JP3883985B2 - Method for producing copper-based low thermal expansion high thermal conductive member - Google Patents

Method for producing copper-based low thermal expansion high thermal conductive member Download PDF

Info

Publication number
JP3883985B2
JP3883985B2 JP2003134305A JP2003134305A JP3883985B2 JP 3883985 B2 JP3883985 B2 JP 3883985B2 JP 2003134305 A JP2003134305 A JP 2003134305A JP 2003134305 A JP2003134305 A JP 2003134305A JP 3883985 B2 JP3883985 B2 JP 3883985B2
Authority
JP
Japan
Prior art keywords
powder
thermal expansion
iron
copper
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003134305A
Other languages
Japanese (ja)
Other versions
JP2004339536A (en
Inventor
善三 石島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2003134305A priority Critical patent/JP3883985B2/en
Priority to KR1020040028682A priority patent/KR100594602B1/en
Priority to US10/832,247 priority patent/US7378053B2/en
Priority to DE102004020833A priority patent/DE102004020833B4/en
Publication of JP2004339536A publication Critical patent/JP2004339536A/en
Application granted granted Critical
Publication of JP3883985B2 publication Critical patent/JP3883985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、Siチップやセラミックス基板等と同等の熱膨張係数とともに、高い放熱性が要求されるヒートシンクに好適な銅基低熱膨張高熱伝導部材の製造方法に関する。
【0002】
【従来の技術】
ヒートシンク等の低い熱膨張係数と、高い放熱性が要求される部材には、銅−モリブデン系、銅−タングステン系の材料が用いられている。
これらの材料は銅の高い熱伝導率と、モリブデンやタングステンの低い熱膨張率を兼ね備えさせることを目的としたもので、例えば特開昭62−284032号公報では、銅粉末とモリブデン粉末との混合粉末を圧粉成形した後、銅の液相が発生する温度で液相焼結して、銅マトリックスにモリブデン相が分散する組織の材料とすることが開示されている。また、特開昭59−21032号公報には、モリブデンまたはタングステンの粉末を高温で焼結してスケルトンを構成した後、銅溶浸を施して、モリブデンまたはタングステンのスケルトン中に銅が分散した材料が開示されている。
【0003】
また、一方で、熱伝導性が高い銅に、熱膨張係数が小さく不変鋼とも呼ばれるインバー合金やスーパーインバー合金を分散させた材料が特開平2−213452号公報や特開平9−13102号公報等で開示されている。
【0004】
【特許文献1】
特開昭62−284032号公報
【特許文献2】
特開昭59−21032号公報
【特許文献3】
特開平2−213452号公報
【特許文献4】
特開平9−13102号公報
【0005】
【発明が解決しようとする課題】
しかし、上記特許文献1、2のような材料は、原料とするモリブデン粉末やタングステン粉末が高価であるため、材料費自体が嵩むことが大きな問題である。また、前者の場合には、液相焼結するため、変形しやすく、寸法バラツキが大きいため、焼結後に、加工が必要であるが、モリブデンは硬く、加工性が低いという欠点を有しており、このような相が分散する材料も加工性は低いという問題を有している。また、後者の場合は、スケルトンの全ての隙間に銅を溶浸することが難しいため、熱伝導性が劣るとともに品質にバラツキが生じやすく、また予め高温焼結した後、銅を溶浸するため工程費が嵩むものである。さらに、加工性の問題については前者と同様である。
【0006】
さらに両者に共通であるが、ヒートシンクはハンダ付けのためニッケルメッキが施される場合があるが、機械加工後、モリブデンやタングステンが露出するためニッケルメッキを施し難いという欠点も有する。
【0007】
また、上記特許文献3には、焼結温度が800℃以上であることが記載され、上記特許文献4には、750℃以上で焼結した場合にインバー成分がCu中に拡散して熱伝導性が劣化するため、インバー合金粉末表面に拡散防止被膜を設けることを骨子としており、インバー合金粉末と銅粉末の焼結が難しいことを示している。
【0008】
本発明は、モリブデンやタングステンのような高価な材料を使用せずに、寸法精度がよく、加工性に優れ、さらに、ニッケルメッキが可能な高熱伝導部材を提供するにあたり、銅系マトリックス中にインバー合金が分散する焼結材料の簡便な改良された製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明の銅基低熱膨張高熱伝導部材の製造方法は、銅粉末に、100℃までの熱膨張係数が6×10-6/K以下の鉄基合金粉末を、質量比で5〜60%を添加し、混合した混合粉末を用い、相対密度で93%以上に圧縮成形した後、400〜600℃で焼結することを特徴とする。
また、前記銅粉末が、−100メッシュの粉末で、かつ粒径50μm以上の粉末の含有量が60%以下の粉末であるとともに、前記鉄基合金粉末が、−100メッシュで、かつ、粒径50μm以下の粉末の含有量が60%以下の粉末であることを特徴とする。
【0010】
【発明の実施の形態】
本発明は、100℃までの熱膨張係数が6×10-6/K以下の鉄基合金粉末が分散するとともに、鉄基合金粉末表面が僅に、マトリックスと拡散して強固に結合した金属組織を呈する銅基低熱膨張高熱伝導部材を製造することを目的とする。
【0011】
このような銅マトリックスと鉄基合金粉末の拡散状態を形成するために、焼結は400〜600℃の温度範囲で行う必要がある。すなわち、焼結温度が400℃より低いと銅マトリックス自体が十分に拡散されず、熱伝導性および強度が劣ることになり、600℃を越えると鉄基合金粉末が銅マトリックス中に必要以上に拡散して、熱膨張の抑制機能および銅マトリックスの熱伝導率が低下することとなる。特に、鉄基合金粉末として、ニッケルを含む鉄基合金を用いる場合、銅とニッケルは全率固溶であるので、ニッケルの銅マトリックスへの拡散が著しくなり、これらの不具合の度合が大きい。
【0012】
また、鉄基合金粉末のマトリックスへの拡散を抑制することを目的とした400〜600℃の焼結温度では、ほとんど緻密化しない。このため、マトリックスの熱伝導率を高くするためには、予め相対密度で93%以上に圧縮成形しておく必要がある。一方で、銅の液相が発生しないため、寸法精度も優れるという利点も有する。
【0013】
上記の100℃までの熱膨張係数が6×10-6/K以下の鉄基合金としては、インバー(Fe−36Ni)、スーパーインバー(Fe−31Ni−5Co)、ステンレスインバー(Fe−52.3Co−10.4Cr)、コバール(Fe−29Ni−17Co)、42アロイ(Fe−42Ni)等の合金や、Fe−17B合金等がある。これらの合金は上記のモリブデンやタングステンに比べて安価であり、加工性にも優れたものである。
【0014】
上記の鉄基合金粉末は、マトリックス中の分散量が多くなるにしたがい、熱膨張抑制の効果が大きくなるが、マトリックスの量の減少にしたがい、熱伝導性は低下する。鉄基合金粉末は、質量比で5%未満であると、熱膨張抑制の効果が乏しく、60%を越えるとマトリックスが少なくなり、マトリックスのCuの連続性が著しく低下するため熱伝導性が低下する。また、前記のような100℃までの熱膨張係数が6×10-6/K以下の鉄基合金どうしは、上記温度範囲ではほとんど焼結しないため結合性が低く、一層熱伝導性が低下することとなる。以上より、鉄基合金粉末の添加量は、5〜60%の範囲にする必要がある。
【0015】
このような低熱膨張高熱伝導複合部材は、銅粉末に、上記鉄基合金粉末を、質量比で5〜60%を添加混合した混合粉末を用いて、圧縮成形した後、上記温度で焼結することで容易に製造することができる。
【0016】
上記のようなマトリックスを構成する銅粉末は微粉末を用いることによりネック形成部を増加させ拡散を進行させることができる。さらに、銅粉末の粒度分布を鉄基合金粉末の粒度分布より細かくすることによって、マトリックスである銅の連続性は高まり、熱伝導性を向上させることができる。このことを前提とした上で、全体の粒度が細かくなりすぎると、粉末の流動性の低下や型かじり等の不具合が発生するだけでなく、鉄基合金粉末のネック形成部が増加することにより、マトリックスへの拡散量が多くなり、マトリックスの熱伝導性の低下や、鉄基合金粉末の成分組成が変化することによる熱膨張抑制作用の低下が生じる。一方、全体の粒径が逆に大きくなりすぎると、マトリックス中に均一に分散できなくなるため、局部的に熱膨張抑制の効果が弱まる箇所が生じ、効果的に熱膨張を抑制できなくなる。
【0017】
これらのことから鉄基合金粉末として、−100メッシュ(100メッシュ篩通過)のものが好ましく、かつ、粒径50μm以下の粉末の含有量が60%以下の粉末を用いることが一層好ましい。粒度構成として、50μm以下の粉末が60%を越えるような鉄基合金粉末は、微粉の量が多く、熱伝導性が低くなる。また、マトリックス用の銅粉末としては、上記鉄基合金粉末よりも粒度が小さくなるように、−100メッシュの粉末で、かつ粒径50μm以上の粉末の含有量が60%以下の粉末を用いることが好ましい。このように鉄基合金粉末とマトリックス粉末の粒度を調整することによって、より一層の効率的な熱伝導と熱膨張抑制の作用が得られる。
【0018】
【実施例】
<実施例1>
(鉄基合金粉末の熱膨張係数、添加量、焼結温度の影響)
表1に示す100℃までの熱膨張係数の値を有し、50μm以下の粉末を40%含有するような粒度構成に調整した−100メッシュの鉄基合金粉末を用意した。
【0019】
【表1】

Figure 0003883985
【0020】
−100メッシュで粒径50μm以上の粉末を40%含有するように調整した銅粉末に、これらの鉄基合金粉末を、表2に示す配合割合で添加し、1470MPaで圧粉成形した後、アンモニア分解ガス雰囲気中、表2に示す温度で焼結を行い試料番号01〜31の試料を作製した。これらの試料につき、熱伝導率と、熱膨張係数について測定した結果を表2に併せて示す。また表2の測定結果について、グラフ化したものを図1〜4に示す。
【0021】
【表2】
Figure 0003883985
【0022】
表2の試料番号01〜09は銅粉末に対して鉄基合金粉末(Fe−36Ni)の添加量を変えたものである。これらの試料を比較することによって、鉄基合金粉末の添加量が熱伝導率と熱膨張係数に及ぼす影響がわかる。これをグラフ化したのが図1である。これらより、鉄基合金粉末の添加量が5質量%の試料02は、無添加(銅100%)の試料01に比べて、熱伝導率および熱膨張係数が小さい値を示し、熱膨張係数が改善されていることがわかる。
また、鉄基合金粉末の添加量が増加するにしたがって熱伝導率および熱膨張係数は低下する傾向を示すことがわかる。しかし、鉄基合金粉末の添加量が60質量%を越える試料09では、熱膨張係数が逆に増加している。これは、500℃の焼結温度では焼結により結合していない鉄基合金粉末が多く、銅の膨張を抑制しきれないで熱膨張係数が増加傾向に転じたものと考えられる。すなわち、銅粉末と接触している鉄基合金粉末は表層で結合しているが、鉄基合金粉末どうしは結合していないため、銅の熱膨張に際して、結合していない鉄基合金粉末どうしの界面でずれが生じて熱膨張抑制の効果が得られなかったと考える。
【0023】
また、試料番号10〜14、15〜19、20〜24は鉄基合金粉末(Fe−36Ni−5Co)の添加量がそれぞれ30質量%、40質量%および50質量%において、焼結温度を変えたものである。これらの試料を比較することにより、焼結温度が熱伝導率と熱膨張係数に及ぼす影響がわかる。これをグラフ化したものが図2および図3である。これらより、焼結温度が上昇するとともに、熱伝導率は400℃、500℃から600℃にかけて低下する傾向を示し、1000℃では、著しく低下することがわかる。一方、熱膨張係数は、400から500℃で低下した後、それ以上の温度で増加する傾向を示し、1000℃では著しい増加を示すことがわかる。これは、1000℃の焼結温度では、銅粉末と鉄基合金粉末どうしが拡散し、特性が劣化したためと考える。なお、焼結温度300℃では、マトリックスの焼結が進行しておらず、強度が乏しいものであった。以上の傾向は鉄基合金粉末の添加量に依らずいずれも同様の傾向を示しており、これらのことから、焼結温度は400〜600℃の範囲の範囲が適切であることがわかる。
【0024】
さらに、試料番号06、17、26、29、31は組成の異なる鉄基合金粉末を40質量%添加し、500℃で焼結したものである。これらの試料を比較することにより鉄基合金粉末の種類が熱伝導率と熱膨張係数に及ぼす影響がわかる。これをグラフ化したものが図4である。これらのいずれの試料においても100℃までの熱膨張係数が6×10-6/K以下の鉄基合金粉末であると鉄基合金粉末の種類による熱伝導率の変化はほとんどなく、かつ熱膨張係数は小さく抑制されていることがわかる。
【0025】
以上より、銅マトリックス中に、100℃までの熱膨張係数が6×10-6/K以下の鉄基合金粉末が、質量比で、5〜60%分散し、400〜600℃で焼結した試料は熱伝導率が著しく低下することなく、かつ熱膨張係数は小さいことが確認された。
【0026】
<実施例2>
(粒度構成の影響)
−100メッシュの銅粉末と、鉄基合金粉末として−100メッシュのFe−36Ni粉末を用い、表3の試料番号06、32〜39に示す割合のものを1470MPaで圧粉成形した後、アンモニア分解ガス雰囲気中、500℃で焼結を行った。これらの試料につき、熱伝導率と、熱膨張係数について測定した結果を表3に併せて示す。
【0027】
【表3】
Figure 0003883985
【0028】
試料番号06、32〜36は、50μm以上の粉末の量が60%の銅粉末に対して、50μm以下の粉末の量の異なる鉄基合金粉末を配合したものである。これらを比較することで、鉄基合金粉末の50μm以下の粉末の含有量の熱膨張係数および熱伝導率への影響がわかる。表3より、熱膨張係数は一定であるが、鉄基合金粉末の50μm以下の粉末の量が減少するにつれ熱伝導率は向上していることがわかる。特に、50μm以下の粉末が60%以下の試料では熱伝導率が100W/m・Kを越える良好な値を示している。
【0029】
試料番号06、37〜39は、50μm以上の粉末の量が異なる銅粉末に対して、50μm以下の粉末の量が40%の鉄基合金粉末を配合したものである。これらを比較することで、50μm以上の銅粉末の含有量の違いによる熱膨張係数と熱伝導率への影響がわかる。50μm以上の銅粉末の含有量が増加するにつれて、熱伝導率は低下していることがわかる。50μm以上の銅粉末の量が60%以下の試料では熱伝導率が100W/m・Kを越える良好な値を示している。
【0030】
以上より、マトリックス粉末が、−100メッシュの粉末で、かつ粒径50μm以上の粉末が60%以下の粉末であるとともに、前記鉄基合金粉末が、−100メッシュで、かつ、粒径50μm以下の粉末が60%以下の粉末を用いると、特に効果が高いことが確認された。
【0031】
【発明の効果】
本発明による銅基低熱膨張高熱伝導部材の製造方法によれば、簡便な工程で、銅マトリックス中に、100℃までの熱膨張係数が6×10-6/K以下の鉄基合金粉末が僅かにマトリックスと拡散した金属組織を呈する、高い熱伝導性と低い熱膨張率を兼ね備えた銅基低熱膨張高熱伝導部材を製造することができる。
【図面の簡単な説明】
【図1】鉄基合金粉末の添加量と熱伝導率および熱膨張係数との関係を示すグラフである。
【図2】鉄基合金粉末の各添加量における、焼結温度と熱伝導率との関係を示すグラフである。
【図3】鉄基合金粉末の各添加量における、焼結温度と熱膨張係数との関係を示すグラフである。
【図4】鉄基合金粉末の種類と、熱伝導率および熱膨張係数との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a copper-based low thermal expansion and high thermal conductive member suitable for a heat sink that requires high heat dissipation as well as a thermal expansion coefficient equivalent to that of a Si chip or a ceramic substrate.
[0002]
[Prior art]
Copper-molybdenum-based and copper-tungsten-based materials are used for members that require a low thermal expansion coefficient and high heat dissipation, such as a heat sink.
These materials are intended to combine the high thermal conductivity of copper and the low thermal expansion coefficient of molybdenum and tungsten. For example, in Japanese Patent Application Laid-Open No. 62-284032, a mixture of copper powder and molybdenum powder is used. It is disclosed that after compacting a powder, liquid phase sintering is performed at a temperature at which a copper liquid phase is generated, and a material having a structure in which a molybdenum phase is dispersed in a copper matrix is disclosed. JP-A-59-21032 discloses a material in which molybdenum or tungsten powder is sintered at a high temperature to form a skeleton, and then copper is infiltrated to disperse copper in the molybdenum or tungsten skeleton. Is disclosed.
[0003]
On the other hand, a material in which an invar alloy or a super invar alloy, which is also called an invariant steel having a small thermal expansion coefficient, is dispersed in copper having a high thermal conductivity is disclosed in Japanese Patent Laid-Open Nos. Hei 2-213452 and Hei 9-13102. Is disclosed.
[0004]
[Patent Document 1]
JP 62-284032 A [Patent Document 2]
JP 59-21032 A [Patent Document 3]
Japanese Patent Application Laid-Open No. 2-213452 [Patent Document 4]
Japanese Patent Laid-Open No. 9-13102
[Problems to be solved by the invention]
However, materials such as the above-mentioned Patent Documents 1 and 2 have a large problem that the material cost itself increases because the molybdenum powder and tungsten powder as raw materials are expensive. In the former case, since liquid phase sintering is performed, deformation is easy and dimensional variation is large. Therefore, processing is necessary after sintering, but molybdenum has the disadvantage that it is hard and has low workability. In addition, the material in which such a phase is dispersed also has a problem that the processability is low. In the latter case, it is difficult to infiltrate copper into all the gaps of the skeleton, so that the thermal conductivity is inferior and the quality tends to vary, and the copper is infiltrated after high-temperature sintering in advance. The process cost increases. Furthermore, the problem of workability is the same as the former.
[0006]
Furthermore, although common to both, the heat sink may be nickel-plated for soldering, but has a drawback that it is difficult to perform nickel plating because molybdenum and tungsten are exposed after machining.
[0007]
Further, Patent Document 3 describes that the sintering temperature is 800 ° C. or higher, and Patent Document 4 discloses that the Invar component diffuses into Cu when sintered at 750 ° C. or higher, and conducts heat. Therefore, the main point is to provide a diffusion-preventing coating on the surface of the Invar alloy powder, indicating that it is difficult to sinter the Invar alloy powder and the copper powder.
[0008]
The present invention provides an invar in a copper-based matrix in providing a high thermal conductivity member that has good dimensional accuracy, excellent workability, and is capable of nickel plating without using expensive materials such as molybdenum and tungsten. It is to provide a simple and improved method for producing a sintered material in which an alloy is dispersed.
[0009]
[Means for Solving the Problems]
The method for producing a copper-based low thermal expansion and high thermal conductive member of the present invention is obtained by adding, to a copper powder, an iron-based alloy powder having a thermal expansion coefficient of 6 × 10 −6 / K or less up to 100 ° C. in a mass ratio of 5 to 60%. Using the mixed powder that has been added and mixed, compression molding to a relative density of 93% or more, followed by sintering at 400 to 600 ° C.
Further, the copper powder is a powder of −100 mesh and the content of powder having a particle size of 50 μm or more is 60% or less, and the iron-based alloy powder is −100 mesh and has a particle size of The content of the powder of 50 μm or less is a powder of 60% or less.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention has a metal structure in which an iron-base alloy powder having a thermal expansion coefficient up to 100 ° C. of 6 × 10 −6 / K or less is dispersed and the surface of the iron-base alloy powder is slightly diffused and firmly bonded to the matrix. It aims at manufacturing the copper base low thermal expansion high heat conductive member which exhibits this.
[0011]
In order to form such a diffusion state of the copper matrix and the iron-based alloy powder, the sintering needs to be performed in a temperature range of 400 to 600 ° C. That is, when the sintering temperature is lower than 400 ° C., the copper matrix itself is not sufficiently diffused, resulting in inferior thermal conductivity and strength, and when it exceeds 600 ° C., the iron-based alloy powder diffuses more than necessary in the copper matrix. As a result, the thermal expansion suppressing function and the thermal conductivity of the copper matrix are lowered. In particular, when an iron-based alloy containing nickel is used as the iron-based alloy powder, since copper and nickel are all in solid solution, the diffusion of nickel into the copper matrix becomes significant, and the degree of these problems is large.
[0012]
Moreover, it is hardly densified at a sintering temperature of 400 to 600 ° C. for the purpose of suppressing diffusion of the iron-based alloy powder into the matrix. For this reason, in order to increase the thermal conductivity of the matrix, it is necessary to perform compression molding to a relative density of 93% or more in advance. On the other hand, since no copper liquid phase is generated, there is an advantage that the dimensional accuracy is also excellent.
[0013]
Examples of the iron-based alloys having a thermal expansion coefficient up to 100 ° C. of 6 × 10 −6 / K or less include Invar (Fe-36Ni), Super Invar (Fe-31Ni-5Co), Stainless Invar (Fe-52.3Co). -10.4Cr), Kovar (Fe-29Ni-17Co), 42 alloy (Fe-42Ni), and the like, and Fe-17B alloy. These alloys are cheaper than the above molybdenum and tungsten, and are excellent in workability.
[0014]
The iron-based alloy powder has an effect of suppressing thermal expansion as the amount of dispersion in the matrix increases, but the thermal conductivity decreases as the amount of matrix decreases. When the iron-based alloy powder is less than 5% in mass ratio, the effect of suppressing thermal expansion is poor, and when it exceeds 60%, the matrix is reduced, and the continuity of Cu in the matrix is remarkably lowered, so the thermal conductivity is lowered. To do. In addition, the iron base alloys having a thermal expansion coefficient up to 100 ° C. as described above having a thermal expansion coefficient of 6 × 10 −6 / K or less hardly sinter in the above temperature range, so the bonding property is low and the thermal conductivity is further reduced. It will be. From the above, the addition amount of the iron-based alloy powder needs to be in the range of 5 to 60%.
[0015]
Such a low thermal expansion high thermal conductive composite member is compression-molded using a mixed powder obtained by adding 5 to 60% of the above iron-based alloy powder to copper powder and then sintered at the above temperature. It can be manufactured easily.
[0016]
By using fine powder, the copper powder constituting the matrix as described above can increase the neck forming portion and promote diffusion. Furthermore, by making the particle size distribution of the copper powder finer than the particle size distribution of the iron-based alloy powder, the continuity of copper as the matrix is increased and the thermal conductivity can be improved. On the premise of this, if the overall particle size becomes too fine, not only will the powder flowability decrease and mold galling, but also the neck forming part of the iron-based alloy powder will increase. The amount of diffusion into the matrix increases, resulting in a decrease in thermal conductivity of the matrix and a decrease in thermal expansion suppression effect due to changes in the composition of the iron-based alloy powder. On the other hand, if the overall particle size becomes too large, it becomes impossible to uniformly disperse in the matrix, resulting in a portion where the effect of suppressing the thermal expansion is locally weakened, making it impossible to effectively suppress the thermal expansion.
[0017]
For these reasons, as the iron-based alloy powder, those having a −100 mesh (passing through a 100 mesh sieve) are preferable, and it is more preferable to use a powder having a particle size of 50 μm or less and a content of 60% or less. As the particle size constitution, the iron-base alloy powder in which the powder of 50 μm or less exceeds 60% has a large amount of fine powder and low thermal conductivity. In addition, as the copper powder for the matrix, use should be made of a powder of −100 mesh and a content of powder having a particle size of 50 μm or more of 60% or less so that the particle size is smaller than that of the iron-based alloy powder. Is preferred. By adjusting the particle sizes of the iron-based alloy powder and the matrix powder in this manner, a more efficient heat conduction and thermal expansion suppressing action can be obtained.
[0018]
【Example】
<Example 1>
(Effects of thermal expansion coefficient, addition amount and sintering temperature of iron-base alloy powder)
A −100 mesh iron-based alloy powder having a thermal expansion coefficient value of up to 100 ° C. shown in Table 1 and adjusted to a particle size constitution containing 40% of powder of 50 μm or less was prepared.
[0019]
[Table 1]
Figure 0003883985
[0020]
After adding these iron-based alloy powders in a blending ratio shown in Table 2 to copper powder adjusted to contain 40% of powder having a particle size of 50 μm or more at −100 mesh, and after compacting at 1470 MPa, ammonia Sintering was performed at a temperature shown in Table 2 in a cracked gas atmosphere to prepare samples Nos. 01 to 31. Table 2 shows the results of measuring the thermal conductivity and the coefficient of thermal expansion of these samples. Moreover, what was graphed about the measurement result of Table 2 is shown in FIGS.
[0021]
[Table 2]
Figure 0003883985
[0022]
Sample numbers 01 to 09 in Table 2 are obtained by changing the amount of iron-based alloy powder (Fe-36Ni) added to the copper powder. By comparing these samples, the influence of the added amount of the iron-based alloy powder on the thermal conductivity and the thermal expansion coefficient can be understood. FIG. 1 is a graph of this. From these, the sample 02 with an iron-based alloy powder addition amount of 5% by mass shows smaller values of thermal conductivity and coefficient of thermal expansion than the sample 01 with no addition (100% copper), and the coefficient of thermal expansion is You can see that it has improved.
Moreover, it turns out that a heat conductivity and a thermal expansion coefficient show the tendency to fall as the addition amount of iron-base alloy powder increases. However, in the sample 09 in which the addition amount of the iron-based alloy powder exceeds 60% by mass, the thermal expansion coefficient increases conversely. This is probably because the iron-based alloy powder is not bonded by sintering at a sintering temperature of 500 ° C., and the thermal expansion coefficient tends to increase without being able to suppress the expansion of copper. That is, the iron-base alloy powder in contact with the copper powder is bonded in the surface layer, but the iron-base alloy powders are not bonded together. It is considered that the effect of suppressing thermal expansion could not be obtained due to deviation at the interface.
[0023]
Sample numbers 10 to 14, 15 to 19, and 20 to 24 change the sintering temperature when the addition amount of the iron-based alloy powder (Fe-36Ni-5Co) is 30% by mass, 40% by mass, and 50% by mass, respectively. It is a thing. By comparing these samples, the influence of the sintering temperature on the thermal conductivity and the coefficient of thermal expansion can be seen. FIG. 2 and FIG. 3 are graphs of this. From these, it can be seen that as the sintering temperature increases, the thermal conductivity tends to decrease from 400 ° C. and from 500 ° C. to 600 ° C., and at 1000 ° C., it decreases significantly. On the other hand, the thermal expansion coefficient shows a tendency to increase at a temperature higher than that after decreasing at 400 to 500 ° C., and to show a significant increase at 1000 ° C. This is considered to be because at the sintering temperature of 1000 ° C., the copper powder and the iron-based alloy powder diffused to deteriorate the characteristics. At a sintering temperature of 300 ° C., the matrix did not sinter and the strength was poor. These tendencies all show the same tendency regardless of the added amount of the iron-based alloy powder, and from these, it is understood that the sintering temperature is appropriately in the range of 400 to 600 ° C.
[0024]
Furthermore, sample numbers 06, 17, 26, 29, and 31 were obtained by adding 40 mass% of iron-based alloy powders having different compositions and sintering at 500 ° C. By comparing these samples, the effect of the type of iron-based alloy powder on thermal conductivity and thermal expansion coefficient can be seen. A graph of this is shown in FIG. In any of these samples, when the thermal expansion coefficient up to 100 ° C. is an iron-base alloy powder having a coefficient of 6 × 10 −6 / K or less, there is almost no change in thermal conductivity depending on the type of iron-base alloy powder, and thermal expansion It can be seen that the coefficient is kept small.
[0025]
From the above, in the copper matrix, an iron-base alloy powder having a thermal expansion coefficient up to 100 ° C. of 6 × 10 −6 / K or less is dispersed in a mass ratio of 5 to 60% and sintered at 400 to 600 ° C. It was confirmed that the sample did not significantly decrease the thermal conductivity and had a small coefficient of thermal expansion.
[0026]
<Example 2>
(Effect of grain size composition)
Using -100 mesh copper powder and -100 mesh Fe-36Ni powder as the iron-based alloy powder, the ratios shown in Table 3 sample numbers 06 and 32-39 were compacted at 1470 MPa, and then decomposed with ammonia. Sintering was performed at 500 ° C. in a gas atmosphere. Table 3 shows the results of measuring the thermal conductivity and the coefficient of thermal expansion of these samples.
[0027]
[Table 3]
Figure 0003883985
[0028]
Sample Nos. 06 and 32-36 are obtained by blending iron-based alloy powders having different amounts of powders of 50 μm or less with respect to copper powders having a powder amount of 50 μm or more being 60%. By comparing these, the influence of the content of the iron-based alloy powder of 50 μm or less on the thermal expansion coefficient and the thermal conductivity can be understood. From Table 3, it can be seen that the thermal expansion coefficient is constant, but the thermal conductivity is improved as the amount of the iron-base alloy powder of 50 μm or less is decreased. In particular, a sample having a powder of 50 μm or less of 60% or less shows a good value with a thermal conductivity exceeding 100 W / m · K.
[0029]
Sample Nos. 06 and 37 to 39 are obtained by blending an iron-based alloy powder in which the amount of powder of 50 μm or less is 40% with respect to copper powder in which the amount of powder of 50 μm or more is different. By comparing these, the influence on the thermal expansion coefficient and the thermal conductivity due to the difference in the content of copper powder of 50 μm or more can be understood. It can be seen that the thermal conductivity decreases as the content of copper powder of 50 μm or more increases. Samples with an amount of copper powder of 50 μm or more of 60% or less show good values with thermal conductivity exceeding 100 W / m · K.
[0030]
As described above, the matrix powder is a powder of −100 mesh and the powder having a particle size of 50 μm or more is a powder of 60% or less, and the iron-based alloy powder is −100 mesh and the particle size is 50 μm or less. It was confirmed that the effect was particularly high when a powder of 60% or less was used.
[0031]
【The invention's effect】
According to the method for producing a copper-based low thermal expansion and high thermal conductive member according to the present invention, iron-based alloy powder having a thermal expansion coefficient up to 100 ° C. of 6 × 10 −6 / K or less is slightly contained in the copper matrix in a simple process. It is possible to produce a copper-based low thermal expansion and high thermal conductive member having a high thermal conductivity and a low thermal expansion coefficient, which exhibits a matrix and a diffused metal structure.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the amount of iron-based alloy powder added, thermal conductivity, and thermal expansion coefficient.
FIG. 2 is a graph showing the relationship between the sintering temperature and the thermal conductivity for each added amount of iron-based alloy powder.
FIG. 3 is a graph showing the relationship between the sintering temperature and the thermal expansion coefficient at each addition amount of iron-based alloy powder.
FIG. 4 is a graph showing the relationship between the type of iron-based alloy powder, thermal conductivity, and thermal expansion coefficient.

Claims (2)

銅粉末に、100℃までの熱膨張係数が6×10-6/K以下の鉄基合金粉末を、質量比で5〜60%を添加し、混合した混合粉末を用い、相対密度で93%以上に圧縮成形した後、400〜600℃で焼結することを特徴とする銅基低熱膨張高熱伝導部材の製造方法。To a copper powder, an iron-base alloy powder having a thermal expansion coefficient up to 100 ° C. of 6 × 10 −6 / K or less is added in a mass ratio of 5 to 60%, and a mixed powder is used, and a relative density is 93%. A method for producing a copper-based low thermal expansion and high thermal conductivity member, characterized by sintering at 400 to 600 ° C. after compression molding as described above. 前記銅粉末が、−100メッシュの粉末で、かつ粒径50μm以上の粉末の含有量が60%以下の粉末であるとともに、前記鉄基合金粉末が、−100メッシュで、かつ、粒径50μm以下の粉末の含有量が60%以下の粉末であることを特徴とする請求項1に記載の銅基低熱膨張高熱伝導部材の製造方法。The copper powder is a powder of -100 mesh and the content of powder having a particle size of 50 μm or more is 60% or less, and the iron-based alloy powder is -100 mesh and a particle size of 50 μm or less. The method for producing a copper-based low thermal expansion and high thermal conductive member according to claim 1, wherein the content of the powder is 60% or less.
JP2003134305A 2003-04-28 2003-05-13 Method for producing copper-based low thermal expansion high thermal conductive member Expired - Fee Related JP3883985B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003134305A JP3883985B2 (en) 2003-05-13 2003-05-13 Method for producing copper-based low thermal expansion high thermal conductive member
KR1020040028682A KR100594602B1 (en) 2003-04-28 2004-04-26 Method for producing copper based material of low thermal expansion and high thermal conductivity
US10/832,247 US7378053B2 (en) 2003-04-28 2004-04-27 Method for producing copper-based material with low thermal expansion and high heat conductivity
DE102004020833A DE102004020833B4 (en) 2003-04-28 2004-04-28 Low thermal expansion and high thermal conductivity copper based material and method of making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003134305A JP3883985B2 (en) 2003-05-13 2003-05-13 Method for producing copper-based low thermal expansion high thermal conductive member

Publications (2)

Publication Number Publication Date
JP2004339536A JP2004339536A (en) 2004-12-02
JP3883985B2 true JP3883985B2 (en) 2007-02-21

Family

ID=33524905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003134305A Expired - Fee Related JP3883985B2 (en) 2003-04-28 2003-05-13 Method for producing copper-based low thermal expansion high thermal conductive member

Country Status (1)

Country Link
JP (1) JP3883985B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5214555B2 (en) * 2005-01-06 2013-06-19 Ntn株式会社 Sintered oil-impregnated bearing
JP4636329B2 (en) * 2006-03-31 2011-02-23 三菱マテリアル株式会社 Manufacturing method of heat dissipation buffer plate

Also Published As

Publication number Publication date
JP2004339536A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US20060157884A1 (en) Method for producing a composite material
JP2011524466A (en) Metal-infiltrated silicon titanium and aluminum carbide bodies
CN1329955A (en) Tungsten-copper composite powder
US20090053090A1 (en) Alloy for heat dissipation of semiconductor device and semiconductor module, and method of manufacturing alloy
TWI796503B (en) Metal-silicon carbide composite body, and method for manufacturing metal-silicon carbide composite body
JP2746279B2 (en) Substrate material for semiconductor device and method of manufacturing the same
US20030217828A1 (en) Metal matrix composite having improved microstructure and the process for making the same
KR100594602B1 (en) Method for producing copper based material of low thermal expansion and high thermal conductivity
JPH08199280A (en) Copper-tungsten alloy and its production
JP3883985B2 (en) Method for producing copper-based low thermal expansion high thermal conductive member
JP3909037B2 (en) Manufacturing method of low thermal expansion and high thermal conductive member
JP4305986B2 (en) Method for producing silicon carbide composite material
KR20210144716A (en) composite material
JP3336370B2 (en) Method of manufacturing semiconductor substrate material, semiconductor substrate material and semiconductor package
JP4161299B2 (en) Sintering method using tungsten-copper composite powder, sintered body, and heat sink
JP2020012196A (en) Electrode material for discharge processing or heat sink for semiconductor, and manufacturing method therefor
JP4269853B2 (en) Composite material for substrate for mounting semiconductor element and method for manufacturing the same
JP2005072069A (en) Heat dissipation substrate for semiconductor
US6589310B1 (en) High conductivity copper/refractory metal composites and method for making same
JP3358685B2 (en) Manufacturing method of low thermal expansion sintered alloy
JPH10231175A (en) Low thermal expansion and highly heat conductive heat dissipation material and its production
JP2924457B2 (en) Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device
JP2559085B2 (en) Composite sintered material and manufacturing method thereof
JP2910415B2 (en) Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device
JP2924456B2 (en) Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees