JP2004339536A - Method of producing copper based low thermal expansion highly heat conductive member - Google Patents

Method of producing copper based low thermal expansion highly heat conductive member Download PDF

Info

Publication number
JP2004339536A
JP2004339536A JP2003134305A JP2003134305A JP2004339536A JP 2004339536 A JP2004339536 A JP 2004339536A JP 2003134305 A JP2003134305 A JP 2003134305A JP 2003134305 A JP2003134305 A JP 2003134305A JP 2004339536 A JP2004339536 A JP 2004339536A
Authority
JP
Japan
Prior art keywords
powder
iron
copper
based alloy
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003134305A
Other languages
Japanese (ja)
Other versions
JP3883985B2 (en
Inventor
Zenzo Ishijima
善三 石島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2003134305A priority Critical patent/JP3883985B2/en
Priority to KR1020040028682A priority patent/KR100594602B1/en
Priority to US10/832,247 priority patent/US7378053B2/en
Priority to DE102004020833A priority patent/DE102004020833B4/en
Publication of JP2004339536A publication Critical patent/JP2004339536A/en
Application granted granted Critical
Publication of JP3883985B2 publication Critical patent/JP3883985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily producing a sintered material in which an Invar alloy is dispersed into a copper based matrix, in providing a material which has more satisfactory dimensional precision and excellent workability and can be plated with nickel without using expensive materials such as molybdenum and tungsten as in the prior art, in a copper based alloy material for a member requiring a low thermal expansion coefficient and high heat dissipation properties such as a heat sink. <P>SOLUTION: A powdery mixture obtained by mixing, to copper powder, 5 to 60 mass% iron based alloy powder whose thermal expansion coefficient up to 100°C is ≤6×10<SP>-6</SP>/K is subjected to compression molding to ≥93% relative density, and is thereafter sintered at 400 to 600°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、Siチップやセラミックス基板等と同等の熱膨張係数とともに、高い放熱性が要求されるヒートシンクに好適な銅基低熱膨張高熱伝導部材の製造方法に関する。
【0002】
【従来の技術】
ヒートシンク等の低い熱膨張係数と、高い放熱性が要求される部材には、銅−モリブデン系、銅−タングステン系の材料が用いられている。
これらの材料は銅の高い熱伝導率と、モリブデンやタングステンの低い熱膨張率を兼ね備えさせることを目的としたもので、例えば特開昭62−284032号公報では、銅粉末とモリブデン粉末との混合粉末を圧粉成形した後、銅の液相が発生する温度で液相焼結して、銅マトリックスにモリブデン相が分散する組織の材料とすることが開示されている。また、特開昭59−21032号公報には、モリブデンまたはタングステンの粉末を高温で焼結してスケルトンを構成した後、銅溶浸を施して、モリブデンまたはタングステンのスケルトン中に銅が分散した材料が開示されている。
【0003】
また、一方で、熱伝導性が高い銅に、熱膨張係数が小さく不変鋼とも呼ばれるインバー合金やスーパーインバー合金を分散させた材料が特開平2−213452号公報や特開平9−13102号公報等で開示されている。
【0004】
【特許文献1】
特開昭62−284032号公報
【特許文献2】
特開昭59−21032号公報
【特許文献3】
特開平2−213452号公報
【特許文献4】
特開平9−13102号公報
【0005】
【発明が解決しようとする課題】
しかし、上記特許文献1、2のような材料は、原料とするモリブデン粉末やタングステン粉末が高価であるため、材料費自体が嵩むことが大きな問題である。また、前者の場合には、液相焼結するため、変形しやすく、寸法バラツキが大きいため、焼結後に、加工が必要であるが、モリブデンは硬く、加工性が低いという欠点を有しており、このような相が分散する材料も加工性は低いという問題を有している。また、後者の場合は、スケルトンの全ての隙間に銅を溶浸することが難しいため、熱伝導性が劣るとともに品質にバラツキが生じやすく、また予め高温焼結した後、銅を溶浸するため工程費が嵩むものである。さらに、加工性の問題については前者と同様である。
【0006】
さらに両者に共通であるが、ヒートシンクはハンダ付けのためニッケルメッキが施される場合があるが、機械加工後、モリブデンやタングステンが露出するためニッケルメッキを施し難いという欠点も有する。
【0007】
また、上記特許文献3には、焼結温度が800℃以上であることが記載され、上記特許文献4には、750℃以上で焼結した場合にインバー成分がCu中に拡散して熱伝導性が劣化するため、インバー合金粉末表面に拡散防止被膜を設けることを骨子としており、インバー合金粉末と銅粉末の焼結が難しいことを示している。
【0008】
本発明は、モリブデンやタングステンのような高価な材料を使用せずに、寸法精度がよく、加工性に優れ、さらに、ニッケルメッキが可能な高熱伝導部材を提供するにあたり、銅系マトリックス中にインバー合金が分散する焼結材料の簡便な改良された製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明の銅基低熱膨張高熱伝導部材の製造方法は、銅粉末に、100℃までの熱膨張係数が6×10−6/K以下の鉄基合金粉末を、質量比で5〜60%を添加し、混合した混合粉末を用い、相対密度で93%以上に圧縮成形した後、400〜600℃で焼結することを特徴とする。
また、前記銅粉末が、−100メッシュの粉末で、かつ粒径50μm以上の粉末の含有量が60%以下の粉末であるとともに、前記鉄基合金粉末が、−100メッシュで、かつ、粒径50μm以下の粉末の含有量が60%以下の粉末であることを特徴とする。
【0010】
【発明の実施の形態】
本発明は、100℃までの熱膨張係数が6×10−6/K以下の鉄基合金粉末が分散するとともに、鉄基合金粉末表面が僅に、マトリックスと拡散して強固に結合した金属組織を呈する銅基低熱膨張高熱伝導部材を製造することを目的とする。
【0011】
このような銅マトリックスと鉄基合金粉末の拡散状態を形成するために、焼結は400〜600℃の温度範囲で行う必要がある。すなわち、焼結温度が400℃より低いと銅マトリックス自体が十分に拡散されず、熱伝導性および強度が劣ることになり、600℃を越えると鉄基合金粉末が銅マトリックス中に必要以上に拡散して、熱膨張の抑制機能および銅マトリックスの熱伝導率が低下することとなる。特に、鉄基合金粉末として、ニッケルを含む鉄基合金を用いる場合、銅とニッケルは全率固溶であるので、ニッケルの銅マトリックスへの拡散が著しくなり、これらの不具合の度合が大きい。
【0012】
また、鉄基合金粉末のマトリックスへの拡散を抑制することを目的とした400〜600℃の焼結温度では、ほとんど緻密化しない。このため、マトリックスの熱伝導率を高くするためには、予め相対密度で93%以上に圧縮成形しておく必要がある。一方で、銅の液相が発生しないため、寸法精度も優れるという利点も有する。
【0013】
上記の100℃までの熱膨張係数が6×10−6/K以下の鉄基合金としては、インバー(Fe−36Ni)、スーパーインバー(Fe−31Ni−5Co)、ステンレスインバー(Fe−52.3Co−10.4Cr)、コバール(Fe−29Ni−17Co)、42アロイ(Fe−42Ni)等の合金や、Fe−17B合金等がある。これらの合金は上記のモリブデンやタングステンに比べて安価であり、加工性にも優れたものである。
【0014】
上記の鉄基合金粉末は、マトリックス中の分散量が多くなるにしたがい、熱膨張抑制の効果が大きくなるが、マトリックスの量の減少にしたがい、熱伝導性は低下する。鉄基合金粉末は、質量比で5%未満であると、熱膨張抑制の効果が乏しく、60%を越えるとマトリックスが少なくなり、マトリックスのCuの連続性が著しく低下するため熱伝導性が低下する。また、前記のような100℃までの熱膨張係数が6×10−6/K以下の鉄基合金どうしは、上記温度範囲ではほとんど焼結しないため結合性が低く、一層熱伝導性が低下することとなる。以上より、鉄基合金粉末の添加量は、5〜60%の範囲にする必要がある。
【0015】
このような低熱膨張高熱伝導複合部材は、銅粉末に、上記鉄基合金粉末を、質量比で5〜60%を添加混合した混合粉末を用いて、圧縮成形した後、上記温度で焼結することで容易に製造することができる。
【0016】
上記のようなマトリックスを構成する銅粉末は微粉末を用いることによりネック形成部を増加させ拡散を進行させることができる。さらに、銅粉末の粒度分布を鉄基合金粉末の粒度分布より細かくすることによって、マトリックスである銅の連続性は高まり、熱伝導性を向上させることができる。このことを前提とした上で、全体の粒度が細かくなりすぎると、粉末の流動性の低下や型かじり等の不具合が発生するだけでなく、鉄基合金粉末のネック形成部が増加することにより、マトリックスへの拡散量が多くなり、マトリックスの熱伝導性の低下や、鉄基合金粉末の成分組成が変化することによる熱膨張抑制作用の低下が生じる。一方、全体の粒径が逆に大きくなりすぎると、マトリックス中に均一に分散できなくなるため、局部的に熱膨張抑制の効果が弱まる箇所が生じ、効果的に熱膨張を抑制できなくなる。
【0017】
これらのことから鉄基合金粉末として、−100メッシュ(100メッシュ篩通過)のものが好ましく、かつ、粒径50μm以下の粉末の含有量が60%以下の粉末を用いることが一層好ましい。粒度構成として、50μm以下の粉末が60%を越えるような鉄基合金粉末は、微粉の量が多く、熱伝導性が低くなる。また、マトリックス用の銅粉末としては、上記鉄基合金粉末よりも粒度が小さくなるように、−100メッシュの粉末で、かつ粒径50μm以上の粉末の含有量が60%以下の粉末を用いることが好ましい。このように鉄基合金粉末とマトリックス粉末の粒度を調整することによって、より一層の効率的な熱伝導と熱膨張抑制の作用が得られる。
【0018】
【実施例】
<実施例1>
(鉄基合金粉末の熱膨張係数、添加量、焼結温度の影響)
表1に示す100℃までの熱膨張係数の値を有し、50μm以下の粉末を40%含有するような粒度構成に調整した−100メッシュの鉄基合金粉末を用意した。
【0019】
【表1】

Figure 2004339536
【0020】
−100メッシュで粒径50μm以上の粉末を40%含有するように調整した銅粉末に、これらの鉄基合金粉末を、表2に示す配合割合で添加し、1470MPaで圧粉成形した後、アンモニア分解ガス雰囲気中、表2に示す温度で焼結を行い試料番号01〜31の試料を作製した。これらの試料につき、熱伝導率と、熱膨張係数について測定した結果を表2に併せて示す。また表2の測定結果について、グラフ化したものを図1〜4に示す。
【0021】
【表2】
Figure 2004339536
【0022】
表2の試料番号01〜09は銅粉末に対して鉄基合金粉末(Fe−36Ni)の添加量を変えたものである。これらの試料を比較することによって、鉄基合金粉末の添加量が熱伝導率と熱膨張係数に及ぼす影響がわかる。これをグラフ化したのが図1である。これらより、鉄基合金粉末の添加量が5質量%の試料02は、無添加(銅100%)の試料01に比べて、熱伝導率および熱膨張係数が小さい値を示し、熱膨張係数が改善されていることがわかる。
また、鉄基合金粉末の添加量が増加するにしたがって熱伝導率および熱膨張係数は低下する傾向を示すことがわかる。しかし、鉄基合金粉末の添加量が60質量%を越える試料09では、熱膨張係数が逆に増加している。これは、500℃の焼結温度では焼結により結合していない鉄基合金粉末が多く、銅の膨張を抑制しきれないで熱膨張係数が増加傾向に転じたものと考えられる。すなわち、銅粉末と接触している鉄基合金粉末は表層で結合しているが、鉄基合金粉末どうしは結合していないため、銅の熱膨張に際して、結合していない鉄基合金粉末どうしの界面でずれが生じて熱膨張抑制の効果が得られなかったと考える。
【0023】
また、試料番号10〜14、15〜19、20〜24は鉄基合金粉末(Fe−36Ni−5Co)の添加量がそれぞれ30質量%、40質量%および50質量%において、焼結温度を変えたものである。これらの試料を比較することにより、焼結温度が熱伝導率と熱膨張係数に及ぼす影響がわかる。これをグラフ化したものが図2および図3である。これらより、焼結温度が上昇するとともに、熱伝導率は400℃、500℃から600℃にかけて低下する傾向を示し、1000℃では、著しく低下することがわかる。一方、熱膨張係数は、400から500℃で低下した後、それ以上の温度で増加する傾向を示し、1000℃では著しい増加を示すことがわかる。これは、1000℃の焼結温度では、銅粉末と鉄基合金粉末どうしが拡散し、特性が劣化したためと考える。なお、焼結温度300℃では、マトリックスの焼結が進行しておらず、強度が乏しいものであった。以上の傾向は鉄基合金粉末の添加量に依らずいずれも同様の傾向を示しており、これらのことから、焼結温度は400〜600℃の範囲の範囲が適切であることがわかる。
【0024】
さらに、試料番号06、17、26、29、31は組成の異なる鉄基合金粉末を40質量%添加し、500℃で焼結したものである。これらの試料を比較することにより鉄基合金粉末の種類が熱伝導率と熱膨張係数に及ぼす影響がわかる。これをグラフ化したものが図4である。これらのいずれの試料においても100℃までの熱膨張係数が6×10−6/K以下の鉄基合金粉末であると鉄基合金粉末の種類による熱伝導率の変化はほとんどなく、かつ熱膨張係数は小さく抑制されていることがわかる。
【0025】
以上より、銅マトリックス中に、100℃までの熱膨張係数が6×10−6/K以下の鉄基合金粉末が、質量比で、5〜60%分散し、400〜600℃で焼結した試料は熱伝導率が著しく低下することなく、かつ熱膨張係数は小さいことが確認された。
【0026】
<実施例2>
(粒度構成の影響)
−100メッシュの銅粉末と、鉄基合金粉末として−100メッシュのFe−36Ni粉末を用い、表3の試料番号06、32〜39に示す割合のものを1470MPaで圧粉成形した後、アンモニア分解ガス雰囲気中、500℃で焼結を行った。これらの試料につき、熱伝導率と、熱膨張係数について測定した結果を表3に併せて示す。
【0027】
【表3】
Figure 2004339536
【0028】
試料番号06、32〜36は、50μm以上の粉末の量が60%の銅粉末に対して、50μm以下の粉末の量の異なる鉄基合金粉末を配合したものである。これらを比較することで、鉄基合金粉末の50μm以下の粉末の含有量の熱膨張係数および熱伝導率への影響がわかる。表3より、熱膨張係数は一定であるが、鉄基合金粉末の50μm以下の粉末の量が減少するにつれ熱伝導率は向上していることがわかる。特に、50μm以下の粉末が60%以下の試料では熱伝導率が100W/m・Kを越える良好な値を示している。
【0029】
試料番号06、37〜39は、50μm以上の粉末の量が異なる銅粉末に対して、50μm以下の粉末の量が40%の鉄基合金粉末を配合したものである。これらを比較することで、50μm以上の銅粉末の含有量の違いによる熱膨張係数と熱伝導率への影響がわかる。50μm以上の銅粉末の含有量が増加するにつれて、熱伝導率は低下していることがわかる。50μm以上の銅粉末の量が60%以下の試料では熱伝導率が100W/m・Kを越える良好な値を示している。
【0030】
以上より、マトリックス粉末が、−100メッシュの粉末で、かつ粒径50μm以上の粉末が60%以下の粉末であるとともに、前記鉄基合金粉末が、−100メッシュで、かつ、粒径50μm以下の粉末が60%以下の粉末を用いると、特に効果が高いことが確認された。
【0031】
【発明の効果】
本発明による銅基低熱膨張高熱伝導部材の製造方法によれば、簡便な工程で、銅マトリックス中に、100℃までの熱膨張係数が6×10−6/K以下の鉄基合金粉末が僅かにマトリックスと拡散した金属組織を呈する、高い熱伝導性と低い熱膨張率を兼ね備えた銅基低熱膨張高熱伝導部材を製造することができる。
【図面の簡単な説明】
【図1】鉄基合金粉末の添加量と熱伝導率および熱膨張係数との関係を示すグラフである。
【図2】鉄基合金粉末の各添加量における、焼結温度と熱伝導率との関係を示すグラフである。
【図3】鉄基合金粉末の各添加量における、焼結温度と熱膨張係数との関係を示すグラフである。
【図4】鉄基合金粉末の種類と、熱伝導率および熱膨張係数との関係を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a copper-based low-thermal-expansion high-thermal-conductivity member suitable for a heat sink that requires a high heat dissipation as well as a thermal expansion coefficient equivalent to that of a Si chip or a ceramic substrate.
[0002]
[Prior art]
Copper-molybdenum-based and copper-tungsten-based materials are used for members requiring a low thermal expansion coefficient and high heat dissipation such as a heat sink.
The purpose of these materials is to combine the high thermal conductivity of copper with the low thermal expansion coefficient of molybdenum and tungsten. For example, Japanese Patent Application Laid-Open No. 62-284032 discloses that a mixture of copper powder and molybdenum powder is used. It is disclosed that after powder compaction, liquid phase sintering is performed at a temperature at which a liquid phase of copper is generated to obtain a material having a structure in which a molybdenum phase is dispersed in a copper matrix. JP-A-59-21032 discloses a material in which molybdenum or tungsten powder is sintered at a high temperature to form a skeleton and then copper infiltration is performed to disperse copper in the molybdenum or tungsten skeleton. Is disclosed.
[0003]
On the other hand, a material obtained by dispersing an invar alloy or a super invar alloy, which is also referred to as an invariable steel having a small coefficient of thermal expansion, in copper having high thermal conductivity is disclosed in JP-A-2-213452 and JP-A-9-13102. Are disclosed.
[0004]
[Patent Document 1]
JP 62-284032 A [Patent Document 2]
JP-A-59-21032 [Patent Document 3]
JP-A-2-213452 [Patent Document 4]
Japanese Patent Application Laid-Open No. 9-13102
[Problems to be solved by the invention]
However, in the materials described in Patent Documents 1 and 2, since a molybdenum powder or a tungsten powder as a raw material is expensive, a large problem is that the material cost itself increases. Also, in the former case, since liquid phase sintering is easy to deform and large in dimensional variation, processing is required after sintering, but molybdenum has the disadvantage that it is hard and has low workability. Therefore, materials in which such a phase is dispersed also have a problem that workability is low. Also, in the latter case, it is difficult to infiltrate copper into all the gaps of the skeleton, so the thermal conductivity is inferior and the quality tends to vary, and the copper is infiltrated after high-temperature sintering in advance. The process cost is high. Further, the problem of workability is the same as the former.
[0006]
Further, although common to both, the heat sink is sometimes plated with nickel for soldering, but has the disadvantage that it is difficult to apply nickel plating because molybdenum and tungsten are exposed after machining.
[0007]
Patent Document 3 describes that the sintering temperature is 800 ° C. or higher, and Patent Document 4 describes that when sintering is performed at 750 ° C. or higher, the invar component diffuses into Cu and heat conduction occurs. The main point is that an anti-diffusion coating is provided on the surface of the Invar alloy powder because of the deterioration of the properties, which indicates that sintering of the Invar alloy powder and the copper powder is difficult.
[0008]
The present invention provides a highly heat-conductive member having good dimensional accuracy, excellent workability, and nickel plating without using expensive materials such as molybdenum and tungsten. An object of the present invention is to provide a simple and improved method for producing a sintered material in which an alloy is dispersed.
[0009]
[Means for Solving the Problems]
The method for producing a copper-based low-thermal-expansion high-thermal-conductivity member according to the present invention is characterized in that a copper powder has an iron-based alloy powder having a thermal expansion coefficient up to 100 ° C. of 6 × 10 −6 / K or less, Using the mixed powder added and mixed, the material is compression-molded to a relative density of 93% or more, and then sintered at 400 to 600 ° C.
In addition, the copper powder is -100 mesh powder and the content of powder having a particle size of 50 μm or more is 60% or less, and the iron-based alloy powder is -100 mesh and has a particle size of -100 mesh. It is characterized in that the content of the powder of 50 μm or less is a powder of 60% or less.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention provides a metal structure in which an iron-based alloy powder having a thermal expansion coefficient of 6 × 10 −6 / K or less up to 100 ° C. is dispersed, and the surface of the iron-based alloy powder is slightly diffused with a matrix and firmly bonded. An object of the present invention is to produce a copper-based low-thermal-expansion high-thermal-conductivity member exhibiting the following.
[0011]
In order to form such a diffusion state of the copper matrix and the iron-based alloy powder, the sintering needs to be performed in a temperature range of 400 to 600 ° C. That is, if the sintering temperature is lower than 400 ° C., the copper matrix itself is not sufficiently diffused, resulting in poor thermal conductivity and strength. If the sintering temperature is higher than 600 ° C., the iron-based alloy powder is unnecessarily diffused into the copper matrix. As a result, the function of suppressing thermal expansion and the thermal conductivity of the copper matrix are reduced. In particular, when an iron-based alloy containing nickel is used as the iron-based alloy powder, since copper and nickel are completely dissolved, the diffusion of nickel into the copper matrix becomes remarkable, and the degree of these problems is large.
[0012]
Further, at a sintering temperature of 400 to 600 ° C. for the purpose of suppressing the diffusion of the iron-based alloy powder into the matrix, the powder is hardly densified. For this reason, in order to increase the thermal conductivity of the matrix, it is necessary to previously compress the matrix to a relative density of 93% or more. On the other hand, since a liquid phase of copper is not generated, there is also an advantage that dimensional accuracy is excellent.
[0013]
Examples of the iron-based alloy having a thermal expansion coefficient of up to 6 × 10 −6 / K up to 100 ° C. include invar (Fe-36Ni), super invar (Fe-31Ni-5Co), and stainless invar (Fe-52.3Co). -10.4Cr), Kovar (Fe-29Ni-17Co), 42 alloy (Fe-42Ni) and the like, and Fe-17B alloy. These alloys are inexpensive as compared with the above-mentioned molybdenum and tungsten, and have excellent workability.
[0014]
The above-described iron-based alloy powder has an effect of suppressing thermal expansion as the amount of dispersion in the matrix increases, but the thermal conductivity decreases as the amount of the matrix decreases. If the mass ratio of the iron-based alloy powder is less than 5%, the effect of suppressing thermal expansion is poor, and if it exceeds 60%, the matrix is reduced, and the continuity of Cu in the matrix is significantly reduced, so that the thermal conductivity is reduced. I do. Further, iron-base alloys having a thermal expansion coefficient of 6 × 10 −6 / K or less up to 100 ° C. hardly sinter in the above-mentioned temperature range, so that their bonding properties are low and the thermal conductivity is further reduced. It will be. As described above, the amount of the iron-based alloy powder needs to be in the range of 5 to 60%.
[0015]
Such a low-thermal-expansion high-thermal-conductivity composite member is compression-molded using a mixed powder obtained by adding 5 to 60% by mass of the iron-based alloy powder to a copper powder and then sintering at the above-described temperature. Thus, it can be easily manufactured.
[0016]
By using the fine powder of the copper powder constituting the matrix as described above, the neck forming portion can be increased and the diffusion can be advanced. Further, by making the particle size distribution of the copper powder finer than the particle size distribution of the iron-based alloy powder, the continuity of copper as a matrix is enhanced, and the thermal conductivity can be improved. On the premise of this, if the overall particle size is too fine, not only does the flowability of the powder decrease or problems such as mold galling occur, but also the neck forming portion of the iron-based alloy powder increases, In addition, the amount of diffusion into the matrix increases, resulting in a decrease in the thermal conductivity of the matrix and a decrease in the effect of suppressing thermal expansion due to a change in the component composition of the iron-based alloy powder. On the other hand, if the overall particle size is too large, it becomes impossible to uniformly disperse the particles in the matrix, so that a portion where the effect of suppressing thermal expansion is locally weakened, and thermal expansion cannot be effectively suppressed.
[0017]
For these reasons, the iron-based alloy powder is preferably -100 mesh (passed through a 100 mesh sieve), and more preferably a powder having a particle size of 50 μm or less and a content of 60% or less is used. The iron-based alloy powder in which the powder having a particle size of 50 μm or less exceeds 60% has a large amount of fine powder and low thermal conductivity. As the copper powder for the matrix, use a powder of -100 mesh and a powder having a particle size of 50 μm or more and a content of 60% or less so that the particle size is smaller than that of the iron-based alloy powder. Is preferred. By adjusting the particle size of the iron-based alloy powder and the matrix powder in this manner, more effective heat conduction and thermal expansion suppression can be obtained.
[0018]
【Example】
<Example 1>
(Effects of coefficient of thermal expansion, addition amount, and sintering temperature of iron-based alloy powder)
A -100 mesh iron-based alloy powder having a coefficient of thermal expansion up to 100 ° C. shown in Table 1 and adjusted to a particle size configuration containing 40% of a powder of 50 μm or less was prepared.
[0019]
[Table 1]
Figure 2004339536
[0020]
These iron-based alloy powders were added at a compounding ratio shown in Table 2 to copper powder adjusted to contain 40% of powder having a particle size of 50 μm or more with a mesh of -100, and after compacting at 1470 MPa, ammonia Sintering was performed at a temperature shown in Table 2 in a decomposed gas atmosphere to prepare Samples Nos. 01 to 31. Table 2 also shows the results of measuring the thermal conductivity and the coefficient of thermal expansion of these samples. In addition, graphs of the measurement results in Table 2 are shown in FIGS.
[0021]
[Table 2]
Figure 2004339536
[0022]
Sample numbers 01 to 09 in Table 2 are obtained by changing the addition amount of the iron-based alloy powder (Fe-36Ni) to the copper powder. By comparing these samples, the effect of the addition amount of the iron-based alloy powder on the thermal conductivity and the coefficient of thermal expansion can be understood. FIG. 1 is a graph of this. From these results, Sample 02 in which the addition amount of the iron-based alloy powder is 5% by mass shows smaller values of the thermal conductivity and the coefficient of thermal expansion than Sample 01 in which the addition amount of the iron-based alloy powder is not added (100% of copper). It can be seen that it has been improved.
Further, it can be seen that the thermal conductivity and the thermal expansion coefficient tend to decrease as the addition amount of the iron-based alloy powder increases. However, in Sample 09 in which the addition amount of the iron-based alloy powder exceeds 60% by mass, the coefficient of thermal expansion is conversely increased. This is presumably because at the sintering temperature of 500 ° C., there were many iron-based alloy powders that were not bonded by sintering, and the expansion of copper could not be suppressed, and the coefficient of thermal expansion turned to an increasing tendency. That is, although the iron-based alloy powder in contact with the copper powder is bonded at the surface layer, the iron-based alloy powder is not bonded to each other. It is considered that the displacement occurred at the interface and the effect of suppressing thermal expansion was not obtained.
[0023]
Sample numbers 10 to 14, 15 to 19, and 20 to 24 changed the sintering temperature when the addition amount of the iron-based alloy powder (Fe-36Ni-5Co) was 30% by mass, 40% by mass, and 50% by mass, respectively. It is something. Comparison of these samples shows the effect of sintering temperature on thermal conductivity and coefficient of thermal expansion. FIG. 2 and FIG. 3 are graphs of this. From these results, it can be seen that as the sintering temperature increases, the thermal conductivity tends to decrease from 400 ° C., 500 ° C. to 600 ° C., and at 1000 ° C., the temperature significantly decreases. On the other hand, it can be seen that the coefficient of thermal expansion tends to decrease at 400 to 500 ° C. and then increase at a higher temperature, and shows a remarkable increase at 1000 ° C. This is considered to be due to the fact that at the sintering temperature of 1000 ° C., the copper powder and the iron-based alloy powder were diffused, and the characteristics were deteriorated. At a sintering temperature of 300 ° C., sintering of the matrix did not proceed, and the strength was poor. The above tendencies show the same tendencies irrespective of the amount of the iron-based alloy powder added. From these facts, it can be seen that the sintering temperature in the range of 400 to 600 ° C. is appropriate.
[0024]
Further, Sample Nos. 06, 17, 26, 29 and 31 were obtained by adding 40% by mass of iron-based alloy powders having different compositions and sintering them at 500 ° C. By comparing these samples, the effect of the type of the iron-based alloy powder on the thermal conductivity and the coefficient of thermal expansion can be understood. FIG. 4 is a graph of this. In any of these samples, when the iron-based alloy powder having a coefficient of thermal expansion up to 100 ° C. of 6 × 10 −6 / K or less, there is almost no change in thermal conductivity depending on the type of the iron-based alloy powder, and the thermal expansion coefficient is small. It can be seen that the coefficient is suppressed to a small value.
[0025]
As described above, in the copper matrix, the iron-based alloy powder having a coefficient of thermal expansion of 6 × 10 −6 / K or less up to 100 ° C. was dispersed in a mass ratio of 5 to 60%, and sintered at 400 to 600 ° C. It was confirmed that the sample did not significantly decrease in thermal conductivity and had a small coefficient of thermal expansion.
[0026]
<Example 2>
(Effect of granularity configuration)
Using -100 mesh copper powder and -100 mesh Fe-36Ni powder as the iron-based alloy powder, the powder having a ratio shown in sample numbers 06 and 32 to 39 in Table 3 was compacted at 1470 MPa, and then subjected to ammonia decomposition. Sintering was performed at 500 ° C. in a gas atmosphere. Table 3 also shows the results of measuring the thermal conductivity and the coefficient of thermal expansion of these samples.
[0027]
[Table 3]
Figure 2004339536
[0028]
Sample Nos. 06 and 32 to 36 were prepared by mixing iron-based alloy powders having different powder amounts of 50 μm or less with copper powder having a powder amount of 50 μm or more of 60%. By comparing these, the influence of the content of the iron-based alloy powder of 50 μm or less on the thermal expansion coefficient and the thermal conductivity is understood. Table 3 shows that the coefficient of thermal expansion is constant, but the thermal conductivity increases as the amount of the iron-based alloy powder having a size of 50 μm or less decreases. In particular, a sample having a powder having a particle size of 50 μm or less having a powder content of 60% or less has a good thermal conductivity exceeding 100 W / m · K.
[0029]
Sample Nos. 06 and 37 to 39 are obtained by mixing iron-based alloy powder in which the amount of powder of 50 μm or less is 40% with the copper powder of which the amount of powder of 50 μm or more is different. By comparing these, it is understood that the difference in the content of the copper powder of 50 μm or more affects the thermal expansion coefficient and the thermal conductivity. It can be seen that as the content of the copper powder of 50 μm or more increases, the thermal conductivity decreases. A sample in which the amount of copper powder having a size of 50 μm or more has a content of 60% or less shows a good value of thermal conductivity exceeding 100 W / m · K.
[0030]
As described above, the matrix powder is -100 mesh powder, and the powder having a particle size of 50 μm or more is 60% or less, and the iron-based alloy powder is -100 mesh and the particle size is 50 μm or less. It was confirmed that the use of powder having a powder content of 60% or less was particularly effective.
[0031]
【The invention's effect】
According to the method for producing a copper-based low-thermal-expansion high-thermal-conductivity member according to the present invention, the iron-based alloy powder having a thermal expansion coefficient of up to 100 ° C. of 6 × 10 −6 / K or less is slightly contained in the copper matrix. Thus, a copper-based low-thermal-expansion high-thermal-conductivity member having high thermal conductivity and a low coefficient of thermal expansion exhibiting a metal structure diffused with a matrix can be manufactured.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the addition amount of an iron-based alloy powder and the thermal conductivity and coefficient of thermal expansion.
FIG. 2 is a graph showing a relationship between a sintering temperature and a thermal conductivity at each addition amount of an iron-based alloy powder.
FIG. 3 is a graph showing a relationship between a sintering temperature and a coefficient of thermal expansion for each addition amount of an iron-based alloy powder.
FIG. 4 is a graph showing the relationship between the type of iron-based alloy powder and the thermal conductivity and coefficient of thermal expansion.

Claims (2)

銅粉末に、100℃までの熱膨張係数が6×10−6/K以下の鉄基合金粉末を、質量比で5〜60%を添加し、混合した混合粉末を用い、相対密度で93%以上に圧縮成形した後、400〜600℃で焼結することを特徴とする銅基低熱膨張高熱伝導部材の製造方法。An iron-based alloy powder having a thermal expansion coefficient up to 100 ° C. of 6 × 10 −6 / K or less is added to a copper powder at a mass ratio of 5 to 60%. A method for producing a copper-based low-thermal-expansion high-thermal-conductivity member, comprising sintering at 400 to 600 ° C. after compression-molding as described above. 前記銅粉末が、−100メッシュの粉末で、かつ粒径50μm以上の粉末の含有量が60%以下の粉末であるとともに、前記鉄基合金粉末が、−100メッシュで、かつ、粒径50μm以下の粉末の含有量が60%以下の粉末であることを特徴とする請求項1に記載の銅基低熱膨張高熱伝導部材の製造方法。The copper powder is -100 mesh powder, and the content of powder having a particle size of 50 μm or more is 60% or less, and the iron-based alloy powder is -100 mesh and the particle size is 50 μm or less. The method for producing a copper-based low-thermal-expansion high-thermal-conduction member according to claim 1, wherein the content of the powder is 60% or less.
JP2003134305A 2003-04-28 2003-05-13 Method for producing copper-based low thermal expansion high thermal conductive member Expired - Fee Related JP3883985B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003134305A JP3883985B2 (en) 2003-05-13 2003-05-13 Method for producing copper-based low thermal expansion high thermal conductive member
KR1020040028682A KR100594602B1 (en) 2003-04-28 2004-04-26 Method for producing copper based material of low thermal expansion and high thermal conductivity
US10/832,247 US7378053B2 (en) 2003-04-28 2004-04-27 Method for producing copper-based material with low thermal expansion and high heat conductivity
DE102004020833A DE102004020833B4 (en) 2003-04-28 2004-04-28 Low thermal expansion and high thermal conductivity copper based material and method of making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003134305A JP3883985B2 (en) 2003-05-13 2003-05-13 Method for producing copper-based low thermal expansion high thermal conductive member

Publications (2)

Publication Number Publication Date
JP2004339536A true JP2004339536A (en) 2004-12-02
JP3883985B2 JP3883985B2 (en) 2007-02-21

Family

ID=33524905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003134305A Expired - Fee Related JP3883985B2 (en) 2003-04-28 2003-05-13 Method for producing copper-based low thermal expansion high thermal conductive member

Country Status (1)

Country Link
JP (1) JP3883985B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273706A (en) * 2006-03-31 2007-10-18 Mitsubishi Materials Corp Manufacturing method of heat dissipation buffer plate
JP2009275291A (en) * 2005-01-06 2009-11-26 Ntn Corp Sintered metal material and sintered oil-impregnated bearing formed of the metal material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275291A (en) * 2005-01-06 2009-11-26 Ntn Corp Sintered metal material and sintered oil-impregnated bearing formed of the metal material
JP2007273706A (en) * 2006-03-31 2007-10-18 Mitsubishi Materials Corp Manufacturing method of heat dissipation buffer plate
JP4636329B2 (en) * 2006-03-31 2011-02-23 三菱マテリアル株式会社 Manufacturing method of heat dissipation buffer plate

Also Published As

Publication number Publication date
JP3883985B2 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
Hou et al. W–Cu composites with submicron-and nanostructures: progress and challenges
KR100206502B1 (en) High strength self-lubricating composite material
JP2011524466A (en) Metal-infiltrated silicon titanium and aluminum carbide bodies
JP2005097112A (en) Tungsten-copper composite oxide powder
EP1601631A1 (en) Method for producing a composite material
AT7522U1 (en) HEAT SINKS FROM BORN DIAMOND-COPPER COMPOSITE
KR20090094098A (en) Graphite material and method for manufacturing the same
JP2746279B2 (en) Substrate material for semiconductor device and method of manufacturing the same
US20030217828A1 (en) Metal matrix composite having improved microstructure and the process for making the same
KR100594602B1 (en) Method for producing copper based material of low thermal expansion and high thermal conductivity
Chung et al. Effect of titanium addition on the thermal properties of diamond/Cu-Ti composites fabricated by pressureless liquid-phase sintering technique
JP3883985B2 (en) Method for producing copper-based low thermal expansion high thermal conductive member
JP3909037B2 (en) Manufacturing method of low thermal expansion and high thermal conductive member
JP2012140683A (en) Cu AND HIGH MELTING POINT METAL COMPOSITE FOR HEAT SINK MATERIAL TO WHICH Ni IS ADDED, AND METHOD FOR PRODUCING THE SAME
KR20210144716A (en) composite material
JP2013023707A (en) Mixed powder for powder metallurgy
JP2016160523A (en) Copper-molybdenum composite material and method for producing the same
JP3336370B2 (en) Method of manufacturing semiconductor substrate material, semiconductor substrate material and semiconductor package
JP4269853B2 (en) Composite material for substrate for mounting semiconductor element and method for manufacturing the same
Hamid et al. Electroless Ni-Cr-B on Diamond Particles for Fabricated Copper/Diamond Composites as Heat Sink Materials
JP2005072069A (en) Heat dissipation substrate for semiconductor
JPH10231175A (en) Low thermal expansion and highly heat conductive heat dissipation material and its production
US6589310B1 (en) High conductivity copper/refractory metal composites and method for making same
JP2559085B2 (en) Composite sintered material and manufacturing method thereof
JP3204566B2 (en) Manufacturing method of heat sink material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees