JP2005093884A - 半導体薄膜の結晶化方法、結晶化装置、位相シフタ、薄膜トランジスタおよび表示装置 - Google Patents

半導体薄膜の結晶化方法、結晶化装置、位相シフタ、薄膜トランジスタおよび表示装置 Download PDF

Info

Publication number
JP2005093884A
JP2005093884A JP2003327890A JP2003327890A JP2005093884A JP 2005093884 A JP2005093884 A JP 2005093884A JP 2003327890 A JP2003327890 A JP 2003327890A JP 2003327890 A JP2003327890 A JP 2003327890A JP 2005093884 A JP2005093884 A JP 2005093884A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
crystal
phase shifter
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2003327890A
Other languages
English (en)
Inventor
Tomoya Kato
智也 加藤
Masakiyo Matsumura
正清 松村
Yoshinobu Kimura
嘉伸 木村
Masayuki Jumonji
正之 十文字
Masahito Hiramatsu
雅人 平松
Yukio Taniguchi
幸夫 谷口
Mitsunori Ketsusako
光紀 蕨迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced LCD Technologies Development Center Co Ltd
Original Assignee
Advanced LCD Technologies Development Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced LCD Technologies Development Center Co Ltd filed Critical Advanced LCD Technologies Development Center Co Ltd
Priority to JP2003327890A priority Critical patent/JP2005093884A/ja
Publication of JP2005093884A publication Critical patent/JP2005093884A/ja
Abandoned legal-status Critical Current

Links

Images

Abstract

【課題】未結晶部分と結晶粒界を実質的に含まない単一の大結晶粒を形成できる半導体薄膜の結晶化方法、結晶化装置、位相シフタ、薄膜トランジスタおよび表示装置を提供する。
【解決手段】半導体薄膜のレーザ結晶化の際に、ドットパターン段差を一定間隔で配置した位相シフタを使い、エネルギ光の光軸の中心近傍に単一の成長性の結晶核を発生させ、放射状に横方向成長させることで、内部に双晶粒界のみを含む実質的に単一の大粒径結晶粒のアレイを作製する。
【選択図】 図1

Description

本発明は、半導体装置および液晶、有機EL等の表示装置及びそれに用いられる薄膜トランジスタに係り、特にその製造に用いられる半導体薄膜の結晶化方法及び結晶化装置に関する。
ポリシリコン薄膜トランジスタの高移動度化およびしきい電圧のばらつき低減のために、ポリシリコン膜(以下、p-Si膜と表記)の大粒径化および大粒径結晶粒の位置制御性の良いアレイ化に関する取り組みが、各企業、大学、研究機関等でなされている。その中で、位相シフタを使ったエキシマレーザによる非晶質シリコン膜(以下、a-Si膜と表記)の結晶化技術については特許文献1に開示されている。
本発明者らは今までに、位相シフタを使ったエキシマレーザによるa-Si膜の結晶化に関して、位置制御性良くΔ型あるいは短冊型の大粒径結晶粒アレイを形成できることを、例えば非特許文献1において報告してきた。
また、p-SiTFTを600℃以下の低温プロセスで作製する低温アニール技術が各方面で盛んに研究され、例えば特許文献1および特許文献2などの種々の提案がなされている。
これらの従来技術では、図13の(a)(b)に示すように、ラインアンドスペース型の位相シフタ550を段差551がレーザ光軸に位置するように配置し、段差551の境界でレーザ光50の回折と干渉を起こさせ、レーザ強度に周期的な空間分布を付与する。
図13(a)(b)の位相シフタ550では段差部x=0を境界として左右で180°の位相差を付けた場合を示している。一般にレーザ光の波長をλとすると、屈折率nの透明媒質を透明基材上に形成して180°の位相差を付けるには、透明媒質の膜厚tは、t=λ/2(n−1)で与えられる。例えば石英基材の屈折率を1.5とすると、KrFエキシマレーザ光の波長が248nmであるから、180°の位相差を付けるためには248nmの段差をエッチング等の方法でつければよい。180°の位相をつけた位相シフタ550を通過したレーザ光50は、図13の(c)に示すように照射領域の中央部(レーザ光軸)で最小値となる逆ピークパターンP1のビームプロファイル31Bとなる。
レーザ光50は波長248nmのKrFエキシマレーザ光で、1ショットのパルス継続時間は20〜200ナノ秒である。上記条件で位相シフタ550を、レーザ光源とガラス等の絶縁性基板2上のバッファ膜3、非晶質半導体薄膜4、絶縁性キャップ膜40からなる試料との間に挿入し、パルスレーザ光50を照射すると、周期的位相シフタ550を通過したレーザ光50は段差部で回折と干渉を起こし周期的に強弱がつけられる。レーザ光が強い部位では半導体薄膜4は完全に溶融し、レーザ光が弱い部位との間で温度勾配が生ずる。レーザ光が最も弱い中央部位に結晶核が生成し、時間の経過とともに温度勾配に沿って溶融シリコンが凝固し、1次元の横方向の結晶成長(ラテラル成長)が進む。すなわち、レーザ光強度が最小値となる中央部を起点としてシリコン結晶はラテラル成長する。
特開2000−306859公報 表面科学VOL21,No5,p278-287(2000). 特開2001−127301公報
しかしながら、上記の従来技術では、結晶粒をΔ型や短冊型に1次元方向に横方向成長させることはできても、2次元的に(例えば正方形型に)成長させることはできなかった。TFTのチャネルを単一の結晶粒内に収めるためには、2次元的に広がった粒のアレイを形成することが必要であるが、従来の方法により結晶化すると、シリコン結晶が横方向にラテラル成長を開始する中央部に結晶化されない未結晶部分が残る。この未結晶部分は薄膜トランジスタ(TFT)として機能しない部分であり、表示装置の回路を設計する上で不都合である。すなわち、TFTの半導体薄膜では未結晶部分を残さないようにして結晶成長させる部分はできるだけ大きくすることが好ましい。
また、従来法では1次元成長粒のために粒を長くすることはできるが、幅を広くするのは難しい。とくに、駆動用TFT回路ではゲート電極におけるしきい電圧のばらつきを低減するためには、TFTのソース、ドレイン、チャネルの各領域を大粒径化する必要がある。
本発明は上記の課題を解決するためになされたものであり、未結晶部分と結晶粒界を実質的に含まない単一の大結晶粒を形成できる半導体薄膜の結晶化方法、結晶化装置、位相シフタ、薄膜トランジスタおよび表示装置を提供することを目的とする。
本発明に係る半導体薄膜の結晶化方法は、エネルギ光の光軸の中心近傍に単一の成長性の結晶核が発生し、前記結晶核から放射状に非単結晶半導体薄膜の結晶化が開始し、進行する結晶化過程を経て、内部に双晶粒界のみを含む実質的に単一の大粒径結晶粒のアレイを作製することを特徴とする。
本発明に係る半導体薄膜の結晶化方法は、予め基板に成膜された非単結晶半導体薄膜にエネルギ光を照射して結晶化する方法であって、前記非単結晶半導体薄膜の結像面上で、エネルギ光の光軸から所定の直径の環状界面に沿って強度の最小ピークP1が存在し、かつ前記環状界面の内側の領域において中央部の強度がそれを取り囲む周囲近傍部の強度よりも高いピークP2が存在し、かつ前記環状界面の外側の領域において強度が前記光軸に関して軸対称に単調かつ有限に漸増する光強度分布を有するエネルギ光を、所定の周期的な繰り返しパターンとなるように前記非単結晶半導体層に照射し、エネルギ光の光軸の中心近傍に単一の成長性の結晶核が発生し、前記結晶核から放射状に結晶成長が進行する結晶化過程を経て、内部に双晶粒界のみを含む実質的に単一の大粒径結晶粒のアレイを作製することを特徴とする。
本発明に係る半導体薄膜の結晶化装置は、予め基板に成膜された非単結晶半導体薄膜にエネルギ光を照射して結晶化する装置であって、エキシマレーザ光を発生させるためのエキシマレーザ光源と、発振レーザ光を分割し均一にするためのホモジナイザと、照射領域を定めるためのマスクと、前記ホモジナイザで分割したレーザ光を前記マスク面の中央部に集めるための凸レンズと、前記マスク面の照射領域を前記非単結晶半導体薄膜の結像面上で縮小した領域にするためのテレセントリック縮小レンズと、基板を可動に支持する載置台と、前記載置台上の基板に近接して配置され、光強度分布を形成するために光透過面側に周期的な所定の繰り返しパターンに配置された複数の環状段差を有し、空間強度変調光学素子として機能する位相シフタと、前記非単結晶半導体薄膜の結像面上で、エネルギ光の光軸から所定の直径の環状界面に沿って強度の最小ピークP1が存在し、かつ前記環状界面の内側の領域において中央部の強度がそれを取り囲む周囲近傍部の強度よりも高いピークP2が存在し、かつ前記環状界面の外側の領域において強度が前記光軸に関して軸対称に単調かつ有限に漸増する光強度分布を有するエネルギ光を、所定の周期的な繰り返しパターンとなるように設定する手段と、を具備することを特徴とする。また、最小ピークP1が作る環状界面の径W1を小さくすることにより、最小ピークP1とピークP2との差、すなわちP2の高さh1も小さくなり、結果として単一の結晶核が生成するようにすることを特徴とする。
本発明に係る半導体薄膜の結晶化装置は、予め基板に成膜された非単結晶半導体薄膜にエネルギ光を照射して結晶化する装置であって、エキシマレーザ光を発生させるためのエキシマレーザ光源と、発振レーザ光を分割し均一にするためのホモジナイザと、照射領域を定めるためのマスクと、前記ホモジナイザで分割したレーザ光を前記マスク面の中央部に集めるための凸レンズと、前記マスク面の照射領域を前記非単結晶半導体薄膜の結像面上で縮小した領域にするためのテレセントリック縮小レンズと、基板を可動に支持する載置台と、前記マスク面のところに配置され、光強度分布を形成するために光透過面側に周期的な所定の繰り返しパターンに配置された複数の環状段差を有し、空間強度変調光学素子として機能する位相シフタと、前記非単結晶半導体薄膜の結像面上で、エネルギ光の光軸から所定の直径の環状界面に沿って強度の最小ピークP1が存在し、かつ前記環状界面の内側の領域において中央部の強度がそれを取り囲む周囲近傍部の強度よりも高いピークP2が存在し、かつ前記環状界面の外側の領域において強度が前記光軸に関して軸対称に単調かつ有限に漸増する光強度分布を有するエネルギ光を、所定の周期的な繰り返しパターンとなるように設定する手段と、を具備することを特徴とする。
環状界面の直径W1は、光軸の中心近傍すなわち環状界面内部に成長性の核が1つのみ生成される単一核生成臨界径と等しいか、またはそれを下回る必要がある。環状界面の直径W1を小さくすると、ピークP2の高さh1も小さくなり、結晶化開始時に環状界面内部の光軸の中心近傍に単一の成長性の核が生成する。ここで「成長性の核」というのは、凝固開始時に発生する微小核ではなく、微小核が凝集あるいは成長して、ある成長可能な大きさとなったものを言う。
環状界面の直径W1が大きくなりすぎると、ピークP2も高くなりすぎて単一核生成臨界強度を上回り、照射野において2つ以上の核が同時に並行成長して多結晶組織となり、結晶粒界が出現するようになるからである。
本明細書中において「単一核生成臨界径」とは、光軸の中心近傍すなわち環状界面内部に成長可能な核が1つのみ生成されるか複数生成してしまうかに分かれる非単結晶半導体薄膜の結像面上での臨界的な径のことをいう。また、本明細書中において「単一核生成臨界強度」とは、光軸の中心近傍すなわち環状界面内部に成長可能な核が1つのみ生成されるか複数生成してしまうかに分かれる非単結晶半導体薄膜の結像面上での臨界的な光強度(レーザフルエンス)のことをいう。
なお「単一核生成臨界径」は、基板条件(温度、対象膜の膜厚、キャップ膜、バリア膜、入射面の物理化学的状態など)および照射レーザ条件(フルエンス、ビーム径、発振波長、パルス時間など)から様々な影響を受けて種々変動するものであり、現実にはこれらのパラメータが複雑に絡み合って結晶化の挙動に大きな影響を及ぼすために、その数値を断定的に特定できるものではない。本発明者らは、ある特定の限られた狭い条件下で「単一核生成臨界径」と推察されるものを実証試験により断片的に把握しているが、これらを一般化できるところまでは把握していない。
本発明において結晶化の対象となる非単結晶半導体層は、所定膜厚の非晶質シリコン(a-Si)膜を用いることが一般的であるが、非晶質シリコン中に若干量の微結晶シリコンを含む混合相組織であってもよく、また多結晶シリコン(poly-Si)膜であってもよい。また、非単結晶半導体層の膜厚は10〜300nmの範囲とすることができる。この膜厚が10nmを下回ると膜成分が蒸散してしまうからであり、一方、膜厚が300nmを上回ると全厚みを一様に溶融させてラテラル成長させることが困難になるからである。
本発明では、絶縁性のキャップ膜を介して非単結晶半導体層に光強度分布を有するレーザ光を照射することができる。キャップ膜には所定膜厚のSiO2膜またはSiON膜を用いることが好ましい。キャップ膜の膜厚は100〜500nmの範囲とすることができる。この膜厚が100nmを下回るとキャップ膜としての機能を失うからであり、一方、膜厚が500nmを上回るとレーザ光強度の減衰が過大になるからである。
環状界面の形状は、円筒(断面円形)とすることが最も好ましいが、方形状(長方形状、菱形状など)、多角筒(断面四角形、断面六角形、断面八角形などの断面角形状)などの他の形状としてもよい。
また環状界面は、非単結晶半導体層の結像面上での直径を1μm以下とすることができる。これは、単一核生成臨界径が1μm近傍にあることを意味する。ビームプロファイルにおいて環状界面の直径W1を1μm以下にするとピークP2の高さh1が単一核生成臨界強度を越えない傾向を示すからである(図1(c)参照)。これに対して、環状界面の直径W2を1μm以上にするとピークPC2の高さh2が単一核生成臨界強度を越える傾向を示すからである(図3(a)参照)。環状界面の直径が1μmを上回り、ピークP2の高さが単一核生成臨界強度を越えると、周囲に生成する核の成長を抑えて単一核のみを成長させることが困難になり、複数の核が同時に並行成長しやすくなる。
光強度分布の周期的な繰り返しパターンは例えば正方格子点配列や正三角形頂点配列とすることができる。正方格子点配列は、位相シフタを最も作製しやすく、またレーザ照射の位置制御が容易な配列である。正三角形頂点配列は、平面視野内で繰り返しパターン環状界面領域を最も稠密化しやすい配列である。
また、周期的な繰り返しパターンは、非単結晶半導体層の結像面上でピッチ間隔を4〜20μmの範囲とすることが好ましく、8〜14μmの範囲とすることが最も好ましい。この繰り返しパターンのピッチ間隔を4μm未満にすると、ラテラル成長粒の粒径が小さくなりすぎて、大結晶粒を作製するという本発明の目的に反することになるからであり、一方、ピッチ間隔が20μmを超えると、ラテラル成長が途中までで止まってしまい、結晶粒の配列が不規則となり位置制御性が悪くなるからである。繰り返しパターンのピッチ間隔は、最終的に形成したい組織の粒径と密接な関係があり、隣接する環状界面からそれぞれラテラル成長してきた結晶粒がちょうど出会うことができる距離とするか、又はそれより少し短めの距離とすることが最も望ましい。
また、光強度分布を有するレーザ光の平均のフルエンスを650〜950mJ/cm2の範囲とすることが好ましい。ここで「フルエンス」とは、レーザのエネルギ密度を表わす尺度であり、単位面積当たりのエネルギ量を時間積分したものをいう。平均フルエンスが650mJ/cm2を下回ると、結晶化されない未結晶部分が残りやすくなるからであり、一方、平均フルエンスが950mJ/cm2を上回ると半導体膜が蒸散してしまうからである。
本発明においてプロキシミティ型の位相シフタを用いる場合は、環状段差の直径を1μm以下とすることが好ましい。この数値限定理由は、上述した環状界面の直径の数値限定理由と同じである。
また、環状段差の周期的なピッチ間隔を8〜14μmの範囲とすることが好ましく、その周期的な繰り返しパターンを正方格子点配列または正三角形頂点配列とすることが好ましい。この数値限定の理由も上述した理由と同じである。
プロキシミティ型位相シフタでは、位相シフタの光透過面から基板の入射面までの距離dを100μm以下の範囲で種々変えることができるが、10〜50μmの範囲に調整することが最も望ましい。距離dを10μm未満にすると、多重反射が強くなりすぎてフルエンスに大きなばらつきを生じることとなり、膜がダメージを受けるおそれが増大するからである。一方、距離dが50μmを超えると、プロキシミティ型位相シフタの利点である鮮明なビームプロファイルが得られ難くなり、本発明のドットパターン照射の効果を得ることが困難になるからである。
本発明においてプロジェクション型(投影型)の位相シフタを用いる場合は、位相シフタの環状段差の径と縮小レンズの縮小倍率とを掛けた値を1μm以下とすることが好ましい。縮小レンズの縮小倍率は、1/1から1/20までの範囲で種々変えることができるが、1/4から1/8までの範囲とすることが好ましく、1/5程度とすることが最も好ましい。投影法に用いる光学系は、位相シフタの他に、エキシマレーザ光を発生させるためのエキシマレーザ発生装置、発生したレーザ光を分割し均一にするためのホモジナイザ、分割したレーザ光をマスク面の中心領域に集めるための凸レンズ、照射領域を定めるためのマスク、マスク面の照射領域を基板面で縮小した領域にするためのテレセントリック縮小レンズ、位相シフタ、XYZ基板ステージを含むものである。なお、投影法では位相シフタをマスク面のところに位置させる。
ここで「位相シフタ」とは、光リソグラフィの解像力を向上させるための手段であり、転写パターンに応じて透過光の光強度を変調するとともに位相を変調する機能を有する空間強度変調光学素子のことをいう。
このような位相シフタは次のようにして作製する。
先ず遮光膜パターンを形成し、この上に所定膜厚の透明膜を形成する。透明膜材料としてはSOG(Spin on glass)を用いる。成膜方法としてはスピンコーティング法を用いる。塗布した透明膜を所定温度で焼成する。次いで、透明膜上にレジストを塗布し、レジスト膜を露光して所定のドットパターン潜像を形成し、レジスト膜を現像して所定のドットパターンを形成する。ここで「所定のドットパターン」とは、ある面積を有する環状領域が所定ピッチ間隔ごとに繰り返される周期的なパターンのことをいうものとする。
次いで、プラズマエッチングなどのドライエッチング法を用いてレジスト膜の開口部分に露出する透明膜を選択的に除去する。さらにアッシング処理等によりレジスト膜および遮光膜を透明膜から除去すると、所定のドットパターンを有する位相シフタが得られる。
このようにして作製した位相シフタは、ドットパターン段差55aのところで分割光線群にそれぞれ独立にフレネル回折を起こさせる。これらの回折パターンは基板表面で多重反射により重畳されるので、基板表面の光強度分布は位相シフタのパラメータ(ギャップdと位相差θ)に依存する度合いが強いが、光強度分布に影響を与える他のパラメータとして位相シフタに入射する光線群の広がり量(ε)や光線間の干渉性が複雑に関係してくる。位相差は必ずしも180°である必要はなく、レーザ光に強弱を実現できる位相差であればよい。このような位相シフタを透過したレーザ光は、図1の(c)に示すピークパターンP1,P2をもつビームプロファイルとなる。
本発明によれば、1ショットのレーザアニールで位置制御された大粒径結晶粒アレイ組織の高品質な結晶質のシリコン薄膜が得られる。
以下、添付の図面を参照して本発明の種々の好ましい実施の形態について説明する。
結晶粒のラテラル成長距離は、成長速度と成長可能時間(凝固開始時から固化開始時までの時間)との積で与えられる。成長速度には材料に固有の上限(例えばシリコンの場合は100m/秒程度)があるので、ラテラル成長距離を増加させるためには成長可能時間を長くする必要があるが、成長可能時間を延長するためには、溶融部から周囲への熱流失速度をできるだけ小さくすることが有効である。
しかし、エキシマレーザ結晶化法(ELA法)では、ナノ秒オーダーの極短い時間(例えば20〜200nsec)に瞬間的にパルス発振するエキシマレーザ光を利用するので、照射野が溶融している期間は非常に短く、直ぐに凝固して結晶成長が停止してしまう。このため、結晶粒の成長可能時間は不足する傾向にある。
本発明ではビームプロファイルを図1(c)及び図2(a)に示す形状とし、かつ環状界面の直径W1を1μm以下として、ピークP2の高さh1を小さくすることにより、結晶化の初期において照射野の中央領域である光軸の中心近傍すなわち環状界面の内部に、単一(1個のみ)の成長性の結晶核を意図的に発生させ、これが放射状に成長することで大粒径結晶粒が得られる。このような過程で成長した結晶は、結晶粒界のない、双晶粒界のみとなる。即ち、この結晶には、結晶粒界がないことが特徴である。
[作用]
次に、図2を参照して本発明による半導体薄膜の結晶化の過程について説明する。
ピークP1,P2を有し、環状界面の直径W1を1μm以下にしてピークP2の高さh1を小さくしたビームプロファイル31Aのパルスレーザ光を基板に照射すると、照射野は瞬時に溶融し、先ず低温の環状界面32(位相シフト境界)に沿って融液から多数の微小クラスタ核が環状に発生し、図2の(b)に示すように、これらが凝集成長して単一の成長性の結晶核33となる。さらに、図2の(c)に示すように、単一の結晶核33が固液界面37を形成しながら外側領域に向かって放射状にラテラル成長を開始する。即ち、この単一の成長性結晶核33を中心として放射状に双晶粒界を有する結晶成長させる。
次の段階では、図2の(d)に示すようにラテラル成長が進み、固液界面37がさらに放射状に広がる。その過程において、成長端の面方位の成長速度が遅い場合には、成長途中において、最密面である{111}面に積層欠陥を形成し、双晶変態して成長速度の速い面方位に向きを変えて成長端の成長を続ける。この過程を経て一部の結晶粒(場合によっては全部の結晶粒)は双晶変態して結晶粒内部にいわゆる成長双晶(以下、単に双晶という)が生成される。図中にて破線38は双晶粒界を示した。なお、後述する比較例の図3中には結晶粒界36を実線で示した。また、双晶は<111>方向を軸に60°回転した関係となっている。
さらに時間が経過すると、隣接する結晶核33からそれぞれラテラル成長してきた結晶粒が出会って衝突することにより終了する。結果として、図5の(b)および図6の(b)にそれぞれ示すように、2次元的に横方向成長した大粒径結晶粒アレイが形成される。
このようにして、図2の(e)に示すように、1つのドットパターンから結晶粒界をまったく含まない大粒径結晶粒が得られる。また、図5(b)および図6(b)に示すように大粒径結晶粒アレイが得られる。なお、結晶化後の粒内にいくつか双晶粒界38は存在するが、これらの双晶粒界38は「しきい電圧」に実質的に悪影響を及ぼさないものと言われている。
次に、比較例として図3を参照して本願と同日に出願した関連発明における結晶化の過程について説明する。
ピークPC1,PC2を有するビームプロファイル31Cのパルスレーザ光を基板に照射すると、照射領域は瞬時に溶融し、先ず低温の環状界面(位相シフト境界)32に沿って融液から多数の微小クラスタ核が発生し、これらが凝集成長して結晶核となり、そのうちのいくつかがさらに成長して図3の(b)に示すように非常に微細な結晶粒33Aが環状界面32に沿って生成される。
次いで、図3の(c)に示すように、微細結晶粒33のうちのいくつかが環状界面32の外側に向かって放射状にラテラル成長を開始する。一方、環状界面32の内側領域34は、熱が周囲に拡散しない閉鎖系であるために、外側領域35が凝固する際の潜熱が蓄積されやすく、結晶核の発生と消滅を繰り返し、凝固および結晶成長が外側領域よりも遅れる。結果として、内側領域34は溶融状態が比較的長い時間にわたって維持される。
次の段階では、図3の(d)に示すように、外側領域の結晶がラテラル成長する過程において双晶変態が生じ双晶粒界が形成される。これは、面方位による成長速度の違いにより、単一の結晶粒であっても遅い面方位の方向に成長する場合は速い面方位に双晶変態しながら成長が進む。このようにして一部の結晶粒(場合によっては全部の結晶粒)に双晶変態を生じて結晶粒内部にいわゆる成長双晶(以下、単に双晶という)が生成される。図中にて実線36は結晶粒界を示し、破線38は双晶粒界を示した。なお、双晶は<111>方向を軸に60°回転した関係となっている。
この結晶成長過程では、系全体としての自由エネルギが減少するように、結晶粒界36は界面エネルギが最小となるように移動する。このとき環状界面32に沿って並ぶ小さな結晶粒33は周囲の大きな結晶粒に吸収合併されるようにオストワルト成長していく。すなわち、閉鎖系の内部領域34では原子の拡散が可能な条件を満たしているので、所謂「オストワルトの熟成則」が成立して微細結晶粒33は消滅する。
さらに、時間が経過すると、オストワルト成長により微細結晶粒33が完全消滅し、内側領域は外側領域とつながって連続化して中心に向かって結晶粒がラテラル成長する。一方、外側領域35では、隣接する環状界面32からそれぞれラテラル成長してきた結晶粒が出会って衝突することにより終了する。このようにして、図3の(e)に示すように、粒内にいくつかの結晶粒界36を含む結晶粒組織が得られる。
以下に本発明の半導体薄膜の結晶化方法による位置制御性の良い大粒径結晶粒アレイの製造方法の原理を述べる。
図13は本発明の方法と関係した位相シフタの説明図である。位相シフタ550は例えば石英基材にライン&スペースの段差551をつけ、段差551の境界でレーザ光50の回折と干渉を起こさせ、レーザ光強度に周期的な空間分布を付与するものである。図13では段差部551を境界として左右で180°の位相差を付けた場合を示している。一般にレーザ光の波長をλとすると、屈折率nの透明媒質を透明基材上に形成して180°の位相差を付けるには、透明媒質の膜厚tは、t=λ/2(n−1)で与えられる。石英基材の屈折率を1.5とすると、KrFエキシマレーザ光の波長が248nmであるから、180°の位相差を付けるためには248nmの段差をエッチング等の方法でつければよい。180°の位相をつけた位相シフタ550を通過したレーザ光50の強度は、図13に示すように周期的強弱のプロファイル31Bを示す。
レーザ光は波長248nmのKrFエキシマレーザ光で、1ショットのパルス継続時間は20〜200ナノ秒である。上記条件で位相シフタ550を、レーザ光源とガラス等の絶縁性基板2上の下層絶縁膜3、非晶質半導体薄膜4、上層絶縁膜40からなる被処理体103との間に挿入し、パルスレーザ光を照射すると、位相シフタ550を通過したレーザ光は段差部で回折と干渉を起こし周期的に強弱がつく。レーザ光が強い部位では半導体薄膜4は完全に溶融し、レーザ光が弱い部位との間で温度勾配が生ずる。レーザ光が最も弱い部位に結晶核が生成し、時間の経過とともに温度勾配に沿って溶融シリコンが凝固し、1次元の横方向の結晶成長が進む。
しかし、この位相シフタを使って結晶化した組織は位相シフト境界に微結晶領域が生成しやすく、また1次元成長粒のために粒を長くすることはできるが、幅を広くするのは難しい。
この段差のパターンを円形または多角形状の環状段差55aにして、一定の間隔で繰り返し周期的に配列した位相シフタが、図1(a)(b)、図5(a)、図6(a)、図4、図9に示した本発明で用いる位相シフタ55である。
図1(c)は位相シフタ55を介して基板にレーザ光を照射したときの、半導体薄膜の結像面上におけるドット段差1単位あたりの光強度分布を示す図である。環状界面(位相シフト境界)に強度の最低部がある分布となる。
図2および図3は、それぞれ図5(a)または図6(a)に示したドット段差パターンの位相シフタを用いてエキシマレーザアニールしたときの結晶化過程の概念図である。図には光強度の最低部が作る円の径がある臨界値よりも小さい場合について示してある。図3(a)〜(e)はその中でも円の直径が比較的大きな場合であり、図2(a)〜(e)は小さい場合である。図2(a)に示すように、図3(a)のプロファイル31Cにおける位相シフト境界の径(中心部の径)を小さくしていき、ビームプロファイル31Aのようにすると、発生する成長性の結晶核を単一にすることができる。このようなレーザ光の光強度分布(ビームプロファイル)31Aは、環状界面32に沿って環状の逆ピークパターンP1を有し、かつ環状界面32よりも内側領域の中心部にあたるレーザ光軸に正ピークパターンP2を有する。また、環状界面32よりも外側ではレーザフルエンスは単調増加する。
この光強度分布のレーザ光を焦点を合わせて基板に照射すると、プロファイル31Aの中央部周辺に、単一の成長性の結晶核33が発生し、時間の経過に従いこの結晶核33が放射状に全方向に成長する。本発明の位相シフタを使ったエキシマレーザアニールによる結晶化は超急冷凝固系であるため、発生した結晶核の面方位を維持しながら全方向に成長することはない。例えば<110>方向のように比較的成長速度の大きな方向には、発生した結晶核の面方位をそのまま保ちながら成長する。しかし、例えば<111>方向のように、最密面が積み重なっていかなければならない成長速度の比較的小さな方向には、同心円放射状に広がる温度勾配に従い、成長速度の大きな方向と同様の速度で成長するために、成長途中で積層欠陥を形成し双晶変態することで成長速度のより大きな面方位に向きを変えて成長する。結果として、最終的な組織には双晶粒界38が形成される。また全体としては、図5及び図6に示す位相シフトパターンと結晶組織との対応図のように、2次元的に横方向成長した大粒径結晶粒アレイが形成される。
図5及び図6の位相シフタのドットパターンの間隔は、最終的に形成する組織の粒径と密接な関係があり、8〜14μmの範囲が望ましい。間隔が8μmより小さすぎると2次元的横方向成長粒の粒径が小さくなり、間隔が14μmより大きすぎると横方向成長が途中で止まってしまうため、粒の配列が不規則となり位置制御性が悪くなる。
ドットの形状は必ずしも円形である必要はなく、四角形等の多角形であっても良い。プロキシミティ法によるレーザアニールの場合、位相シフタのドット段差55aの径は1μm以下が望ましい。ドット段差55aの径が1μmを上回ると、単一の結晶核のみを成長させることが難しくなるからである。プロジェクション法によるレーザアニールの場合、位相シフタのドットの径と縮小レンズの倍率とを掛けた値が1μm以下であることが望ましい。
プロジェクション法を用いると、基板面における光強度の最下部が作る径を位相シフタの加工精度よりも小さな値にすることができ有効である。位相差は必ずしも180°である必要はなく、レーザ光に強弱を実現できる位相差であればよい。また、レーザアニールの際の膜構造は、Si膜がレーザ光を吸収して溶融するときに、Si膜中に熱を保持するため、およびSi膜からの熱拡散により急激に基板を熱することのないように、上層と下層を絶縁性の膜で被覆しておく必要がある。
上記の実施形態で得られたシリコン膜を使った薄膜トランジスタは、従来のポリシリコン薄膜トランジスタよりも、移動度が高くしきい電圧のばらつきも小さい。この実施形態の薄膜トランジスタを液晶ディスプレイ、有機EL等の表示装置に適用すれば、周辺回路に高機能の演算素子等を形成することが可能になり、システム・オン・パネル化に向け、この実施形態の効果は大きい。また位相シフタを光路中に挿入するだけの方法なので、光学系が複雑にならず調整に時間がかからないので、量産にも適している。
この実施形態によれば、1ショットのレーザアニールで位置制御された大粒径結晶粒アレイ組織の高品質な結晶質のシリコン薄膜が得られる。本発明で得られたシリコン膜を使った薄膜トランジスタは、従来のポリシリコン薄膜トランジスタよりも、移動度が高くしきい電圧のばらつきも小さい。
この実施形態の薄膜トランジスタを液晶ディスプレイ、有機EL等の表示装置に適用すれば、周辺回路に高機能の演算素子等を形成することが可能になり、システム・オン・パネル化に向け、この実施形態の効果は大きい。
また、位相シフタを光路中に挿入するだけの方法なので、光学系が複雑にならず調整に時間がかからないので、量産にも適している。
以下に述べる実施例1〜3では図4に示すプロキシミティ方式を用いた。レーザアニール装置100はプロキシミティ位置に置く位相シフタ55を含む光学系101を備えている。この光学系101は、レーザ光軸102に沿ってKrFエキシマレーザ発振器51、ホモジナイザ53、第1コンデンサレンズ54a、第2コンデンサレンズ54b、マスク52、テレセントリック型の縮小レンズ56、位相シフタ55が設けられた構成である。縮小レンズ56の結像位置には、被処理体103が位置合わせされるように、XYZθステージ58が配置されている。光学系101は、被処理体103の位置における光強度分布に傾斜勾配を有し、この傾斜勾配の最小光強度が環状の光強度になるエネルギ光である。
KrFエキシマレーザ発振器51は、被処理体103の非晶質シリコン層4を溶融するのに充分なエネルギ、例えば被処理体103上における値で650〜950j/cm2のレーザ光を出力する。ホモジナイザ53は、レーザ発振器51からのレーザ光を均一化するためのものである。第1コンデンサレンズ54aは、ホモジナイザ53からのレーザ光を集光し、第2コンデンサレンズ54bと共役関係に配置される。第2コンデンサレンズ54b出射光路にはマスク52が設けられ、このマスク52は非有効レーザ光を遮断する。縮小レンズ56は、倍率1/1〜1/20の範囲で例えば1/5に縮小するレンズである。
このような光学系においては、レーザ光50は先ずホモジナイザ53で複数のビームに分割され、分割されたビームの各中軸光線は第1コンデンサレンズ54a(凸レンズ#1)によってマスク52の中心に集まる。また、それぞれのビームは、僅かに発散型になっているために、マスク52の開口部の全面を照明する。分割された微小出射領域を出た全ての光線群が、それぞれマスク52上の全ての点を照射するので、レーザ出射面上の光強度に面内揺らぎがあっても、マスク52面上の光強度は均一になる。マスク52の各領域を通過する光線群の中心光線、すなわちホモジナイザ53の中心部分のレンズ対を通ってきた発散光線群は、マスク面近傍の第2コンデンサレンズ54b(凸レンズ#2)によって平行光線になってから、テレセントリック型の縮小レンズ56を通って、加熱ヒータ59を備えた基板ステージ58上に置かれた被処理体103を垂直に照射する。基板ステージ58はXYZの各方向に位置を調整できるようになっているので、照射領域をずらしてアニールを繰り返すことにより、大面積を結晶化することが可能である。また、マスク52の同一箇所を通過した光線群は基板面の一点に集まる。すなわち、マスク52面上の縮小像が均一光強度で基板面上に結像する。
基板表面の任意の点を照射する光線群は、中心光線を含めて分割された光線から作られる。そして或る光線と中心光線のなす角は、ホモジナイザの幾何学的形状で決まる、マスク52面での当該光線と中心光線の作る角に、テレセントリック型レンズの倍率を掛けた値になる。試料から僅かに離れた位置に置かれた位相シフタ55は、分割された光線群にそれぞれ独立にフレネル回折を起こさせる。これら回折パターンは基板表面で重畳されるから、基板表面の光強度分布には、位相シフタ55のパラメータ(基板-位相シフタ間隔d、位相差θ)だけではなく、位相シフタ55に入射する光線群の広がり量(ε)や、光線間の干渉性が複雑に関係する。
位相シフタ55は、縮小レンズ56とXYZθステージ58との間に配置され、XYZθステージ58上に載置された被処理体103の上面に近接して設けられている。本実施例のプロキシミティ方式では位相シフタ55と基板2の上面との近接間隔dを例えば30μmに設定した。
XYZθステージ58はXYZの各軸方向およびZ軸まわりにθ回転可能に位置調整できるようになっている。また、XYZθステージ58は、ヒータ59を内蔵し、基板2を所定の温度(例えば500℃)に加熱できるようになっている。XYZθステージ58上に載置される被処理体103の基板2上には、バッファ層3、非晶質シリコン層4、絶縁性キャップ膜40がこの順に積層されている。
基板2は、表示装置用であればガラス基板やプラスチック基板などの透過性絶縁基板である。バッファ層3は、基板2からの不純物の拡散を防止する機能と、結晶化プロセス時に基板2を熱から保護する機能とを有する。非晶質シリコン層4は、単結晶化して薄膜トランジスタなど機能素子を形成する半導体層である。
絶縁性キャップ膜40は、非晶質シリコン層4を、照射により発生する熱を数十ナノ秒間のパルスレーザ光を所定期間蓄熱して大きな結晶粒を成長させるための結晶化のための保温効果を持たせた絶縁層である。
位相シフタ55は、図1の(a)(b)、図5(a)、図6(a)に模式的に示すように、石英基材をエッチング加工して作製された多数の環状段差例えば円環状段差部55aからなる周期的な繰り返しパターンを有するものである。本実施形態の位相シフタ55では1μm径の円形状の円環状段差55aが10μm間隔で配列してある。円環状段差55aは段差が248nmに加工され、180°の位相差が付くようにしてある。
(実証試験)
(実施例1)
次に、本発明の実証試験として行った実施例1について説明する。
本実施例では図4に示すプロキシミティ方式の結晶化装置を用いた。図1(a)(b)および図5(a)に示した位相シフタ55を用いた。位相シフタ55は石英基材をエッチング加工して作製したものである。本実施例では直径1μmの環状ドット段差55aが10μm間隔で配列してあるものを用いた。段差55aの高さtは248nmに加工され、ここを透過する光に180°の位相差を生じるようにしてある。
結晶化の条件として、試料の膜構造はSiO2(300nm)/a-Si(200nm)/ SiO2(1000nm)/ガラス基板とした。レーザ光の1ショットのパルス継続時間は30ナノ秒とした。平均のレーザフルエンスは900mJ/cm2とした。基板と位相シフタとの間隔dは30μmとした。
本実施例では上述した図2(b)〜(e)の結晶化過程を経て、図5(b)に示すように配列した直径が約8μmの略円形の大粒径結晶粒のアレイを作製した。これら結晶の粒内には双晶粒界のみが含まれる。そのSEM像を図7(a)および図8(a)にそれぞれ示した。いずれも1つのドットパターンからの組織を示している。
図7(b)および図8(b)は、本実証試験で得られた結晶組織のElectron Back Scattering Pattern(以下、EBSPという)により解析した結果を示すEBSP面方位マップ像である。このEBSP面方位マップ像は、円形結晶組織の面方位および対応粒界を示している。なお、円形組織内の結晶粒については、3次元的な面方位がわかるように立方体の傾きで表している。
図7(c)および図8(c)は、上記のEBSP面方位マップ像から双晶粒界を削除して、双晶を同一の粒としてみなして結晶組織を示したものである。<111>を軸に60°回転している粒同士を双晶とみなしている。
図7及び図8に示すように、それぞれのドット照射野が直径約8μmの略円形の単結晶粒になっていることを確認できた。また、単結晶粒の中には双晶粒界のみが存在することを確認できた。この双晶粒界38に隔てられたサブ粒は、必ずしも温度勾配の方向、すなわち中心周辺の位相シフトの境界部から放射状に生成しているわけではなく、粒の形状も複雑である。
(実施例2)
本実施例2では、上記の実施例1と同じプロキシミティ方式の装置を用いた。ただし、位相シフタの円環状ドット段差55aの径は1μmとし、8μmの間隔で配列した。位相差は180°とした。
結晶化の条件として、試料の膜構造はSiO2(300nm)/a-Si(200nm)/ SiO2(1000nm)/ガラス基板とした。レーザ光の1ショットのパルス継続時間は30ナノ秒とした。平均のレーザフルエンスは820mJ/cm2とした。基板と位相シフタとの間隔dは30μmとした。図2(b)〜(e)に示す結晶化過程を経て、図5(b)に示した直径8μmの円形の大粒径結晶粒のアレイを作製した。円形状の結晶粒内には、結晶粒界がなく、双晶粒界38のみが含まれることを確認できた。
(実施例3)
本実施例3では、上記の実施例1と同じプロキシミティ方式の装置を用いた。ただし、位相シフタの円環状ドット段差55aの径は1μmとし、8μmの間隔で配列した。位相差は180°とした。
結晶化の条件として、試料の膜構造はSiO2(300nm)/a-Si(200nm)/ SiO2(1000nm)/ガラス基板とした。レーザ光の1ショットのパルス継続時間は30ナノ秒とした。平均のレーザフルエンスは700mJ/cm2とした。基板と位相シフタとの間隔dは15μmとした。図2(b)〜(e)に示す結晶化過程を経て、図5(b)に示した直径8μmの円形の大粒径結晶粒のアレイを作製した。円形状の結晶粒内には、結晶粒界がなく、双晶粒界38のみが含まれることを確認できた。
(実施例4)
本実施例4では、図9に示す投影方式の装置を用いた。プロジェクション型装置では位相シフタ55の位置をマスク52の開口部近傍に配置してピントを調整した点を除いて、その他は図4に示したプロキシミティ型装置と実質的に同じ構成である。ただし、位相シフタの円環状ドット段差55aの径は5μmとし、40μmピッチ間隔で配列した。位相差は180°とした。なお、テレセントリック縮小レンズ56の縮小倍率は1/5倍とした。
結晶化の条件として、試料の膜構造はSiO2(300nm)/a-Si(200nm)/ SiO2(1000nm)/ガラス基板とした。レーザ光の1ショットのパルス継続時間は30ナノ秒とした。平均のレーザフルエンスは700mJ/cm2とした。基板面における光強度分布は1μm径のドット段差55aが8μm間隔で配列したものにしたので、図2(b)〜(e)に示す結晶化過程を経て、図5(b)に示した直径8μmの円形の大粒径結晶粒のアレイを作製した。円形状の結晶粒内には、結晶粒界がなく、双晶粒界38のみが含まれることを確認できた。
(実施例5)
本実施例5では本発明方法により結晶化した半導体薄膜を有するボトムゲート型薄膜トランジスタを作製した。図10は本発明に係る薄膜トランジスタの製造方法の実施例を示す工程図である。なお、本実施例では、便宜上Nチャネル型の薄膜トランジスタの製造方法を示すが、Pチャネル型でも不純物種(ドーパント種)を変えるだけで全く同様である。ここでは、ボトムゲート構造の薄膜トランジスタの製造方法を示す。まず図10(a)に示す様に、ガラスなどからなる絶縁基板2の上にAl,Ta,Mo,W,Cr,Cu又はこれらの合金を100〜300nmの厚みで形成し、パターニングしてゲート電極6に加工した。
次いで図10(b)に示すように、ゲート電極6の上に多層のゲート絶縁膜7,8を形成した。本実施例では、ゲート絶縁膜はゲート窒化膜7(SiNx )/ゲート酸化膜8(SiO2 )の二層構造を用いた。ゲート窒化膜7はSiH4 ガスとNH3 ガスの混合物を原料気体として用い、プラズマCVD法(PE-CVD法)で成膜した。なお、プラズマCVDに代えて常圧CVDあるいは減圧CVDを用いてもよい。本実施形態では、ゲート窒化膜7を50nmの厚みで堆積した。ゲート窒化膜7の成膜に連続して、ゲート酸化膜8を約200nmの厚みで成膜する。
さらにゲート酸化膜8の上に連続的に非晶質シリコンからなる半導体薄膜4を約50〜200nmの厚みで成膜した。さらに半導体薄膜4の上にSiO2からなる絶縁膜40を300nmの厚みで成膜した。二層構造のゲート絶縁膜と非晶質半導体薄膜4と絶縁膜40は成膜チャンバの真空系を破らず連続成膜した。以上の成膜でプラズマCVD法を用いた場合には、400〜450℃の温度で窒素雰囲気中1時間程度の加熱処理により脱水素アニールし、非晶質半導体薄膜4に含有されていた水素を放出させる。
次に、例えば上記実施例1〜4に示した方式の本発明の方法に従って、レーザ光50を照射し、非晶質半導体薄膜4を結晶化する。レーザ光50としてはエキシマレーザビームを用いることができる。レーザ光50の照射領域を調整した後、照射領域に位相シフタ55の周期的なドットパターンを転写可能なようにレーザ光50の焦点を合わせて照射し、更に重複しないように領域をずらして繰り返し照射して、所定の面積を結晶化する。続いて絶縁膜40をエッチング等の方法により剥離する。
次いで、図10(c)に示すように、薄膜トランジスタのVth(しきい値電圧)を制御する目的で、Vthイオンインプランテーションを必要に応じて行なう。本例では、B+をドーズ量が5×1011〜4×1012/cm2 程度となるようにイオン注入した。このVthイオンインプランテーションでは10KeVで加速されたイオンビームを用いた。続いて、前工程で結晶化された多結晶半導体薄膜9の上に例えばプラズマCVD法でSiO2 層を約100nm〜300nmの厚みで形成する。本例では、シランガスSH4 と酸素ガスをプラズマ分解してSiO2 を堆積した。このようにして成膜されたSiO2 を所定の形状にパターニングしてストッパ膜10に加工する。この場合、裏面露光技術を用いてゲート電極1と整合する様にストッパ膜10をパターニングしている。ストッパ膜10の直下に位置する多結晶半導体薄膜9の部分はチャネル領域Chとして保護される。前述したように、チャネル領域Chには予めVthイオンインプランテーションによりB+イオンが比較的低ドーズ量で注入されている。
次いで、ストッパ膜10をマスクとしてイオンドーピングにより不純物(例えばP+イオン)を半導体薄膜9(4)に注入し、LDD領域を形成する。この時のドーズ量は、例えば5×1012 〜1×1013/cm2 であり、加速電圧は例えば10KeVである。更にストッパ膜10及びその両側のLDD領域を被覆するようにフォトレジストをパターニング形成した後、これをマスクとして不純物(例えばP+イオン)を高濃度で注入し、ソース領域S及びドレイン領域Dを形成する。不純物注入には、例えばイオンドーピング(イオンシャワー)を用いることができる。これは質量分離を掛けることなく電界加速で不純物を注入するものであり、本実施例では1×1015/cm2 程度のドーズ量で不純物を注入し、ソース領域S及びドレイン領域Dを形成した。加速電圧は例えば10KeVである。なお、図示しないが、Pチャネルの薄膜トランジスタを形成する場合には、Nチャネル型薄膜トランジスタの領域をフォトレジストで被覆した後、不純物をP+イオンからB+イオンに切り換えドーズ量1×1015/cm2 程度でイオンドーピングすればよい。なお、ここでは質量分離型のイオンインプランテーション装置を用いて不純物を注入してもよい。この後RTA(急速熱アニール)60により、多結晶半導体薄膜9に注入された不純物を活性化する。場合によっては、エキシマレーザを用いたレーザ活性化アニール(ELA)を行なってもよい。この後、半導体薄膜9(4)とストッパ膜10の不要な部分を同時にパターニングし、素子領域毎に薄膜トランジスタを分離する。
最後に図10(d)に示すように、SiO2 を約100〜200nmの厚みで成膜し、層間絶縁膜11とする。層間絶縁膜11の形成後、SiNx をプラズマCVD法で約200〜400nm成膜し、パシベーション膜(キャップ膜)12とする。この段階で窒素ガス又はフォーミングガス中又は真空中雰囲気下で350〜400℃程度で1時間加熱処理し、層間絶縁膜11に含まれる水素原子を半導体薄膜9中に拡散させる。この後コンタクトホールを開口し、Mo,Alなどを100〜200nmの厚みでスパッタした後、所定の形状にパターニングして配線電極13に加工した。更に、アクリル樹脂などからなる平坦化層14を1μm程度の厚みで塗布した後コンタクトホールを開口する。平坦化層14の上にITOなどからなる透明導電膜をスパッタした後、所定の形状にパターニングして画素電極15に加工した。
以上によりボトムゲート型薄膜トランジスタ112を得た。
(実施例6)
本実施例6では本発明方法により結晶化した半導体薄膜を有するトップゲート型薄膜トランジスタを作製した。図11は本発明に係る薄膜トランジスタの製造方法の実施例を示す工程図である。なお、本実施例6は上記の実施例5と異なり、トップゲート構造の薄膜トランジスタである。まず図11(a)に示すように、絶縁基板2の上にバッファ層となる二層の下地膜20a,20bをプラズマCVD法により連続成膜した。一層目の下地膜20aはSiNx からなり、その膜厚は500nmとした。また、二層目の下地膜20bはSiO2 からなり、その膜厚は同じく500nmとした。このSiO2 からなる下地膜20bの上に非晶質シリコンからなる半導体薄膜4を50〜200nmの厚みでプラズマCVD法もしくはLPCVD法により成膜した。さらにSiO2からなる絶縁膜40を300nmの厚みで成膜した。非晶質シリコンからなる半導体薄膜4の成膜にプラズマCVD法を用いた場合には、膜中の水素を脱離させるために、窒素雰囲気中で400〜450℃の条件で1時間程度アニールした。
次に、上記実施例1〜4に示した方式の本発明の方法に従って、非晶質半導体薄膜4を結晶化した。レーザ光50の照射領域を調整した後、照射領域に位相シフタの周期的なドットパターンの配列を転写可能な様にレーザ光50の焦点を合わせて照射し、さらに重複しないように領域をずらして繰り返し照射して、所定の面積を結晶化した。
次いで絶縁膜40をエッチング等の方法で剥離した。ここで必要ならば、前述した様にVthイオンインプランテーションを行ない、B+イオンを例えばドーズ量5×1011〜4×1012/cm2 程度で結晶化半導体薄膜9に注入する。この場合の加速電圧は10KeV程度である。
次いで図11(b)に示すように、結晶化したシリコン半導体薄膜9をアイランド状にパターニングした。この上に、プラズマCVD法、常圧CVD法、減圧CVD法、ECR−CVD法、スパッタ法などでSiO2 を10〜400nm成長させ、ゲート絶縁膜8とした。本例ではゲート絶縁膜8の厚みを100nmにした。次いでゲート絶縁膜8の上にAl,Ti,Mo,W,Ta,ドープト多結晶シリコンなど、あるいはこれらの合金を200〜800nmの厚みで成膜し、所定の形状にパターニングしてゲート電極6に加工した。
次いでP+イオンを質量分離を用いたイオン注入法で結晶化半導体薄膜9に注入し、LDD領域を設けた。このイオン注入はゲート電極6をマスクとして絶縁基板2の全面に対して行なう。ドーズ量は6×1012〜5×1013/cm2 である。加速電圧は例えば90KeVである。なお、ゲート電極6の直下に位置するチャネル領域Chは保護されており、Vthイオンインプランテーションで予め注入されたB+イオンがそのまま保持されている。
LDD領域に対するイオン注入後、ゲート電極6とその周囲を被覆するようにレジストパターンを形成し、P+イオンを質量非分離型のイオンシャワードーピング法で高濃度に注入し、ソース領域S及びドレイン領域Dを形成する。この場合のドーズ量は例えば1×1015/cm2 程度である。加速電圧は例えば90KeVである。ドーピングガスには水素希釈の20%PH3 ガスを用いた。CMOS回路を形成する場合には、Pチャネル薄膜トランジスタ用のレジストパタンを形成後、ドーピングガスを5〜20%のB2 6 /H2 ガス系に切り換え、ドーズ量を1×1015〜3×1015/cm2 程度、加速電圧は例えば90KeVでイオン注入すればよい。なお、ソース領域S及びドレイン領域Dの形成は質量分離型のイオン注入装置を用いてもよい。この後、結晶化半導体薄膜9に注入されたドーパントの活性化処理となる。この活性化処理は上記の実施例5と同様に、紫外線ランプを使ったRTA60を用いることができる。
最後に図11(c)に示すように、ゲート電極6を被覆するようにPSGなどからなる層間絶縁膜11を成膜した。この層間絶縁膜11の成膜後、SiNx をプラズマCVD法で約200〜400nm堆積してパシベーション膜(キャップ膜)12とした。この段階で窒素ガス中350℃の温度で1時間程度アニールし、層間絶縁膜11に含有された水素を結晶化半導体薄膜9中に拡散させる。この後コンタクトホールを開口する。さらにパシベーション膜12の上にAl−Siなどをスパッタリングで成膜した後所定の形状にパターニングして配線電極13に加工する。さらにアクリル樹脂などからなる平坦化層14を約1μmの厚みで塗工後、これにコンタクトホールを開口する。平坦化層14の上にITOなどからなる透明導電膜をスパッタリングし、所定の形状にパターニングして画素電極15に加工した。
以上によりトップゲート型薄膜トランジスタ112Aを得た。
本実施例6では、上記実施例5で説明した方法と同様にして非晶質半導体薄膜を結晶化させる。但し、トップゲート構造である本実施例6の場合はボトムゲート構造である実施例5と異なり、ゲート電極6のパターンが形成される前の段階で結晶化を行なうため、ガラスなどからなる絶縁基板の収縮については実施例5の場合よりも許容度が大きい。そのため、本実施例6のトップゲート構造ではさらに大出力のレーザ照射装置を用いて結晶化処理を行なうことができる。
(実施例7)
図12は、上記の実施例5又は実施例6の薄膜トランジスタを用いたアクティブマトリクス型表示装置の一例を示す。表示装置120は一対の絶縁基板121,122と両者の間に保持された電気光学物質123とを備えたパネル構造を有する。電気光学物質123としては液晶材料が広く用いられている。下側の絶縁基板121には画素アレイ部124と駆動回路部とが集積形成されている。駆動回路部は垂直駆動回路125と水平駆動回路126とに分かれている。
また、絶縁基板121の周辺部上端には外部接続用の端子部127が形成されている。端子部127は配線128を介して垂直駆動回路125及び水平駆動回路126に接続している。画素アレイ部124には行状のゲート配線129と列状の信号配線130が形成されている。両配線の交差部には画素電極131(15)とこれを駆動する薄膜トランジスタ112(又は112A)が形成されている。薄膜トランジスタ112(又は112A)のゲート電極6は対応するゲート配線129に接続され、ドレイン領域Dは対応する画素電極15に接続され、ソース領域Sは対応する信号配線130に接続している。ゲート配線129は垂直駆動回路125に接続する一方、信号配線130は水平駆動回路126に接続している。
画素電極15をスイッチング駆動する薄膜トランジスタ112(又は112A)及び垂直駆動回路125と水平駆動回路126に含まれる薄膜トランジスタは、本発明に従って作製されたものであり、従来に比較して移動度が高くなっている。従って、駆動回路ばかりでなく更に高性能な処理回路を集積形成することも可能である。
本発明は、半導体装置および液晶、有機EL等の表示装置の回路に組み込まれる薄膜トランジスタを高性能化するために非常に有用である。
(a)は本発明のドットパターン型位相シフタの平面図、(b)は本発明の位相シフタと被照射体を示す側面図、(c)は本発明の位相シフタを用いた場合の被照射体の入射面上におけるレーザ光強度分布図(レーザプロファイル図)。 (a)は本発明の実施例のレーザ光強度分布図(レーザプロファイル図)、(b)は実施例の結晶化開始の際の成長性の結晶核を示す平面模式図、(c)は結晶化の初期段階を示す平面模式図、(d)は結晶化の中期段階を示す平面模式図、(e)は結晶化の最終段階を示す平面模式図。 (a)は比較例のレーザ光強度分布図(レーザプロファイル図)、(b)は比較例の結晶化開始の際の成長性の結晶核を示す平面模式図、(c)はレーザ照射領域の結晶化の初期段階を示す平面模式図、(d)は結晶化の中期段階を示す平面模式図、(e)は結晶化の最終段階を示す平面模式図。 本発明に用いられるプロキシミティ方式のレーザアニール装置の光学系を示す概略構成図。 (a)は本発明の位相シフタの格子配列ドットパターンを模式的に示す概略平面図、(b)は本発明を用いて結晶化された格子配列ドットパターン結晶組織を模式的に示す概略平面図。 (a)は本発明の位相シフタの正三角形配列ドットパターンを模式的に示す概略平面図、(b)は本発明を用いて結晶化された正三角形配列ドットパターン結晶組織を模式的に示す概略平面図。 (a)は本発明のドットパターン型位相シフタを用いて単結晶化したシリコン結晶組織の一例を示すSEM像、(b)は本発明方法を用いて単結晶化したシリコン結晶組織のEBSPマップ像、(c)は(b)から双晶粒界を削除したEBSP面方位マップ像。 (a)は本発明のドットパターン型位相シフタを用いて単結晶化したシリコン結晶組織の他の例を示すSEM像、(b)は本発明方法を用いて単結晶化したシリコン結晶組織のEBSPマップ像、(c)は(b)から双晶粒界を削除したEBSP面方位マップ像。 本発明に用いられる投影方式のレーザアニール装置の光学系を示す概略構成図。 (a)〜(d)は本発明の実施形態に係る薄膜トランジスタ(ボトムゲート型TFT)の製造プロセスを示す工程図。 (a)〜(c)は本発明の他の実施形態に係る薄膜トランジスタ(トップゲート型TFT)の製造プロセスを示す工程図。 本発明の実施形態に係る表示装置の概要を示す斜視図。 (a)は従来のラインアンドスペース型位相シフタの平面図、(b)は従来の位相シフタと被照射体を示す側面図、(c)は従来の位相シフタを用いた場合の被照射体の入射面上におけるレーザ光強度分布図(レーザプロファイル図)。
符号の説明
2…基板、3…バッファ層(下地保護膜)、
4…非晶質半導体層(非単結晶半導体層)、40…キャップ膜、
6…ゲート電極、7…ゲート窒化膜、8…ゲート酸化膜
9…多結晶半導体薄膜、10…ストッパ膜、11…層間絶縁膜
12…パシベーション膜、13…配線電極、14…平坦化層
15…画素電極、20a…下地窒化膜、20b…下地酸化膜、
S…ソース、D…ドレイン、LDD…LDD領域、Ch…チャネル、
31A,31B,31C…ビームプロファイル
P1,P2…レーザ光強度分布のピーク部、
PC1,PC2…レーザ光強度分布のピーク部、
W1,W2…環状領域の直径、
h1…ピークP2の高さ、
h2…ピークPC2の高さ、
32…環状界面(位相シフト境界)
33…結晶核、33A…結晶核、34…内部溶融領域、36…結晶粒界
37…固液界面、38…双晶粒界
50…レーザ光
51…エキシマレーザ発振器(レーザ光源)
52…マスク
53…ホモジナイザ
54a,54b…コンデンサレンズ(凸レンズ)
55…位相シフタ(空間強度変調光学素子)
55a…ドット段差(環状段差)、
56…テレセントリック縮小レンズ
58…XYZθ基板ステージ
59…加熱ヒータ
60…急速熱アニール、
100,100A…レーザアニール装置
101,101A…結晶化装置の光学系、102…光軸、
103…被処理体、
112,112A…薄膜トランジスタ、
120…表示装置、
121…絶縁基板、122…絶縁基板、
123…電気光学物質、124…画素アレイ部、
125…垂直駆動回路、126…水平駆動回路、
127…端子部、128…配線、
129…ゲート配線、130…信号配線、
131…画素電極、
550…L&S位相シフタ、551…L&S位相境界、
t…位相段差

Claims (27)

  1. 非単結晶半導体薄膜 にエネルギ光を照射して結晶化する方法であって、前記エネルギ光の照射により前記非単結晶半導体薄膜を溶融し、この溶融部が凝固する過程で、環状に多数の微小結晶核列が成長し、この環状に成長した多数の微小結晶核列が凝集して単一の成長性結晶核となり、この単一の成長性結晶核を中心として2次元的に放射状に結晶成長させることを特徴とする半導体薄膜の結晶化方法。
  2. エネルギ光の照射により前記非単結晶半導体薄膜を溶融し、この溶融部が凝固する過程で、環状に多数の微小結晶核列が成長し、この結晶核列が凝集して単一の成長性の結晶核となり、この結晶核から放射状に非単結晶半導体薄膜の結晶化が開始し、進行する結晶化過程を経て、内部に双晶粒界のみを含む実質的に単一の大粒径結晶粒を作製することを特徴とする半導体薄膜の結晶化方法。
  3. エネルギ光を非単結晶半導体薄膜 に照射して非単結晶半導体薄膜を溶融し、この溶融部が凝固する過程で結晶化する方法であって、前記エネルギ光は位置に対する光強度分布に傾斜勾配を有し、この傾斜勾配の最小光強度が環状の光強度になっていることを特徴とする半導体薄膜の結晶化方法。
  4. 予め基板に成膜された非単結晶半導体薄膜にエネルギ光を照射して結晶化する方法であって、
    前記非単結晶半導体薄膜の結像面上で、エネルギ光の光軸から所定の直径の環状界面に沿って強度の最小ピークP1が存在し、かつ前記環状界面の内側の領域において中央部の強度がそれを取り囲む周囲近傍部の強度よりも高いピークP2が存在し、かつ前記環状界面の外側の領域において強度が前記光軸に関して軸対称に単調かつ有限に漸増する光強度分布を有するエネルギ光を、所定の周期的な繰り返しパターンとなるように前記非単結晶半導体層に照射し、
    前記光軸の中心近傍に単一の成長性の結晶核が発生し、前記結晶核から放射状に非単結晶半導体薄膜の結晶成長が進行する結晶化過程を経て、内部に双晶粒界のみを含む実質的に単一の大粒径結晶粒のアレイを作製することを特徴とする半導体薄膜の結晶化方法。
  5. 前記ピークP2の高さは、光軸の中心近傍に成長性の結晶核が1つのみ生成される単一核成長臨界強度と等しいか又はそれを下回ることを特徴とする請求項4記載の方法。
  6. 前記環状界面の直径は前記非単結晶半導体薄膜の結像面上で1μm以下であり、かつ前記光軸が4〜20μmのピッチ間隔で周期的な繰り返しパターンに配列されていることを特徴とする請求項4記載の方法。
  7. 前記光軸の周期的な繰り返しパターンの配列を、格子点配列または正三角頂点配列とすることを特徴とする請求項6記載の方法。
  8. 前記光強度分布を形成するために空間強度変調光学素子として機能する位相シフタを光路中に挿入する方法であり、結像面上で4〜20μmの間隔で周期的に規則配列された光強度分布となるように前記位相シフタが複数の位相シフトドットパターン段差を有することを特徴とする請求項4記載の方法。
  9. 前記非単結晶半導体薄膜の上層および下層に絶縁体薄膜を有する基板に、レーザ光を照射して前記半導体薄膜を結晶化することを特徴とする請求項4記載の方法。
  10. エキシマレーザ光を発生させるためのエキシマレーザ発生装置と、発生したレーザ光を分割し均一にするためのホモジナイザと、照射領域を定めるためのマスクと、前記ホモジナイザで分割したレーザ光を前記マスク面の中央部に集めるための凸レンズと、前記マスク面の照射領域を前記非単結晶半導体薄膜の結像面上で縮小した領域にするためのテレセントリック縮小レンズと、前記光強度分布を形成するために空間強度変調光学素子として機能する位相シフタと、基板を支持するXYZ基板ステージと、を具備し、前記ステージ上の基板と前記位相シフタとが近接して配置されたプロキシミティ型結晶化装置を用いて前記非単結晶半導体薄膜を結晶化する方法であって、
    前記位相シフタの位相シフトドットパターン段差の径が1μm以下の正の値であることを特徴とする請求項4記載の方法。
  11. エキシマレーザ光を発生させるためのエキシマレーザ発生装置と、発生したレーザ光を分割し均一にするためのホモジナイザと、照射領域を定めるためのマスクと、前記ホモジナイザで分割したレーザ光を前記マスク面の中央部に集めるための凸レンズと、前記マスク面の照射領域を前記非単結晶半導体薄膜の結像面上で縮小した領域にするためのテレセントリック縮小レンズと、前記光強度分布を形成するために空間強度変調光学素子として機能する位相シフタと、基板を支持するXYZ基板ステージと、を具備し、前記ステージ上の基板と前記位相シフタとが近接して配置されたプロキシミティ型結晶化装置を用いて前記非単結晶半導体薄膜を結晶化する方法であって、
    基板の入射面に照射するレーザ光の平均のフルエンスを650〜950mJ/cmの範囲とすることを特徴とする請求項4記載の方法。
  12. エキシマレーザ光を発生させるためのエキシマレーザ発生装置と、発生したレーザ光を分割し均一にするためのホモジナイザと、照射領域を定めるためのマスクと、前記ホモジナイザで分割したレーザ光を前記マスク面の中央部に集めるための凸レンズと、前記マスク面の照射領域を前記非単結晶半導体薄膜の結像面上で縮小した領域にするためのテレセントリック縮小レンズと、前記光強度分布を形成するために空間強度変調光学素子として機能する位相シフタと、基板を支持するXYZ基板ステージと、を具備し、前記ステージ上の基板と前記位相シフタとが近接して配置されたプロキシミティ型結晶化装置を用いて前記非単結晶半導体薄膜を結晶化する方法であって、
    前記ステージ上の基板と前記位相シフタとの間隔を10〜50μmの範囲とすることを特徴とする請求項4記載の方法。
  13. 前記環状界面は、円環状、方形状、角形状のうちいずれか一つの形状であることを特徴とする請求項1、2、3、4、6のいずれか1項記載の方法。
  14. エキシマレーザ光を発生させるためのエキシマレーザ発生装置と、発生したレーザ光を分割し均一にするためのホモジナイザと、照射領域を定めるためのマスクと、前記ホモジナイザで分割したレーザ光を前記マスク面の中央部に集めるための凸レンズと、前記マスク面の照射領域を前記非単結晶半導体薄膜の結像面上で縮小した領域にするためのテレセントリック縮小レンズと、前記光強度分布を形成するために空間強度変調光学素子として機能する位相シフタと、基板を支持するXYZ基板ステージと、を具備し、前記位相シフタが前記マスク面のところに配置された投影型結晶化装置を用いて前記非単結晶半導体薄膜を結晶化する方法であって、
    前記位相シフタの位相シフトドットパターン段差の径と前記テレセントリック縮小レンズの縮小割合とを掛けた値を1μm以下の正の値とすることを特徴とする請求項4記載の方法。
  15. エキシマレーザ光を発生させるためのエキシマレーザ発生装置と、発生したレーザ光を分割し均一にするためのホモジナイザと、照射領域を定めるためのマスクと、前記ホモジナイザで分割したレーザ光を前記マスク面の中央部に集めるための凸レンズと、前記マスク面の照射領域を前記非単結晶半導体薄膜の結像面上で縮小した領域にするためのテレセントリック縮小レンズと、前記光強度分布を形成するために空間強度変調光学素子として機能する位相シフタと、基板を支持するXYZ基板ステージと、を具備し、前記位相シフタが前記マスク面のところに配置された投影型結晶化装置を用いて前記非単結晶半導体薄膜を結晶化する方法であって、
    基板表面に照射するレーザ光の平均のフルエンスを650〜950mJ/cmの範囲とすることを特徴とする請求項4記載の方法。
  16. エネルギ光を非単結晶半導体薄膜に照射してこの非単結晶半導体薄膜を溶融させ、この溶融部が凝固する過程で結晶化させる装置であって、
    前記非単結晶半導体薄膜を溶融するエネルギ光を出力する光源と、
    この光源のエネルギ光路に設けられ、前記非単結晶半導体薄膜の位置に対する光強度分布に傾斜勾配を有し、この傾斜勾配の最小光強度が環状の光強度の前記エネルギ光を形成する光学系と、
    を具備することを特徴とする半導体薄膜の結晶化装置。
  17. 予め基板に成膜された非単結晶半導体薄膜にエネルギ光を照射して結晶化する装置であって、
    エキシマレーザ光を発生させるためのエキシマレーザ光源と、
    発振レーザ光を分割し均一にするためのホモジナイザと、
    照射領域を定めるためのマスクと、
    前記ホモジナイザで分割したレーザ光を前記マスク面の中央部に集めるための凸レンズと、
    前記マスク面の照射領域を前記非単結晶半導体薄膜の結像面上で縮小した領域にするためのテレセントリック縮小レンズと、
    基板を可動に支持する載置台と、
    前記載置台上の基板に近接して配置され、光強度分布を形成するために光透過面側に周期的な所定の繰り返しパターンに配置された複数の環状段差を有し、空間強度変調光学素子として機能する位相シフタと、
    前記非単結晶半導体薄膜の結像面上で、エネルギ光の光軸から所定の直径の環状界面に沿って強度の最小ピークP1が存在し、かつ前記環状界面の内側の領域において中央部の強度がそれを取り囲む周囲近傍部の強度よりも高いピークP2が存在し、かつ前記環状界面の外側の領域において強度が前記光軸に関して軸対称に単調かつ有限に漸増する光強度分布を有するエネルギ光を、所定の周期的な繰り返しパターンとなるように設定する手段と、
    を具備することを特徴とする半導体薄膜の結晶化装置。
  18. 予め基板に成膜された非単結晶半導体薄膜にエネルギ光を照射して結晶化する装置であって、
    エキシマレーザ光を発生させるためのエキシマレーザ光源と、
    発振レーザ光を分割し均一にするためのホモジナイザと、
    照射領域を定めるためのマスクと、
    前記ホモジナイザで分割したレーザ光を前記マスク面の中央部に集めるための凸レンズと、
    前記マスク面の照射領域を前記非単結晶半導体薄膜の結像面上で縮小した領域にするためのテレセントリック縮小レンズと、
    基板を可動に支持する載置台と、
    前記マスク面のところに配置され、光強度分布を形成するために光透過面側に周期的な所定の繰り返しパターンに配置された複数の環状段差を有し、空間強度変調光学素子として機能する位相シフタと、
    前記非単結晶半導体薄膜の結像面上で、エネルギ光の光軸から所定の直径の環状界面に沿って強度の最小ピークP1が存在し、かつ前記環状界面の内側の領域において中央部の強度がそれを取り囲む周囲近傍部の強度よりも高いピークP2が存在し、かつ前記環状界面の外側の領域において強度が前記光軸に関して軸対称に単調かつ有限に漸増する光強度分布を有するエネルギ光を、所定の周期的な繰り返しパターンとなるように設定する手段と、
    を具備することを特徴とする半導体薄膜の結晶化装置。
  19. 基板上に形成された非単結晶半導体層にレーザ光を照射して結晶化する装置に用いられる位相シフタであって、光透過性の材料からなり、光透過面側に複数の環状段差が周期的な所定の繰り返しパターンに配置されていることを特徴とする位相シフタ。
  20. 前記環状段差の直径を結像面上で1μm以下の環状界面となるようにすることを特徴とする請求項19記載の位相シフタ。
  21. 前記環状段差の周期的なピッチ間隔を結像面上で4〜20μmの範囲のピッチ間隔となるようにすることを特徴とする請求項19記載の位相シフタ。
  22. 前記環状段差の周期的な繰り返しパターンを正方格子点配列または正三角形頂点配列とすることを特徴とする請求項19記載の位相シフタ。
  23. 絶縁基板上に形成されたソース、ドレイン、チャネル領域を含む半導体薄膜と、前記半導体薄膜の上に設けられたゲート絶縁膜と、前記ゲート絶縁膜を介して前記半導体薄膜の上に設けられたゲート電極とを具備するトップゲート型の薄膜トランジスタであって、
    前記半導体薄膜の結晶組織が円形状結晶粒または多角形状結晶粒を含む繰り返しパターンからなり、かつ前記結晶組織の中心が平面視野内で所定ピッチ間隔の正方格子点または正三角形頂点に位置するように周期配列され、かつ前記チャネル領域の結晶組織の内部に実質的に結晶粒界を含まないか、または双晶粒界のみを含むことを特徴とする薄膜トランジスタ。
  24. 前記円形状結晶粒または多角形状結晶粒の横方向成長長さが4〜10μmであることを特徴とする請求項23記載の薄膜トランジスタ。
  25. 絶縁基板上に形成されたゲート電極と、前記ゲート電極の上に設けられたゲート絶縁膜と、ソース、ドレイン、チャネル領域を含み、前記ゲート絶縁膜を介して前記ゲート電極を覆うように設けられた半導体薄膜とを具備するボトムゲート型の薄膜トランジスタであって、
    前記半導体薄膜の結晶組織が円形状結晶粒または多角形状結晶粒を含む繰り返しパターンからなり、かつ前記結晶組織の中心が平面視野内で所定ピッチ間隔の正方格子点または正三角形頂点に位置するように周期配列され、かつ前記チャネル領域の結晶組織の内部に実質的に結晶粒界を含まないか、または双晶粒界のみを含むことを特徴とする薄膜トランジスタ。
  26. 前記円形状結晶粒または多角形状結晶粒の横方向成長長さが4〜10μmであることを特徴とする請求項25記載の薄膜トランジスタ。
  27. 所定の間隙を介して互いに接合した一対の基板と、該間隙に保持された電気光学物質とを有し、一方の基板には対向電極を形成し、他方の基板には画素電極及びこれを駆動する薄膜トランジスタを形成し、該薄膜トランジスタは、ソース、ドレイン、チャネル領域を含む半導体薄膜と、ゲート絶縁膜と、ゲート電極とを具備する表示装置であって、
    前記半導体薄膜の結晶組織が円形状結晶粒または多角形状結晶粒を含む繰り返しパターンからなり、かつ前記結晶組織の中心が平面視野内で所定ピッチ間隔の正方格子点または正三角形頂点に位置するように周期配列され、かつ前記チャネル領域の結晶組織の内部に実質的に結晶粒界を含まないか、または双晶粒界のみを含むことを特徴とする表示装置。
JP2003327890A 2003-09-19 2003-09-19 半導体薄膜の結晶化方法、結晶化装置、位相シフタ、薄膜トランジスタおよび表示装置 Abandoned JP2005093884A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003327890A JP2005093884A (ja) 2003-09-19 2003-09-19 半導体薄膜の結晶化方法、結晶化装置、位相シフタ、薄膜トランジスタおよび表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003327890A JP2005093884A (ja) 2003-09-19 2003-09-19 半導体薄膜の結晶化方法、結晶化装置、位相シフタ、薄膜トランジスタおよび表示装置

Publications (1)

Publication Number Publication Date
JP2005093884A true JP2005093884A (ja) 2005-04-07

Family

ID=34457635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003327890A Abandoned JP2005093884A (ja) 2003-09-19 2003-09-19 半導体薄膜の結晶化方法、結晶化装置、位相シフタ、薄膜トランジスタおよび表示装置

Country Status (1)

Country Link
JP (1) JP2005093884A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270726A (ja) * 2007-03-23 2008-11-06 Advanced Lcd Technologies Development Center Co Ltd 結晶化装置、結晶化方法、デバイス、および光変調素子
JPWO2007032128A1 (ja) * 2005-09-16 2009-03-19 シャープ株式会社 薄膜トランジスタ
US8946895B2 (en) 2008-02-28 2015-02-03 Renesas Electronics Corporation Semiconductor device, manufacturing method of semiconductor device, semiconductor manufacturing and inspecting apparatus, and inspecting apparatus
CN112782203A (zh) * 2021-02-22 2021-05-11 长江存储科技有限责任公司 一种晶相结构的判断方法及晶相标定模板

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007032128A1 (ja) * 2005-09-16 2009-03-19 シャープ株式会社 薄膜トランジスタ
JP2008270726A (ja) * 2007-03-23 2008-11-06 Advanced Lcd Technologies Development Center Co Ltd 結晶化装置、結晶化方法、デバイス、および光変調素子
US8946895B2 (en) 2008-02-28 2015-02-03 Renesas Electronics Corporation Semiconductor device, manufacturing method of semiconductor device, semiconductor manufacturing and inspecting apparatus, and inspecting apparatus
US9362184B2 (en) 2008-02-28 2016-06-07 Renesas Electronics Corporation Semiconductor device, manufacturing method of semiconductor device, semiconductor manufacturing and inspecting apparatus, and inspecting apparatus
CN112782203A (zh) * 2021-02-22 2021-05-11 长江存储科技有限责任公司 一种晶相结构的判断方法及晶相标定模板
CN112782203B (zh) * 2021-02-22 2024-02-20 长江存储科技有限责任公司 一种晶相结构的判断方法及晶相标定模板

Similar Documents

Publication Publication Date Title
JP4403599B2 (ja) 半導体薄膜の結晶化方法、レーザ照射装置、薄膜トランジスタの製造方法及び表示装置の製造方法
KR20070094527A (ko) 결정화방법, 박막트랜지스터의 제조방법, 박막 트랜지스터,표시장치, 반도체장치
KR100492152B1 (ko) 실리콘 결정화방법
JP2004335839A (ja) 半導体薄膜、薄膜トランジスタ、それらの製造方法および半導体薄膜の製造装置
TWI389316B (zh) 薄膜電晶體、半導體裝置、顯示器、結晶化方法及製造薄膜電晶體方法
US5183780A (en) Method of fabricating semiconductor device
EP1744350B1 (en) A method of making a polycrystalline thin film
JP3859978B2 (ja) 基板上の半導体材料膜に横方向に延在する結晶領域を形成する装置
US7897946B2 (en) Crystallization apparatus, crystallization method, device, and light modulation element
KR20040028613A (ko) 박막 반도체장치 및 그 제조방법
KR100660814B1 (ko) 박막트랜지스터의 반도체층 형성방법
JP2005093884A (ja) 半導体薄膜の結晶化方法、結晶化装置、位相シフタ、薄膜トランジスタおよび表示装置
JP2005285827A (ja) 半導体薄膜の結晶化方法並びに結晶化装置、薄膜トランジスタ、およびこの薄膜トランジスタを使用した表示装置
JP2007281465A (ja) 多結晶膜の形成方法
JP5117000B2 (ja) 薄膜トランジスタ及び半導体装置
KR100860007B1 (ko) 박막트랜지스터, 박막트랜지스터의 제조방법, 이를 구비한유기전계발광표시장치 및 그의 제조방법
JP2005093883A (ja) 半導体薄膜の結晶化方法、結晶化装置、位相シフタ、薄膜トランジスタおよび表示装置
JP2005285826A (ja) 半導体薄膜の結晶化方法並びに結晶化装置、薄膜トランジスタ、およびこの薄膜トランジスタを使用した表示装置
KR20030015617A (ko) 결정질 실리콘의 제조방법
JP2006049480A (ja) 結晶化装置、結晶化方法、および位相変調素子
US7485505B2 (en) Thin-film transistor, method for manufacturing thin-film transistor, and display using thin-film transistors
KR100496138B1 (ko) 실리콘 결정화방법
JP2008243843A (ja) 結晶化方法、薄膜トランジスタの製造方法、レーザ結晶化用基板、薄膜トランジスタおよび表示装置
JP2006049481A (ja) 結晶化装置、結晶化方法、および位相変調素子
JP2009194348A (ja) 半導体製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20090408