JP2005076052A - 剛性および強度が向上したチタン合金 - Google Patents
剛性および強度が向上したチタン合金 Download PDFInfo
- Publication number
- JP2005076052A JP2005076052A JP2003305148A JP2003305148A JP2005076052A JP 2005076052 A JP2005076052 A JP 2005076052A JP 2003305148 A JP2003305148 A JP 2003305148A JP 2003305148 A JP2003305148 A JP 2003305148A JP 2005076052 A JP2005076052 A JP 2005076052A
- Authority
- JP
- Japan
- Prior art keywords
- titanium alloy
- fine particles
- powder
- strength
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001069 Ti alloy Inorganic materials 0.000 title claims abstract description 60
- 239000010419 fine particle Substances 0.000 claims abstract description 33
- 239000000843 powder Substances 0.000 claims abstract description 27
- 239000000956 alloy Substances 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 20
- 229910052751 metal Inorganic materials 0.000 claims abstract description 17
- 239000002184 metal Substances 0.000 claims abstract description 17
- 239000002994 raw material Substances 0.000 claims abstract description 17
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 claims abstract description 12
- 238000002844 melting Methods 0.000 claims abstract description 11
- 230000008018 melting Effects 0.000 claims abstract description 11
- 239000006104 solid solution Substances 0.000 claims abstract description 11
- 230000032683 aging Effects 0.000 claims abstract description 9
- 238000005245 sintering Methods 0.000 claims abstract description 7
- 238000005242 forging Methods 0.000 claims abstract description 6
- 238000005339 levitation Methods 0.000 claims abstract description 6
- 238000009689 gas atomisation Methods 0.000 claims abstract description 3
- 239000000203 mixture Substances 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 7
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 230000002706 hydrostatic effect Effects 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 238000000227 grinding Methods 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 238000005096 rolling process Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 10
- 239000011159 matrix material Substances 0.000 abstract description 8
- 150000003609 titanium compounds Chemical class 0.000 abstract description 8
- 239000000243 solution Substances 0.000 abstract description 4
- 238000002156 mixing Methods 0.000 abstract description 2
- 238000005098 hot rolling Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 9
- 238000005728 strengthening Methods 0.000 description 9
- 238000011282 treatment Methods 0.000 description 9
- 239000002131 composite material Substances 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 229910000765 intermetallic Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229910010169 TiCr Inorganic materials 0.000 description 1
- 229910010340 TiFe Inorganic materials 0.000 description 1
- 229910010380 TiNi Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
【解決手段】 金属組織中にTiBの微粒子とTiCの微粒子の両方を分散させて含有するチタン合金。つぎの工程により製造する:1)チタン合金の原料と、Cを含む原料およびBを含む原料とを混合し、レビテーション溶解により溶湯を用意して、2)溶湯をガスアトマイズすることによって粉末にし、粉末内部にTiBの微粒子およびTiCの微粒子を十分に分散させ、3)得られた粉末をHIP法により焼結し、4)この焼結体を熱間で鍛造および(または)圧延し、5)熱間加工品を熱処理して固溶化する。続いて、6)時効処理をしてもよい。
【選択図】 図1
Description
(1)チタン合金の原料をレビテーション溶解法により用意し、その溶解時にBを含む原料およびCを含む原料を添加する溶解工程、
(2)得られた溶湯をガスアトマイズすることによって粉末にし、粉末内部にTiBの微粒子およびTiCの微粒子を十分に分散させる粉末化工程、
(3)粉末をHIP法により焼結する焼結工程、
(4)焼結体を鍛造および(または)圧延する熱間加工工程、および
(5)熱間加工品を熱処理する固溶化工程。
(I)Fe:0〜6%、Ni:0〜7%およびSi:0〜2%からなるグループの1種または2種以上
(II)ZrおよびSnからなるグループの1種または2種:0〜4%
(III)Ca,S,PdおよびREMからなるグループの1種または2種以上(2種以上の場合は合計量で):0.01〜3%
Vはチタン合金のβ相安定化元素であり、マトリクスをβ相にして延性を良好にする作用がある。この効果を得るには、少なくとも10%のVを添加する。しかし、Vは高価な材料であるから、多量に添加すると原料コストが高くなる上、時効反応すなわちα相の析出が遅くなって、熱処理に長時間を要するなど、経済的な不利を招くので、24%を添加の上限とする。通常は、13〜23%のV量が好ましい。
Crはチタン合金のβ相マトリクスを固溶強化するのに有効な成分である。この効果を得るためには、少なくとも4%、好ましくは5%を超える量のCrを添加する。ただし、Cr量が過大になると、時効処理の過程で金属間化合物TiCr2の析出を招き、材料を脆くするから、10%以下、好ましくは8%以下の添加量を選ぶ。
Alは時効反応により析出するα相の強化に有効であるから、その効果が得られる1%以上の、適量を選んで添加することが好ましい。一方、過大な量のAlが存在するとTi3Alなどの金属間化合物が析出し、これが靱性を低下させるため、6%以下、好ましくは5%以下の添加量を選ぶ。
Feは、Crと同様にチタン合金のβ相を強化するのに有効な成分である。しかし、多すぎるとTiFeなどの金属間化合物が形成しやすくなって、靱性の低下を生じるようになるため、6%以下、好ましくは5.5%以下の添加量とする。
Niは、CrおよびFeと同様に、チタン合金のβ相を強化するのに有効な成分である。しかし、多すぎるとTiNi2等の金属間化合物が形成しやすくなって、やはり靱性の低下を生じるようになるため、7%以下、好ましくは6%以下の添加量とする。
Siは結晶粒を微細化し、強度を向上させるのに有効な成分であるが、多量にすぎるとシリサイドの析出に起因する延性低下を生じるため、2%以下、好ましくは1.5%以下の添加量を選ぶ。
これらの元素は、いずれもチタン合金のα相およびβ相の両方を固溶強化するのに有効な成分である。しかし、多量に添加しても固溶強化への寄与は飽和してくるので、いずれも4%以下、好ましくは3.5%までの添加に止める。
これらの元素は、Tiと化合物を形成し、それらがチタン合金の被削性を改善する。この効果は、下限値0.01%以上の添加で顕著になる。過大な量を添加すると熱間加工性を損なうので、上限値3%を設けた。
Claims (10)
- 金属組織内にTiBの微粒子およびTiCの微粒子を分散させて含有することにより、剛性および強度が向上したチタン合金。
- 重量%で(以下同じ)、V:10〜24%ならびに、Cr:4〜10%およびAl:1〜6%の一方または両方を含有し、残部が実質上Tiである合金組成を有する請求項1のチタン合金。
- チタン合金が、さらに、Fe:0〜6%、Ni:0〜7%およびSi:0〜2%からなるグループの1種または2種以上を含有し、剛性および強度がさらに向上した請求項1または2のチタン合金。
- チタン合金が、さらに、ZrおよびSnからなるグループの1種または2種:0〜4%を含有し、剛性および強度がさらに向上した請求項1または2のチタン合金。
- チタン合金が、さらに、Ca,S,PdおよびREMからなるグループの1種または2種以上(2種以上の場合は合計量で):0.01〜3%を含有し、被削性が改善された請求項1または2のチタン合金。
- TiBの微粒子およびTiCの微粒子の大きさが、球相当径で30μm以下である請求項1または2のチタン合金。
- 粉末の形態である請求項1ないし6のいずれかのチタン合金。
- 下記の諸工程からなる、剛性および強度が向上したチタン合金素材の製造方法:
(1)チタン合金の原料をレビテーション溶解法により用意し、その溶解時にBを含む原料およびCを含む原料を添加する溶解工程、
(2)得られた溶湯をガスアトマイズすることによって粉末にし、粉末内部にTiBの微粒子およびTiCの微粒子を十分に分散させる粉末化工程
(3)粉末をHIP法により焼結する焼結工程、
(4)焼結体を鍛造および(または)圧延する熱間加工工程、および
(5)熱間加工品を熱処理する固溶化工程。 - 請求項8に記載の諸工程(1)〜(5)に続く下記の工程を付加したチタン合金素材の製造方法:
(6)固溶化を経た熱間加工品を熱処理する時効工程。 - 焼結工程(3)を、静水圧100〜150MPa、温度800〜1200℃、時間0.5〜10hrの条件で実施し、熱間加工工程(4)を、βトランザス以上1100℃以下の温度で実施し、固溶化工程(5)を、βトランザス近傍の温度で実施し、時効工程(6)を実施する場合は、400〜600℃の温度で実施する請求項8または9の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003305148A JP4222157B2 (ja) | 2003-08-28 | 2003-08-28 | 剛性および強度が向上したチタン合金 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003305148A JP4222157B2 (ja) | 2003-08-28 | 2003-08-28 | 剛性および強度が向上したチタン合金 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005076052A true JP2005076052A (ja) | 2005-03-24 |
JP4222157B2 JP4222157B2 (ja) | 2009-02-12 |
Family
ID=34408643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003305148A Expired - Lifetime JP4222157B2 (ja) | 2003-08-28 | 2003-08-28 | 剛性および強度が向上したチタン合金 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4222157B2 (ja) |
Cited By (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007143956A (ja) * | 2005-11-29 | 2007-06-14 | Kyocera Corp | 刃物 |
US8297364B2 (en) | 2009-12-08 | 2012-10-30 | Baker Hughes Incorporated | Telescopic unit with dissolvable barrier |
US8327931B2 (en) | 2009-12-08 | 2012-12-11 | Baker Hughes Incorporated | Multi-component disappearing tripping ball and method for making the same |
US8403037B2 (en) | 2009-12-08 | 2013-03-26 | Baker Hughes Incorporated | Dissolvable tool and method |
US8424610B2 (en) | 2010-03-05 | 2013-04-23 | Baker Hughes Incorporated | Flow control arrangement and method |
US8425651B2 (en) | 2010-07-30 | 2013-04-23 | Baker Hughes Incorporated | Nanomatrix metal composite |
US8528633B2 (en) | 2009-12-08 | 2013-09-10 | Baker Hughes Incorporated | Dissolvable tool and method |
US8573295B2 (en) | 2010-11-16 | 2013-11-05 | Baker Hughes Incorporated | Plug and method of unplugging a seat |
US8631876B2 (en) | 2011-04-28 | 2014-01-21 | Baker Hughes Incorporated | Method of making and using a functionally gradient composite tool |
CN103521918A (zh) * | 2013-10-22 | 2014-01-22 | 哈尔滨工业大学 | 扩散焊接制备Ti-TiBw/Ti层状复合材料的方法 |
US8776884B2 (en) | 2010-08-09 | 2014-07-15 | Baker Hughes Incorporated | Formation treatment system and method |
US9068428B2 (en) | 2012-02-13 | 2015-06-30 | Baker Hughes Incorporated | Selectively corrodible downhole article and method of use |
US9079246B2 (en) | 2009-12-08 | 2015-07-14 | Baker Hughes Incorporated | Method of making a nanomatrix powder metal compact |
US9080098B2 (en) | 2011-04-28 | 2015-07-14 | Baker Hughes Incorporated | Functionally gradient composite article |
US9090955B2 (en) | 2010-10-27 | 2015-07-28 | Baker Hughes Incorporated | Nanomatrix powder metal composite |
US9090956B2 (en) | 2011-08-30 | 2015-07-28 | Baker Hughes Incorporated | Aluminum alloy powder metal compact |
US9101978B2 (en) | 2002-12-08 | 2015-08-11 | Baker Hughes Incorporated | Nanomatrix powder metal compact |
US9109269B2 (en) | 2011-08-30 | 2015-08-18 | Baker Hughes Incorporated | Magnesium alloy powder metal compact |
US9109429B2 (en) | 2002-12-08 | 2015-08-18 | Baker Hughes Incorporated | Engineered powder compact composite material |
US9127515B2 (en) | 2010-10-27 | 2015-09-08 | Baker Hughes Incorporated | Nanomatrix carbon composite |
US9133695B2 (en) | 2011-09-03 | 2015-09-15 | Baker Hughes Incorporated | Degradable shaped charge and perforating gun system |
US9187990B2 (en) | 2011-09-03 | 2015-11-17 | Baker Hughes Incorporated | Method of using a degradable shaped charge and perforating gun system |
US9227243B2 (en) | 2009-12-08 | 2016-01-05 | Baker Hughes Incorporated | Method of making a powder metal compact |
US9243475B2 (en) | 2009-12-08 | 2016-01-26 | Baker Hughes Incorporated | Extruded powder metal compact |
US9284812B2 (en) | 2011-11-21 | 2016-03-15 | Baker Hughes Incorporated | System for increasing swelling efficiency |
JP2016053198A (ja) * | 2014-09-04 | 2016-04-14 | 株式会社コイワイ | 金属成形体および金属成形体用金属粉末 |
US9347119B2 (en) | 2011-09-03 | 2016-05-24 | Baker Hughes Incorporated | Degradable high shock impedance material |
CN105728734A (zh) * | 2016-03-24 | 2016-07-06 | 西安工业大学 | 高强超细(TixBy-TiC)/7075Al复合材料及其制备方法 |
US9605508B2 (en) | 2012-05-08 | 2017-03-28 | Baker Hughes Incorporated | Disintegrable and conformable metallic seal, and method of making the same |
US9643144B2 (en) | 2011-09-02 | 2017-05-09 | Baker Hughes Incorporated | Method to generate and disperse nanostructures in a composite material |
US9682425B2 (en) | 2009-12-08 | 2017-06-20 | Baker Hughes Incorporated | Coated metallic powder and method of making the same |
US9707739B2 (en) | 2011-07-22 | 2017-07-18 | Baker Hughes Incorporated | Intermetallic metallic composite, method of manufacture thereof and articles comprising the same |
CN106968744A (zh) * | 2017-05-24 | 2017-07-21 | 崔旺林 | 一种内燃机用进气门 |
US9816339B2 (en) | 2013-09-03 | 2017-11-14 | Baker Hughes, A Ge Company, Llc | Plug reception assembly and method of reducing restriction in a borehole |
US9833838B2 (en) | 2011-07-29 | 2017-12-05 | Baker Hughes, A Ge Company, Llc | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
US9856547B2 (en) | 2011-08-30 | 2018-01-02 | Bakers Hughes, A Ge Company, Llc | Nanostructured powder metal compact |
US9910026B2 (en) | 2015-01-21 | 2018-03-06 | Baker Hughes, A Ge Company, Llc | High temperature tracers for downhole detection of produced water |
US9926766B2 (en) | 2012-01-25 | 2018-03-27 | Baker Hughes, A Ge Company, Llc | Seat for a tubular treating system |
US9926763B2 (en) | 2011-06-17 | 2018-03-27 | Baker Hughes, A Ge Company, Llc | Corrodible downhole article and method of removing the article from downhole environment |
CN108179317A (zh) * | 2018-01-26 | 2018-06-19 | 哈尔滨工业大学 | 一种700℃用高性能易加工钛材的制备方法 |
US10016810B2 (en) | 2015-12-14 | 2018-07-10 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof |
CN108531777A (zh) * | 2018-06-05 | 2018-09-14 | 南京航空航天大学 | 一种TiB增强钛基复合材料的增强相调控方法 |
CN108588606A (zh) * | 2018-05-24 | 2018-09-28 | 太原理工大学 | 一种快速细化高强韧β钛合金晶粒的工艺方法 |
US10092953B2 (en) | 2011-07-29 | 2018-10-09 | Baker Hughes, A Ge Company, Llc | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
CN108796265A (zh) * | 2018-06-28 | 2018-11-13 | 北京理工大学 | 一种TiB纳米增强钛基复合材料的制备方法 |
CN108893691A (zh) * | 2018-07-20 | 2018-11-27 | 中国航发北京航空材料研究院 | 一种高强高塑性tb6钛合金丝材组织性能均匀性控制方法 |
US10221637B2 (en) | 2015-08-11 | 2019-03-05 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing dissolvable tools via liquid-solid state molding |
CN109468484A (zh) * | 2018-12-25 | 2019-03-15 | 哈尔滨工业大学 | 一种添加氮化锆实现高温钛合金复合强化的方法 |
US10240419B2 (en) | 2009-12-08 | 2019-03-26 | Baker Hughes, A Ge Company, Llc | Downhole flow inhibition tool and method of unplugging a seat |
US10301909B2 (en) | 2011-08-17 | 2019-05-28 | Baker Hughes, A Ge Company, Llc | Selectively degradable passage restriction |
US10378303B2 (en) | 2015-03-05 | 2019-08-13 | Baker Hughes, A Ge Company, Llc | Downhole tool and method of forming the same |
CN110358956A (zh) * | 2018-04-11 | 2019-10-22 | 中国科学院金属研究所 | 一种高性能镁合金铸件的制备方法 |
GB2575005A (en) * | 2017-12-14 | 2020-01-01 | Csir | A process and method for producing titanium and titanium alloy billets, spherical and non-spherical powder |
CN112226646A (zh) * | 2020-09-29 | 2021-01-15 | 中国科学院金属研究所 | 一种抗菌等轴纳米晶Ti-Cu棒、丝材及其制备方法 |
CN112620640A (zh) * | 2020-12-09 | 2021-04-09 | 温州宏丰电工合金股份有限公司 | 基于AgC废边角料再利用的AgNi电接触材料的制备方法 |
US11167343B2 (en) | 2014-02-21 | 2021-11-09 | Terves, Llc | Galvanically-active in situ formed particles for controlled rate dissolving tools |
CN113862499A (zh) * | 2021-08-18 | 2021-12-31 | 中国科学院金属研究所 | 一种新型双态组织钛基复合材料的加工制造方法 |
WO2022102805A1 (ko) * | 2020-11-10 | 2022-05-19 | 한국재료연구원 | Tic 입자 강화 fe계 복합재료 및 그 제조방법 |
US11365164B2 (en) | 2014-02-21 | 2022-06-21 | Terves, Llc | Fluid activated disintegrating metal system |
JP2022530648A (ja) * | 2019-04-30 | 2022-06-30 | シックスケー インコーポレイテッド | 機械的に合金化された粉末原料 |
CN115255373A (zh) * | 2022-06-30 | 2022-11-01 | 上海航天精密机械研究所 | 基于3d打印制备拓扑结构钛基复合材料的方法及复合材料 |
US11649526B2 (en) | 2017-07-27 | 2023-05-16 | Terves, Llc | Degradable metal matrix composite |
US11717886B2 (en) | 2019-11-18 | 2023-08-08 | 6K Inc. | Unique feedstocks for spherical powders and methods of manufacturing |
US11839919B2 (en) | 2015-12-16 | 2023-12-12 | 6K Inc. | Spheroidal dehydrogenated metals and metal alloy particles |
US11855278B2 (en) | 2020-06-25 | 2023-12-26 | 6K, Inc. | Microcomposite alloy structure |
US11919071B2 (en) | 2020-10-30 | 2024-03-05 | 6K Inc. | Systems and methods for synthesis of spheroidized metal powders |
US11963287B2 (en) | 2020-09-24 | 2024-04-16 | 6K Inc. | Systems, devices, and methods for starting plasma |
CN117926079A (zh) * | 2024-03-22 | 2024-04-26 | 中航迈特增材科技(北京)有限公司 | 一种高性能(TiB+TiC)/Ti复合材料及制备方法 |
US12018356B2 (en) | 2014-04-18 | 2024-06-25 | Terves Inc. | Galvanically-active in situ formed particles for controlled rate dissolving tools |
US12040162B2 (en) | 2022-06-09 | 2024-07-16 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing an upstream swirl module and composite gas flows |
US12042861B2 (en) | 2021-03-31 | 2024-07-23 | 6K Inc. | Systems and methods for additive manufacturing of metal nitride ceramics |
US12094688B2 (en) | 2022-08-25 | 2024-09-17 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing a powder ingress preventor (PIP) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109777988A (zh) * | 2019-02-25 | 2019-05-21 | 盐城工业职业技术学院 | 一种强韧钛合金及其制备方法 |
-
2003
- 2003-08-28 JP JP2003305148A patent/JP4222157B2/ja not_active Expired - Lifetime
Cited By (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9101978B2 (en) | 2002-12-08 | 2015-08-11 | Baker Hughes Incorporated | Nanomatrix powder metal compact |
US9109429B2 (en) | 2002-12-08 | 2015-08-18 | Baker Hughes Incorporated | Engineered powder compact composite material |
JP2007143956A (ja) * | 2005-11-29 | 2007-06-14 | Kyocera Corp | 刃物 |
US9227243B2 (en) | 2009-12-08 | 2016-01-05 | Baker Hughes Incorporated | Method of making a powder metal compact |
US8714268B2 (en) | 2009-12-08 | 2014-05-06 | Baker Hughes Incorporated | Method of making and using multi-component disappearing tripping ball |
US10669797B2 (en) | 2009-12-08 | 2020-06-02 | Baker Hughes, A Ge Company, Llc | Tool configured to dissolve in a selected subsurface environment |
US8528633B2 (en) | 2009-12-08 | 2013-09-10 | Baker Hughes Incorporated | Dissolvable tool and method |
US9682425B2 (en) | 2009-12-08 | 2017-06-20 | Baker Hughes Incorporated | Coated metallic powder and method of making the same |
US9243475B2 (en) | 2009-12-08 | 2016-01-26 | Baker Hughes Incorporated | Extruded powder metal compact |
US8297364B2 (en) | 2009-12-08 | 2012-10-30 | Baker Hughes Incorporated | Telescopic unit with dissolvable barrier |
US8403037B2 (en) | 2009-12-08 | 2013-03-26 | Baker Hughes Incorporated | Dissolvable tool and method |
US8327931B2 (en) | 2009-12-08 | 2012-12-11 | Baker Hughes Incorporated | Multi-component disappearing tripping ball and method for making the same |
US9022107B2 (en) | 2009-12-08 | 2015-05-05 | Baker Hughes Incorporated | Dissolvable tool |
US10240419B2 (en) | 2009-12-08 | 2019-03-26 | Baker Hughes, A Ge Company, Llc | Downhole flow inhibition tool and method of unplugging a seat |
US9079246B2 (en) | 2009-12-08 | 2015-07-14 | Baker Hughes Incorporated | Method of making a nanomatrix powder metal compact |
US8424610B2 (en) | 2010-03-05 | 2013-04-23 | Baker Hughes Incorporated | Flow control arrangement and method |
US8425651B2 (en) | 2010-07-30 | 2013-04-23 | Baker Hughes Incorporated | Nanomatrix metal composite |
US8776884B2 (en) | 2010-08-09 | 2014-07-15 | Baker Hughes Incorporated | Formation treatment system and method |
US9090955B2 (en) | 2010-10-27 | 2015-07-28 | Baker Hughes Incorporated | Nanomatrix powder metal composite |
US9127515B2 (en) | 2010-10-27 | 2015-09-08 | Baker Hughes Incorporated | Nanomatrix carbon composite |
US8573295B2 (en) | 2010-11-16 | 2013-11-05 | Baker Hughes Incorporated | Plug and method of unplugging a seat |
US9631138B2 (en) | 2011-04-28 | 2017-04-25 | Baker Hughes Incorporated | Functionally gradient composite article |
US9080098B2 (en) | 2011-04-28 | 2015-07-14 | Baker Hughes Incorporated | Functionally gradient composite article |
US10335858B2 (en) | 2011-04-28 | 2019-07-02 | Baker Hughes, A Ge Company, Llc | Method of making and using a functionally gradient composite tool |
US8631876B2 (en) | 2011-04-28 | 2014-01-21 | Baker Hughes Incorporated | Method of making and using a functionally gradient composite tool |
US9926763B2 (en) | 2011-06-17 | 2018-03-27 | Baker Hughes, A Ge Company, Llc | Corrodible downhole article and method of removing the article from downhole environment |
US10697266B2 (en) | 2011-07-22 | 2020-06-30 | Baker Hughes, A Ge Company, Llc | Intermetallic metallic composite, method of manufacture thereof and articles comprising the same |
US9707739B2 (en) | 2011-07-22 | 2017-07-18 | Baker Hughes Incorporated | Intermetallic metallic composite, method of manufacture thereof and articles comprising the same |
US10092953B2 (en) | 2011-07-29 | 2018-10-09 | Baker Hughes, A Ge Company, Llc | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
US9833838B2 (en) | 2011-07-29 | 2017-12-05 | Baker Hughes, A Ge Company, Llc | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
US10301909B2 (en) | 2011-08-17 | 2019-05-28 | Baker Hughes, A Ge Company, Llc | Selectively degradable passage restriction |
US9856547B2 (en) | 2011-08-30 | 2018-01-02 | Bakers Hughes, A Ge Company, Llc | Nanostructured powder metal compact |
US11090719B2 (en) | 2011-08-30 | 2021-08-17 | Baker Hughes, A Ge Company, Llc | Aluminum alloy powder metal compact |
US9090956B2 (en) | 2011-08-30 | 2015-07-28 | Baker Hughes Incorporated | Aluminum alloy powder metal compact |
US9925589B2 (en) | 2011-08-30 | 2018-03-27 | Baker Hughes, A Ge Company, Llc | Aluminum alloy powder metal compact |
US10737321B2 (en) | 2011-08-30 | 2020-08-11 | Baker Hughes, A Ge Company, Llc | Magnesium alloy powder metal compact |
US9802250B2 (en) | 2011-08-30 | 2017-10-31 | Baker Hughes | Magnesium alloy powder metal compact |
US9109269B2 (en) | 2011-08-30 | 2015-08-18 | Baker Hughes Incorporated | Magnesium alloy powder metal compact |
US9643144B2 (en) | 2011-09-02 | 2017-05-09 | Baker Hughes Incorporated | Method to generate and disperse nanostructures in a composite material |
US9347119B2 (en) | 2011-09-03 | 2016-05-24 | Baker Hughes Incorporated | Degradable high shock impedance material |
US9133695B2 (en) | 2011-09-03 | 2015-09-15 | Baker Hughes Incorporated | Degradable shaped charge and perforating gun system |
US9187990B2 (en) | 2011-09-03 | 2015-11-17 | Baker Hughes Incorporated | Method of using a degradable shaped charge and perforating gun system |
US9284812B2 (en) | 2011-11-21 | 2016-03-15 | Baker Hughes Incorporated | System for increasing swelling efficiency |
US9926766B2 (en) | 2012-01-25 | 2018-03-27 | Baker Hughes, A Ge Company, Llc | Seat for a tubular treating system |
US9068428B2 (en) | 2012-02-13 | 2015-06-30 | Baker Hughes Incorporated | Selectively corrodible downhole article and method of use |
US10612659B2 (en) | 2012-05-08 | 2020-04-07 | Baker Hughes Oilfield Operations, Llc | Disintegrable and conformable metallic seal, and method of making the same |
US9605508B2 (en) | 2012-05-08 | 2017-03-28 | Baker Hughes Incorporated | Disintegrable and conformable metallic seal, and method of making the same |
US9816339B2 (en) | 2013-09-03 | 2017-11-14 | Baker Hughes, A Ge Company, Llc | Plug reception assembly and method of reducing restriction in a borehole |
CN103521918A (zh) * | 2013-10-22 | 2014-01-22 | 哈尔滨工业大学 | 扩散焊接制备Ti-TiBw/Ti层状复合材料的方法 |
US11167343B2 (en) | 2014-02-21 | 2021-11-09 | Terves, Llc | Galvanically-active in situ formed particles for controlled rate dissolving tools |
US12031400B2 (en) | 2014-02-21 | 2024-07-09 | Terves, Llc | Fluid activated disintegrating metal system |
US11613952B2 (en) | 2014-02-21 | 2023-03-28 | Terves, Llc | Fluid activated disintegrating metal system |
US11365164B2 (en) | 2014-02-21 | 2022-06-21 | Terves, Llc | Fluid activated disintegrating metal system |
US12018356B2 (en) | 2014-04-18 | 2024-06-25 | Terves Inc. | Galvanically-active in situ formed particles for controlled rate dissolving tools |
JP2016053198A (ja) * | 2014-09-04 | 2016-04-14 | 株式会社コイワイ | 金属成形体および金属成形体用金属粉末 |
US9910026B2 (en) | 2015-01-21 | 2018-03-06 | Baker Hughes, A Ge Company, Llc | High temperature tracers for downhole detection of produced water |
US10378303B2 (en) | 2015-03-05 | 2019-08-13 | Baker Hughes, A Ge Company, Llc | Downhole tool and method of forming the same |
US10221637B2 (en) | 2015-08-11 | 2019-03-05 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing dissolvable tools via liquid-solid state molding |
US10016810B2 (en) | 2015-12-14 | 2018-07-10 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof |
US11839919B2 (en) | 2015-12-16 | 2023-12-12 | 6K Inc. | Spheroidal dehydrogenated metals and metal alloy particles |
CN105728734A (zh) * | 2016-03-24 | 2016-07-06 | 西安工业大学 | 高强超细(TixBy-TiC)/7075Al复合材料及其制备方法 |
CN106968744A (zh) * | 2017-05-24 | 2017-07-21 | 崔旺林 | 一种内燃机用进气门 |
CN106968744B (zh) * | 2017-05-24 | 2019-04-12 | 泰州市龙瑞阀业有限公司 | 一种内燃机用进气门 |
US11649526B2 (en) | 2017-07-27 | 2023-05-16 | Terves, Llc | Degradable metal matrix composite |
US11898223B2 (en) | 2017-07-27 | 2024-02-13 | Terves, Llc | Degradable metal matrix composite |
GB2575005B (en) * | 2017-12-14 | 2022-06-15 | Csir | A process and method for producing titanium and titanium alloy billets and spherical powder |
GB2575005A (en) * | 2017-12-14 | 2020-01-01 | Csir | A process and method for producing titanium and titanium alloy billets, spherical and non-spherical powder |
CN108179317A (zh) * | 2018-01-26 | 2018-06-19 | 哈尔滨工业大学 | 一种700℃用高性能易加工钛材的制备方法 |
CN110358956A (zh) * | 2018-04-11 | 2019-10-22 | 中国科学院金属研究所 | 一种高性能镁合金铸件的制备方法 |
CN108588606A (zh) * | 2018-05-24 | 2018-09-28 | 太原理工大学 | 一种快速细化高强韧β钛合金晶粒的工艺方法 |
CN108531777A (zh) * | 2018-06-05 | 2018-09-14 | 南京航空航天大学 | 一种TiB增强钛基复合材料的增强相调控方法 |
CN108531777B (zh) * | 2018-06-05 | 2020-04-28 | 南京航空航天大学 | 一种TiB增强钛基复合材料的增强相调控方法 |
CN108796265A (zh) * | 2018-06-28 | 2018-11-13 | 北京理工大学 | 一种TiB纳米增强钛基复合材料的制备方法 |
CN108796265B (zh) * | 2018-06-28 | 2020-06-09 | 北京理工大学 | 一种TiB纳米增强钛基复合材料的制备方法 |
CN108893691A (zh) * | 2018-07-20 | 2018-11-27 | 中国航发北京航空材料研究院 | 一种高强高塑性tb6钛合金丝材组织性能均匀性控制方法 |
CN109468484A (zh) * | 2018-12-25 | 2019-03-15 | 哈尔滨工业大学 | 一种添加氮化锆实现高温钛合金复合强化的方法 |
JP2022530648A (ja) * | 2019-04-30 | 2022-06-30 | シックスケー インコーポレイテッド | 機械的に合金化された粉末原料 |
US11717886B2 (en) | 2019-11-18 | 2023-08-08 | 6K Inc. | Unique feedstocks for spherical powders and methods of manufacturing |
US11855278B2 (en) | 2020-06-25 | 2023-12-26 | 6K, Inc. | Microcomposite alloy structure |
US11963287B2 (en) | 2020-09-24 | 2024-04-16 | 6K Inc. | Systems, devices, and methods for starting plasma |
CN112226646B (zh) * | 2020-09-29 | 2022-02-15 | 中国科学院金属研究所 | 一种抗菌等轴纳米晶Ti-Cu棒、丝材及其制备方法 |
CN112226646A (zh) * | 2020-09-29 | 2021-01-15 | 中国科学院金属研究所 | 一种抗菌等轴纳米晶Ti-Cu棒、丝材及其制备方法 |
US11919071B2 (en) | 2020-10-30 | 2024-03-05 | 6K Inc. | Systems and methods for synthesis of spheroidized metal powders |
WO2022102805A1 (ko) * | 2020-11-10 | 2022-05-19 | 한국재료연구원 | Tic 입자 강화 fe계 복합재료 및 그 제조방법 |
CN112620640A (zh) * | 2020-12-09 | 2021-04-09 | 温州宏丰电工合金股份有限公司 | 基于AgC废边角料再利用的AgNi电接触材料的制备方法 |
US12042861B2 (en) | 2021-03-31 | 2024-07-23 | 6K Inc. | Systems and methods for additive manufacturing of metal nitride ceramics |
CN113862499A (zh) * | 2021-08-18 | 2021-12-31 | 中国科学院金属研究所 | 一种新型双态组织钛基复合材料的加工制造方法 |
US12040162B2 (en) | 2022-06-09 | 2024-07-16 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing an upstream swirl module and composite gas flows |
CN115255373B (zh) * | 2022-06-30 | 2023-12-12 | 上海航天精密机械研究所 | 基于3d打印制备拓扑结构钛基复合材料的方法及复合材料 |
CN115255373A (zh) * | 2022-06-30 | 2022-11-01 | 上海航天精密机械研究所 | 基于3d打印制备拓扑结构钛基复合材料的方法及复合材料 |
US12094688B2 (en) | 2022-08-25 | 2024-09-17 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing a powder ingress preventor (PIP) |
CN117926079B (zh) * | 2024-03-22 | 2024-06-07 | 中航迈特增材科技(北京)有限公司 | 一种高性能(TiB+TiC)/Ti复合材料及制备方法 |
CN117926079A (zh) * | 2024-03-22 | 2024-04-26 | 中航迈特增材科技(北京)有限公司 | 一种高性能(TiB+TiC)/Ti复合材料及制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JP4222157B2 (ja) | 2009-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4222157B2 (ja) | 剛性および強度が向上したチタン合金 | |
EP0636701B1 (en) | Creep resistant titanium aluminide alloy | |
EP1925683B1 (en) | Cobalt-base alloy with high heat resistance and high strength and process for producing the same | |
JP3027200B2 (ja) | 耐酸化性低膨張合金 | |
JP4493029B2 (ja) | 被削性及び熱間加工性に優れたα−β型チタン合金 | |
WO2009136552A1 (ja) | 黄銅合金粉末、黄銅合金押出材およびその製造方法 | |
JP6719216B2 (ja) | α−β型チタン合金 | |
JP3873313B2 (ja) | 高強度チタン合金の製造方法 | |
JP2004010963A (ja) | 高強度Ti合金およびその製造方法 | |
JP4764094B2 (ja) | 耐熱性Al基合金 | |
EP3124630A1 (en) | Ni-Ir-BASED HEAT-RESISTANT ALLOY AND PROCESS FOR PRODUCING SAME | |
CN114525429B (zh) | 一种高强钛合金及其增材制备方法 | |
JP2010150624A (ja) | 鋳造用アルファ+ベータ型チタン合金及びこれを用いたゴルフクラブヘッド | |
CN113832369A (zh) | 增材制造的具有超高屈服强度和高塑性的亚稳态β钛合金 | |
JP7387139B2 (ja) | チタン合金、その製造方法およびそれを用いたエンジン部品 | |
JP2019116688A (ja) | 粉末高速度工具鋼 | |
JP2669004B2 (ja) | 冷間加工性に優れたβ型チタン合金 | |
CN112522534B (zh) | 一种含有共晶组织的铜钛合金及其制备方法 | |
EP3904548A1 (en) | Co-BASED ALLOY STRUCTURE AND PRODUCTION METHOD THEREFOR | |
JP3223619B2 (ja) | 高耐熱・高耐摩耗性アルミニウム合金、高耐熱・高耐摩耗性アルミニウム合金粉末及びその製造方法 | |
EP0270230A2 (en) | Nickel-base powder metallurgy article | |
EP1052298A1 (en) | Creep resistant gamma titanium aluminide | |
JP2711296B2 (ja) | 耐熱性アルミニウム合金 | |
JP4704720B2 (ja) | 高温疲労特性に優れた耐熱性Al基合金 | |
JP2542603B2 (ja) | 耐摩耗性Al−Si−Mn系焼結合金 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060629 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080507 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080707 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080805 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081003 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081028 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081110 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4222157 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111128 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121128 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131128 Year of fee payment: 5 |
|
EXPY | Cancellation because of completion of term |