JP2005082868A - エアロゾル発生装置及びそれを備えた複合構造物作製装置 - Google Patents

エアロゾル発生装置及びそれを備えた複合構造物作製装置 Download PDF

Info

Publication number
JP2005082868A
JP2005082868A JP2003317912A JP2003317912A JP2005082868A JP 2005082868 A JP2005082868 A JP 2005082868A JP 2003317912 A JP2003317912 A JP 2003317912A JP 2003317912 A JP2003317912 A JP 2003317912A JP 2005082868 A JP2005082868 A JP 2005082868A
Authority
JP
Japan
Prior art keywords
powder
aerosol
wall surface
container
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003317912A
Other languages
English (en)
Other versions
JP4029347B2 (ja
Inventor
Kozo Fujita
幸三 藤田
Junji Hiraoka
純治 平岡
Tatsuro Yokoyama
達郎 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2003317912A priority Critical patent/JP4029347B2/ja
Publication of JP2005082868A publication Critical patent/JP2005082868A/ja
Application granted granted Critical
Publication of JP4029347B2 publication Critical patent/JP4029347B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

【課題】 安定した濃度で長時間エアロゾルを発生させることが可能であり、かつ圧粉粗大粒子を含まないエアロゾルを発生させることが可能なエアロゾル発生装置を提供する。【解決手段】 エアロゾルを基材に向けてノズルより噴射して、前記エアロゾルを前記基板表面に衝突させ複合構造物を作製する装置に用いるエアロゾル発生装置であって、該エアロゾル発生装置が、前記脆性材料の微粒子からなる粉体を収容する粉体収容部と、前記粉体収容部を重力方向に対して傾斜した軸周りに回転させる回転手段と、前記粉体をガス中に分散させるエアロゾル化部とを備え、前記回転手段による前記粉体収容部の回転によって、前記粉体の一部が前記粉体収容部の壁面に保持されて、該保持された粉体が前記エアロゾル化部へ供給されることとした。
【選択図】 図3

Description

本発明は、粉体をガス中に分散させてエアロゾルを発生させるエアロゾル発生装置に係り、特に脆性材料の微粒子をガス中に分散させたエアロゾルを基板に吹き付け、微粒子の構成材料からなる構造物を基板上に形成させる複合構造物作製装置に好適なエアロゾル発生装置に関する発明である。
基材表面に脆性材料を主体とする構造物を形成させる方法として、エアロゾルデポジション法と呼ばれる手法が認知されている。これは脆性材料などの微粒子をガス中に分散させたエアロゾルをノズルから基材に向けて噴射し、金属やガラス、セラミックスやプラスチックなどの基材に微粒子を衝突させ、この衝突の衝撃により脆性材料微粒子を変形あるいは破砕させてこれらを接合させ、基材上に微粒子の構成材料からなる構造物をダイレクトで形成させることを特徴としており、特に加熱手段を必要としない常温で構造物が形成可能なプロセスにて、焼成体同等の機械的強度を保有する構造物を得ることができる。この方法に用いられる装置は、基本的にエアロゾルを発生させるエアロゾル発生器と、エアロゾルを基材に向けて噴射するノズルとからなり、ノズルの開口よりも大きな面積で構造物を作製する場合には、基材とノズルを相対的に移動・揺動させる位置制御手段を有し、減圧下で作製を行う場合には構造物を形成させるチャンバーと真空ポンプを有し、またエアロゾルを発生させるためのガス発生源を有することが一般的である。
エアロゾルデポジション法のプロセス温度は常温であり、微粒子材料の融点より十分に低い温度、すなわち数百℃以下で構造物形成が行われるところにひとつの特徴がある。
また、使用される微粒子はセラミックスや半導体などの脆性材料を主体とし、異種の脆性材料微粒子を混合させたり、複合させて用いることが可能であり、また一部金属材料や有機物材料などを脆性材料微粒子に混合させたり、脆性材料微粒子表面にコーティングさせて用いることも可能である。これらの場合でも構造物形成の主となるものは脆性材料である。
この手法によって形成される構造物において、結晶性の脆性材料微粒子を原料として用いる場合、その構造物の脆性材料部分は、その結晶子サイズが原料微粒子のそれに比べて小さい多結晶体であり、その結晶は実質的に結晶配向性がない場合が多く、脆性材料結晶同士の界面にはガラス層からなる粒界層が実質的に存在しないと言え、さらに構造物の一部は基材表面に食い込むアンカー層を形成することが多いという特徴がある。
この方法により形成される構造物は、微粒子同士が圧力によりパッキングされ、物理的な付着で形態を保っている状態のいわゆる圧粉体とは明らかに異なり、十分な強度を保有している。
この構造物形成において、脆性材料微粒子が破砕・変形を起していることは、原料として用いる脆性材料微粒子および形成された脆性材料構造物の結晶子サイズをX線回折法で測定することにより判断できる。すなわちエアロゾルデポジション法で形成される構造物の結晶子サイズは、原料微粒子の結晶子サイズよりも小さくなっていることに大きな特徴がある。微粒子が破砕や変形をすることで形成されるずれ面や破面には、もともと内部に存在し別の原子と結合していた原子が剥き出しの状態となった新生面が形成される。この表面エネルギーが高い活性な新生面が、隣接した脆性材料表面や同じく隣接した脆性材料の新生面あるいは基板表面と接合することにより構造物が形成されるものと考えられる。また微粒子の表面に水酸基が程よく存在する場合では、微粒子の衝突時に微粒子同士や微粒子と構造物との間に生じる局部のずり応力により、メカノケミカルな酸塩基脱水反応が起き、これら同士が接合するということも考えられる。外部からの連続した機械的衝撃力の付加は、これらの現象を継続的に発生させ、微粒子の変形、破砕などの繰り返しにより接合の進展、緻密化が行われ、脆性材料構造物が成長するものと考えられる。
本件で使用する語句の説明を以下におこなう。
本発明において微粒子とは、一次粒子が緻密質粒子である場合は、粒度分布測定や走査型電子顕微鏡で同定される平均粒径が5ミクロン以下であるものを言う。また一次粒子が衝撃によって破砕されやすい多孔質粒子である場合は、平均粒径が50ミクロン以下であるものを言う。粉体とは上述の微粒子が自然凝集した状態を言う。
本発明においてエアロゾルとは、ヘリウム、窒素、アルゴン、酸素、乾燥空気、これらの混合ガスなどのガス中に前述の微粒子を分散させたものであり、一次粒子が分散している状態が望ましいが、通常はこの一次粒子が凝集した凝集粒を含む。
本発明においてノズルとは、エアロゾルが通過する空間を持つノズル本体と、エアロゾルを導入するための導入開口と、エアロゾルを噴射させるための導出開口を有する硬質の構成部であり、所望の構造物形態を獲得するために、ノズル本体の空間形状と、導出開口の形状に工夫を持たせて、エアロゾルを整流して噴出状態を制御するものである。
さて、安定に一定の粉末をキャリヤガスとともにプラズマ中に供給し、予め配置されている試料に粉末を蒸着するシステムにおける粉末供給装置が提案されている。(特許文献1参照)
その装置構成は図16に示す通りであり、中心から所定の位置の円周上に突起した溝46が形成された回転可能な粉末供給盤45と、粉末供給盤45の上に載置され、粉末41を粉末供給盤45に形成された溝46に落とし込むための気密性の粉末容器を備えている。粉末容器内には粉末を撹拌させる回転可能な撹拌体42を備えている。また、粉末容器の上部から入ってくる圧縮ガスの出口を粉末供給盤45の一端に形成された粉末供給部48に設け、前記圧縮ガスの出口をシリンダ内に設けた極細い円筒状の穴とし、この圧縮ガスが外部に排出されるときに発生する吸引力により粉体を外部にガスと共に排出するように構成されている。
しかしながら、上述の粉体供給装置をエアロゾルデポジション法でのエアロゾル発生装置として使用すると以下のような問題を生じた。
粉体が撹拌体によって撹拌される際に圧縮力を受けるため、例えば金属酸化物微粒子のような圧粉性の強い粉体では多数の圧粉された粗大粒子を生じてしまう。その圧粉粗大粒子が粉末供給盤の溝に入ると粉末供給部へ移動してガスと共に排出されたり、あるいは極細い円筒状の穴である粉末供給部出口で詰まりを生じた。圧粉粗大粒子は自然凝集粒子と比較して強固に押し固められているため、基材と衝突するまでの過程で解砕され難く、またその大きさと重さのためガスの流れによって十分な速度エネルギを得ることができない。従って、圧粉粗大粒子がエアロゾル内に混入して基材と衝突すると、強固かつ緻密な構造物になることができずに構造物内の欠陥となってしまう。
また、粉末供給盤の溝に粉体を落とし込む際にも粉体は撹拌体によって圧縮力を受ける。その結果、溝表面と粉体との固着が徐々に進行し、粉末供給部へ運搬されてきた時に吸引力で溝から吸引される粉体も徐々に少なくなってエアロゾルの濃度が徐々に低下し、更には全く粉体をエアロゾル化できなくなるという問題を生じた。
特開平5−239627号公報
本発明は上記問題を解決するためになされたもので、本発明の課題は、安定した濃度で長時間エアロゾルを発生させることが可能であり、かつ圧粉粗大粒子を含まないエアロゾルを発生させることが可能なエアロゾル発生装置を提供することである。
上記目的を達成するために請求項1記載の発明のよれば、脆性材料の微粒子をガス中に分散させたエアロゾルを基材に向けてノズルより噴射して、前記エアロゾルを前記基板表面に衝突させ、この衝突の衝撃によって前記微粒子を破砕・変形させて接合させ、前記微粒子の構成材料からなる構造物を前記基材上に形成させる複合構造物作製装置に用いるエアロゾル発生装置であって、該エアロゾル発生装置が、前記脆性材料の微粒子からなる粉体を収容する粉体収容部と、前記粉体収容部を重力方向に対して傾斜した軸周りに回転させる回転手段と、前記粉体をガス中に分散させるエアロゾル化部とを備え、前記回転手段による前記粉体収容部の回転によって、前記粉体の一部が前記粉体収容部の壁面に保持されて、該保持された粉体が前記エアロゾル化部へ供給されることを特徴とする。
これによって、回転する粉体収容部内の粉体のほとんどは重力によって下方にとどまるとともに、粉体収容部内の側板または底板などの壁面に保持された一部の粉体がエアロゾル化部へと供給される。この方法によれば粉体の撹拌機構やすり切り機構が不要であり、圧縮力を加えることなく粉体を供給できるので、粉体が装置に固着してエアロゾル濃度が不安定になることがない。また、粉体に圧縮力を加えないので圧粉粗大粒子を生じることもない。更に、粉体収容部の回転速度を変化させることによって、エアロゾル濃度を制御することができる。
また、請求項2記載の発明のよれば、脆性材料の微粒子をガス中に分散させたエアロゾルを基材に向けてノズルより噴射して、前記エアロゾルを前記基板表面に衝突させ、この衝突の衝撃によって前記微粒子を破砕・変形させて接合させ、前記微粒子の構成材料からなる構造物を前記基材上に形成させる複合構造物作製装置に用いるエアロゾル発生装置であって、該エアロゾル発生装置が、前記脆性材料の微粒子からなる粉体を収容する粉体収容部と、前記粉体収容部に収容された前記粉体にその一部が接するように配置される粉体供給部と、前記粉体供給部を重力方向に対して傾斜した軸周りに回転させる回転手段と、前記粉体をガス中に分散させるエアロゾル化部とを備え、前記回転手段による前記粉体供給部の回転によって、前記粉体の一部が前記粉体供給部の壁面に保持されて、該保持された粉体が前記エアロゾル化部へ供給されることを特徴とする。
これによって、粉体収容部内の粉体のほとんどは重力によって下方にとどまるとともに、粉体供給部の壁面に保持された一部の粉体がエアロゾル化部へと供給される。この方法によれば、請求項1記載の発明の効果に加えて、粉体収容部を回転させる請求項1記載の発明よりも回転手段に必要とされる動力を小さくできる。
また、請求項3記載の発明のよれば、前記粉体の保持が前記粉体収容部の壁面と粉体との摩擦力によるもの、あるいは前記粉体供給部の壁面と粉体との摩擦力によるものであることを特徴とする。
これによって、略一定量の粉体を連続してエアロゾル化部へ供給できるので、一定濃度のエアロゾルを発生させることができる。また、摩擦力に影響を与える表面の粗さを変更することにより、粉体の分級も可能になる。更に、粉体収容部に投入する粉体に圧粉粗大粒子が混入していても、壁面の摩擦力によって粉体を保持分離する際に圧粉粗大粒子が強制的に落下せしめられるので、圧粉粗大粒子がエアロゾル化部へ供給されることがない。
また、請求項4記載の発明のよれば、前記粉体の保持が前記粉体収容部の壁面あるいは前記粉体供給部の壁面に形成された少なくとも一つ以上の突起や窪みによるものであることを特徴とする。
これによって、壁面の摩擦力によって保持し難い粉体、例えば壁面との摩擦力が極めて弱い粉体であっても確実に供給できる。また、壁面との摩擦力が時間と共に変化する粉体であっても、安定した濃度で長時間エアロゾルを発生させることができる。
また、請求項5記載の発明のよれば、前記粉体の保持が前記粉体収容部の壁面あるいは前記粉体供給部の壁面に付与された静電気による吸着力によるものであることを特徴とする。
これによって、壁面の摩擦力によって保持し難い粉体、例えば壁面との摩擦力が極めて弱い粉体であっても確実に供給できる。また、壁面との摩擦力が時間と共に変化する粉体であっても、安定した濃度で長時間エアロゾルを発生させることができる。
また、請求項6記載の発明のよれば、前記エアロゾル化部が少なくともガス導入部とエアロゾル導出部で構成され、前記粉体収容部の壁面あるいは前記粉体供給部の壁面に保持されて移動してきた前記粉体に、前記ガス導入部から導入されたガスを吹付けて分散させるとともに、前記エアロゾル導出部から導出させることを特徴とする。
これによって、エアロゾル化部での重力分級効果が加わるので、より確実に粗大粒子を含まない微粒子からなるエアロゾルを発生させることができる。すなわち、ガスを吹付けられて分散した粉体は、より微粒なものほど鉛直上方へ舞い上がるので、エアロゾル導出部の高さを適切に設定することにより微粒子のみを選択導出できる。
また、請求項7記載の発明のよれば、前記粉体を保持させる部分に振動を加える加振手段を備えたことを特徴とする。
これによって、何らかの不具合で大量の粉体が保持されてしまった場合でも、振動によって落下が促進されるので、エアロゾル化部へ大量の粉体が供給されることなく安定した濃度でエアロゾルを発生させることができる。
また、請求項8記載の発明のよれば、前記エアロゾル発生装置において、前記粉体収容部に前記粉体を追加補充する粉体補充手段を備えたことを特徴とする。
これによって、長時間エアロゾルを発生するにあたり、粉体を追加補充するために装置を停止する必要がない。あるいは予め大量の粉体を収容するために粉体収容部を大型にする必要がない。また、回転する粉体収容部あるいは粉体供給部との摩擦によって性状が変化し易い粉体の場合にも、摩擦を受ける時間が短くなるので有利である。
また、請求項9記載の発明のよれば、エアロゾル発生装置と、エアロゾルを基材に吹き付けるためのノズルを備える複合構造物作製装置であって、エアロゾル発生装置として請求項1〜8記載のエアロゾル発生装置を備えることを特徴とする。
これによって、安定した濃度で長時間エアロゾルを発生させることができるので、物性ばらつきの少ない複合構造物を効率良く作製することができる。また、圧粉粗大粒子を生じることがないので、圧粉粗大粒子がエアロゾル内に混入して複合構造物に欠陥を生じることがない。
本発明によれば、安定した濃度で長時間エアロゾルを発生させることができる。その結果、物性ばらつきの少ない複合構造物を効率良く作製することができる。また、圧粉粗大粒子を生じることがない。その結果、圧粉粗大粒子がエアロゾル内に混入して複合構造物に欠陥を生じることがない。
以下、発明を実施するための最良の形態を図面により詳細に説明する。
まず、本発明によるエアロゾル発生器を備えた複合構造物作製装置の一般的な構成例について図1を用いて説明する。窒素を内蔵するガスボンベ51はホース状の搬送管52を介してエアロゾル発生器53に連結され、さらに搬送管52を通じて構造物形成室54内に円形の導入部と矩形の開口を持つ開口部を備えたノズル55が設置される。図示されない制御手段によって、上下(Z)、前後左右(XY)に制動できる基板ホルダ57に基材56がノズル55に対向して配置される。構造物形成室54は排気ポンプ58に接続されている。
また、ノズル55と基材56の間にエアロゾル濃度を測定するためのセンサ装置61を配置し、センサ装置61から出力される信号は、フィードバック制御回路62へ送られ、そして処理され、エアロゾル発生器53やガスボンベ51それぞれの制御部へ配線63を通って送られ、エアロゾル濃度を制御するように、また、基材に衝突するエアロゾルの量を任意量供給するように制御を行う。
次に、本発明によるエアロゾル発生器の一つの形態について、その構成を説明する。図2は本発明によるエアロゾル発生器の外観図である。真空容器71は円盤状の真空容器天板72および真空容器底板73と円筒状の真空容器胴体74で構成され、各々はOリング75を介して気密に締結されるとともに、真空容器天板72と真空容器胴体74は必要に応じて容易に着脱可能となっている。前記真空容器71は真空容器ホルダ76を介して支柱77に支えられており、支柱77はベースプレート78に固定されている。真空容器71はX軸周りに回転自在であるとともに、図示されない機構によって任意の角度で固定できるようになっている。
図3は、図2において真空容器71を鉛直方向と45°をなす角度で固定した時のA−A断面図である。真空容器71には粉体79を収納する粉体収容部となる粉体容器80が格納されており、粉体容器80は円盤状の粉体容器底板81とその外周に立ち壁を形成する粉体容器側板82と前記粉体容器底板81の中央部に配置されるシャフトホルダ83を締結することによって構成されている。シャフトホルダ83の内側にはシャフト84の一端と勘合する窪みが形成されており、これによって粉体容器80がシャフト84の一端に着脱可能となっている。また、図示されない滑り防止機構によってシャフト84と粉体容器80がY軸周りに一体となって回転するようになっている。シャフト84はベアリング85を介してベアリングホルダ86に保持され、ベアリングホルダ86はOリング87を介して真空容器底板73の中央部に気密に締結されている。これによって、略円筒形状をなす真空容器71とシャフト84の中心軸が略一致するように両者が配設される。なお、シャフト84とベアリングホルダ86間にはシール部材88が介在しており、シャフト84をY軸周りに回転させても真空容器71内の気密を損なうことは無い。シャフト84の他端はタイミングプーリ89とタイミングベルト90を介してモータ91につながっており、これらの回転手段によって粉体収容部となる粉体容器80を重力方向に対して傾斜したY軸まわりに任意の回転速度で回転させることが可能である。モータ91はアクチュエータ取付板92に締結され、アクチュエータ取付板92は真空容器底板73に締結されている。アクチュエータ取付板92には加振手段となるエアシリンダ93も配設されており、図示されない制御・駆動手段によってエアシリンダ93を駆動することによって、任意の周期および力でシャフト84の端面を叩くことが可能である。その結果、シャフト84の他端に保持された粉体容器80にY軸方向の振動を加えることができる。
図4は、図3に示すエアロゾル化部94のB−B断面図である。エアロゾル化部94はガス導入部となるガス導入管95とエアロゾル導出部となるエアロゾル導出管96とエアロゾル発生カップ97とで構成される。ガス導入管95の一端は真空容器天板72に配設されたジョイント98を介して搬送管52およびガスボンベ51に連結され、他端であるガス導入口99は粉体容器底板81近傍でエアロゾル導出管96方向に曲げられている。エアロゾル導出管96の一端であるエアロゾル導出口100は粉体容器底板81の上方に位置し、他端は真空容器天板72に配設されたジョイント101を介して搬送管52およびノズル55に連結されている。エアロゾル発生カップ97は一端が真空容器天板72に締結されており、他端は粉体容器底板81とわずかな隙間を持つとともに窪みを有している。この窪みと粉体容器底板81によってエアロゾル発生空間102が形成されている。また、そのエアロゾル発生空間102内に前記ガス導入口97と前記エアロゾル導出口98が位置している。なお、エアロゾル化部94は真空容器天板72に固定されているので粉体容器80を回転させても移動することはない。
次に、これまで述べてきた構成からなる本発明によるエアロゾル発生器の一つの形態について、その動作を説明する。シャフト84の回転軸(Y軸)が重力方向に対して所望の角度で傾斜するように真空容器71をセットする。真空容器71の真空容器天板72を開け粉体容器80内に粉体79を投入する。あるいは予め粉体79を収納した粉体容器80をシャフト84の一端に挿入し、前記滑り防止機構を作動させる。真空容器天板72を閉めた後、排気ポンプ58によって排気を開始すると、構造物形成室54とノズル55と搬送管52を通じて連結されている真空容器71の内部が減圧される。所定圧力まで減圧されたらガスを所定流量で流す。真空容器71と構造物形成室54の圧力が一定になった後、モータ91を所定回転速度で回転させると共にエアシリンダ93を駆動して粉体容器80に振動を与える。これによって略一定量の粉体がエアロゾル化部94へ送られる。
ここで、本実施形態による粉体の供給原理について詳しく説明する。まず、シャフト84の回転軸が重力方向となす角度(以下傾斜角度αと呼ぶ)の役割について説明する。図5〜図7は傾斜角度αを変化させた時の粉体の動きの違いを示した図であり、予め真空容器天板72をはずしてある。図5は傾斜角度αが小さい場合の粉体の動きを示した図である。傾斜角度αが小さい場合、粉体容器80を回転させると内部の粉体79は粉体容器80と共に回転するだけである。図6は傾斜角度αが大きい場合の粉体の動きを示した図である。傾斜角度αが大きい場合、粉体容器80を回転させると内部の粉体79は粉体容器80と共に回転しようとするものの、重力によってC部で崩壊して下方へ落下を繰り返す結果、粉体79はその場にとどまり対流運動を続ける状態となる。傾斜角度αを図5の状態より大きく、かつ図6の状態より小さい適当な角度に設定すると、大半の粉体はその場にとどまり対流運動を続けるとともに、一部の粉体が粉体容器底板81の壁面に摩擦力によって保持されて移動する状態、すなわち図7に示す状態となる。本発明はこの現象を利用して略一定量の粉体をエアロゾル化部94へ連続的に供給するものである。
図7に示した粉体供給方法について、図8を用いて更に詳しく説明する。図8は、図7におけるG部のD−D断面である。粉体容器底板81の壁面と接していない粉体粒子Eには、重力による落下力と粉体粒子間摩擦力が作用する。傾斜角度αを大きくするにつれて落下力は大きく、粉体粒子間摩擦力は小さくなるので、落下力>粉体粒子間摩擦力となる傾斜角度で粉体粒子Eは落下する。同様に、粉体容器底板81の壁面と接する粉体粒子Fには、重力による落下力と粉体粒子−壁面間摩擦力が作用する。傾斜角度αを大きくするにつれて落下力は大きく、粉体粒子−壁面間摩擦力は小さくなり、落下力>粉体粒子−壁面間摩擦力となる傾斜角度で粉体粒子Fは落下する。そこで、粉体粒子−壁面間摩擦力>落下力>粉体粒子間摩擦力なる状態を作り出すことにより、粉体容器底板81の壁面上に粉体の一部を保持した状態、すなわち図7の状態を作り出すことができる。
粉体粒子−壁面間摩擦力>落下力>粉体粒子間摩擦力なる状態を作り出すにあたり、まず、同一の傾斜角度で、粉体粒子−壁面間摩擦力>粉体粒子間摩擦力となるようにする。同一の傾斜角度であれば、粉体粒子間摩擦力は粉体の性状によって決まるので、その粉体粒子間摩擦力より粉体粒子−壁面間摩擦力が大きくなるようにすれば良い。例えば、壁面との摩擦を生じ難い粉体の場合には、粉体容器底板81の材質に粉体との摩擦を生じやすいものを選定し、粉体と接する壁面を粗くすれば粉体粒子−壁面間摩擦力を大きくすることができる。同一の傾斜角度で粉体粒子−壁面間摩擦力>粉体粒子間摩擦力なる状態を作り出せたら、傾斜角度αを調整することによって、粉体粒子−壁面間摩擦力>落下力>粉体粒子間摩擦力なる状態を作り出すことは容易である。従って、粉体粒子−壁面間摩擦力が粉体粒子間摩擦力よりも大きいほど、図7の状態を生み出せる傾斜角度αの範囲は広くなる。
例えば、平均1次粒径0.4ミクロンのアルミナ粉体を用いて、粉体容器底板81の粉体と接する面に#400のサンドペーパを貼り付けた場合、傾斜角度αが35〜60度の範囲で粉体を分離・保持することができ、より安定した分離・保持が可能なのは40〜55度の範囲であった。同じ粉体を使用し、粉体容器底板81を表面粗さRa0.17ミクロンのアルミ板とした場合、傾斜角度αが32〜42度の範囲で粉体を供給することができ、より安定した供給が可能なのは34〜40度の範囲であった。更に、粉体容器底板81を表面粗さRa0.05ミクロンのステンレス板とした場合、傾斜角度αが32〜40度の範囲で粉体を供給することができ、より安定した供給が可能なのは34〜38度の範囲であった。
摩擦力の生じ難い粉体の場合は、粉体容器底板81の粉体と接する壁面をショットブラストによって粗くしても良い。摩擦力の生じ易い粉体の場合、あるいは壁面への付着性が高い粉体の場合は、粉体容器底板81の粉体と接する壁面にフッ素処理をしたり、あるいは粉体容器底板81自体をフッ素樹脂で製作しても良い。
本粉体供給方法においては、圧縮力を加えることなく粉体を定量供給するので、粉体が装置に固着することがなく、安定した濃度で長時間エアロゾルを発生させることができる。また、圧縮力を加えることなく粉体を供給するので、圧粉粗大粒子を生じることがない。更に、エアロゾル発生器に投入する粉体に圧粉粗大粒子が混入していても、圧粉粗大粒子がエアロゾル化部へ供給されない効果がある。図9は混入した圧粉粗大粒子の動きを表す模式図である。圧粉粗大粒子はその大きさのために、周囲の粒子の落下にともなって落下方向の力を受け、そのほとんどが強制的に落下せしめられる。その結果、圧粉粗大粒子が粉体容器底板81の壁面に保持されたままエアロゾル化部へ供給されることはない。
更に、本粉体供給方法においては、加振手段となるエアシリンダ93によって粉体容器80に振動を加えている。何らかの不具合によって粉体79が十分に落下せず、粉体容器底板81上に多くの粉体が残ってしまった場合でも、この振動によって落下が促進されるので、エアロゾル化部へ大量の粉体が供給されることなく安定した濃度でエアロゾルを発生させることができる。なお、本実施例では加振手段としてエアシリンダを用いてY軸方向の振動を発生させているが、電磁石を用いたバイブレータや不釣合いを持った物体をモータで回転させて振動を発生させても良く、振動の方向もY軸方向に限られるものではない。
次にエアロゾル化部94の動作について図4を用いて説明する。粉体容器底板81の壁面に保持されてエアロゾル化部94へ移動してきた粉体は、その一部がガス導入口99から噴出するガスによって主にエアロゾル発生空間102で巻上げられてエアロゾル化される。発生したエアロゾルはエアロゾル導出口100から吸い出されて、搬送管52およびノズル55を経由して構造物形成室54内で基材56に高速で吹き付けられる。本実施例では、粉体容器80の回転速度を変化させることにより単位時間あたりの粉体供給量を任意に変えることができ、その結果エアロゾル濃度を任意に変えることができる。また、エアロゾル導出口100の高さを任意に設定することでエアロゾルの重力分級効果を得ることができる。すなわち、より微粒の粉体ほどより高く巻上げられるので、エアロゾル導出口100を適切な高さに配設することにより、微粒の粉体からなるエアロゾルを発生させることができる。
図10は重力分級効果が不要な場合のエアロゾル化部の実施例である。ガスは真空容器天板72に向けて噴出しているので、粉体容器底板81の壁面に保持されてきた粉体を直接吹き飛ばすことは無い。エアロゾル導出口100を粉体容器底板81に近接して設置してあるので、粉体容器底板81の壁面に保持されて移動してくる粉体の一部がガスと共にエアロゾル導出口100から吸い出される。これにより、一旦ガスによって巻上げた粉体を吸い出す前者の方法と比べ、より濃度の安定したエアロゾルを発生させることができる。
図11は、傾斜角度αを90°とした場合の実施例である。傾斜角度αを90°とした場合でも、粉体容器80の円筒内面に粉体を保持させることにより、圧縮力を加えることなく粉体を供給できるので、圧粉粗大粒子を含まないエアロゾルを安定した濃度で長時間発生させることが可能である。
図12は、粉体供給部を重力方向に対して傾斜した軸周りに回転させることによって粉体を供給する場合の実施例である。粉体収容部となる粉体容器80内に収容された粉体にその一部を接するように配置された粉体供給部は、回転手段によって重力方向に対して傾斜した軸周りに回転している。この粉体供給部の回転によって粉体79の一部を保持してエアロゾル化部94へ粉体を供給する。これによって、粉体を収容した粉体容器80を回転させる場合と比較して、回転手段に必要とされる動力を小さくできる。
図13は、突起や窪みによって粉体を保持する場合の突起や窪みの形成例である。突起や窪みによって粉体を保持することによって、壁面の摩擦力で保持分離し難い粉体、例えば壁面との摩擦力が極めて弱い粉体であっても確実に供給できる。また、壁面との摩擦力が時間と共に変化する粉体であっても、安定した濃度で長時間エアロゾルを発生させることができる。図13(I)では、円環状の溝で粉体を保持してエアロゾル化部へ供給する。これにより、連続で略一定濃度のエアロゾルを発生させることができる。図13(J)では、多数の半球状の窪みで粉体を保持してエアロゾル化部へ供給する。さらに、回転方向に対し窪みを千鳥配置することにより、窪みに保持された粉体が常にエアロゾル化部供給されるので、エアロゾル濃度が断続的になることがなく、連続で略一定濃度のエアロゾルを発生させることができる。図13(K)では、回転方向に対して斜めに配置した多数の細長い窪みで粉体を保持してエアロゾル化部へ供給する。これにより、図13(J)と同様に、窪みに保持された粉体が常にエアロゾル化部供給されるので、エアロゾル濃度が断続的になることがなく、連続で略一定濃度のエアロゾルを発生させることができる。図13(L)は、突起によって粉体を保持してエアロゾル化部へ供給する例である。
図14は、静電気によって粉体を保持する場合の実施例である。粉体収容部となる粉体容器80には静電気付与手段が設けられており、回転手段によって粉体容器80が重力方向に対して傾斜した軸周りに回転すると、静電気で保持分離された粉体がエアロゾル化部94へ供給される。これによって、壁面との摩擦力によって保持分離し難い粉体、例えば壁面との摩擦力が極めて弱い粉体であっても確実に供給できる。また、壁面との摩擦力が時間と共に変化する粉体であっても、安定した濃度で長時間エアロゾルを発生させることができる。なお、静電気によってエアロゾル化部に粉体の固着を生じたり、下方でとどまっている粉体が造粒されるなどの悪影響がある場合には、その周辺に静電気を除去する徐電手段を設けても良い。また、本実施例では粉体容器80に静電気付与手段を設けているが、樹脂などの静電気を生じやすい材質で粉体容器80を形成し粉体との摩擦で生じる静電気を利用しても良い。
図15は、粉体補充手段を備えた場合の実施例である。エアロゾルを発生するにつれて
粉体79が少なくなるので、粉体容器80内に粉体を追加補充する粉体補充手段を備えた。これによって、予め大量の粉体を投入するために粉体収容部となる粉体容器80を大型にする必要がないので、エアロゾル発生器を小型にすることができ、回転手段に必要とされる動力も小さくできる。また、減圧・加圧環境下でエアロゾル発生器を使用する場合には、粉体を追加補充するために装置を停止する必要がなく特に有効である。更に、回転する粉体容器80との摩擦によって性状が変化し易い粉体の場合も、粉体補充手段によって少しずつ追加した方が摩擦の影響が少なくなり有利である。
本発明のエアロゾル発生器または該エアロゾル発生器を備えた装置により、金属やガラス、セラミックスやプラスチックなどの基材上に脆性材料などの微粒子の構成材料からなる構造物をダイレクトで形成し、特に加熱手段を必要としない常温で構造物が形成させることができ、焼成体同等の機械的強度を保有する構造物を得られることから、各種の保護膜や機能膜を有した構造物の作製に利用できる。
従来使用されている複合構造物作製装置の一般的な構成を示した図である。 本発明によるエアロゾル発生器の外観図である。 図2のA−A断面図(傾斜角度α=45°)である。 図3のB−B断面図である。 傾斜角度αが小さい場合の粉体の動きを示した図である。 傾斜角度αが大きい場合の粉体の動きを示した図である。 好適なる傾斜角度αでの粉体の動きを示した図である。 図7でのG部のD−D断面である。 混入した圧粉粗大粒子の動きを表す模式図である。 重力分級効果が不要な場合のエアロゾル化部の実施例である。 傾斜角度αを90°とした場合の実施例である。 粉体供給部の回転によって粉体を供給する場合の実施例である。 突起や窪みによって粉体を保持する場合の突起や窪みの形成例である。 静電気によって粉体を保持する場合の実施例である。 粉体補充手段を備えた場合の実施例である。 従来装置の構成例を示した図である。
符号の説明
40…気密容器
41…粉末
42…攪拌体
43…攪拌羽
44…Oリング
45…粉末供給盤
46…溝
47…Oリング
48…粉末供給部
51…ガスボンベ
52…搬送管
53…エアロゾル発生器
54…構造物形成室
55…ノズル
56…基材
57…基材ホルダ
58…排気ポンプ
61…センサ装置
62…フィードバック制御回路
63…配線
71…真空容器
72…真空容器天板
73…真空容器底板
74…真空容器胴体
75…Oリング
76…真空容器ホルダ
77…支柱
78…ベースプレート
79…粉体
80…粉体容器
81…粉体容器底板
82…粉体容器側板
83…シャフトホルダ
84…シャフト
85…ベアリング
86…ベアリングホルダ
87…Oリング
88…シール部材
89…タイミングプーリ
90…タイミングベルト
91…モータ
92…アクチュエータ取付板
93…エアシリンダ
94…エアロゾル化部
95…ガス導入管
96…エアロゾル導出管
97…エアロゾル発生カップ
98…ジョイント
99…ガス導入口
100…エアロゾル導出口
101…ジョイント
102…エアロゾル発生空間

Claims (9)

  1. 脆性材料の微粒子をガス中に分散させたエアロゾルを基材に向けてノズルより噴射して、前記エアロゾルを前記基板表面に衝突させ、この衝突の衝撃によって前記微粒子を破砕・変形させて接合させ、前記微粒子の構成材料からなる構造物を前記基材上に形成させる複合構造物作製装置に用いるエアロゾル発生装置であって、該エアロゾル発生装置が、前記脆性材料の微粒子からなる粉体を収容する粉体収容部と、前記粉体収容部を重力方向に対して傾斜した軸周りに回転させる回転手段と、前記粉体をガス中に分散させるエアロゾル化部とを備え、前記回転手段による前記粉体収容部の回転によって、前記粉体の一部が前記粉体収容部の壁面に保持されて、該保持された粉体が前記エアロゾル化部へ供給されることを特徴とするエアロゾル発生装置。
  2. 脆性材料の微粒子をガス中に分散させたエアロゾルを基材に向けてノズルより噴射して、前記エアロゾルを前記基板表面に衝突させ、この衝突の衝撃によって前記微粒子を破砕・変形させて接合させ、前記微粒子の構成材料からなる構造物を前記基材上に形成させる複合構造物作製装置に用いるエアロゾル発生装置であって、該エアロゾル発生装置が、前記脆性材料の微粒子からなる粉体を収容する粉体収容部と、前記粉体収容部に収容された前記粉体にその一部が接するように配置される粉体供給部と、前記粉体供給部を重力方向に対して傾斜した軸周りに回転させる回転手段と、前記粉体をガス中に分散させるエアロゾル化部とを備え、前記回転手段による前記粉体供給部の回転によって、前記粉体の一部が前記粉体供給部の壁面に保持されて、該保持された粉体が前記エアロゾル化部へ供給されることを特徴とするエアロゾル発生装置。
  3. 前記エアロゾル発生装置において、前記粉体の保持が前記粉体収容部の壁面と粉体との摩擦力によるもの、あるいは前記粉体供給部の壁面と粉体との摩擦力によるものであることを特徴とする請求項1または2に記載のエアロゾル発生装置。
  4. 前記エアロゾル発生装置において、前記粉体の保持が前記粉体収容部の壁面あるいは前記粉体供給部の壁面に形成された少なくとも一つ以上の突起や窪みによるものであることを特徴とする請求項1または2に記載のエアロゾル発生装置。
  5. 前記エアロゾル発生装置において、前記粉体の保持が前記粉体収容部の壁面あるいは前記粉体供給部の壁面に付与された静電気による吸着力によるものであることを特徴とする請求項1または2に記載のエアロゾル発生装置。
  6. 前記エアロゾル発生装置において、前記エアロゾル化部が少なくともガス導入部とエアロゾル導出部で構成され、前記粉体収容部の壁面あるいは前記粉体供給部の壁面に保持されて移動してきた前記粉体に、前記ガス導入部から導入されたガスを吹付けて分散させるとともに、前記エアロゾル導出部から導出させることを特徴とする請求項1〜5のいずれかに記載のエアロゾル発生装置。
  7. 前記エアロゾル発生装置において、前記粉体を保持させる部分に振動を加える加振手段を備えたことを特徴とする請求項1〜5のいずれかに記載のエアロゾル発生装置。
  8. 前記エアロゾル発生装置において、前記粉体収容部に前記粉体を追加補充する粉体補充手段を備えたことを特徴とする請求項1〜5のいずれかに記載のエアロゾル発生装置。
  9. エアロゾル発生装置と、エアロゾルを基材に吹き付けるためのノズルを備える複合構造物作製装置であって、エアロゾル発生装置として請求項1〜8のいずれかに記載のエアロゾル発生装置を備えることを特徴とする複合構造物作製装置。
JP2003317912A 2003-09-10 2003-09-10 エアロゾル発生装置及びそれを備えた複合構造物作製装置 Expired - Fee Related JP4029347B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003317912A JP4029347B2 (ja) 2003-09-10 2003-09-10 エアロゾル発生装置及びそれを備えた複合構造物作製装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003317912A JP4029347B2 (ja) 2003-09-10 2003-09-10 エアロゾル発生装置及びそれを備えた複合構造物作製装置

Publications (2)

Publication Number Publication Date
JP2005082868A true JP2005082868A (ja) 2005-03-31
JP4029347B2 JP4029347B2 (ja) 2008-01-09

Family

ID=34417340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003317912A Expired - Fee Related JP4029347B2 (ja) 2003-09-10 2003-09-10 エアロゾル発生装置及びそれを備えた複合構造物作製装置

Country Status (1)

Country Link
JP (1) JP4029347B2 (ja)

Also Published As

Publication number Publication date
JP4029347B2 (ja) 2008-01-09

Similar Documents

Publication Publication Date Title
US5928719A (en) Surface processing method by blowing submicron particles
KR100724070B1 (ko) 복합 구조물 및 그의 제조방법과 제조장치
US9404186B2 (en) Pre-formed controlled particles formed of fine particles non-chemically bonded together, pre-formed controlled particles for use in an aerosol deposition method, and composite structure formation system involving controlled particles
US20070204865A1 (en) Aerosol generating apparatus and method, and film forming apparatus and method using the same
JP3809860B2 (ja) 複合構造物作製方法及び複合構造物作製装置
JP2009028709A (ja) エアロゾル生成装置およびエアロゾル生成方法
JP4029347B2 (ja) エアロゾル発生装置及びそれを備えた複合構造物作製装置
JP4526162B2 (ja) セラミック構造物作製装置
JP2008308716A (ja) エアロゾル発生装置、成膜装置
JP4063187B2 (ja) エアロゾル発生装置及びそれを備えた複合構造物作製装置
JP3825455B2 (ja) エアロゾル発生装置、複合構造物作製装置及び複合構造物作製方法
JP2008111154A (ja) 被膜形成方法
JP4115145B2 (ja) エアロゾル発生装置及びそれを備えた複合構造物作製装置
JP4063156B2 (ja) 複合構造物作製装置および作製方法
JP2006200033A (ja) 目標物に対する膜の形成方法及び装置
JP2006219764A (ja) エアロゾル発生装置、複合構造物作製装置及び複合構造物作製方法
JP2005089826A (ja) 複合構造物作製装置
JP2006233334A (ja) 複合構造物形成システム及び形成方法
JP4736022B2 (ja) 複合構造物形成システム及び形成方法
JP2007217765A (ja) エアロゾル発生装置
JP2007109828A (ja) 耐プラズマ性部材
JP4075719B2 (ja) エアロゾル発生装置及び複合構造物作製装置
JP2005076104A (ja) 複合構造物作製装置
US8163335B2 (en) Particle cluster, composite structure formation method, and formation system
JP5136845B2 (ja) 複合構造物形成方法、および形成システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070920

A61 First payment of annual fees (during grant procedure)

Effective date: 20071003

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20101026

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees