CN108531777B - 一种TiB增强钛基复合材料的增强相调控方法 - Google Patents

一种TiB增强钛基复合材料的增强相调控方法 Download PDF

Info

Publication number
CN108531777B
CN108531777B CN201810573621.7A CN201810573621A CN108531777B CN 108531777 B CN108531777 B CN 108531777B CN 201810573621 A CN201810573621 A CN 201810573621A CN 108531777 B CN108531777 B CN 108531777B
Authority
CN
China
Prior art keywords
composite material
tib
based composite
reinforcing phase
reinforced titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810573621.7A
Other languages
English (en)
Other versions
CN108531777A (zh
Inventor
姚正军
陶学伟
李中
张莎莎
刘莹莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201810573621.7A priority Critical patent/CN108531777B/zh
Publication of CN108531777A publication Critical patent/CN108531777A/zh
Application granted granted Critical
Publication of CN108531777B publication Critical patent/CN108531777B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0073Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F3/00Changing the physical structure of non-ferrous metals or alloys by special physical methods, e.g. treatment with neutrons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

本发明涉及一种TiB增强钛基复合材料的增强相调控方法,包括以下步骤:首先利用电子束技术对TiB增强钛基复合材料进行熔化处理;再对熔化后的复合材料进行低温时效处理。本发明提供一种TiB增强钛基复合材料的增强相调控方法,可获得纳米级与亚微米级TiB增强相,并且呈网状结构分布,该钛基复合材料具有优异的力学性能。

Description

一种TiB增强钛基复合材料的增强相调控方法
技术领域
本发明涉及金属基复合材料领域,具体涉及一种TiB增强钛基复合材料的增强相调控方法。
背景技术
钛基复合材料(TMCs)具有较高的比强度、抗高温性能、耐热性能以及耐磨性能等特性,因此,在航空、航天、汽车工业等领域具有广阔的应用前景。TiB是钛基复合材料的最佳增强相,这是因为TiB与钛基体具有相近的密度与热膨胀系数,且弹性模量及硬度高,热稳定性能优异。目前钛基复合材料制备方法主要有熔炼铸造、热压烧结等。然而利用这些方法制备的钛基复合材料中TiB增强相粗大(微米级),且容易发生断裂,劣化了复合材料的力学性能。
中国专利号ZL200810136852.8,公开了名称为TiBw/Ti合金基复合材料的制备方法的专利,通过球磨混粉和热压烧结方法制备出一种一级网状结构TiB增强钛基复合材料,有效改善了钛基复合材料的力学性能,特别是塑性性能。中国专利号ZL201510405104.5,公开了名称为一种两级网状结构Ti基复合材料及其制备方法的专利,以微米级Si颗粒与微米级TiB2颗粒为增强相原料,制备出两级网状结构Ti基复合材料,大大提高钛基复合材料的室温与高温强度。由此可见网状结构有利于改善钛基复合材料的力学性能。但是上述两种专利提供的网状结构钛基复合材料的制备方法,需要严格粉体学参数的原材料,而且这种方法无法对成形后的钛基复合材料中的增强相进行调控。
发明内容
本发明的目的是针对现有技术中存在的这些问题,提供一种TiB增强钛基复合材料的增强相调控方法,可获得纳米级与亚微米级TiB增强相,并且呈网状结构分布,为达到上述目的,本发明提供的技术方案是:
一种TiB增强钛基复合材料的增强相调控方法,包括以下步骤:
(1)首先利用电子束技术对TiB增强钛基复合材料进行电子束熔化处理;
(2)再对熔化后的复合材料进行低温时效处理。
所述的TiB增强钛基复合材料中TiB含量为2~6vol.%。
所述的电子束熔化处理,其电流6~9mA,电压40~60kV,扫描速度10mm/s,保持热输出3~3.6J/mm。
所述的低温时效处理,其时效温度400~600℃,保温时间8h,随炉冷却。
电子束熔化处理:高能量的电子束可以使复合材料中TiB增强相熔化进入钛液中,并在随后的冷却过程中重新析出。由于电子束具有快热与快冷特性,TiB增强相将以超细针状形态析出。
时效处理:提供足够的能量,使得硼原子向晶界处偏聚,超细针状TiB增强相逐渐聚集形成网状结构。
本发明提供的一种TiB增强钛基复合材料的增强相调控方法,具有如下有益效果:
(1)可获得纳米级与亚微米级TiB增强相,并且呈网状结构分布,改善钛基复合材料的力学性能;
(2)工艺灵活,可通过多方面调控成形后的钛基复合材料中的增强相尺寸与分布,实现其力学性能的调控;
(3)工艺适用性强,大大拓宽钛基复合材料的制备与应用范围。
附图说明
图1是实施例1制备出的两级网状结构Ti基复合材料的低倍SEM照片。
图2是实施例1制备出的两级网状结构Ti基复合材料的高倍SEM照片。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
实施例1
以TiB(2vol.%)增强钛基复合材料为基体,首先利用电子束技术对TiB增强钛基复合材料进行熔化处理,其中电流9mA,电压40kV,扫描速度10mm/s,热输出3.6J/mm。再对熔化后的复合材料进行低温时效处理,其中时效温度500℃,保温时间8h,随炉冷却。
实施例2
本实施例与实施例1之间的区别在于电子束熔化处理,其中电流6mA,电压60kV,扫描速度10mm/s,热输出3.6J/mm。
实施例3
本实施例与实施例1之间的区别在于电子束熔化处理,其中电流6mA,电压50kV,扫描速度10mm/s,热输出3J/mm。
实施例4
本实施例与实施例1之间的区别在于低温时效处理,其中时效温度400℃。
实施例5
本实施例与实施例1之间的区别在于低温时效处理,其中时效温度600℃。
实施例6
本实施例与实施例1之间的区别在于TiB增强钛基复合材料中TiB含量为6vol.%。
分别采用扫描电子显微镜与显微硬度计对本发明的钛基复合材料进行微观组织观察与显微硬度测试,其测试结果如表1所示。根据硬度大小评价本发明材料的力学性能。显微硬度根据标准GB/T 4340.1-2009执行。
表1测试结果
Figure BDA0001685691330000031
以上所述,仅是本发明的较佳实施例,并非对本发明作任何形式上的限制,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,依据本发明的技术实质,对以上实施例所作的任何简单的修改、等同替换与改进等,均仍属于本发明技术方案的保护范围之内。

Claims (1)

1.一种TiB增强钛基复合材料的增强相调控方法,其特征在于:包括以下步骤:
(1)首先利用电子束技术对TiB增强钛基复合材料进行电子束熔化处理;
(2)再对熔化后的复合材料进行低温时效处理,获得纳米级与亚微米级TiB增强相,并且呈网状结构分布;
所述的TiB增强钛基复合材料中TiB含量为2~6vol.%;
所述的电子束熔化处理,其电流6~9 mA,电压40~60 kV,扫描速度10mm/s,保持热输出3~3.6 J/mm;
所述的低温时效处理,其时效温度400~600℃,保温时间8h,随炉冷却。
CN201810573621.7A 2018-06-05 2018-06-05 一种TiB增强钛基复合材料的增强相调控方法 Active CN108531777B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810573621.7A CN108531777B (zh) 2018-06-05 2018-06-05 一种TiB增强钛基复合材料的增强相调控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810573621.7A CN108531777B (zh) 2018-06-05 2018-06-05 一种TiB增强钛基复合材料的增强相调控方法

Publications (2)

Publication Number Publication Date
CN108531777A CN108531777A (zh) 2018-09-14
CN108531777B true CN108531777B (zh) 2020-04-28

Family

ID=63470321

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810573621.7A Active CN108531777B (zh) 2018-06-05 2018-06-05 一种TiB增强钛基复合材料的增强相调控方法

Country Status (1)

Country Link
CN (1) CN108531777B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110218907B (zh) * 2019-06-18 2020-08-18 西安理工大学 一种用于3d打印的含硼钛基复合粉末及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222468A (ja) * 1992-02-17 1993-08-31 Agency Of Ind Science & Technol 反応合成法による炭化チタンとほう化チタンウイスカ強化チタニウム基複合材料の製造法
JP2001107163A (ja) * 1999-10-01 2001-04-17 Daido Steel Co Ltd 粒子分散型Ti合金の製造方法
JP2005076052A (ja) * 2003-08-28 2005-03-24 Daido Steel Co Ltd 剛性および強度が向上したチタン合金
CN101144159A (zh) * 2007-10-31 2008-03-19 上海工程技术大学 一种纳米/亚微米TiB-TiC增强钛基复合材料(TiB+TiC)/Ti的制备方法
CN104263984A (zh) * 2014-10-14 2015-01-07 哈尔滨工业大学(威海) 准连续网状结构TiBw/Ti-6Al-4V复合材料棒材的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222468A (ja) * 1992-02-17 1993-08-31 Agency Of Ind Science & Technol 反応合成法による炭化チタンとほう化チタンウイスカ強化チタニウム基複合材料の製造法
JP2001107163A (ja) * 1999-10-01 2001-04-17 Daido Steel Co Ltd 粒子分散型Ti合金の製造方法
JP2005076052A (ja) * 2003-08-28 2005-03-24 Daido Steel Co Ltd 剛性および強度が向上したチタン合金
CN101144159A (zh) * 2007-10-31 2008-03-19 上海工程技术大学 一种纳米/亚微米TiB-TiC增强钛基复合材料(TiB+TiC)/Ti的制备方法
CN104263984A (zh) * 2014-10-14 2015-01-07 哈尔滨工业大学(威海) 准连续网状结构TiBw/Ti-6Al-4V复合材料棒材的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Investigation on microstructure mechanical and tribological properties of in-situ (TiB + TiC)/Ti composite during the electron beam surface melting;Xuewei Tao et al.;《Surface & Coatings Technology》;20180131;第337卷;第419页 *
Reconstruction and refinement of TiB whiskers in titanium matrix composite after electron beam remelting;Xuewei Tao et al.;《Materials Letters》;20180424;第225卷;第13-14页 *
热处理对网状结构TiBw/Ti60复合材料组织与性能的影响;戎旭东等;《复合材料学报》;20151231;第32卷(第6期);第1729-1734页 *

Also Published As

Publication number Publication date
CN108531777A (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
Wang et al. In-situ fabrication and characterization of ultrafine structured Cu–TiC composites with high strength and high conductivity by mechanical milling
CN109097657B (zh) 一种Mo纳米颗粒增强CoCrNi中熵合金复合材料及其制备方法
EP0158769A1 (en) Low density aluminum alloys
CN110791686A (zh) 一种用于增材制造的铝合金粉末材料、制备方法及应用
CN102888531B (zh) 一种960MPa强度级电子束熔丝堆积快速成形构件用α+β型钛合金丝材
Ferry et al. Recent developments in ductile bulk metallic glass composites
CN112317755B (zh) 一种提高Cu-Cr-Nb合金强度和电导率的方法
CN109175391A (zh) 一种原位合成纳米氧化物颗粒弥散强化合金的方法
Tong et al. Achieving high strength and high electrical conductivity in a CuCrZr alloy using equal-channel angular pressing
CN108531777B (zh) 一种TiB增强钛基复合材料的增强相调控方法
CN111451502B (zh) 增材制造原位自生TiC增强钛基复合材料的分区调控方法
Wang et al. In situ fabrication and microstructural evolution of Al2O3-ZrO2 nanoeutectic ceramics by a novel pulse discharge plasma assisted melting method
Ebel et al. Metal injection moulding of advanced titanium alloys
CN105803283A (zh) 一种Nb-Si-Ti-W-Cr合金棒材及其制备方法
CN109087767A (zh) 一种晶界原位扩散纳米级扩散物的钕铁硼磁体及其制备方法
WO2016100226A1 (en) Incorporation of nano-size particles into aluminum or other light metals by decoration of micron size particles
Mil’man et al. Structure and properties of Al–Mg alloys depending on scandium and zirconium additions and production methods
CN116037931A (zh) 一种高强韧钛基复合材料的双峰结构的定制化构筑方法
Li et al. Fabrication of in situ TiB2 reinforced steel matrix composite by vacuum induction melting and its microstructure and tensile properties
Ayodele et al. Spark plasma sintering of titanium-based materials
KR102370830B1 (ko) 나노입자 분산강화 타이타늄 분말 및 그 제조 방법
CN109136634A (zh) 一种高性能铜合金材料及其制备方法
Fu et al. Effect of super-high pressure on microstructure and mechanical properties of Mg97Zn1Y2 alloys
Jiang et al. High temperature tensile properties of directionally solidified Ni-43Ti-4Al-2Nb-2Hf alloy
CN114525420A (zh) 利用脉冲电流技术提升公斤级AlCoCrFeNi2.1共晶高熵合金力学性能的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant