、N型オーミック界面のショットキー障壁は0.5eV程度と少し高めになるものの、N型では不純物準位が40〜60meV程度と浅く高キャリア濃度なコンタクト層を得ることができるため、キャリアのトンネリングにより接触抵抗を1x10-5Ωcm2以下と低く抑えることができる。ここで、ショットキー障壁に対してキャリアのトンネリングを十分に起こさせるためには、N型コンタクト層(ソース領域105a、105b、105c)の不純物濃度を5x1019cm-3以上に設定することが重要である。一方、P型オーミック界面では、N型とは逆にショットキー障壁を低めに設定できる。すなわち、Ni2Siが支配的となる(NiSiの割合が3重量%未満。)場合と比べて相対的にショットキー障壁を0.1eV程度低めに設定できるため、接触抵抗を1x10-4Ωcm2以下に低減することができる。
Ni2SiとNiSiの和に対するNiSiの割合が電極界面近傍で3〜10重量%の範囲を外れた場合には、N型及びP型電極の接触抵抗をともに低くすることは困難である。その理由は以下の通りである。すなわち、熱処理時の基板温度を950℃よりも高くした場合には、Ni2SiとNiSiの和に対するNiSiの割合が3重量%未満と低く電極の主成分が主にNi2Siとなり、この場合には、N型オーミック界面のショットキー障壁は0.4eV程度と低くなるが、同じ電極成分(Ni2Si)からなるP型オーミックの界面ではショットキー障壁がN型の場合とは逆に相対的に高くなってしまう。その結果、N型オーミックの接触抵抗は5x10-6Ωcm2以下に下がるものの、P型オーミックについては1x10-2Ωcm2以上と著しく高くなってしまう。特にSiCではP型の不純物準位が200〜300meV程度と深く、高い活性化率を得られないので、低抵抗な(高キャリア濃度の)コンタクト層を得ることは不可能である。すなわち、P型オーミック界面に生じるショットキー障壁の幅を高キャリア濃度のコンタクト層を活用して狭くし、キャリアのトンネリングを起きやすくすることそれ自体が難しいため、上記のショットキー障壁の高さ増大による影響は甚大である。ここで、P型オーミックの接触抵抗を低減するためにP型不純物の過度なドーピングを行うことは、SiCの結晶格子欠陥を誘発するので、避ける必要がある。結果として、N型オーミック電極と同じ電極成分(Ni2Si)からなるP型オーミック電極では実用的な低い接触抵抗を得ることは難しいのである。
一方、850℃よりも低い温度での熱処理では、Ni2SiとNiSiの和に対するNiSiの割合が10重量%より大きくなり、この場合には、P型オーミック界面のショットキー障壁は0.4eVとなるものの、N型オーミック界面のショットキー障壁は0.5eVよりも高くなる。その結果、相対的にP型の接触抵抗は1x10-4Ωcm2程度になるものの、N型オーミックの接触抵抗が1x10-4Ωcm2より大きくなってしまう。N型オーミック界面のショットキー障壁が0.5eV以上と高くなった場合には、もはやN型コンタクト層の不純物濃度を高くすることによりショットキー障壁に対するキャリアのトンネリングを十分に起こさせることが難しくなり、N型オーミックの接触抵抗を実用的なレベルまで低くすることは困難となってしまう。ここでも、N型オーミックの接触抵抗
を低減するためにN型不純物の過度なドーピングを行うことは、SiCの結晶格子欠陥を誘発するので、避ける必要がある。
次に、図4(a)に示すように、全面にポリシリコン膜を堆積して、この膜をエッチバックすることにより、トレンチ104a、104b内部にポリシリコン層117を残置する。トレンチ104a、104b内部の層116a及びポリシリコン層117はゲート電極107a、107bを構成する。さらに、図4(b)に示すように、Al膜を成膜しこれをパターニングすることにより、層116b上にAl層を形成する。このAl層及び層116bはソース電極109a、109b、109cを構成する。なお、MOCVD法を用いることにより、例えば0.5〜1μm程度の厚さのAl層を層116a及び層116b上にそれぞれ選択的に堆積して、層116a及びこの上のAl層をゲート電極、層116b及びこの上のAl層をソース電極としても良い。上記したポリシリコン層やAl層の代わりに、W、Cu等の金属、Wシリサイド等の金属シリサイド、あるいはこれらを組み合わせて形成しても良い。以上によりトレンチゲート型SITの概略工程は終了する。
本実施形態においては、上述したように、ゲート電極107a、107bの一部としてNi2Si及びNiSiを主成分とするシリサイド層を用いることにより、特にそのシリサイド層中でNi2SiとNiSiの和に対するNiSiの割合を3〜10重量%とすることにより、Ni2Siが支配的となる場合と比較して下地のp型SiC(P型拡散領域106a、106b)に対しバリアハイトが0.1eV程度低くなることを我々は見出した。その結果、ゲート電極107a、107bとP型拡散領域106a、106b間の界面の接触抵抗を大幅に削減して、N型オーミック界面(ソース電極界面)及びP型オーミック界面(ゲート電極界面)のいずれにおいても接触抵抗を低くすることが可能である。これにより、P型拡散領域106a、106bに対して効果的にゲート電位を印加することができるので、スイッチング特性を顕著に向上させることが可能である。
また、上記の埋め込みゲート電極107a、107bの作製工程において、Niサリサイドプロセス、及びそれに続くAl膜等のMOCVD法を用いることにより、上記の幅0.6μmという微細なトレンチの底部にゲート電極を所定の膜厚でより正確にかつ均一に形成することが可能である。
また、六方晶炭化珪素(SiC)基板の主面、トレンチゲート側壁面、ゲートの長手方向の設定にも、Al膜の選択形成の観点から望ましくは配慮が必要である。例えば、基板主面に[0001]面を設定した場合には、トレンチゲート側壁面として[11−20]面、又は[1−100]面のいずれかを、ゲートの長手方向としては側壁面に対応して<1−100>方向軸([11−20]面の場合。)、又は<11−20>方向軸([1−100]面の場合。)のいずれかを選択することが望ましい。
その理由は、RIE及びそれに続くCDEプロセスで形成されたトレンチゲート側壁の平坦性は、面方位に強く依存するからである。{11−20}面または[1−100]面であれば、最適化されたCDE条件のもとで、表面粗さの二乗平均Rmsは0.3nm程度となり、この面上に形成される絶縁膜の表面粗さの二乗平均Rmsも下地の平坦性を反映して0.5nm前後と非常に平坦性が高い。トレンチ側壁にこのような平坦性の高い絶縁膜を形成した場合には、MOCVD法によるAl膜の形成において側壁絶縁膜上にはAlの核形成の発生確率を低く抑えることができる。その結果、トレンチ底部にのみAl膜を選択性よく形成することができるのである。ここで例としてあげた面、方向軸に関しては、等価な面、等価な方向軸も含むことは言うまでもない。
以上のように製造したトレンチゲート型SITの電気的特性を評価した結果は以下の通りである。耐圧800Vのトレンチゲート型SITで、ゲート電圧−40V及びドレイン
電圧600V印加時のリーク電流は1×10-6A/cm2、またオン抵抗は3mΩcm2となった。また、電源電圧300V、主電流密度150A/cm2の条件においてターンオフ時間は10ナノ秒となり非常に高速なスイッチング動作を得ることができた。その結果、インバータ回路において電力損失の約半分を占めるスイッチング損失を大幅に削減し、スイッチング特性を顕著に向上させることができる。
一方、比較例として、ゲート電極及びソース電極各々のシリサイド層として(Ni2Si)を用いその他は本実施形態と同様の構成を有するSITでは、同じ耐圧800Vで比較すると、オン抵抗は3mΩcm2前後と同等であった。しかし、同条件におけるターンオフ時間は、ゲート電極界面に寄生する大きな接触抵抗の影響を受けて約300nsecと非常に遅い。その結果、これを用いたインバータ回路では、電力損失の約半分を占めるトランジスタスイッチング損失を低減することが難しいため、結局炭化珪素の優れた物性を十分に活用することができない。
ここで、本実施形態によりターンオフ時間を10nsecと大幅に短縮できた理由は、P型拡散領域106a、106bと埋め込みゲート電極107a、107bとの接触抵抗を大幅に低減し、トレンチゲートを用いた充放電を円滑且つ高速に行うことを実現したからである。従って、上記のような構成をとることにより、トレンチゲート型SITにおいてSiCの物性を活用して超低オン抵抗の優れた性能を得るとともに、スイッチング損失を大幅に引き下げ、スイッチング特性を向上させることができるのである。
また、本実施形態の素子構造における他の特徴は、トレンチ104a、104bの側面に絶縁層として酸化膜115が形成されており、トレンチ104a、104bの底面には選択的にP型拡散領域(ゲート領域)106a、106bが露呈し、このゲート領域106a、106bに選択的にNi2Si及びNiSiを主成分とするゲート電極層116aが形成されている点である。かかる構造では、ゲート電極層116a/Al層117からなる埋め込みゲート電極107a、107bは、トレンチ104a、104bの側面には直接接することは無く、トレンチ104a、104bの底面のゲート領域106a、106bに直接コンタクトしている。即ち、埋め込みゲート電極107a、107bは酸化膜115に対して自己整合的に形成されているので、トレンチ104a、104bの底面の中心領域に正確に位置する。従って、トレンチ104a、104bの底面のゲート領域106a、106bに対して選択的にゲート電位を印加することができ、トレンチ104a、104bの側面に対しては直接ゲート電位が印加されない。このため、トレンチ104a、104bの底面の角部に隣接して位置するゲート領域106a、106bの部分に対してゲート電圧を優先的に印加することができ、当該部分に隣接するN型高抵抗層102内の空乏層の延びを支配的なものとすることができるので、スイッチング特性を向上させることが可能である。
なお、本発明は静電誘導サイリスタにも適用できる。静電誘導サイリスタの場合、図1においてN型低抵抗六方晶炭化珪素(SiC)基板101の導電型をP型にすればよく、上記実施形態と同様の効果を得ることが可能である。
(第2の実施形態)
図5は、本発明の第2の実施形態に係わるトレンチベース型のバイポーラトランジスタ(以下BJTと略す。)の構成を示す断面図である。本実施形態において、第1導電型としてN型を、また第2導電型としてP型を用いた。
図5に示すように、本実施形態のトレンチベース型BJTは、N型高抵抗SiC層202と、N型高抵抗SiC層202の一面に設けられたP型SiC層203と、P型SiC層203上に部分的に設けられた低抵抗のN型のエミッタ領域206a、206b、20
6cと、トレンチ205a、205bと、トレンチ205a、205bの側面に設けられたシリコン酸化膜215と、トレンチ205a、205bの底面に設けられた低抵抗のP型拡散領域207a、207bと、N型高抵抗SiC層202の他面に設けられた低抵抗のN型のコレクタ領域201とを備えている。さらに、Ni2Si及びNiSiを主成分とする層216bとこの上に設けられたAl層はエミッタ電極210a、210b、210cを構成し、Ni2Si及びNiSiを主成分とする層216aとこの上に設けられたポリシリコン層217はベース電極208a、208bを構成し、コレクタ領域201にはコレクタ電極209が設けられている。
次に、図5に示すトレンチベース型BJTの製造方法について説明する。
最初に、不純物濃度1×1019cm-3、厚さ300μmのN型低抵抗六方晶炭化珪素(SiC)基板(又は層)201(後のコレクタ領域)上にエピタキシャル成長法により不純物濃度5×1015cm-3、厚さ10μmのN型高抵抗SiC層202、不純物濃度3×1017cm-3、厚さ1μmのP型SiC層203、及び不純物濃度1×1019cm-3、厚さ1μmのN型低抵抗SiC層204を順次形成する。但し、ここではN型不純物としては窒素を用いたが、別の不純物、例えば燐等を用いてもよい。また、P型不純物としてはボロンを用いたが、別の不純物、例えばアルミニウム等を用いてもよい。また、両不純物を同時に用いてもよい。また、N型低抵抗SiC層204を形成するかわりにN型高抵抗SiC層203の表面に燐や窒素を、基板温度500℃程度の下で加速エネルギー10〜400keV、総ドーズ2×1015cm-2の条件で選択的に多段イオン注入し、その後、1600℃程度の活性化熱処理により表面から深さ約0.7μmの領域に不純物濃度1×1019cm-3のN型低抵抗領域を形成してもよい。また、P型SiC層203についても同様にアルミ、又はボロン等を用いてイオン注入により形成してもよい。
次に、N型低抵抗層204の表面に第1の実施形態と同様にシリコン酸化膜(図示せず。)を形成する。その後、この酸化膜の表面にレジスト(図示せず。)をスピン塗布し、フォトリソグラフィ技術により、このレジストをパターニングする。そして、パターニングされたレジストをエッチングマスクとして用い、RIE等の異方性エッチング及びこれに続くCDE等によるトレンチ内の平滑化処理により、N型低抵抗層204を貫通し、底部がP型層203に達するトレンチ205a、205bを形成する。図面ではトレンチは2個しか記載されていないが、より多数のトレンチが存在する。トレンチ205a、205bの形成により、N型低抵抗層204はストライプ状のエミッタ領域206a、206b、206cにパターニングされる。
次に、レジストを除去した後、第1の実施形態と同様にトレンチ205a、205bの内部に酸化膜(図示せず。)を形成する。RIE等の異方性エッチングによりトレンチ205a、205bの底部の酸化膜を除去する。これにより以下に続く工程のイオン注入マスクが形成される。
そして、このイオン注入マスクを介して、第1の実施形態と同様にトレンチ205a、205bの底部に露出したP型層203に対して27Al+の選択イオン注入を行う。27Al+は、基板温度Tsub=室温〜700℃、ここでは500℃程度で、加速エネルギーEacc=10〜150keV、総ドーズ量Φ=2×1015cm-2の条件で多段注入する。この結果、表面から深さ0.3μmの領域に、不純物濃度1×1020cm-327Al+注入層が形成される。
その後、第1の実施形態と同様に基板上の酸化膜をすべて除去し、基板温度Tsub=1600℃程度の活性化熱処理により、選択的にP型拡散領域207a、207bを形成する。このP型拡散領域207a、207bはトレンチベース型BJTのベースコンタクト
領域である。
次に、基板表面及びトレンチ205a、205bの内部に第1の実施形態と同様に酸化膜を形成する。その後、基板表面全体をレジストでカバーして、低抵抗SiC基板201の裏面に存在する薄い酸化膜(自然酸化膜等)を、希釈した弗酸(HF)若しくは緩衝HF等でエッチングする。n型低抵抗SiC基板201の裏面には、Ni膜を約1μmの厚さで蒸着し、コレクタ電極209を形成する(図4(b))。
次に基板表面のレジストを除去した後、基板温度Tsub=800〜1100℃、例えば950℃で5分程度シンター処理し、コレクタ電極209のオーミック接触を良好なものにする。その後、RIE等の異方性エッチングにより、エミッタ領域206a、206b、206cの上部の上記酸化膜及びトレンチ205a、205bの底部の上記酸化膜を同時に除去する。これにより、トレンチ205a、205bの側面に選択的にシリコン酸化膜215が残置される。
次に、基板表面全体にスパッタ法等によりNi膜を5〜80nm、望ましくは10〜50nm程度の厚さで形成する。その後、基板温度Tsub=850〜950℃、望ましくは900℃程度の熱処理により、上記Ni膜とエミッタ領域206a、206b、206cとを、また上記Ni膜とP型拡散領域206a、206bとをそれぞれ熱反応させる。次に、基板を硫酸と過酸化水素水の混合液を用いて洗浄することにより、酸化膜215上にある未反応なNi膜のみが除去される。上述のごとくいわゆるNiサリサイドプロセスの結果、Ni2Si及びNiSiを主成分とする層216a(ベース電極の一部)、216b(エミッタ電極の一部)が各々選択的に形成される。
次に、全面にポリシリコン膜を堆積して、この膜をエッチバックすることにより、トレンチ205a、205b内部にポリシリコン層217を残置する。トレンチ205a、205b内部の層216a及びポリシリコン層217はベース電極208a、208bを構成する。さらに、Al膜を成膜しこれをパターニングすることにより、層216b上にAl層を形成する。このAl層及び層216bはエミッタ電極210a、210b、210cを構成する。なお、MOCVD法を用いることにより、例えば0.5〜1μm程度の厚さのAl層を層216a及び層216b上にそれぞれ選択的に堆積して、層216a及びこの上のAl層をベース電極、層216b及びこの上のAl層をエミッタ電極としても良い。上記したポリシリコン層やAl層の代わりに、W、Cu等の金属、Wシリサイド等の金属シリサイド、あるいはこれらを組み合わせて形成しても良い。以上によりトレンチベース型BJTの概略工程は終了する。
本実施形態においても、第1の実施形態と同様に、ベース電極208a、208bの一部としてNi2Si及びNiSiを主成分とするシリサイド層を用いることにより、特にそのシリサイド層中でNi2SiとNiSiの和に対するNiSiの割合を3〜10重量%とすることにより、Ni2Siが支配的となる場合と比較して下地のp型SiC(P型拡散領域207a、207b)に対しバリアハイトが0.1eV程度低くなる。その結果、ベース電極208a、208bとP型拡散領域207a、207b間の界面の接触抵抗を大幅に削減して、N型オーミック界面(エミッタ電極界面)及びP型オーミック界面(ベース電極界面)のいずれにおいても接触抵抗を低くすることが可能である。これにより、P型拡散領域207a、207bに対して効果的にベース電位を印加することができるので、スイッチング特性を顕著に向上させることが可能である。
また、上記の埋め込みベース電極208a、208bの作製工程において、Niサリサイドプロセス、及びそれに続くAl膜等のMOCVD法を用いることにより、上記の幅0.6μmという微細なトレンチの底部にベース電極を所定の膜厚でより正確にかつ均一に
形成することが可能である。
また、六方晶炭化珪素(SiC)基板の主面、トレンチベース側壁面、ベースの長手方向の設定にも、Al膜の選択形成の観点から望ましくは十分な配慮が必要である。これに関しては第1の実施形態の場合と同様であるため、ここでは説明は省略する。
以上のように製造したトレンチベース型BJTの電気的特性を評価した結果は以下の通りである。耐圧1600Vのトレンチゲート型BJTで、ベース電流100mA及びコレクタ電圧1200V印加時のリーク電流は1×10-6A/cm2、またオン抵抗は7mΩcm2となった。また、電源電圧500V、主電流密度150A/cm2の条件においてターンオフ時間は30ナノ秒と非常に高速なスイッチング動作を得ることができた。その結果、インバータ回路において電力損失の約半分を占めるスイッチング損失を大幅に削減し、スイッチング特性を向上させることができる。
一方、比較例として、ベース電極及びエミッタ電極各々のシリサイド層として(Ni2Si)を用いその他は本実施形態と同様の構成を有するBJTでは、同じ耐圧1600Vで比較すると、オン抵抗は8mΩcm2前後と同等であった。しかし、同条件におけるターンオフ時間は、ベース電極界面に寄生する大きな接触抵抗の影響を受けてベース電流の排出が円滑且つ高速に行われないため約300nsecと非常に遅い。その結果、これを用いたインバータ回路では、電力損失の約半分に相当するトランジスタスイッチング損失を低減することが難しいため、結局炭化珪素の優れた物性を十分に活用することができない。
ここで、本発明によりターンオフ時間を30nsecと大幅に短縮できた理由は、P型拡散領域207a、207bと埋め込みベース電極208a、208bとの接触抵抗を大幅に低減し、ベース電流の注入及び排出を円滑且つ高速に行うことを実現したからである。従って、上記のような構成をとることにより、トレンチベース型BJTにおいてSiCの物性を活用して超低オン抵抗の優れた性能を得るとともに、スイッチング損失を大幅に引き下げ、スイッチング特性を向上させることができるのである。
(第3の実施形態)
図6は、本発明の第3の実施形態に係わるトレンチゲート型横型静電誘導トランジスタ(以下横型SITと略す。)の構成を示す断面図である。本実施形態の横型SITと第1の実施形態のSITとの異なる点は、ドレイン電極を基板裏面にではなくエピタキシャル成長等により形成されたN型高抵抗層の表面に形成している点である。本実施形態において、第1導電型としてN型を、また第2導電型としてP型を用いた。
即ち、本実施形態では、N型高抵抗層102上にエピタキシャル法等によりN型低抵抗層103を形成する第1の実施形態とは異なり、N型低抵抗六方晶炭化珪素(SiC)基板(又は層)301上のN型高抵抗SiC層302表面の所定の領域に対して燐あるいは窒素又はその両方を選択的にイオン注入することによりN型領域を形成し、このN型領域からストライプ状のN型ソース領域305a、305b、305cを形成する。このN型ソース領域305a、305b、305cを形成する方法として、第1の実施形態に示した方法を適用することができ、P型SiC拡散領域(ゲート領域)306a、306bと、シリコン酸化膜315と、Al膜316a/多結晶シリコン317からなるゲート電極309a、309bと、Al膜316b/Al層からなるソース電極310a、310b、310cも、第1の実施形態と同様の方法により形成する。
また、N型ソース領域305a、305b、305cが形成された側と同じ側のN型高抵抗SiC層302の表面には、ゲート領域306a、306bから一定距離はなれた位
置に、N型ドレイン領域308を形成する。また、N型ソース領域305a、305b、305cとN型ドレイン領域308との間には、1個又はそれ以上のP型電界緩和領域307a、307bをゲート領域306a、306bに並行して設けている。このP型電界緩和領域307a、307bは、ゲート領域306a、306b端部の電界集中を緩和するものである。
本実施形態では、トレンチ形成後にトレンチ内面を含む全面に酸化膜315を形成し、この上にレジストマスクを形成し、ソースコンタクトホール及びドレインコンタクトホールを開口する。ソースコンタクトホールはゲート領域306a、306bを含むように開口され、RIE等の異方性エッチングにより、ソース領域305a、305b、305c、及びドレイン領域308の上部のシリコン酸化膜115及びトレンチ底部のシリコン酸化膜315を同時に除去する。この除去工程でトレンチの側面にシリコン酸化膜315が選択的に残置される。この後、第1の実施形態と同様のサリサイド工程を用いて、N型ソース領域305a、305b、305c上にNi2Si及びNiSiを主成分とする層316bを、N型ドレイン領域308上にNi2Si及びNiSiを主成分とする層316cを、P型SiC拡散領域(ゲート領域)306a、306b上にNi2Si及びNiSiを主成分とする層316aを、それぞれ形成する。層316a、316b、316cの組成は互いに同じである。さらに、通常の電極形成工程により、ソース電極310a、310b、310c、ドレイン電極311、ゲート電極309a、309bを形成する。ここで、ドレイン電極311はゲート電極309a、309bから所定の距離を隔てて、ゲート電極309a、309bに並行して形成することが望ましい。上記した以外の構成及び工程は、図1に示す第1の実施形態のSITと基本的に同じである。以上で横型SITを完成する。
横型SITでは、ソース電極とドレイン電極とが同じ面に設けられているため、モノシリックICとして同一半導体チップ上に集積化するのが容易である。また、ハイブリッドIC等に組み込んで用いる場合にも配線作業が簡単となる。また、ドレイン電極が個々の半導体装置に設けられているため、表面配線や接続の自由度が増すことになり、設計が容易となる。かかる横型SITにおいても、第1の実施形態と同様にSiCの物性を活用して超低オン抵抗の優れた性能を得るとともに、スイッチング損失を大幅に引き下げ、スイッチング特性を向上させることができる。
なお、本発明は静電誘導サイリスタにも適用できる。静電誘導サイリスタの場合、図6においてN型ドレイン領域308の導電型をP型にすればよく、上記実施形態と同様の効果を得ることが可能である。
(第4の実施形態)
図7は、本発明の第4の実施形態に係わる相補型MOSFET(以下CMOSと略す。)の構成を示す断面図である。図8及び図9は、図7に示す素子の製造方法を示す工程断面図である。本実施形態において、第1導電型としてN型を、また第2導電型としてP型を用いた。
まず、図8(a)に示すように、イオン注入法を用いたウェル形成法により高抵抗炭化珪素基板401の表面にNウェル402、Pウェル403をそれぞれ形成する。ここで、N型不純物としては窒素を用いたが、別の不純物、例えば燐等を用いてもよい。また、P型不純物としてはボロンを用いたが、別の不純物、例えばアルミニウム等を用いてもよい。また、両不純物を同時に用いてもよい。具体的には、窒素に関しては基板温度を室温程度の下で加速エネルギー10〜400keV、総ドーズ量1x1012cm-2の条件で選択的に多段イオン注入する。一方、ボロンに関しても同様に基板温度を室温程度で、加速エネルギー10〜400keV、総ドーズ量2x1012の条件で選択的に多段注入する。イ
オン注入後の不純物の電気的活性化は、1600℃程度の熱処理にて行う。
次に、図8(b)に示すように、nMOSトランジスタ及びpMOSトランジスタそれぞれの領域においてソース・ドレイン領域405a、405b、404a、404bを形成するための不純物のイオン注入を行う。nMOSトランジスタ領域(Pウェル403)には燐を、pMOSトランジスタ領域(Nウェル402)にはアルミニウムをそれぞれイオン注入する。具体的には、燐に関しては基板温度500℃程度の下で加速エネルギー10〜200keV、総ドーズ量5×1015cm-2の条件で選択的に多段イオン注入する。一方、アルミニウムに関しても同様に基板温度500℃程度で、加速エネルギー10〜150keV、総ドーズ量2×1015cm-2の条件で選択的に多段注入する。イオン注入後の不純物の電気的活性化は、1600℃程度の熱処理にて行う。なお、N型不純物としては燐を用いたが、別の不純物、例えば窒素等を用いてもよい。また、P型不純物としてはアルミニウムを用いたが、別の不純物、例えばボロン等を用いてもよい。また、両不純物を同時に用いてもよい。
次に、図8(c)に示すように、公知の素子分離法(例えばショートトレンチ分離)により上記炭化珪素基板401の表面に素子分離絶縁膜406を形成した後、ゲート絶縁膜(例えばシリコン酸化膜)407を形成する。次に、図8(d)に示すように、CVD法により厚さ40nm程度のアンドープの多結晶シリコン膜408を全面に形成する。次に、多結晶シリコン膜408のnMOSトランジスタ及びpMOSトランジスタの各ゲート電極となる予定領域に、nMOSトランジスタ領域にはAsを、pMOSトランジスタ領域にはボロンを選択的にイオン注入する。これらのイオン注入は、ゲート電極の低抵抗化を図るためのものである。イオン注入の条件は、Asに関しては、30keV、4×1015cm-2、ボロンに関しては3keV、4×1015cm-2とする。イオン注入後の不純物の電気的活性化は、950℃、10秒のRTA(Rapid Thermal Annealing)で行う。
次に、図9(a)に示すように、多結晶シリコン膜408及びゲート絶縁膜407をゲート電極の形状に加工した後、ゲート電極408a、408bの側壁にそれぞれ側壁絶縁膜409a、409bを形成する。側壁絶縁膜409a、409bは、例えば厚さ5nmのシリコン酸化膜、厚さ40nmのシリコン窒化膜を順次全面に堆積した後、これらの絶縁膜に異方性エッチングを施すことにより形成する。ここでは、側壁絶縁膜に積層絶縁膜を用いたが、単層絶縁膜を用いても良い。
次に、図9(b)に示すように、基板表面全体にスパッタ法によりNi膜410を5〜80nm、望ましくは10〜50nm程度の厚さで形成する。その後、基板温度850〜950℃、望ましくは900℃程度の熱処理により、Ni膜410とN型ソース・ドレイン領域405a、405bの表面、P型ソース・ドレイン領域404a、404bの表面、及び多結晶シリコンからなるゲート電極408a、408bの表面とをそれぞれ熱反応させる。次に、基板を硫酸と過酸化水素水の混合液を用いて洗浄することにより、絶縁膜(側壁絶縁膜409a、409b及び素子分離絶縁膜406)上にある未反応なNi膜のみが除去される。上記のようにいわゆるNiサリサイドプロセスの結果、それぞれNi2Si及びNiSiを主成分とする層411a、411b、411d、411e、411c、411fが選択的に形成される。層411a、411bはpMOSトランジスタのソース・ドレイン電極の一部に、層411cはpMOSトランジスタのゲート電極の一部に、層411d、411eはnMOSトランジスタのソース・ドレイン電極の一部に、411fはnMOSトランジスタのゲート電極の一部になる。その後、公知の方法に従い、層間絶縁膜や金属配線(図示せず。)を形成してCMOSを完成する。
本実施形態においても、第1の実施形態と同様に、nMOSトランジスタ及びpMOSトランジスタ各々のソース・ドレイン電極及びゲート電極の少なくとも一部としてNi2
Si及びNiSiを主成分とするシリサイド層を用いることにより、特にそのシリサイド層中でNi2SiとNiSiの和に対するNiSiの割合を3〜10重量%とすることにより、Ni2Siが支配的となる場合と比較して下地のp型SiC(P型ソース・ドレイン領域404a、404b)に対しバリアハイトが0.1eV程度低くなる。その結果、P型ソース・ドレイン領域404a、404bと電極層411a、411b間の界面それぞれにおいても接触抵抗を大幅に削減することができ、N型オーミック界面(nMOSトランジスタのソース・ドレイン及びゲート。)及びP型オーミック界面(pMOSトランジスタのソース・ドレイン及びゲート。)のいずれにおいても接触抵抗を低くすることが可能である。これにより、N型ソース・ドレイン領域405a、405bのみならずP型ソース・ドレイン領域404a、404bに対しても効果的に電位を印加することができるので、超低オン抵抗で消費電力を低減するとともにスイッチング特性を顕著に向上させることが可能である。また、Niサリサイドプロセスを採用しているため製造工程の簡略化を実現することができる。
従って、上記のような構成をとることにより、CMOSにおいても、第1の実施形態と同様にSiCの物性を活用して超低オン抵抗の優れた性能を得るとともに、スイッチング損失を大幅に引き下げ、スイッチング特性を向上させることができる。
(その他の実施形態)
上述したように、第1から第4の実施形態により本発明を開示したが、本発明はこれらの実施形態に限定されることはない。
例えば、既に述べた第1から第4の実施形態の説明においては、トレンチあるいは表面に形成する絶縁膜としてシリコン酸化膜を用いたが、これ以外に酸化タンタル(Ta25)、窒化珪素(Si34)、窒化アルミニウム(AlN)といった他の絶縁膜を用いてもよい。
また、第1導電型をN型、第2導電型をP型としたが、両者を入れ替えても良い。
また、トレンチゲート型の静電誘導トランジスタや静電誘導サイリスタ、トレンチベース型のバイポーラトランジスタ、相補型MOSFETに限定されることはなく、それ以外のP型オーミック界面とN型オーミック界面をともに有する炭化珪素から構成される半導体素子に対しても本発明は適用可能である。例えば、高耐圧MOSFETのN型ソース領域及び該ソース領域の表面に又は隣接して設けられたP型コンタクト領域に対して、両領域にまたがるように同時にコンタクトして設けられる電極層に対しても本発明を適用することができる。例えば、図7のN型ソース領域(405a又は405b)の表面に或いは該N型ソース領域に隣接してP型コンタクト領域を設け、これらのソース領域及びP型コンタクト領域にまたがるように同時にコンタクトする電極層を、上述したNi2Si及びNiSiを主成分とする層とすることも可能である。かかる高耐圧MOSFETは横型でも良いし縦型でも良い。この場合も、第1の実施形態と同様にSiCの物性を活用して超低オン抵抗の優れた性能を得るとともに、スイッチング損失を大幅に引き下げ、スイッチング特性を向上させることが可能となる。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
本発明の第1の実施形態に係るトレンチゲート型の静電誘導トランジスタの構成を示す断面図。 図1に示す静電誘導トランジスタの製造方法を示す工程断面図。 図2に続く工程断面図。 図3に続く工程断面図。 本発明の第2の実施形態に係るトレンチベース型のバイポーラトランジスタの構成を示す断面図。 本発明の第3の実施形態に係るトレンチゲート型の横型静電誘導トランジスタの構成を示す断面図。 本発明の第4の実施形態に係るCMOSトランジスタの構成を示す断面図。 図7に示すCMOSトランジスタの製造方法を示す工程断面図。 図8に続く工程断面図。 Ni2Si及びNiSiを主成分とする層におけるNi2SiとNiSiの和に対するNiSiの割合とP型オーミック及びN型オーミックの接触抵抗との関係を示す特性図。 Ni2Si及びNiSiを主成分とする層におけるNi2SiとNiSiの和に対するNiSiの割合とP型オーミック及びN型オーミックの接触抵抗との関係を示す特性図。 Ni2Si及びNiSiを主成分とする層におけるNi2SiとNiSiの和に対するNiSiの割合とP型オーミック及びN型オーミックの接触抵抗との関係を示す特性図。
符号の説明
101 N型低抵抗六方晶炭化珪素(SiC)基板(ドレイン領域)
102 N型高抵抗SiC層
103 N型低抵抗SiC層
104a、104b トレンチ
105a、105b、105c ソース領域
106a、106b p型SiC拡散領域(ゲート領域)
107a、107b ゲート電極
108 ドレイン電極
109a、109b、109c ソース電極
111、113 シリコン酸化膜
112 レジスト
113A イオン注入マスク
114 27Al+注入層
115 シリコン酸化膜
116a、116b Ni2Si及びNiSiを主成分とする層
117 ポリシリコン層

Claims (10)

  1. 第1導電型の高抵抗炭化珪素層と、前記高抵抗炭化珪素層の一方の面上に部分的に設けられ前記高抵抗炭化珪素層よりも低抵抗の第1導電型の第1の炭化珪素層と、前記第1の炭化珪素層を挟んで前記高抵抗炭化珪素層に設けられたトレンチと、前記トレンチの底面に設けられた第2導電型の第1の炭化珪素領域と、前記トレンチの側面に設けられた絶縁層パターンと、前記高抵抗炭化珪素層の他方の面に設けられ前記高抵抗炭化珪素層よりも低抵抗の第2の炭化珪素層と、前記第1の炭化珪素層上に設けられたNi2Si及びNiSiを主成分とする層を有するソース電極と、前記第1の炭化珪素領域上に設けられたNi2Si及びNiSiを主成分とする層を有するゲート電極と、前記第2の炭化珪素層に設けられたドレイン電極とを具備することを特徴とする高耐圧半導体装置。
  2. 第1導電型の高抵抗炭化珪素層と、前記高抵抗炭化珪素層の一方の面上に部分的に設けられ前記高抵抗炭化珪素層よりも低抵抗の第1導電型の第1の炭化珪素層と、前記第1の炭化珪素層を挟んで前記高抵抗炭化珪素層に設けられたトレンチと、前記トレンチの底面に設けられた第2導電型の第1の炭化珪素領域と、前記トレンチの側面に設けられた絶縁層パターンと、前記高抵抗炭化珪素層の前記一方の面に前記第1の炭化珪素層と離間して設けられ前記高抵抗炭化珪素層よりも低抵抗の第2の炭化珪素層と、前記第1の炭化珪素層上に設けられたNi2Si及びNiSiを主成分とする層を有するソース電極と、前記第1の炭化珪素領域上に設けられたNi2Si及びNiSiを主成分とする層を有するゲート電極と、前記第2の炭化珪素層に設けられたドレイン電極とを具備することを特徴とする高耐圧半導体装置。
  3. 前記第2の炭化珪素層は第1導電型であり、前記高耐圧半導体装置は静電誘導トランジスタであることを特徴とする請求項1又は2に記載の高耐圧半導体装置。
  4. 前記第2の炭化珪素層は第2導電型であり、前記高耐圧半導体装置は静電誘導サイリスタであることを特徴とする請求項1又は2に記載の高耐圧半導体装置。
  5. 第1導電型の高抵抗炭化珪素層と、前記高抵抗炭化珪素層の一方の面上に設けられた第2導電型の第1の炭化珪素層と、前記第1の炭化珪素層上に部分的に設けられ前記高抵抗炭化珪素層よりも低抵抗の第1導電型の第2の炭化珪素層と、前記第2の炭化珪素層を挟みかつ前記第1の炭化珪素層に達して設けられたトレンチと、前記トレンチの側面に設けられた絶縁層パターンと、前記トレンチの底面に設けられ前記第1の炭化珪素層よりも低抵抗の第2導電型の第1の炭化珪素領域と、前記高抵抗炭化珪素層の他方の面に設けられ前記高抵抗炭化珪素層よりも低抵抗の第1導電型の第3の炭化珪素層と、前層を有する記第2の炭化珪素層上に設けられたNi2Si及びNiSiを主成分とする層を有するエミッタ電極と、前記第1の炭化珪素領域上に設けられたNi2Si及びNiSiを主成分とする層を有するベース電極と、前記第3の炭化珪素層に設けられたコレクタ電極とを具備することを特徴とする高耐圧半導体装置。
  6. 高抵抗炭化珪素層と、この高抵抗炭化珪素層の第1の表面領域に設けられた炭化珪素からなる第1導電型ソース領域及び第1導電型ドレイン領域と、前記第1導電型ソース領域と第1導電型ドレイン領域の間に設けられた炭化珪素からなる第1のチャネル領域と、この第1のチャネル領域上に第1のゲート絶縁膜を介して設けられた第1のゲート電極と、前記第1導電型ソース領域及び第1導電型ドレイン領域の上にそれぞれ設けられたNi2Si及びNiSiを主成分とする層をそれぞれ有する第1のソース電極及びドレイン電極と、を備えた第1のトランジスタと、前記高抵抗炭化珪素層の第2の表面領域に設けられた炭化珪素からなる第2導電型ソース領域及び第2導電型ドレイン領域と、前記第2導電型ソース領域と第2導電型ドレイン領域の間に設けられた炭化珪素からなる第2のチャネル領域と、この第2のチャネル領域上に第2のゲート絶縁膜を介して設けられた第2のゲート電極と、前記第2導電型ソース領域及び第2導電型ドレイン領域の上にそれぞれ設けられたNi2Si及びNiSiを主成分とする層をそれぞれ有する第2のソース電極及びドレイン電極と、を備えた第2のトランジスタと、を具備することを特徴とする高耐圧半導体装置。
  7. 前記Ni2Si及びNiSiを主成分とする各層においてNi2SiとNi
    Siの和に対するNiSiの割合が3〜10重量%であることを特徴とする請求項1乃至6のいずれかに記載の高耐圧半導体装置。
  8. 前記第1導電型はN型、前記第2導電型はP型であり、前記低抵抗の第1導電型の第1の炭化珪素層は5x1019cm-3以上のN型不純物濃度を有し、前記Ni2Si及びNiSiを主成分とする各層においてNi2SiとNiSiの和に対するNiSiの割合が3〜10重量%であることを特徴とする請求項1乃至4のいずれかに記載の高耐圧半導体装置。
  9. 前記第1導電型はN型、前記第2導電型はP型であり、前記低抵抗の第1導電型の第2の炭化珪素層は5x1019cm-3以上のN型不純物濃度を有し、前記Ni2Si及びNiSiを主成分とする各層においてNi2SiとNiSiの和に対するNiSiの割合が3〜10重量%であることを特徴とする請求項5に記載の高耐圧半導体装置。
  10. 前記第1導電型はN型、前記第2導電型はP型であり、前記第1導電型ソース領域及び第1導電型ドレイン領域は5x1019cm-3以上のN型不純物濃度を有し、前記Ni2Si及びNiSiを主成分とする各層においてNi2SiとNiSiの和に対するNiSiの割合が3〜10重量%であることを特徴とする請求項6に記載の高耐圧半導体装置。
JP2003332819A 2003-09-25 2003-09-25 高耐圧半導体装置 Expired - Fee Related JP4230869B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003332819A JP4230869B2 (ja) 2003-09-25 2003-09-25 高耐圧半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003332819A JP4230869B2 (ja) 2003-09-25 2003-09-25 高耐圧半導体装置

Publications (2)

Publication Number Publication Date
JP2005101255A true JP2005101255A (ja) 2005-04-14
JP4230869B2 JP4230869B2 (ja) 2009-02-25

Family

ID=34461016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003332819A Expired - Fee Related JP4230869B2 (ja) 2003-09-25 2003-09-25 高耐圧半導体装置

Country Status (1)

Country Link
JP (1) JP4230869B2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227655A (ja) * 2006-02-23 2007-09-06 Ion Engineering Research Institute Corp 半導体素子の製造方法
JP2007305747A (ja) * 2006-05-10 2007-11-22 Nec Electronics Corp 半導体装置、及びコンデンサマイクロフォン
WO2008053627A1 (en) * 2006-11-02 2008-05-08 Sumitomo Electric Industries, Ltd. OHMIC ELECTRODE FOR SiC SEMICONDUCTOR, METHOD FOR MANUFACTURE OF OHMIC ELECTRODE FOR SiC SEMICONDUCTOR, SEMICONDUCTOR DEVICE, AND METHOD FOR MANUFACTURE OF SEMICONDUCTOR DEVICE
JP2009509334A (ja) * 2005-09-16 2009-03-05 クリー インコーポレイテッド バイポーラ接合トランジスタ及びその製造方法
JP2009059862A (ja) * 2007-08-31 2009-03-19 Mitsubishi Electric Corp 半導体素子
JP2010171417A (ja) * 2008-12-25 2010-08-05 Rohm Co Ltd 半導体装置
JP2012028625A (ja) * 2010-07-26 2012-02-09 Shindengen Electric Mfg Co Ltd ショットキーバリアダイオード及びその製造方法
US8178920B2 (en) 2006-01-17 2012-05-15 Fuji Electric Co., Ltd. Semiconductor device and method of forming the same
US8872263B2 (en) 2008-12-25 2014-10-28 Rohm Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
JP2015028994A (ja) * 2013-07-30 2015-02-12 ルネサスエレクトロニクス株式会社 半導体装置の製造方法および半導体装置
JP2015138919A (ja) * 2014-01-24 2015-07-30 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US9219127B2 (en) 2009-12-24 2015-12-22 Rohm Co., Ltd. SiC field effect transistor
JP2018082190A (ja) * 2012-12-18 2018-05-24 ゼネラル・エレクトリック・カンパニイ 炭化ケイ素装置におけるオーミック接触のためのシステム及び方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009509334A (ja) * 2005-09-16 2009-03-05 クリー インコーポレイテッド バイポーラ接合トランジスタ及びその製造方法
US8178920B2 (en) 2006-01-17 2012-05-15 Fuji Electric Co., Ltd. Semiconductor device and method of forming the same
JP2007227655A (ja) * 2006-02-23 2007-09-06 Ion Engineering Research Institute Corp 半導体素子の製造方法
JP2007305747A (ja) * 2006-05-10 2007-11-22 Nec Electronics Corp 半導体装置、及びコンデンサマイクロフォン
WO2008053627A1 (en) * 2006-11-02 2008-05-08 Sumitomo Electric Industries, Ltd. OHMIC ELECTRODE FOR SiC SEMICONDUCTOR, METHOD FOR MANUFACTURE OF OHMIC ELECTRODE FOR SiC SEMICONDUCTOR, SEMICONDUCTOR DEVICE, AND METHOD FOR MANUFACTURE OF SEMICONDUCTOR DEVICE
US8623752B2 (en) 2006-11-02 2014-01-07 Sumitomo Electric Industries, Ltd. Ohmic electrode for SiC semiconductor, method of manufacturing ohmic electrode for SiC semiconductor, semiconductor device, and method of manufacturing semiconductor device
JP2009059862A (ja) * 2007-08-31 2009-03-19 Mitsubishi Electric Corp 半導体素子
US9837531B2 (en) 2008-12-25 2017-12-05 Rohm Co., Ltd. Semiconductor device
US10693001B2 (en) 2008-12-25 2020-06-23 Rohm Co., Ltd. Semiconductor device
US8872263B2 (en) 2008-12-25 2014-10-28 Rohm Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US11804545B2 (en) 2008-12-25 2023-10-31 Rohm Co., Ltd. Semiconductor device
US11152501B2 (en) 2008-12-25 2021-10-19 Rohm Co., Ltd. Semiconductor device
USRE48289E1 (en) 2008-12-25 2020-10-27 Rohm Co., Ltd. Semiconductor device
US9293575B2 (en) 2008-12-25 2016-03-22 Rohm Co., Ltd. Semiconductor device
US9406757B2 (en) 2008-12-25 2016-08-02 Rohm Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
JP2010171417A (ja) * 2008-12-25 2010-08-05 Rohm Co Ltd 半導体装置
USRE48072E1 (en) 2008-12-25 2020-06-30 Rohm Co., Ltd. Semiconductor device
US9219127B2 (en) 2009-12-24 2015-12-22 Rohm Co., Ltd. SiC field effect transistor
JP2012028625A (ja) * 2010-07-26 2012-02-09 Shindengen Electric Mfg Co Ltd ショットキーバリアダイオード及びその製造方法
JP2018082190A (ja) * 2012-12-18 2018-05-24 ゼネラル・エレクトリック・カンパニイ 炭化ケイ素装置におけるオーミック接触のためのシステム及び方法
JP2015028994A (ja) * 2013-07-30 2015-02-12 ルネサスエレクトロニクス株式会社 半導体装置の製造方法および半導体装置
JP2015138919A (ja) * 2014-01-24 2015-07-30 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法

Also Published As

Publication number Publication date
JP4230869B2 (ja) 2009-02-25

Similar Documents

Publication Publication Date Title
JP4777630B2 (ja) 半導体装置
TWI390637B (zh) 具混合井區之碳化矽裝置及用以製造該等碳化矽裝置之方法
US9917186B2 (en) Semiconductor device with control structure including buried portions and method of manufacturing
US6576935B2 (en) Bidirectional semiconductor device and method of manufacturing the same
US20100285647A1 (en) Insulated gate silicon carbide semiconductor device and method for manufacturing the same
JP5102411B2 (ja) 半導体装置およびその製造方法
JP6109444B1 (ja) 半導体装置
US9941383B2 (en) Fast switching IGBT with embedded emitter shorting contacts and method for making same
CN111149213B (zh) 碳化硅半导体装置及其制造方法
JP4230869B2 (ja) 高耐圧半導体装置
JP2005012051A (ja) 高耐圧半導体装置及びその製造方法
JP5098293B2 (ja) ワイドバンドギャップ半導体を用いた絶縁ゲート型半導体装置およびその製造方法
JP4366938B2 (ja) 半導体装置
JP2019129300A (ja) 半導体装置とその製造方法
TW201916258A (zh) 電晶體
EP3499549B1 (en) Semiconductor device
JP2023154314A (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US20220157959A1 (en) Semiconductor power devices having multiple gate trenches and methods of forming such devices
JP7127546B2 (ja) 半導体装置
CA3025767A1 (en) Semiconductor device
US11881526B2 (en) Semiconductor device and method for manufacturing same
JP6102564B2 (ja) 半導体装置及びその製造方法
JP2024029440A (ja) 半導体装置とその製造方法
KR20230114160A (ko) 수직 컨택 구조를 갖는 반도체 소자 및 그의 제조방법
JP2021150405A (ja) 炭化珪素半導体装置

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080627

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees