JP2005076119A - Composite material for substrate incorporated with semiconductor device, and its production method - Google Patents

Composite material for substrate incorporated with semiconductor device, and its production method Download PDF

Info

Publication number
JP2005076119A
JP2005076119A JP2003311656A JP2003311656A JP2005076119A JP 2005076119 A JP2005076119 A JP 2005076119A JP 2003311656 A JP2003311656 A JP 2003311656A JP 2003311656 A JP2003311656 A JP 2003311656A JP 2005076119 A JP2005076119 A JP 2005076119A
Authority
JP
Japan
Prior art keywords
liquid phase
composite material
semiconductor element
mixture
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003311656A
Other languages
Japanese (ja)
Other versions
JP4269853B2 (en
Inventor
Yoshiyuki Takagi
義幸 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003311656A priority Critical patent/JP4269853B2/en
Publication of JP2005076119A publication Critical patent/JP2005076119A/en
Application granted granted Critical
Publication of JP4269853B2 publication Critical patent/JP4269853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum composite material in which reinforcing material particles are uniformly distributed and which can easily be made into a thin shape, and to provide its production method. <P>SOLUTION: The method for producing a composite material for a substrate incorporated with a semiconductor device comprises: a stage where particles of aluminum or an aluminum alloy and powder consisting of at least one kind of ceramic particles are mixed, and the mixture is compacted to obtain a powdery mixture; a stage where a liquid phase mixture in which a liquid phase is formed on at least a part of the obtained powdery mixture is obtained; and a stage where a sheet is continuously obtained from the liquid phase mixture. The composite material is obtained by the production method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、アルミニウムとセラミックを主成分とする複合材料およびその製造方法と、半導体装置を構成するヒートシンク材等に用いられる半導体素子搭載用基板向け複合材料およびその製造方法に関するものである。   The present invention relates to a composite material mainly composed of aluminum and ceramic and a manufacturing method thereof, a composite material for a semiconductor element mounting substrate used for a heat sink material constituting a semiconductor device, and the manufacturing method thereof.

近年、半導体装置においては半導体素子の高速化や集積度の増加が著しく、半導体素子から発生する熱の影響を無視することができなくなっている。その結果、半導体素子搭載用基板材には、半導体素子から発生する熱を効率よく除去するために高い熱伝導率が要求されるようになってきている。   In recent years, in semiconductor devices, the speed of semiconductor elements and the increase in the degree of integration have remarkably increased, and the influence of heat generated from the semiconductor elements cannot be ignored. As a result, a high thermal conductivity is required for the substrate material for mounting a semiconductor element in order to efficiently remove heat generated from the semiconductor element.

また、半導体素子搭載用基板材と半導体素子との界面や、その半導体素子が搭載される半導体パッケージを構成する周辺部材との界面は、熱応力によって発生する歪みをできるだけ小さくする必要がある。したがって、半導体素子搭載用基板材は、広範囲の熱膨張係数を設定することが可能であり、適宜選択使用される半導体素子や周辺部材に応じて、それらの熱膨張係数に比較的近い熱膨張係数を有するように設計製作が容易な材料が望まれる。   Further, the interface between the semiconductor element mounting substrate material and the semiconductor element and the interface with the peripheral member constituting the semiconductor package on which the semiconductor element is mounted need to minimize the distortion caused by the thermal stress. Therefore, the substrate material for mounting a semiconductor element can set a wide range of thermal expansion coefficients, and the thermal expansion coefficient that is relatively close to the thermal expansion coefficient depending on the semiconductor elements and peripheral members that are appropriately selected and used. A material that is easy to design and manufacture, such as

また、半導体素子とパッケージとの電気的接合にワイヤを用いる代わりにハンダボールを用いる方法(フリップチップ方式)や、マザー基板への接合にピンを用いる代わりにハンダボールを用いる方法(ボールグリッドアレイ方式)が広く採用されるようになってきている。これらの方式を採用する場合、半導体素子搭載用基板材が重いと、半田ボールが必要以上につぶれる危険性が高くなる。このため、軽い半導体素子搭載用基板材が望まれている。
さらに、半導体素子搭載用基板材は安価な材料が望まれている。
Also, a method using a solder ball instead of using a wire for electrical bonding between a semiconductor element and a package (flip chip method), or a method using a solder ball instead of using a pin for bonding to a mother substrate (ball grid array method) ) Has been widely adopted. When these methods are employed, if the semiconductor element mounting substrate material is heavy, there is a high risk that the solder balls will collapse more than necessary. For this reason, a light semiconductor element mounting substrate material is desired.
Further, an inexpensive material is desired for the semiconductor element mounting substrate material.

最近では、アルミニウム複合材料が半導体素子搭載用基板材の候補として提案され、一部で使用され始めている。アルミニウム複合材料の中でも、アルミニウム−炭化珪素(Al-SiC)複合材料は、高い熱伝導性を有する材料である。また、熱膨張係数が小さい炭化珪素(4.2×10−6/℃)と、熱膨張係数が大きいアルミニウム(23.5×10−6/℃)とを組み合わせることにより、広い範囲で任意の熱膨張係数を得ることができる。さらに、原料であるアルミニウムと炭化珪素が共に比較的安価であるなどの特徴を有する。 Recently, aluminum composite materials have been proposed as candidates for semiconductor device mounting substrates, and have begun to be used in part. Among aluminum composite materials, an aluminum-silicon carbide (Al-SiC) composite material is a material having high thermal conductivity. In addition, by combining silicon carbide with a small thermal expansion coefficient (4.2 × 10 −6 / ° C.) and aluminum with a large thermal expansion coefficient (23.5 × 10 −6 / ° C.) A thermal expansion coefficient can be obtained. Furthermore, both aluminum and silicon carbide as raw materials are relatively inexpensive.

アルミニウム複合材料の製造方法として、従来、粉末状態でアルミニウムとセラミックスの混合を行い、成形、焼結を行う粉末冶金法が知られている。(例えば、特許文献1参照。)。
また、溶融状態のアルミニウムにセラミックス粉末を導入する溶湯撹拌法も知られている。(例えば、特許文献2参照。)。
特開平10−335538号公報 特公平7−819号公報
As a method for producing an aluminum composite material, a powder metallurgy method in which aluminum and ceramics are mixed in a powder state and molded and sintered has been conventionally known. (For example, refer to Patent Document 1).
Also known is a molten metal stirring method in which ceramic powder is introduced into molten aluminum. (For example, refer to Patent Document 2).
JP-A-10-335538 Japanese Patent Publication No. 7-819

粉末冶金法で得られたアルミニウム炭化珪素複合材料は、薄肉の材料を生産することが困難であるとともに、連続的に生産することが困難であり、製造コストが高くなるなど、半導体素子搭載用基板材に用いるには問題があった。   Aluminum silicon carbide composite materials obtained by powder metallurgy are difficult to produce thin materials, and are difficult to produce continuously, resulting in high manufacturing costs. There was a problem in using it as a plate material.

溶湯撹拌法は、溶融状態のアルミニウムにセラミックス粉末を導入するために、撹拌羽根を回転させ溶湯に渦巻きを発生させ、その渦巻きを利用してセラミックス粉末を溶融アルミニウム中に混合するものである。このため、溶湯表面に存在する酸化物等の異物が混入したり、セラミック粉末が撹拌羽根や溶湯表面とルツボ内壁が接する部分に混合されずに残留し、鋳造時にそのセラミックス粉末が塊状のまま溶融混合物に混入したりする場合がある。   In the molten metal stirring method, in order to introduce ceramic powder into molten aluminum, a stirring blade is rotated to generate a vortex in the molten metal, and the vortex is used to mix the ceramic powder into the molten aluminum. For this reason, foreign substances such as oxides existing on the surface of the molten metal are mixed in, or the ceramic powder remains unmixed at the part where the stirring blade or the molten metal surface and the inner wall of the crucible are in contact, and the ceramic powder melts in a lump shape at the time of casting. Or may be mixed into the mixture.

半導体素子搭載用基板材に複合材料を用いる場合、通常の構造材料とは異なり、補強材粒子がより均一に分布していることが要求される。補強材粒子が均一に分布していないと、複合材料を薄板に加工する工程で、均一な加工が行われないために、薄板に部分的な反りやうねり等が発生する。さらに、複合材料において補強材粒子が均一に分布していないと、複合材料の熱膨張係数や熱伝導率等の特性にバラツキを生じる。したがって、複合材料を半導体素子搭載用基板材に用いる場合には、補強材粒子をより均一に分布させることが要求される。
そこで、本発明は、補強材粒子が均一に分布し、薄肉の形状にすることが容易であるアルミニウム複合材料の製造方法を提供することを課題とする。
When a composite material is used for the substrate material for mounting a semiconductor element, it is required that the reinforcing material particles are more uniformly distributed, unlike a normal structural material. If the reinforcing material particles are not evenly distributed, since the uniform processing is not performed in the step of processing the composite material into a thin plate, partial warpage or undulation occurs in the thin plate. Further, if the reinforcing material particles are not uniformly distributed in the composite material, the composite material has variations in characteristics such as thermal expansion coefficient and thermal conductivity. Therefore, when the composite material is used for the semiconductor element mounting substrate material, it is required to distribute the reinforcing material particles more uniformly.
Therefore, an object of the present invention is to provide a method for producing an aluminum composite material in which reinforcing material particles are uniformly distributed and can be easily formed into a thin shape.

本発明の発明者らは、半導体パッケージとしてセラミックスパッケージやメタルパッケージに好適であるとともに、特にプラスチックパッケージ、フリップチップ方式やボールグリッドアレイ方式等のパッケージ方式に好適な熱伝導率と熱膨張係数を有し、軽量で、今後ますます複雑化する形状にも対応可能である半導体素子搭載用基板向け複合材料の製造方法について種々検討を行い、本発明に至ったものである。   The inventors of the present invention are suitable for a ceramic package or a metal package as a semiconductor package, and have a thermal conductivity and a coefficient of thermal expansion particularly suitable for a package system such as a plastic package, a flip chip system, and a ball grid array system. However, various studies have been made on a method for manufacturing a composite material for a substrate for mounting a semiconductor element, which is lightweight and can cope with increasingly complex shapes, and the present invention has been achieved.

本発明にかかる複合材料の製造方法は、アルミニウムまたはアルミニウム合金からなる粒子と、少なくとも一種類以上のセラミックス粒子からなる粉末を混合、圧粉して粉体混合物を得る工程と、得られた粉体混合物の少なくとも一部に液相を生じさせた液相混合物を得る工程と、前記液相混合物から板材を得る工程からなることを特徴とする。
本発明において、液相混合物とは、固相と液相が共存した混合物をいう。
The method for producing a composite material according to the present invention includes a step of mixing particles made of aluminum or an aluminum alloy and a powder made of at least one kind of ceramic particles and compacting to obtain a powder mixture, and the obtained powder It comprises a step of obtaining a liquid phase mixture in which a liquid phase is generated in at least a part of the mixture, and a step of obtaining a plate material from the liquid phase mixture.
In the present invention, the liquid phase mixture refers to a mixture in which a solid phase and a liquid phase coexist.

本発明にかかる複合材料は、前記の製造方法によって製造される。
本発明にかかる半導体素子搭載用基板向け複合材料の製造方法は、アルミニウムまたはアルミニウム合金からなる粒子と、少なくとも一種類以上のセラミックス粒子からなる粉末を混合、圧粉して粉体混合物を得る工程と、得られた粉体混合物の少なくとも一部に液相を生じさせた液相混合物を得る工程と、前記液相混合物から連続的に板材を得る工程からなることを特徴とする。
The composite material concerning this invention is manufactured by the said manufacturing method.
A method for producing a composite material for a semiconductor device mounting substrate according to the present invention includes a step of mixing particles made of aluminum or an aluminum alloy and a powder made of at least one kind of ceramic particles and compacting to obtain a powder mixture, And a step of obtaining a liquid phase mixture in which a liquid phase is generated in at least a part of the obtained powder mixture, and a step of continuously obtaining a plate material from the liquid phase mixture.

また、本発明の一の実施態様においては、前記粉体混合物を焼結し、焼結体を得る焼結工程をさらに備え、得られた焼結体の少なくとも一部に液相を生じさせた液相混合物から連続的に板材を得る。
本発明の他の実施態様においては、前記焼結工程は、アルミニウムに対する非酸化性の雰囲気下において焼結温度500〜750℃で行う。
本発明の更なる他の実施態様においては、前記粉体混合物は、セラミックス粒子を体積割合で10〜70%含有する。
In one embodiment of the present invention, the powder mixture is further sintered to obtain a sintered body, and a liquid phase is generated in at least a part of the obtained sintered body. A board is continuously obtained from the liquid phase mixture.
In another embodiment of the present invention, the sintering step is performed at a sintering temperature of 500 to 750 ° C. in a non-oxidizing atmosphere for aluminum.
In still another embodiment of the present invention, the powder mixture contains 10 to 70% of ceramic particles by volume.

さらに、本発明の一の実施態様においては、前記セラミックス粒子は、酸化アルミニウム、炭化珪素、窒化珪素、ホウ化チタン、酸化珪素、酸化ベリリウムから選ばれた少なくとも一種類のセラミック粒子からなる。
また、本発明の更なる他の実施態様においては、前記液相混合物中の液相部分は体積割合で5%以上である。
本発明の更なる他の実施態様においては、連続的に板材を得る工程で製造される前記板材の厚みが20mm以下である。
Furthermore, in one embodiment of the present invention, the ceramic particles comprise at least one kind of ceramic particles selected from aluminum oxide, silicon carbide, silicon nitride, titanium boride, silicon oxide, and beryllium oxide.
In still another embodiment of the present invention, the liquid phase portion in the liquid phase mixture is 5% or more by volume.
In still another embodiment of the present invention, the thickness of the plate material produced in the step of continuously obtaining the plate material is 20 mm or less.

さらに、本発明の他の実施態様においては、連続的に板材を得る工程では、板材の冷却速度が10℃/秒以上である。
また、本発明の一の実施態様においては、液相混合物から連続的に板材を得る工程は、双ベルト法、ベルト車輪法、双ロール鋳造法、および横型鋳造法からなる群より選ばれた一種の方法で行なわれる。
Furthermore, in another embodiment of the present invention, in the step of continuously obtaining the plate material, the cooling rate of the plate material is 10 ° C./second or more.
In one embodiment of the present invention, the step of continuously obtaining the plate material from the liquid phase mixture is a kind selected from the group consisting of a twin belt method, a belt wheel method, a twin roll casting method, and a horizontal casting method. It is done by the method.

さらに、本発明の一の実施態様においては、板材を圧延加工によって薄板状材に加工する圧延工程をさらに備える。他の実施態様においては、圧延工程は、前記板材を200℃以上550℃以下の温度に加熱した後に圧延加工を行う。
本発明にかかる半導体素子搭載用基板向け複合材料は、上述したいずれかの製造方法によって製造される。
上述した本発明の構成要素は可能な限り組み合わせることが出来る。
Furthermore, in one embodiment of the present invention, the method further includes a rolling step of processing the plate material into a thin plate material by rolling. In another embodiment, in the rolling step, the plate material is heated to a temperature of 200 ° C. or higher and 550 ° C. or lower and then rolled.
The composite material for a semiconductor element mounting substrate according to the present invention is manufactured by any of the manufacturing methods described above.
The components of the present invention described above can be combined as much as possible.

本発明にかかるアルミニウムとセラミックスの複合材料の製造方法は、セラミック粒子が均一に分布し、特性のバラツキが少なく、かつ、薄肉や複雑な形状に加工することが出来る複合材料を得ることのできる製造方法である。本発明は、半導体素子搭載用基板向け複合材料の製造方法として好適であり、このような製造方法によって製造された材料は、半導体素子搭載用のヒートシング等に広く用いることができる。   The method for producing a composite material of aluminum and ceramics according to the present invention is a method for obtaining a composite material in which ceramic particles are uniformly distributed, there is little variation in characteristics, and can be processed into a thin wall or a complicated shape. Is the method. The present invention is suitable as a method for manufacturing a composite material for a substrate for mounting a semiconductor element, and the material manufactured by such a manufacturing method can be widely used for heatsink for mounting a semiconductor element.

本発明は、アルミニウムを主成分とする粒子とセラミックス粒子を混合した後に、圧粉した材料を、加工性を高めるために少なくとも一部液相を生じさせた液相混合物とし、この混合物を板材にする製造方法である。   In the present invention, after mixing particles mainly composed of aluminum and ceramic particles, the compacted material is a liquid phase mixture in which at least a part of the liquid phase is generated in order to improve workability, and this mixture is used as a plate material. It is a manufacturing method to do.

すなわち、アルミニウムまたはアルミニウム合金中にセラミックス粒子を十分に分散させた複合材料を得るためには、濡れ性、反応性に影響を受けやすく、凝集・ボイド等を発生させやすい溶融混合法を用いるよりも、粉末状態で両者を混合する粉末冶金法で作製した複合材料の方が、均一性が高くなる。しかしながら、粉末冶金法で作成した焼結部材である複合材料から、連続的に板材を得ることは困難であった。   That is, in order to obtain a composite material in which ceramic particles are sufficiently dispersed in aluminum or an aluminum alloy, rather than using a melt mixing method that is easily affected by wettability and reactivity, and that tends to cause aggregation and voids. The composite material produced by the powder metallurgy method in which both are mixed in a powder state has higher uniformity. However, it has been difficult to continuously obtain a plate material from a composite material that is a sintered member prepared by powder metallurgy.

本発明は、この問題を解決すべく、粉体混合物の一部に液相を生じさせることにより、加工容易な流動性を持つ混合物に変化させ、この液相混合物から板材を作製するものである。粉体混合物として純Al粉末を用いる場合に液相を生じさせるには、粉体混合物を660℃以上に加熱すればよい。また、粉体混合物としてAl-Si合金粉末を用いる場合に液相を生じさせるには、粉体混合物を固相線温度または共晶温度以上に加熱すればよい。
本発明の製造方法で得られる複合材料は、半導体素子搭載用基板向け複合材料に好適なものであるが、その他の構造材料としても使用出来る。
In order to solve this problem, the present invention creates a liquid phase in a part of the powder mixture, thereby changing the mixture into a fluid mixture that can be easily processed, and producing a plate material from the liquid phase mixture. . In order to produce a liquid phase when using pure Al powder as the powder mixture, the powder mixture may be heated to 660 ° C. or higher. In addition, when an Al—Si alloy powder is used as the powder mixture, a liquid phase may be generated by heating the powder mixture to the solidus temperature or eutectic temperature or higher.
The composite material obtained by the production method of the present invention is suitable as a composite material for a substrate for mounting semiconductor elements, but can also be used as other structural materials.

アルミニウムまたはアルミニウム合金からなる粒子とセラミックス粒子からなる粉末を混合、圧紛して粉体混合物を得る工程は、両者の粒子が実質的に均一に混合されるように行われる。
また、本発明にかかる半導体素子搭載用基板向け複合材料の製造方法においては、液相混合物から板材を得る工程は、連続的に板材を得る工程とされる。
The step of mixing and compressing particles made of aluminum or aluminum alloy and powder made of ceramic particles to obtain a powder mixture is performed so that both particles are mixed substantially uniformly.
Moreover, in the manufacturing method of the composite material for semiconductor element mounting substrates according to the present invention, the step of obtaining the plate material from the liquid phase mixture is a step of continuously obtaining the plate material.

アルミニウム(またはアルミニウム合金)とセラミック粒子の組成・混合割合を選択することにより、この複合材料は、熱膨張係数を広範囲に亘り変更することが出来る。たとえば、半導体素子を構成する珪素(Si)の熱膨張係数は4.2×10−6/℃、ガリウムヒ素(GaAs)の熱膨張係数は6.5×10−6/℃である。また、半導体パッケージを構成する周辺部材がセラミックスから形成される場合には、たとえば、アルミナ(A1203)の熱膨張係数は6.5×10−6/℃である。周辺部材がプラスチックから形成される場合には、プラスチックの熱膨張係数は12×10−6/℃〜17×10−6/℃である。本発明により製造される複合材料は、材料の混合割合を変更することにより、その熱膨張係数をこれらの熱膨張係数に近似した値にすることが出来る。 By selecting the composition and mixing ratio of aluminum (or aluminum alloy) and ceramic particles, this composite material can change the coefficient of thermal expansion over a wide range. For example, the thermal expansion coefficient of silicon (Si) constituting the semiconductor element is 4.2 × 10 −6 / ° C., and the thermal expansion coefficient of gallium arsenide (GaAs) is 6.5 × 10 −6 / ° C. When the peripheral member constituting the semiconductor package is formed of ceramics, for example, the thermal expansion coefficient of alumina (A1 2 0 3 ) is 6.5 × 10 −6 / ° C. When the peripheral member is formed of plastic, the coefficient of thermal expansion of the plastic is 12 × 10 −6 / ° C. to 17 × 10 −6 / ° C. The composite material produced according to the present invention can have its thermal expansion coefficient approximate to these thermal expansion coefficients by changing the mixing ratio of the materials.

本発明の好ましい実施態様では、この粉体混合物をそのまま用いるのではなく、焼結を行い、得られた焼結体の少なくとも一部に液相を生じさせた液相混合物とし、この液相混合物から連続的に板材を作製する。これは、あらかじめ焼結を行うことにより、より緻密な板材を得ることができ、熱伝導率の向上を図ることができるからである。   In a preferred embodiment of the present invention, the powder mixture is not used as it is, but is sintered to obtain a liquid phase mixture in which a liquid phase is generated in at least a part of the obtained sintered body. A plate material is continuously produced from. This is because by performing sintering in advance, a denser plate material can be obtained and the thermal conductivity can be improved.

前記粉末混合体を焼結するには、アルミニウムに対する非酸化性雰囲気において、焼結温度500〜750℃で行うのが好ましい。焼結を行う雰囲気をアルミニウムに対する非酸化性の雰囲気とするのは、焼結中のアルミニウムの酸化を防止するためである。アルミニウムに対する非酸化的雰囲気としては、99体積%以上の窒素雰囲気、酸素濃度が200ppm以下の雰囲気、あるいは露点が-20℃以下の雰囲気などを使用することができる。   The powder mixture is preferably sintered at a sintering temperature of 500 to 750 ° C. in a non-oxidizing atmosphere for aluminum. The reason why the atmosphere for sintering is a non-oxidizing atmosphere for aluminum is to prevent oxidation of aluminum during sintering. As a non-oxidizing atmosphere for aluminum, a nitrogen atmosphere of 99% by volume or more, an atmosphere having an oxygen concentration of 200 ppm or less, or an atmosphere having a dew point of -20 ° C. or less can be used.

また、焼結温度を500〜750℃の範囲とすると、原料粒子間の結合が十分となり、また、セラミックス粒子とアルミニウムの化学反応による変質化が避けられるからである。   Further, if the sintering temperature is in the range of 500 to 750 ° C., the bonding between the raw material particles is sufficient, and alteration due to the chemical reaction between the ceramic particles and aluminum is avoided.

セラミックス粒子の含有率としては、体積割合で10%〜70%とするのが好ましい。セラミックス粒子の体積割合をこの範囲にすると、複合材料の熱膨張率等の特性が変化して、セラミックス粒子を含有させる利点が生じるためであり、また、粉体混合物に液相を生じさせることにより、板材作製に十分な流動性が得られるからである。   The content of the ceramic particles is preferably 10% to 70% by volume. When the volume ratio of the ceramic particles is within this range, characteristics such as the coefficient of thermal expansion of the composite material are changed, and there is an advantage of including the ceramic particles, and also by generating a liquid phase in the powder mixture. This is because sufficient fluidity for producing the plate material can be obtained.

セラミックス粒子としては、酸化アルミニウム、炭化珪素、窒化珪素、ホウ化チタン、酸化珪素、酸化ベリリウムからなる群より選ばれた少なくとも一種を含む材料を用いることが好ましい。アルミニウム(又はアルミニウム合金)に混合するセラミック粒子は、上述の中から、一種だけを選択することも出来、また、これらの中から任意の複数のセラミック粒子を選択し、任意の割合で混合した混合物をアルミニウム(又はアルミニウム合金)に混合するセラミック粒子とすることも出来る。   As the ceramic particles, it is preferable to use a material containing at least one selected from the group consisting of aluminum oxide, silicon carbide, silicon nitride, titanium boride, silicon oxide, and beryllium oxide. The ceramic particles to be mixed with aluminum (or aluminum alloy) can be selected from one of the above, or a mixture of any plurality of ceramic particles selected and mixed at an arbitrary ratio. Can be made into ceramic particles mixed with aluminum (or aluminum alloy).

本発明では、前述の方法で得られた粉体混合物もしくは粉体混合物を焼結した焼結体に液相を生じさせる。生じさせる液相の割合としては、体積割合で5%以上が好ましい。なお、本発明ではセラミックス粉末の融点以下でアルミニウム相に液相を生じさせるので、液相の割合を以下に記述する式(1)で定義する。

混合物中の液相率[%]
=アルミニウム相の体積割合[%]×アルミニウム相中の液相率[%]/100
=(100−セラミックス相の体積割合[%])×アルミニウム相中の液相率[%]/100
− 式(1)
また、アルミニウム相中の液相率については、実際に測定することは困難であるため、本発明では、アルミニウム相の組成、温度を用いて、状態図から概算した値を用いることとする。
例えば純アルミニウム粉末と炭化ケイ素粉末の混合物で、炭化ケイ素の体積割合が40%である混合物を700℃に加熱した場合、この温度では、純アルミニウムの融点(660℃)以上であり、炭化ケイ素の融点以下であるため、アルミニウムは完全に溶融し、炭化ケイ素は固相のままである。
式(1)に代入すると
混合物中の液相の割合=(100−40)×100/100=60[%]
つまり、液相の割合は60%となる。
また、アルミニウム相が合金粉末の場合は、先に述べたようにアルミニウム合金の組成、温度から算出される固相率を用いて、混合物中の液相率を定義する。
例えば、ここでAl-8wt%Si合金粉末と炭化ケイ素粉末の混合物であり、炭化ケイ素の体積割合が30%である混合物を600℃に加熱した場合を考えてみる。600℃においてAl-8wt%Si合金のAl-Si二元系状態図から概算した液相率は86%である。式(1)に代入すると混合物全体の液相率は、以下のように計算できる。
混合物中の液相の割合=(100−30)×86/100=60.2[%]
よって、液相の割合は60.2%となる。
液相の割合が5%以上であれば、混合物に十分な流動性が生じ、板材を得る工程を円滑に行うことができる。また、アルミニウムおよびアルミニウム合金が完全に溶融した状態でも板作製は可能である。なお、粒子が比重差により沈降するような条件下では、沈降を防止するため撹拌等を行ってもよい。
In the present invention, a liquid phase is generated in the powder mixture obtained by the above-described method or a sintered body obtained by sintering the powder mixture. The ratio of the liquid phase to be generated is preferably 5% or more by volume. In the present invention, a liquid phase is generated in the aluminum phase below the melting point of the ceramic powder. Therefore, the ratio of the liquid phase is defined by the following formula (1).

Liquid phase ratio in the mixture [%]
= Volume fraction of aluminum phase [%] x liquid phase ratio in aluminum phase [%] / 100
= (100-volume fraction of ceramic phase [%]) x liquid phase ratio in aluminum phase [%] / 100
-Formula (1)
In addition, since it is difficult to actually measure the liquid phase ratio in the aluminum phase, in the present invention, the value estimated from the phase diagram using the composition and temperature of the aluminum phase is used.
For example, when a mixture of pure aluminum powder and silicon carbide powder in which the volume ratio of silicon carbide is 40% is heated to 700 ° C., at this temperature, the melting point of pure aluminum (660 ° C.) or higher is exceeded. Since it is below the melting point, the aluminum is completely melted and the silicon carbide remains in the solid phase.
Substituting into the formula (1), the ratio of the liquid phase in the mixture = (100−40) × 100/100 = 60 [%]
That is, the liquid phase ratio is 60%.
When the aluminum phase is an alloy powder, the liquid phase ratio in the mixture is defined using the solid phase ratio calculated from the composition and temperature of the aluminum alloy as described above.
For example, consider the case where a mixture of Al-8 wt% Si alloy powder and silicon carbide powder, in which the volume ratio of silicon carbide is 30%, is heated to 600 ° C. The liquid phase ratio estimated from the Al-Si binary phase diagram of Al-8wt% Si alloy at 600 ℃ is 86%. Substituting into equation (1), the liquid phase ratio of the entire mixture can be calculated as follows.
Ratio of liquid phase in the mixture = (100-30) x 86/100 = 60.2 [%]
Therefore, the ratio of the liquid phase is 60.2%.
If the ratio of the liquid phase is 5% or more, sufficient fluidity is generated in the mixture, and the step of obtaining a plate material can be performed smoothly. Further, it is possible to produce a plate even when aluminum and an aluminum alloy are completely melted. It should be noted that stirring or the like may be performed under conditions where the particles settle due to the difference in specific gravity.

本発明の製造方法によると、板材を得る工程で、液相混合物の液相が固相に変化する。液相部分が凝固した部位は凝固組織となる。凝固組織は、初晶アルミニウムからなる。この初晶アルミニウムのセルが粗大な場合、この部分が外観上不均一な組織となり、半導体素子搭載用基板向け複合材料としての適用は困難である。つまり、液相部分が凝固する際に初晶アルミニウムが粗大に成長しないような条件下で板材を作製することが好ましい。   According to the production method of the present invention, the liquid phase of the liquid phase mixture changes to a solid phase in the step of obtaining the plate material. The site where the liquid phase portion is solidified becomes a solidified tissue. The solidified structure consists of primary aluminum. When this primary crystal aluminum cell is coarse, this portion has a non-uniform structure in appearance, and is difficult to apply as a composite material for a substrate for mounting semiconductor elements. That is, it is preferable to produce the plate material under such a condition that primary crystal aluminum does not grow coarsely when the liquid phase portion solidifies.

連続的に板材を得る工程においては、板材の厚みを20mm以下にすると実用上許容される初晶アルミニウムの大きさになる。また、冷却速度を10℃/秒以上とすると、実用上許容される初晶アルミニウムの大きさになる。上記の厚みの下限は、0.5mm程度、および冷却速度の上限は、2000℃/秒程度である。   In the step of continuously obtaining the plate material, the primary crystal aluminum size that is practically acceptable is obtained when the thickness of the plate material is 20 mm or less. Further, when the cooling rate is 10 ° C./second or more, the size of primary crystal aluminum that is practically acceptable is obtained. The lower limit of the thickness is about 0.5 mm, and the upper limit of the cooling rate is about 2000 ° C./second.

連続的に板材を得る工程として採用する具体的な方法は、双ベルト法、ベルト車輪法、双ロール鋳造法、および横型鋳造法が好ましい。セラミック粒子を均一に分散させた板材を連続的に得ることができ、また工業的規模で、安価に複合材料板材を得ることが出来るからである。   A specific method employed as the step of continuously obtaining the plate material is preferably a twin belt method, a belt wheel method, a twin roll casting method, or a horizontal casting method. This is because a plate material in which ceramic particles are uniformly dispersed can be obtained continuously, and a composite material plate material can be obtained at low cost on an industrial scale.

これらの方法で得られた板材は、圧延加工によりさらに薄板状形状にすることが可能である。圧延工程は、単一であっても良く、複数回でも良い。複数回の圧延工程を行うことがより好ましい。圧延工程に付することにより、さらに複合材の密度の増大を図ることができる。その際、圧延を行う前に板材を200℃以上550℃以下に加熱するのが好ましい。素材の加熱温度をこの範囲とするのは、加工歪みの蓄積を避けて、加工を行うためであり、また、加工発熱などによって、再度液相を生じることを避けるためである。   The plate material obtained by these methods can be further formed into a thin plate shape by rolling. The rolling process may be single or multiple times. It is more preferable to perform a plurality of rolling steps. By subjecting to a rolling process, the density of the composite material can be further increased. At that time, it is preferable to heat the plate material to 200 ° C. or more and 550 ° C. or less before rolling. The reason why the heating temperature of the material is set in this range is to perform processing while avoiding accumulation of processing strain, and also to prevent generation of a liquid phase again due to processing heat generation.

以下に実施例により、本発明にかかるアルミニウムを主成分とする複合材料の製造方法をさらに説明する。この発明の実施例に記載されている部材の寸法、材質、形状、工程の時間、温度などは、とくに特定的な記載のない限りは、この発明の範囲をそれらのみに限定する趣旨のものではなく、単なる説明例にすぎない。   The method for producing a composite material mainly composed of aluminum according to the present invention will be further described below with reference to examples. The dimensions, materials, shapes, process times, temperatures, etc. of the members described in the embodiments of the present invention are not intended to limit the scope of the present invention to those unless otherwise specified. It is merely an illustrative example.

ガスアトマイズ法で作製した純アルミ粉末と市販の炭化珪素粉末(#320)を用意し、炭化珪素の体積割合が40%となるように秤量を行い、ニーダーで2時間混合した。得られた混合粉末を圧縮成型し、成型体を作製した。その後、成型体を700℃に加熱し、液相を生じさせた。なお、この温度ではアルミニウム成分は完全に溶融しており、固相として存在するのはセラミックス成分の40体積%だけであるので、混合物中の液相の割合は、60体積%である。そして、この液相を生じさせた混合物から双ベルト法で連続的に板作製を行い、板厚10mm×幅50mm×長さ3000mmの板材を連続的に得ることができた。得られた板材から熱伝導率、熱膨張係数を測定するための試験片を各50個切り出し、測定を行った。なお、熱伝導率は、円板状試験片を用いてレーザーフラッシュ法によって測定した。熱膨張率は、柱状試験片を用いて押し棒式によって測定した。得られた測定値の標準偏差を計算し、測定値のバラツキからセラミックス粒子の分散の均一性を評価したところ、粉末冶金法で作製した試料と同等以上であった。このことから、セラミックス粒子が均一に分散されており、特性のバラツキのない複合材料が得られたことが明らかになった。   Pure aluminum powder produced by the gas atomization method and commercially available silicon carbide powder (# 320) were prepared, weighed so that the volume ratio of silicon carbide was 40%, and mixed for 2 hours with a kneader. The obtained mixed powder was compression molded to produce a molded body. Thereafter, the molded body was heated to 700 ° C. to generate a liquid phase. At this temperature, the aluminum component is completely melted, and only 40% by volume of the ceramic component exists as a solid phase, so the liquid phase ratio in the mixture is 60% by volume. Then, a plate was continuously produced from the mixture in which the liquid phase was produced by a twin belt method, and a plate material having a thickness of 10 mm × width 50 mm × length 3000 mm could be obtained continuously. From the obtained plate material, 50 test pieces for measuring the thermal conductivity and the thermal expansion coefficient were cut out and measured. The thermal conductivity was measured by a laser flash method using a disk-shaped test piece. The coefficient of thermal expansion was measured by a push rod method using a columnar test piece. The standard deviation of the obtained measured values was calculated, and the uniformity of the dispersion of the ceramic particles was evaluated from the variation in the measured values. As a result, it was equal to or more than the sample produced by the powder metallurgy method. From this, it became clear that ceramic materials were uniformly dispersed and a composite material with no variation in characteristics was obtained.

また、同様にSiC粒子の割合を10、30、50、70%と変化させて、圧粉体の作製を行い、前記と同様の手法で評価を行ったところ、同様の結果が得られた。
さらに、セラミックス粒子の種類を酸化アルミニウム、炭化珪素、窒化珪素、ホウ化チタン、酸化珪素、酸化ベリリウムに変えて試作し、測定を行ったところ、同様の結果が得られた。
Similarly, green compacts were produced by changing the proportion of SiC particles to 10, 30, 50, and 70%, and evaluation was performed in the same manner as described above, and similar results were obtained.
Furthermore, when the types of ceramic particles were changed to aluminum oxide, silicon carbide, silicon nitride, titanium boride, silicon oxide, and beryllium oxide, the same results were obtained.

組成がAl-8wt%Si-0.1wt%Caであるアルミニウム合金粒子の粉末と、市販のSiC粉末(#800)を用意し、セラミックスの体積割合が30%となるように秤量を行い、ニーダーで2時間混合した。得られた混合粉末を圧縮成型し、圧粉体を作製した後、焼結体の作製を試みた。試料1〜6について、焼結工程は窒素雰囲気下でおこなった。
なお、表中の試料1と7は、比較例である。焼結体の作製の可否の結果を表1に示す。試料1については、緻密化せず焼結が行なえず、圧粉体と変わらない状態のため、以下の工程は行わなかった。
Prepare a powder of aluminum alloy particles with a composition of Al-8wt% Si-0.1wt% Ca and commercially available SiC powder (# 800), weigh it so that the volume ratio of ceramics is 30%, and use a kneader. Mixed for 2 hours. The obtained mixed powder was compression molded to produce a green compact, and then an attempt was made to produce a sintered body. About the samples 1-6, the sintering process was performed in nitrogen atmosphere.
Samples 1 and 7 in the table are comparative examples. Table 1 shows the results of whether or not the sintered body can be produced. Sample 1 was not densified, could not be sintered, and was not different from the green compact, so the following steps were not performed.

さらに、上記の各焼結体(試料2〜6)を600℃に加熱し液相を60%の割合で生じさせ、得られた混合物から双ロール法にて連続的に板厚4mmX幅100mmX長さ2000mmの板材の作製を行った。なお、比較のため、圧粉体をそのまま用いて、同様の条件・方法で板材の作製を行った。そして、得られたそれぞれの板材の熱伝導率、熱膨張率を測定した。熱伝導率は、円板状試験片を用いてレーザーフラッシュ法によって測定した。熱膨張率は、柱状試験片を用いて押し棒式によって測定した。なお、熱伝導率、熱膨張率ともに、1条件につき50ケ試験片を作製し、それぞれ測定した。セラミックス粒子の分散の均一性は、1条件につき50ケの得られた測定値の標準偏差をとり、測定値のバラツキから評価した。特性(熱伝導率、熱膨張率)のバラツキが粉末冶金法で作製した試料より劣る場合は×、優れる場合には○とした。また、圧粉体をそのまま用いて作製した板材と熱伝導率の比較を行い、その熱伝導率の差についても表1に示した。なお、符号としては、圧粉体をそのまま用いた板材と比較し、熱伝導率が向上したものについて+、熱伝導率が低下したものについては−で示した。   Furthermore, each of the above sintered bodies (samples 2 to 6) was heated to 600 ° C. to generate a liquid phase at a rate of 60%, and the resulting mixture was continuously subjected to a thickness of 4 mm × width 100 mm × length by a twin roll method A plate with a thickness of 2000 mm was prepared. For comparison, a green compact was used as it was, and a plate material was produced under the same conditions and method. And the thermal conductivity of each obtained board | plate material and a thermal expansion coefficient were measured. The thermal conductivity was measured by a laser flash method using a disk-shaped test piece. The coefficient of thermal expansion was measured by a push rod method using a columnar test piece. In addition, for each condition, 50 test pieces were prepared and measured for both thermal conductivity and thermal expansion coefficient. The uniformity of the dispersion of the ceramic particles was evaluated by taking the standard deviation of the 50 measured values obtained per condition and from the variation of the measured values. When the variation in characteristics (thermal conductivity, coefficient of thermal expansion) was inferior to the sample produced by the powder metallurgy method, it was marked as “X”. In addition, the thermal conductivity was compared with a plate produced using the green compact as it was, and the difference in thermal conductivity is also shown in Table 1. In addition, as a code | symbol, compared with the board | plate material which used the green compact as it is, it showed with + about what improved thermal conductivity, and-about what reduced thermal conductivity.

Figure 2005076119
Figure 2005076119

試料2〜5については、特性のバラツキが粉末冶金法で作製した試料と同等以上であり、圧粉体をそのまま用いて作製した試料と比較し、熱伝導率が向上していた。試料6については、特性のバラツキが大きく、熱伝導率が圧粉体で作製したものと比較し、低下していた。これは、SiCとアルミニウムが反応し、劣化が起こったためと考えられる。   Samples 2 to 5 had a characteristic variation equal to or greater than that of the sample produced by the powder metallurgy method, and the thermal conductivity was improved as compared with the sample produced using the green compact as it was. Sample 6 had a large variation in characteristics, and the thermal conductivity was lower than that of the sample made of green compact. This is probably because SiC and aluminum reacted and deteriorated.

本実施例2の結果、アルミニウムに対する非酸化性の雰囲気において焼結温度500〜750℃の範囲で焼結を行うことにより、セラミックスの分散が均一であり、圧粉体をそのまま用いて作製した板材よりも熱伝導率が向上し、特性のバラツキのない複合材料が得られたことが分かる。   As a result of Example 2, by performing sintering at a sintering temperature in the range of 500 to 750 ° C. in a non-oxidizing atmosphere with respect to aluminum, the ceramic material is uniformly dispersed, and the plate material produced using the green compact as it is It can be seen that a composite material with improved thermal conductivity and no variation in characteristics was obtained.

組成がAl-2wt%Si-0.1wt%Caであるアルミニウム合金粒子の粉末と、市販のSiC粉末(#800)を用意し、セラミックスの体積割合が10%となるように秤量を行い、ニーダーで2時間混合した。得られた混合粉末を圧縮成型し、圧粉体を作製した後、窒素雰囲気下にて700℃で焼結体の作製を行った。   Prepare powder of aluminum alloy particles with composition Al-2wt% Si-0.1wt% Ca and commercially available SiC powder (# 800), weigh so that the volume ratio of ceramics is 10%, and knead Mixed for 2 hours. The obtained mixed powder was compression molded to produce a green compact, and then a sintered body was produced at 700 ° C. in a nitrogen atmosphere.

得られた焼結体を用いて、表2に示すように生じさせる液相の割合を変化させ、双ロール法にて連続的に板材を作製することを試みた。結果を表2に示す。   Using the obtained sintered body, the ratio of the liquid phase to be generated was changed as shown in Table 2, and an attempt was made to continuously produce a plate material by a twin roll method. The results are shown in Table 2.

Figure 2005076119
Figure 2005076119

表2に示すように5%以上であると板作製が可能であり、液相の割合が3%では、流動性が乏しく板作製が行えなかった。
また、アルミニウム合金粉末の組成、加熱温度を変えて同様の手法で板作製を試みたところ、同様の結果が得られた。
As shown in Table 2, when the content was 5% or more, the plate could be produced. When the liquid phase ratio was 3%, the fluidity was poor and the plate could not be produced.
Moreover, the same result was obtained when the plate preparation was tried by the same method by changing the composition of the aluminum alloy powder and the heating temperature.

板厚と冷却速度
組成がAl-8wt%Si-0.1wt%Caであるアルミニウム合金粒子の粉末と、市販のSiC粉末(#800)を用意し、セラミックスの体積割合が30%となるように秤量を行い、ニーダーで2時間混合した。得られた混合粉末を圧縮成型し、圧粉体を作製した。得られた圧粉体を窒素雰囲気下にて700℃で焼結を行い、焼結体の作製を行った。
Plate thickness and cooling rate Prepare a powder of aluminum alloy particles with a composition of Al-8wt% Si-0.1wt% Ca and commercially available SiC powder (# 800) and weigh them so that the volume ratio of ceramics is 30%. And mixed with a kneader for 2 hours. The obtained mixed powder was compression molded to produce a green compact. The obtained green compact was sintered at 700 ° C. in a nitrogen atmosphere to prepare a sintered body.

得られた焼結体を610℃に加熱し、生じさせる液相の割合を75%とした混合物を作製し、表3に示すように板材を作製する方法、作製する板厚を変え、板作製を行った。試料20は比較例である。得られた板材の中心部に、ヒートシンクに加工した場合に外観上不均一な組織となる粗大なα相が見られたものについては×、見られなかったものについては○を記した。   The obtained sintered body is heated to 610 ° C. to produce a mixture with a liquid phase ratio of 75%, and the method for producing the plate material as shown in Table 3, the plate thickness to be produced is changed, and the plate is produced. Went. Sample 20 is a comparative example. In the central part of the obtained plate material, “x” was given for those in which a coarse α-phase that had a non-uniform structure in appearance when processed into a heat sink, and “◯” for those that were not seen.

Figure 2005076119
Figure 2005076119

表3に示すように、試料15、17、18、19では中心部に粗大なα相は観察されなかった。試料16と比較例である試料20では、中心部に粗大なα相が見られた。つまり、冷却速度10℃/秒未満または、板厚が20mmを越えると、粗大なα相が現れた。   As shown in Table 3, in Samples 15, 17, 18, and 19, no coarse α phase was observed at the center. In Sample 16 and Comparative Sample 20, a coarse α phase was observed in the center. That is, when the cooling rate was less than 10 ° C./second or the plate thickness exceeded 20 mm, a coarse α phase appeared.

さらに、セラミックス粒子の分散の均一性を評価するため、粗大なα相が見られなかった試料15、17、18、19の熱膨張係数、熱伝導率の測定を行った。前記と同じように各50ケずつの試験片から測定を行い、その測定値の標準偏差を計算し、測定値のバラツキから評価したところ、いずれも粉末冶金法で作製したものと同等以上であった。このことから、セラミックス粒子が均一に分散されており、特性のバラツキのない複合材料が得られたことがわかる。   Furthermore, in order to evaluate the uniformity of the dispersion of the ceramic particles, the thermal expansion coefficient and thermal conductivity of Samples 15, 17, 18, and 19 in which no coarse α phase was observed were measured. As described above, measurements were taken from 50 specimens each, and the standard deviation of the measured values was calculated and evaluated from the variations in the measured values. Both were equal to or greater than those produced by the powder metallurgy method. It was. From this, it can be seen that a composite material in which the ceramic particles are uniformly dispersed and there is no variation in characteristics is obtained.

圧延加工
実施例4で得られた試料15、17、18、19の板材は、それぞれ温度450℃に加熱し、1パスごとの板厚減少率を20%にすると、厚みが1.0mmになるまで圧延加工を行うことができた。
Rolling processing The plate materials of Samples 15, 17, 18, and 19 obtained in Example 4 were each heated to a temperature of 450 ° C., and the thickness reduction rate per pass was 20%, until the thickness became 1.0 mm. Rolling could be performed.

ヒートシンク形状加工
実際のヒートシンク形状に加工を行うため、実施例5で得られた試料15、17、18、19から得られた厚み1.0mmの薄板を用いて、30×30mmの角形形状に加工し、中央部に15×15mmの角形形状で深さが0.3mmの凹部をスタンピングとコイニングにより形成した。その結果、いずれの試料も加工時の反りやうねり、割れ等の問題なく、上記の形状を付与することができた。
Heat sink shape processing In order to process into an actual heat sink shape, using a thin plate of 1.0 mm thickness obtained from Samples 15, 17, 18, and 19 obtained in Example 5, it was processed into a 30 × 30 mm square shape. A concave portion having a square shape of 15 × 15 mm and a depth of 0.3 mm was formed at the center by stamping and coining. As a result, any of the samples could be provided with the above shape without problems such as warpage, undulation, and cracking during processing.

次に本件発明の前記実施形態から把握できる請求項以外の技術思想をその効果とともに記載する。
この発明の製造方法の混合物から連続的に板材を得る工程では、鋳造速度が100mm/分以上であることが好ましい。
液相混合物が冷却されて生じる初晶アルミニウムのセルが、実用上許容範囲内の大きさとなり、生成複合材料が、半導体素子搭載用基板向け複合材料としての適合性を有する効果がある。

Next, technical ideas other than the claims that can be grasped from the embodiment of the present invention will be described together with the effects thereof.
In the step of continuously obtaining the plate material from the mixture of the production method of the present invention, the casting speed is preferably 100 mm / min or more.
The primary aluminum cell produced by cooling the liquid phase mixture has a size within a practically acceptable range, and the produced composite material has an effect of being compatible as a composite material for a substrate for mounting a semiconductor element.

Claims (14)

アルミニウムまたはアルミニウム合金からなる粒子と、少なくとも一種類以上のセラミックス粒子からなる粉末を混合、圧粉して粉体混合物を得る工程と、得られた粉体混合物の少なくとも一部に液相を生じさせた液相混合物を得る工程と、前記液相混合物から板材を得る工程からなる複合材料の製造方法。 Mixing particles made of aluminum or an aluminum alloy with powder made of at least one kind of ceramic particles, compacting to obtain a powder mixture, and generating a liquid phase in at least a part of the obtained powder mixture A method for producing a composite material comprising a step of obtaining a liquid phase mixture and a step of obtaining a plate material from the liquid phase mixture. 請求項1に記載の製造方法によって製造された複合材料。 A composite material produced by the production method according to claim 1. アルミニウムまたはアルミニウム合金からなる粒子と、少なくとも一種類以上のセラミックス粒子からなる粉末を混合、圧粉して粉体混合物を得る工程と、得られた粉体混合物の少なくとも一部に液相を生じさせた液相混合物を得る工程と、前記液相混合物から連続的に板材を得る工程からなる半導体素子搭載用基板向け複合材料の製造方法。 Mixing particles made of aluminum or an aluminum alloy with powder made of at least one kind of ceramic particles, compacting to obtain a powder mixture, and generating a liquid phase in at least a part of the obtained powder mixture A method for producing a composite material for a substrate for mounting a semiconductor element, comprising: a step of obtaining a liquid phase mixture; and a step of continuously obtaining a plate material from the liquid phase mixture. 前記粉体混合物を焼結し、焼結体を得る焼結工程をさらに備え、得られた焼結体の少なくとも一部に液相を生じさせた液相混合物から連続的に板材を得る、請求項3に記載の半導体素子搭載用基板向け複合材料の製造方法。 Further comprising a sintering step of sintering the powder mixture to obtain a sintered body, and continuously obtaining a plate material from the liquid phase mixture in which a liquid phase is generated in at least a part of the obtained sintered body. Item 4. A method for producing a composite material for a semiconductor element mounting substrate according to Item 3. 前記焼結工程は、アルミニウムに対する非酸化性の雰囲気下において、焼結温度500〜750℃で焼結を行うことを特徴とする、請求項4に記載の半導体素子搭載用基板向け複合材料の製造方法。 The said sintering process performs sintering by the sintering temperature of 500-750 degreeC in the non-oxidizing atmosphere with respect to aluminum, The manufacture of the composite material for semiconductor element mounting substrates of Claim 4 characterized by the above-mentioned. Method. 前記粉体混合物中に前記セラミックス粒子を体積割合で10〜70%含有することを特徴とする、請求項3ないし請求項5のいずれかに記載の半導体素子搭載用基板向け複合材料の製造方法。 The method for producing a composite material for a semiconductor element mounting substrate according to any one of claims 3 to 5, wherein the ceramic particles are contained in the powder mixture in a volume ratio of 10 to 70%. 前記セラミックス粒子が、酸化アルミニウム、炭化珪素、窒化珪素、ホウ化チタン、酸化珪素、酸化ベリリウムから選ばれた少なくとも一種類を含むセラミック粒子からなる、請求項3ないし請求項6のいずれかに記載の半導体素子搭載用基板向け複合材料の製造方法。 7. The ceramic particles according to claim 3, wherein the ceramic particles are made of ceramic particles containing at least one kind selected from aluminum oxide, silicon carbide, silicon nitride, titanium boride, silicon oxide, and beryllium oxide. A method of manufacturing a composite material for a substrate for mounting a semiconductor element. 前記液相混合物中の液相の割合が体積割合で5%以上である、請求項3ないし請求項7のいずれかに記載の半導体素子搭載用基板向け複合材料の製造方法。 The method for producing a composite material for a substrate for mounting a semiconductor element according to any one of claims 3 to 7, wherein a ratio of a liquid phase in the liquid phase mixture is 5% or more by volume. 前記液相混合物から連続的に板材を得る工程において製造される前記板材の厚みが20mm以下である、請求項3ないし請求項8のいずれかに記載の半導体素子搭載用基板向け複合材料の製造方法。 The method for producing a composite material for a semiconductor element mounting substrate according to any one of claims 3 to 8, wherein the thickness of the plate material produced in the step of continuously obtaining the plate material from the liquid phase mixture is 20 mm or less. . 前記液相混合物から連続的に板材を得る工程において、前記板材の冷却速度は10℃/秒以上である、請求項3ないし請求項9のいずれかに記載の半導体素子搭載用基板向け複合材料の製造方法。 10. The composite material for a substrate for mounting a semiconductor element according to claim 3, wherein in the step of continuously obtaining a plate material from the liquid phase mixture, the cooling rate of the plate material is 10 ° C./second or more. Production method. 前記液相混合物から連続的に板材を得る工程が、双ベルト法、ベルト車輪法、双ロール鋳造法、および横型鋳造法からなる群より選ばれた一種の方法で行なわれることを特徴とする、請求項3ないし請求項10のいずれかに記載の半導体素子搭載用基板向け複合材料の製造方法。 The step of continuously obtaining a plate material from the liquid phase mixture is performed by a kind of method selected from the group consisting of a twin belt method, a belt wheel method, a twin roll casting method, and a horizontal casting method, A method for manufacturing a composite material for a substrate for mounting a semiconductor element according to any one of claims 3 to 10. 前記板材を圧延加工によって薄板状材に加工する圧延工程をさらに備える、請求項3ないし請求項11のいずれかに記載の半導体素子搭載用基板向け複合材料の製造方法。 The method for producing a composite material for a substrate for mounting a semiconductor element according to any one of claims 3 to 11, further comprising a rolling step of processing the plate material into a thin plate material by rolling. 前記圧延工程は、前記板材を200℃以上550℃以下の温度に加熱した後に圧延加工を行う、請求項12に記載の半導体素子搭載用基板向け複合材料の製造方法。 The method for producing a composite material for a substrate for mounting a semiconductor element according to claim 12, wherein the rolling step is performed after the plate material is heated to a temperature of 200 ° C or higher and 550 ° C or lower. 請求項3ないし13のいずれかに記載の製造方法によって製造された半導体素子搭載用基板向け複合材料。
A composite material for a substrate for mounting a semiconductor element, produced by the production method according to claim 3.
JP2003311656A 2003-09-03 2003-09-03 Composite material for substrate for mounting semiconductor element and method for manufacturing the same Expired - Fee Related JP4269853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003311656A JP4269853B2 (en) 2003-09-03 2003-09-03 Composite material for substrate for mounting semiconductor element and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003311656A JP4269853B2 (en) 2003-09-03 2003-09-03 Composite material for substrate for mounting semiconductor element and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2005076119A true JP2005076119A (en) 2005-03-24
JP4269853B2 JP4269853B2 (en) 2009-05-27

Family

ID=34413167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003311656A Expired - Fee Related JP4269853B2 (en) 2003-09-03 2003-09-03 Composite material for substrate for mounting semiconductor element and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4269853B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111187939A (en) * 2020-03-17 2020-05-22 李于蓉 Preparation method of metal-based ceramic particle reinforced composite material
CN114318041A (en) * 2021-12-22 2022-04-12 南京理工大学 SiC particle reinforced aluminum-based composite bar with size gradient and preparation method thereof
WO2024042913A1 (en) * 2022-08-24 2024-02-29 株式会社アライドマテリアル Composite material, heat dissipation substrate, and semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111187939A (en) * 2020-03-17 2020-05-22 李于蓉 Preparation method of metal-based ceramic particle reinforced composite material
CN114318041A (en) * 2021-12-22 2022-04-12 南京理工大学 SiC particle reinforced aluminum-based composite bar with size gradient and preparation method thereof
CN114318041B (en) * 2021-12-22 2024-05-28 南京理工大学 SiC particle reinforced aluminum-based composite bar with size gradient and preparation method thereof
WO2024042913A1 (en) * 2022-08-24 2024-02-29 株式会社アライドマテリアル Composite material, heat dissipation substrate, and semiconductor device

Also Published As

Publication number Publication date
JP4269853B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
JP4360061B2 (en) Semiconductor device member and semiconductor device using the same
TWI796503B (en) Metal-silicon carbide composite body, and method for manufacturing metal-silicon carbide composite body
JP2000303126A (en) Aluminum/diamond composite material and its manufacture
JP2004307996A (en) Tungsten-copper alloy having uniform structure, and its production method
KR100594602B1 (en) Method for producing copper based material of low thermal expansion and high thermal conductivity
JP6595740B1 (en) Metal-silicon carbide composite and method for producing the same
JP4269853B2 (en) Composite material for substrate for mounting semiconductor element and method for manufacturing the same
JP2001335859A (en) Aluminum-silicon carbide composite material and its production method
JP4360832B2 (en) Copper alloy
JP2000297301A (en) Silicon carbide based composite material, its powder, and their manufacture
JP4228444B2 (en) Silicon carbide based composite material and method for producing the same
JP2000141022A (en) Silicon carbide composite body and its manufacture
JP3909037B2 (en) Manufacturing method of low thermal expansion and high thermal conductive member
JP3948797B2 (en) Method for producing silicon carbide composite
JP2000192182A (en) Silicon carbide composite material and its production
JP3883985B2 (en) Method for producing copper-based low thermal expansion high thermal conductive member
JP4461513B2 (en) Aluminum-silicon carbide based composite material and method for producing the same
JP3303729B2 (en) Aluminum nitride based sintered body and method for producing the same
JPH0995745A (en) Low thermal expansion-high thermal conductivity copper composite material and its production
JPH08253833A (en) Copper-molybdenum alloy and its production
JP2001262248A (en) Zn-Sb SERIES MATERIAL, ITS PRODUCING METHOD AND METHOD FOR SUPPRESSING CRACK IN Zn-Sb SERIES MATERIAL
JP3959555B2 (en) Aluminum nitride powder and method for producing degreased body thereof
JP2001158933A (en) Al-SiC COMPOSITE MATERIAL, PRODUCING METHOD THEREFOR AND SEMICONDUCTOR SYSTEM USING SAME
JPH10231175A (en) Low thermal expansion and highly heat conductive heat dissipation material and its production
JP3046342B2 (en) Method for producing aluminum nitride powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4269853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees