JP2005060694A - 熱硬化性樹脂組成物およびその利用 - Google Patents

熱硬化性樹脂組成物およびその利用 Download PDF

Info

Publication number
JP2005060694A
JP2005060694A JP2004224711A JP2004224711A JP2005060694A JP 2005060694 A JP2005060694 A JP 2005060694A JP 2004224711 A JP2004224711 A JP 2004224711A JP 2004224711 A JP2004224711 A JP 2004224711A JP 2005060694 A JP2005060694 A JP 2005060694A
Authority
JP
Japan
Prior art keywords
compound
group
resin composition
thermosetting resin
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004224711A
Other languages
English (en)
Inventor
Shigeru Tanaka
田中  滋
Kanji Shimooosako
寛司 下大迫
Taku Ito
卓 伊藤
Yoshifumi Okada
好史 岡田
Mutsuaki Murakami
睦明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2004224711A priority Critical patent/JP2005060694A/ja
Publication of JP2005060694A publication Critical patent/JP2005060694A/ja
Withdrawn legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

【課題】 耐熱性、加工性(溶媒可溶性も含む)、誘電特性等の諸物性と、難燃性とを十分に両立させることが可能であり、特に、電子機器における情報処理能力の向上に十分に対応できる配線基板の製造に好適に用いることができる熱硬化性樹脂組成物を提供する。
【解決手段】 本発明に係る熱硬化性樹脂組成物は、少なくとも、有機溶媒に可溶性を示す(A−1)可溶性ポリイミド樹脂を含むとともに、フェノール性水酸基を有する(B−1)フェノキシホスファゼン化合物、および/または、当該(B−1)フェノキシホスファゼン化合物を架橋してなる(B−2)架橋フェノキシホスファゼン化合物を含んでおり、さらに、(C)シアン酸エステル化合物を含んでいる。
【選択図】 なし

Description

本発明は、可溶性ポリイミド樹脂とホスファゼン化合物とシアン酸エステル化合物とを必須成分とし、難燃性、誘電特性、耐熱性、加工特性等に優れる熱硬化性樹脂組成物およびその利用に関するものである。より詳しくは、フレキシブルプリント配線板(FPC)やビルドアップ回路基板等の積層材料等のように積層時の加工性や低誘電性、耐熱性、更には難燃性が要求される積層構造体の製造に好適に用いることできる熱硬化性樹脂組成物およびその利用に関するものである。
近年、電子機器における情報処理能力の向上が求められている。そのため、この要求に対応すべく、電子機器においては、回路を伝達する電気信号の高周波化が進められている。上記回路は、通常、配線基板(配線板あるいは回路基板)上に形成されている。この電気信号の高周波化に伴って上記配線基板に対しては、電気的信頼性を保つとともに、回路における電気信号の伝達速度の低下や、電気信号の損失の抑制が望まれている。
ところで、上記配線基板の表面には、通常、当該配線基板そのものや回路を保護するための保護膜(保護層)、あるいは、多層構造の配線基板において各層間の絶縁性を確保するための層間絶縁膜等の絶縁層(絶縁膜)といった各種の膜が形成される。これら膜は、配線基板上に積層されるため、絶縁性に加えて、配線基板に接着するための接着性も求められている。
特に、フレキシブルプリント配線板(FPC)やビルドアップ回路基板等を積層して、多層構造の配線基板を製造する場合には、上記層間絶縁膜によって基板同士が接着されて固定される。そのため、層間絶縁膜には、基板等に対する優れた接着力が求められることになる。従って、上記保護膜や絶縁層は、接着性を有する接着材料を用いて形成される。
それゆえ、接着材料を用いて絶縁層を形成した場合、上記のように電気信号の高周波化を図るためには、当該接着材料に対して、GHz(ギガヘルツ)帯域にて、配線基板の高い信頼性を得ることができること、電気信号の伝達に悪影響を及ぼさないことが望まれる。
さらに、近年、環境への配慮から、電子機器に用いられる各種材料には、リサイクルへの対応や、環境に負荷を与える物質の使用をできる限り避けることが求められている。例えば、難燃剤については非ハロゲン系(ハロゲンフリー)難燃剤が求められ、半田については鉛を含有しない半田(鉛フリー半田)が求められている。
特に、半田については、従来では、配線基板と搭載部品とを物理的及び電気的に接続する材料として、鉛を含有する共晶半田が主に用いられてきていた。しかしながら、環境への配慮から、鉛を含有していない上記鉛フリー半田が使用されるようになってきた。この鉛フリー半田は、従来の鉛を含有している半田に比べて融点温度が40℃程度高い。そのため、配線基板に使用される材料に対しても更なる耐熱性の向上が強く要求されるようになってきた。
上記配線基板に用いられる樹脂材料、特に、上記層間絶縁膜等の絶縁層や保護膜に用いられる接着材料や絶縁材料としては、絶縁性に加えて良好な加工性や接着性を示す接着材料が用いられる。具体的には、エポキシ系接着材料や熱可塑性ポリイミド系接着材料が挙げられる。
上記エポキシ系接着材料は、加工性、接着性に優れるという利点を有しているが、誘電特性や耐熱性に問題がある。具体的には、エポキシ系接着材料は、被着体同士を低い温度、低い圧力で貼り合わせ加工することができ、被着体との接着性にも優れたものとなっている。ところが、エポキシ系接着材料は、硬化後の樹脂において誘電率、誘電正接が高くなるため誘電特性に劣っており、ガラス転移温度が低い、熱分解温度が低い等、耐熱性も劣っている。
一方、熱可塑性ポリイミド系接着材料は、耐熱性や誘電特性に優れるという利点を有しているが、加工性に問題がある。具体的には、熱可塑性ポリイミド系接着材料は、ガラス転移温度が高い、熱分解温度が高い等、耐熱性に優れたものとなっている。ところが、熱可塑性ポリイミド系接着材料を用いて被着体同士を接着させるためには、高温、高圧の条件下で貼り合わせ加工を行う必要があり、これが問題となっていた。
そこで、従来、誘電特性、加工性に優れる接着材料(樹脂材料)としてポリイミド樹脂とシアン酸エステル化合物とからなる熱硬化性樹脂組成物が開示されている(例えば、特許文献1参照)。また、シアン酸エステル化合物を主成分とした難燃性を有する低誘電率プリント回路用積層板が開示されており(例えば、特許文献2参照)、接着性に優れたポリイミド樹脂組成物が開示されている(例えば、特許文献3参照)。
特開2001−200157(平成13(2001)年7月24日公開) 特開平8−8501(平成8(1996)年1月12日公開) 特開平9−132710(平成9(1997)年5月20日公開)
しかしながら、前記従来の技術では、特に、電子機器における情報処理能力の向上に対応する配線基板を製造する用途において、樹脂材料の諸物性をバランス良く向上させることが困難であるという課題を有している。より具体的には、従来の技術では、上記用途に用いられる樹脂材料において、耐熱性、加工性(溶媒可溶性も含む)、誘電特性等の諸物性と、難燃性とを両立させることが困難となっていた。
例えば、上記特許文献1に開示されている熱硬化性樹脂組成物は、ポリイミド樹脂に、シアン酸エステル化合物を混合しており、誘電特性や耐熱性、加工性を達成するには効果がある。しかしながら、回路基板を形成する材料として重要な特性である難燃性についての記載は無く、十分な難燃性を有しているかが明らかではない。
上記特許文献2に開示されている低誘電率プリント回路用積層板は、シアン酸エステル化合物と臭素化ビスフェノールAとを混合した材料で形成されており、臭素化フェノールを使用していることで配線板として十分に使用に耐え得る難燃性を有している。また、上記特許文献2に開示されているポリイミド樹脂組成物は、ハロゲン原子または含ハロゲン炭化水素基を有している。すなわち、近年は、環境への配慮からハロゲン化合物を用いていない難燃化材料が強く望まれているにもかかわらず、ハロゲン化合物を用いている。
本発明は、上記課題に鑑みなされたものであって、その目的は、耐熱性、加工性(溶媒可溶性も含む)、誘電特性等の諸物性と、難燃性とを十分に両立させることが可能であり、特に、電子機器における情報処理能力の向上に十分に対応できる配線基板の製造に好適に用いることができる熱硬化性樹脂組成物と、その代表的な利用方法とを提供することにある。
本発明者は、上記課題に鑑み鋭意検討した結果、熱硬化性樹脂組成物の成分として、特定の(A)ポリイミド系樹脂および特定の(B)ホスファゼン化合物と(C)シアン酸エステル化合物との組み合わせを選択することで、難燃性とその他の諸物性とのバランスを優れたものとできることを見出し、本発明を完成するに至った。
すなわち、本発明に係る熱硬化性樹脂組成物は、(A)ポリイミド系樹脂および(B)ホスファゼン化合物を少なくとも含む樹脂組成物であって、上記(A)ポリイミド系樹脂として、有機溶媒に可溶性を示す(A−1)可溶性ポリイミド樹脂を含むとともに、上記(B)ホスファゼン化合物として、フェノール性水酸基を有する(B−1)フェノキシホスファゼン化合物、および/または、当該(B−1)フェノキシホスファゼン化合物を架橋してなり、フェノール性水酸基を少なくとも1つ有する(B−2)架橋フェノキシホスファゼン化合物を含んでおり、さらに、(C)シアン酸エステル化合物を含むことを特徴としている。
上記熱硬化性樹脂組成物においては、上記(A)ポリイミド系樹脂と、(B)ホスファゼン化合物と、(C)シアン酸エステル化合物との合計重量に対する上記(B)ホスファゼン化合物の重量で表される重量混合比(B)/〔(A)+(B)+(C)〕が、0.01以上0.4以下の範囲内となっていることが好ましい。
また、上記熱硬化性樹脂組成物においては、上記(B−1)フェノキシホスファゼン化合物として、少なくとも、次に示す一般式(1)
Figure 2005060694
(ただし、式中mは3〜25の整数を示し、R1およびR2はフェニル基またはヒドロキシフェニル基を示し、かつ、1分子中に少なくとも1個以上のヒドロキシフェニル基を含む。)
で表される(B−11)環状フェノキシホスファゼン化合物、および/または、次に示す一般式(2)
Figure 2005060694
(ただし、式中nは3〜10000の整数を表し、R3およびR4はフェニル基またはヒドロキシフェニル基を示し、かつ、1分子中に少なくとも1個以上のヒドロキシフェニル基を含み、R5は−N=P(OC65)3、−N=P(OC65)2(OC64OH)、−N=P(OC65)(OC64OH)2、−N=P(OC64OH)3、−N=P(O)OC65、または−N=P(O)(OC64OH)を示し、R6は−P(OC65)4、−P(OC65)3(OC64OH)、−P(OC65)2(OC64OH)2、−P(OC65)(OC64OH)3、−P(OC64OH)4、−P(O)(OC65)2、−P(O)(OC65)(OC64OH)、または−P(O)(OC64OH)2を示す。)
で表される(B−12)鎖状フェノキシホスファゼン化合物を含むことが好ましい。
さらに、上記熱硬化性樹脂組成物においては、上記(B−2)架橋フェノキシホスファゼン化合物は、o−フェニレン基、m−フェニレン基、p−フェニレン基または次に示す一般式(3)
Figure 2005060694
(ただし、式中R7は−C(CH3)2−、−SO2−、−S−または−O−を示し、pは0または1を示す。)
で表されるビスフェニレン基のうち、少なくとも何れか一つを含むフェニレン系架橋基により、上記フェノキシホスファゼン化合物を架橋してなっていることが好ましい。
上記架橋フェノキシホスファゼン化合物においては、上記フェノキシホスファゼン化合物として(B−11)環状フェノキシホスファゼン化合物、および/または(B−12)鎖状フェノキシホスファゼン化合物が用いられるとともに、上記フェニレン系架橋基が、上記(B−1)フェノキシホスファゼン化合物のフェニル基およびヒドロキシフェニル基が脱離した2個の酸素原子間に介在し、かつ、当該架橋フェノキシホスファゼン化合物のフェニル基およびヒドロキシフェニル基の含有割合が、上記フェノキシホスファゼン化合物中のフェニル基およびヒドロキシフェニル基の総数を基準として50〜99.9%の範囲内となっている、フェノール性水酸基を少なくとも1つ有する(B−21)フェニレン系架橋フェノキシホスファゼン化合物であることがより好ましい。
上記熱硬化性樹脂組成物においては、上記(A−1)可溶性ポリイミド樹脂は、脂肪族化合物成分、脂環族化合物成分、または、ビスフェノール化合物のアルキレンオキサイド付加物成分、のうち少なくとも一種から選ばれる有機溶媒溶解性付与成分を含み、低沸点の有機溶媒を含む混合溶媒に可溶性を示すことが好ましい。
上記熱硬化性樹脂組成物においては、上記(A−1)可溶性ポリイミド樹脂は、酸二無水物成分とジアミン成分またはイソシアネート成分とを反応させて得られるものであり、上記酸二無水物成分には、少なくとも、次に示す一般式(4)
Figure 2005060694
(ただし、式中Vは、直接結合、−O−、−O−T−O−、−O−CO−T−CO−O−、−(C=O)−、−C(CF3)2−または−C(CH3)2−を示し、Tは2価の有機基を示す。)
で表される酸二無水物が含まれることが好ましい。
あるいは、上記(A−1)可溶性ポリイミド樹脂は、酸二無水物成分とジアミン成分またはイソシアネート成分とを反応させて得られるものであり、上記ジアミン成分またはイソシアネート成分には、シロキサンジアミン、ヒドロキシジアミン、メタ位にアミノ基を有するジアミン、オルト位にアミノ基を有するジアミン、メタ位にイソシアネート基を有するイソシアネート、およびオルト位にイソシアネート基を有するイソシアネートの少なくとも何れか含まれていることが好ましい。
また、上記(A−1)可溶性ポリイミド樹脂は、ジオキソラン、ジオキサン、テトラヒドロフラン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンから選択される少なくとも1種の有機溶媒に、15℃〜100℃の温度範囲において1重量%以上溶解することが好ましい。
上記熱硬化性樹脂組成物においては、上記(C)シアン酸エステル化合物は、次に示す一般式群(5)
Figure 2005060694
(ただし、式中rは0以上4以下を示す。)
で表される化合物群から選択される少なくとも1種類からなっていることが好ましい。
本発明に係る熱硬化性樹脂組成物の用途としては、上記熱硬化性樹脂組成物を用いて形成された樹脂層を少なくとも1層含んでいる積層体を挙げることができる。この積層体は、回路基板、または多層プリント配線板として用いることができる。
上記のように、本発明に係る熱硬化性樹脂組成物は、(A−1)可溶性ポリイミド樹脂と(B−1)フェノキシホスファゼン化合物または(B−2)架橋フェノキシホスファゼン化合物を少なくとも含むとともに、(C)シアン酸エステル化合物を含む構成である。
それゆえ上記構成の熱硬化性樹脂組成物は、耐熱性・誘電特性・難燃性に優れるだけでなく、従来の熱可塑性ポリイミド樹脂系の接着材料よりも低温で接着することが可能となるため、加工性にも優れる。しかも、シアン酸エステル化合物を用いているため、従来のポリイミド/エポキシ樹脂混合系接着剤に比べて、加工性、耐熱性、誘電特性等といった諸特性のバランスが優れたものとなっている。さらに、水酸基を有するホスファゼン化合物を用いているため、この水酸基がシアン酸エステル化合物のエステル基と反応し得る。これにより、ホスファゼン化合物の構造が硬化後の樹脂の網目構造に取り込まれ得るため、耐熱性を損なうことなく難燃性が向上している。したがって、本発明にかかる熱硬化性樹脂組成物は、従来と比較して低温での接着が可能で加工性・取扱性に優れる上に、優れた耐熱性・誘電特性・難燃性を発揮することが可能になる。
その結果、例えば、本発明に係る熱硬化性樹脂組成物をワニス状の溶液等とした場合、接着剤、コーティング剤、あるいはインク等として有用な樹脂製剤とすることができる。また、本発明に係る熱硬化性樹脂組成物を樹脂シートまたは樹脂フィルムとした場合、フレキシブルプリント配線板(FPC)やビルドアップ回路基板等の回路基板に代表される積層体や、これを構成する積層材料等として好適に用いることができる。
本発明の実施の一形態について説明すれば以下の通りである。なお、本発明はこれに限定されるものではない。
本発明に係る熱硬化性樹脂組成物は、(A)ポリイミド系樹脂および(B)ホスファゼン化合物を少なくとも含むとともに、(C)シアン酸エステル化合物をさらに含むものであり、好ましくは、(D)反応性化合物や(E)その他の成分を含んでいればよい。このうち、(A)ポリイミド系樹脂として、有機溶媒に可溶性を示す(A−1)可溶性ポリイミド樹脂が少なくとも用いられ、(B)ホスファゼン化合物として、フェノール性水酸基を有する(B−1)フェノキシホスファゼン化合物、および/または、当該(B−1)フェノキシホスファゼン化合物を架橋してなる(B−2)架橋フェノキシホスファゼン化合物が用いられる。
上記のように、本発明に係る熱硬化性樹脂組成物が(A−1)可溶性ポリイミド樹脂を含有しているため、熱硬化性樹脂組成物に耐熱性を付与することができる。さらに、該熱硬化性樹脂組成物を硬化させて得られる硬化樹脂に対して、耐屈曲性、優れた機械特性、耐薬品性を付与するとともに、GHz帯域における誘電率および誘電正接の低い、優れた誘電特性を付与することができる。
〔(A)ポリイミド系樹脂〕
本発明に係るポリイミド系樹脂としては、上記(A−1)可溶性ポリイミド樹脂が少なくとも用いられる。この(A−1)可溶性ポリイミド樹脂とは、有機溶媒に可溶性を示すものであれば特に限定されるものではない。
<(A−1)可溶性ポリイミド樹脂>
上記(A−1)可溶性ポリイミド樹脂における「可溶性」とは、上述したように、有機溶媒に可溶性を示すことを指すが、より具体的には、ジオキサン、ジオキソラン、テトラヒドロフラン等のエーテル系溶媒;N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド等のホルムアミド系溶媒;N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド等のアセトアミド系溶媒;N−メチル−2−ピロリドン、N−ビニル−2−ピロリドン等のピロリドン系溶媒等から選択される少なくとも1種の有機溶媒に、15℃〜100℃の温度範囲において1重量%以上溶解することを指す。
上記(A−1)可溶性ポリイミド樹脂を用いれば、本発明の熱硬化性樹脂組成物の熱硬化に際して、高温・長時間での処理を必要とせず、後述する(C)シアン酸エステル化合物を効率よく硬化させることができる。従って、(A)ポリイミド系樹脂として(A−1)可溶性ポリイミド樹脂を用いることは、加工性の点から好ましい。
上記(A−1)可溶性ポリイミド樹脂は、樹脂骨格に繰り返し単位としてイミド環を有する樹脂であればよい。具体的には、ポリイミド(イミド環のみを有する樹脂、狭義のポリイミド樹脂)の他に、ポリアミドイミド、ポリエステルイミド、ポリエーテルイミド、マレイミド等、イミド環以外の繰り返し単位を有する広義のポリイミド樹脂も含まれる。
ここで、(A)ポリイミド系樹脂は、後述するように、一般に、次の2つの製造方法により製造される。まず、第1の方法では、原料となるモノマー成分として、酸二無水物成分とジアミン成分とを用い、これらモノマー成分を反応させてポリアミド酸(ポリアミック酸)を重合し、これをイミド化することによりポリイミド系樹脂を得る。また、第2の方法では、原料となるモノマー成分として、酸二無水物成分とイソシアネート成分とを用い、これらモノマー成分を反応させてポリイミド系樹脂を得る。
上記(A−1)可溶性ポリイミド樹脂の具体的な構成は特に限定されるものではないが、本発明では、上記モノマー成分として、後述する特定構造の酸二無水物、ジアミン、またはイソシアネートを用いることにより、本発明に係る熱硬化性樹脂組成物により好適な(A−1)可溶性ポリイミド樹脂を得ることができる。なお、この(A−1)可溶性ポリイミド樹脂の製造方法については後述する。
<酸二無水物成分>
本発明において好適に用いられる(A−1)可溶性ポリイミド樹脂では、原料のうち、酸二無水物成分として、少なくとも、次に示す一般式(4)
Figure 2005060694
(ただし、式中Vは、直接結合、−O−、−O−T−O−、−O−CO−T−CO−O−、−(C=O)−、−C(CF3)2−または−C(CH3)2−を示し、Tは2価の有機基を示す。)
で表される酸二無水物(説明の便宜上、芳香族テトラカルボン酸二無水物と称する)が含まれることが好ましい。
上記一般式(4)で表される芳香族テトラカルボン酸二無水物を用いれば、得られる(A−1)可溶性ポリイミド樹脂の有機溶媒に対する溶解性、耐熱性、フェノール樹脂成分やエポキシ樹脂成分との相溶性等を向上させることができる。
上記一般式(4)で表される芳香族テトラカルボン酸二無水物の中でも、当該一般式(4)におけるTが、次に示す群(6)
Figure 2005060694
で表される2価の有機基および一般式(7)
Figure 2005060694
(ただし、式中Zは、−CQ2Q−、−C(=O)−、−SO2−、−O−または−S−を示し、Qは1〜5の整数を示す。)
で表される2価の有機基(ベンゼン環を1個または2個含有する有機基)の何れかとなっている酸二無水物(説明の便宜上、フェニレン系芳香族テトラカルボン酸二無水物と称する)がより好ましく用いられる。このフェニレン系芳香族テトラカルボン酸二無水物は、1種のみ用いてもよいし2種以上を適宜組み合わせて用いてもよい。このような酸二無水物を用いることで、得られる(A−1)可溶性ポリイミド樹脂および熱硬化性樹脂組成物における誘電特性を優れた(GHz領域における誘電率や誘電正接を低い)ものとすることができるとともに、耐熱性も優れたものとすることができる。
さらに、上記フェニレン系芳香族テトラカルボン酸二無水物の中でも、次に示す
Figure 2005060694
で表される4,4’−(4,4’−イソプロピリデンジフェノキシ)ビスフタル酸二無水物を用いることが特に好ましい。この酸二無水物を用いることで、得られる(A−1)可溶性ポリイミド樹脂および熱硬化性樹脂組成物において、溶媒に対する溶解性や耐熱性、シアン酸エステル化合物成分との相溶性、誘電特性等の諸特性のバランスをより良いものとすることができる。また、4,4’−(4,4’−イソプロピリデンジフェノキシ)ビスフタル酸二無水物には入手し易いという利点もある。
本発明で用いられる酸二無水物成分としては、上記芳香族テトラカルボン酸二無水物を少なくとも含んでいればよいが、全酸二無水物中の芳香族テトラカルボン酸二無水物の含有率を規定することで、得られる(A−1)可溶性ポリイミド樹脂の物性を優れたものとすることができる。
具体的には、上記芳香族テトラカルボン酸二無水物は、原料として用いられる全ての酸二無水物成分を100モル%とした場合、50モル%以上用いられることが好ましい。これにより、得られる(A−1)可溶性ポリイミド樹脂の溶媒に対する溶解性や、エポキシ樹脂等との相溶性を優れたものとすることができ、さらに誘電特性も優れたものとすることができる。
本発明で用いることのできる酸二無水物については、具体的な化合物を例示すると、ピロメリット酸、1,2,3,4−ベンゼンテトラカルボン酸、1,2,3,4−シクロブタンテトラカルボン酸、1,2,4,5−シクロペンタンテトラカルボン酸、1,2,4,5−シクロヘキサンテトラカルボン酸、3,3’,4,4’−ビシクロヘキシルテトラカルボン酸、2,3,5−トリカルボキシシクロペンチル酢酸、3,4−ジカルボキシ−1,2,3,4−テトラヒドロナフタレン−1−コハク酸、3,3’,4,4’−ビフェニルテトラカルボン酸、2,3,3’,4’−ビフェニルテトラカルボン酸、2,3,3’,4’−ビフェニルエーテルテトラカルボン酸、2,2−ビス(3,4−ジカルボキシフェニル)プロパン、3,3’,4,4’−ベンゾフェノンテトラカルボン酸、2,3,3’,4’−ベンゾフェノンテトラカルボン酸、3,3’,4,4’−ビフェニルエーテルテトラカルボン酸〔別称:4,4’−オキシジフタル酸〕、2,2−ビス(2,3−ジカルボキシフェニル)プロパン、ビス(3,4−ジカルボキシフェニル)メタン、ビス(2,3−ジカルボキシフェニル)メタン、1,1−ビス(2,3−ジカルボキシフェニル)エタン、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸、2,3,3’,4’−ジフェニルスルホンテトラカルボン酸、2,3,6,7−ナフタレンテトラカルボン酸、1,4,5,8−ナフタレンテトラカルボン酸、1,2,5,6−ナフタレンテトラカルボン酸、3,4,9,10−テトラカルボキシペリレン酸、2,2−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]プロパン酸、2,2−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]ヘキサフルオロプロパン酸、3,3’,4,4’−ジメチルジフェニルシランテトラカルボン酸、1,2,3,4−フランテトラカルボン酸、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルプロパン酸、4,4’−ヘキサフルオロイソプロピリデンジフタル酸、p−フェニレンジフタル酸等の無水物またはその低級アルキルエステル等を挙げることができるが、もちろんこれらに限定されるものではない。
これら各化合物は、単独で用いてもよいし2種類以上を適宜組み合わせて用いてもよいが、上述したように、一般式(4)で表される酸二無水物が少なくとも1種用いられることが非常に好ましい。
上記各化合物のうち、2,3,3’,4’−ビフェニルエーテルテトラカルボン酸、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン、4,4’−(4,4’−イソプロピリデンジフェノキシ)ビスフタル酸、2,2’−ビス(4−ヒドロキシフェニル)プロパンジベンゾエート−3,3’,4,4’−テトラカルボン酸、1,2−ビス(4−ヒドロキシフェニル)エチレンジベンゾエート−3,3’,4,4’−テトラカルボン酸、2,3,3’,4’−ビフェニルテトラカルボン酸の無水物またはその低級アルキルエステルを用いることが特に好ましい。これによって、得られる(A−1)可溶性ポリイミド樹脂の溶媒に対する溶解性および耐熱性のバランスを優れたものとすることができる。これら化合物の中でも、上記芳香族テトラカルボン酸二無水物が好ましく、上記フェニレン系芳香族テトラカルボン酸二無水物(例えば、上述した4,4’−(4,4’−イソプロピリデンジフェノキシ)ビスフタル酸等)がより好ましい。
<ジアミン成分>
本発明において好適に用いられる(A−1)可溶性ポリイミド樹脂では、原料のうち、ジアミン成分としては特に限定されるものではない。本発明で用いられるジアミン成分は、上記(A−1)可溶性ポリイミド樹脂において、各種の有機溶媒に対する溶解性、耐熱性、半田耐熱性、PCT耐性、低吸水性、熱可塑性を優れたものとすることができるジアミンであればよい。このようなジアミン成分としては、例えば、ベンゼン環(フェニル基)等の芳香族構造を含むジアミンを挙げることができる。
具体的には、上記ジアミン成分には、次に示す一般式(8)
Figure 2005060694
(ただし、式中Y1は、それぞれ独立して−C(=O)−、−SO2−、−O−、−S−、−(CH2)m−、−NHCO−、−C(CH3)2−、−C(CF3)2−、−C(=O)O−、または直接結合を示し、R8は、水素原子、ハロゲン原子または炭素数1〜4のアルキル基を示し、mおよびrはそれぞれ独立して1以上5以下の整数を示す。)
で表されるジアミン(説明の便宜上、芳香族ジアミンと称する)が含まれることが好ましい。この芳香族ジアミンを用いることで、得られる(A−1)可溶性ポリイミド樹脂において、溶解性や耐熱性を優れたものとすることができるとともに、吸水性を低いものとすることが可能となる。なお、上記一般式(8)における複数の繰り返し単位であるY1は、全て同一であっても良いし、それぞれ異なっていても良い。
上記一般式(8)で表される芳香族ジアミンとしては、具体的には、例えば、ビス[4−(3−アミノフェノキシ)フェニル]メタン、ビス[4−(4−アミノフェノキシ)フェニル]メタン、1,1−ビス[4−(3−アミノフェノキシ)フェニル]エタン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]エタン、1,2−ビス[4−(3−アミノフェノキシ)フェニル]エタン、1,2−ビス[4−(4−アミノフェノキシ)フェニル]エタン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]ブタン、2,2−ビス[3−(3−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,4’−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(3−アミノフェノキシ)フェニル]ケトン、ビス[4−(4−アミノフェノキシ)フェニル]ケトン、ビス[4−(3−アミノフェノキシ)フェニル]スルフィド、ビス[4−(4−アミノフェノキシ)フェニル]スルフィド、ビス[4−(2−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]エーテル、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、1,4−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,3−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、4,4’−ビス[3−(4−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’−ビス[3−(3−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ジフェニルスルホン、ビス[4−{4−(4−アミノフェノキシ)フェノキシ}フェニル]スルホン、1,4−ビス[4−(4−アミノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、4,4’−ジアミノジベンジルスルホキシド、ビス(4−アミノフェノキシ)フェニルホスフィンオキシド、ビス(4−アミノフェノキシ)−N−フェニルアミン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、等が挙げられるが特に限定されるものではない。これらジアミンは、単独で用いてもよいし、2種類以上を適宜組み合わせて用いてもよい。
上記一般式(8)で表される芳香族ジアミンの中でも、各種溶媒に対する溶解性を向上させる点から見れば、メタ位またはオルト位にアミノ基を有する芳香族ジアミンが好ましく、特に、次に示す一般式(9)
Figure 2005060694
(ただし、式中Y1は、それぞれ独立して−C(=O)−、−SO2−、−O−、−S−、−(CH2)m−、−NHCO−、−C(CH3)2−、−C(CF3)2−、−C(=O)O−、または直接結合を示し、R8は、水素原子、ハロゲン原子または炭素数1〜4のアルキル基を示し、mおよびrはそれぞれ独立して1以上5以下の整数を示す。)
で表されるジアミン、すなわちメタ位にアミノ基を有する芳香族ジアミン(説明の便宜上、メタ芳香族ジアミンと称する)がより好ましい。このような芳香族ジアミンを用いれば、パラ位にアミノ基を有する芳香族ジアミンを用いた場合よりも、得られる(A−1)可溶性ポリイミド樹脂をさらに溶解性に優れたものとすることが可能となる。
上記一般式(8)で表される芳香族ジアミンとしては、具体的には、例えば、1,1−ビス[4−(3−アミノフェノキシ)フェニル]エタン、1,2−ビス[4−(3−アミノフェノキシ)フェニル]エタン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]ブタン、2,2−ビス[3−(3−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、ビス[4−(3−アミノフェノキシ)フェニル]ケトン、ビス[4−(3−アミノフェノキシ)フェニル]スルフィド、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]エーテル、1,4−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,3−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、4,4’−ビス[3−(3−アミノフェノキシ)ベンゾイル]ジフェニルエーテル等が挙げられる。
上記芳香族ジアミンの中でも、1,3−ビス(3−アミノフェノキシ)ベンゼンを用いることが特に好ましい。この芳香族ジアミンを用いることで、得られる(A−1)可溶性ポリイミド樹脂および熱硬化性樹脂組成物において、各種有機溶媒に対する溶解性、半田耐熱性、PCT耐性等の物性をより優れたものとすることができる。
さらに、本発明では、ジアミン成分として、水酸基および/またはカルボキシル基を有するジアミン(説明の便宜上、ヒドロキシジアミンと称する)も好ましく用いられる。このヒドロキシジアミンを用いれば、得られる(A−1)可溶性ポリイミド樹脂には、水酸基およびカルボキシル基の少なくとも一方が導入されることになる。これら水酸基やカルボキシル基は、熱硬化成分の硬化剤となり得る。
それゆえ、ヒドロキシジアミンを用いた(A−1)可溶性ポリイミド樹脂では、熱硬化成分であるシアン酸エステル化合物を、低温あるいは短時間で硬化させることが可能となる。また、上記シアン酸エステル化合物は、水酸基および/またはカルボキシル基と反応し得るので、得られる(A−1)可溶性ポリイミド樹脂では、エポキシ樹脂を介して架橋することが可能となる。そのため、得られる熱硬化性樹脂組成物に対して、より優れた耐熱性、半田耐熱性およびPCT耐性を与えることが可能となる。
上記ヒドロキシジアミンとしては、水酸基およびカルボキシル基の少なくとも一方を有していれば特に限定されることはないが、具体的には、例えば、2,4−ジアミノフェノール等のジアミノフェノール類;3,3’−ジアミノ−4,4’−ジヒドロキシビフェニル、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル、4,4’−ジアミノ−2,2’−ジヒドロキシビフェニル、4,4’−ジアミノ−2,2’,5,5’−テトラヒドロキシビフェニル等のヒドロキシビフェニル化合物類;3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルメタン、4,4’−ジアミノ−3,3’−ジヒドロキシジフェニルメタン、4,4’−ジアミノ−2,2’−ジヒドロキシジフェニルメタン、2,2−ビス[3−アミノ−4−ヒドロキシフェニル]プロパン、2,2−ビス[4−アミノ−3−ヒドロキシフェニル]プロパン、2,2−ビス[3−アミノ−4−ヒドロキシフェニル]ヘキサフルオロプロパン、4,4’−ジアミノ−2,2’,5,5’−テトラヒドロキシジフェニルメタン等のヒドロキシジフェニルアルカン類;3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジアミノ−3,3’−ジヒドロキシジフェニルエーテル、4,4’−ジアミノ−2,2’−ジヒドロキシジフェニルエーテル、4,4’−ジアミノ−2,2’,5,5’−テトラヒドロキシジフェニルエーテル等のヒドロキシジフェニルエーテル化合物;3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルスルフォン、4,4’−ジアミノ−3,3’−ジヒドロキシジフェニルスルフォン、4,4’−ジアミノ−2,2’−ジヒドロキシジフェニルスルフォン、4,4’−ジアミノ−2,2’,5,5’−テトラヒドロキシジフェニルスルフォン等のジフェニルスルホン化合物;2,2−ビス[4−(4−アミノ−3−ヒドロキシフェノキシ)フェニル]プロパン等のビス[(ヒドロキシフェノキシ)フェニル]アルカン化合物類;4,4’−ビス(4−アミノ−3−ヒドキシフェノキシ)ビフェニル等のビス(ヒドキシフェノキシ)ビフェニル化合物類;2,2−ビス[4−(4−アミノ−3−ヒドロキシフェノキシ)フェニル]スルホン等のビス[(ヒドロキシフェノキシ)フェニル]スルホン化合物;3,5−ジアミノ安息香酸等のジアミノ安息香酸類;3,3’−ジアミノ−4,4’−ジカルボキシビフェニル、4,4’−ジアミノ−3,3’−ジカルボキシビフェニル、4,4’−ジアミノ−2,2’−ジカルボキシビフェニル、4,4’−ジアミノ−2,2’,5,5’−テトラカルボキシビフェニル等のカルボキシビフェニル化合物類;3,3’−ジアミノ−4,4’−ジカルボキシジフェニルメタン、4,4’−ジアミノ−3,3’−ジカルボキシジフェニルメタン、4,4’−ジアミノ−2,2’−ジカルボキシジフェニルメタン、2,2−ビス[4−アミノ−3−カルボキシフェニル]プロパン、2,2−ビス[3−アミノ−4−カルボキシフェニル]ヘキサフルオロプロパン、4,4’−ジアミノ−2,2’,5,5’−テトラカルボキシジフェニルメタン等のカルボキシジフェニルアルカン類;3,3’−ジアミノ−4,4’−ジカルボキシジフェニルエーテル、4,4’−ジアミノ−3,3’−ジカルボキシジフェニルエーテル、4,4’−ジアミノ−2,2’−ジカルボキシジフェニルエーテル、4,4’−ジアミノ−2,2’,5,5’−テトラカルボキシジフェニルエーテル等のカルボキシジフェニルエーテル化合物;3,3’−ジアミノ−4,4’−ジカルボキシジフェニルスルフォン、4,4’−ジアミノ−3,3’−ジカルボキシジフェニルスルフォン、4,4’−ジアミノ−2,2’−ジカルボキシジフェニルスルフォン、4,4’−ジアミノ−2,2’,5,5’−テトラカルボキシジフェニルスルフォン等のジフェニルスルホン化合物;2,2−ビス[4−(4−アミノ−3−カルボキシフェノキシ)フェニル]プロパン等のビス[(カルボキシフェノキシ)フェニル]アルカン化合物類;2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン等のビス(ヒドロキシフェニル)アルカン類;4,4’−ビス(4−アミノ−3−ヒドロキシフェノキシ)ビフェニル等のビス(ヒドロキシフェノキシ)ビフェニル化合物類;2,2−ビス[4−(4−アミノ−3−カルボキシフェノキシ)フェニル]スルホン等のビス[(カルボキシフェノキシ)フェニル]スルホン化合物;等を挙げることができる。
上記ヒドロキシジアミンの中でも、次に示す
Figure 2005060694
で表される3,3’−ジヒドロキシ−4,4’−ジアミノビフェニルを用いることが特に好ましい。
(A−1)可溶性ポリイミド樹脂を合成する場合には、ジアミン成分として、上記一般式(8)で表される芳香族ジアミンと、上述したヒドロキシジアミンとを併用することが好ましい。このとき、ヒドロキシジアミンとして、上記3,3’−ジヒドロキシ−4,4’−ジアミノビフェニルを用いた場合には、得られる熱硬化性樹脂組成物に対して、優れた半田耐熱性およびプレッシャークッカーによる耐湿テスト(PCT)耐性を与えることができる。
本発明においては、ジアミン成分として、上記芳香族ジアミンおよび/またはヒドロキシジアミン以外にもその他のジアミンを用いることもできる。ここでいうその他のジアミンとしては、目的の(A−1)可溶性ポリイミド樹脂または熱硬化性樹脂組成物の用途や求められる物性等に応じて適宜選択することが可能であり、具体的な化合物は特に限定されるものではない。
上記その他のジアミンとしては、例えば、3,3’−ジアミノエーテル、m−フェニレンジアミン、o−フェニレンジアミン、p−フェニレンジアミン、m−アミノベンジルアミン、p−アミノベンジルアミン、ビス(3−アミノフェニル)スルフィド、(3−アミノフェニル)(4−アミノフェニル)スルフィド、ビス(4−アミノフェニル)スルフィド、ビス(3−アミノフェニル)スルホキシド、(3−アミノフェニル)(4−アミノフェニル)スルホキシド、ビス(3−アミノフェニル)スルホン、(3−アミノフェニル)(4−アミノフェニル)スルホン、ビス(4−アミノフェニル)スルホン、3,4’−ジアミノベンゾフェノン、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、ビス[4−(3−アミノフェノキシ)フェニル]スルホキシド、ビス[4−(アミノフェノキシ)フェニル]スルホキシド、4,4’−ジアミノジフェニルメタン、3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、3,3’,5,5’−テトラメチル−4,4’−ジアミノジフェニルメタン、3,3’,5,5’−テトラエチル−4,4’−ジアミノジフェニルメタン、3,3’−ジメチル−5,5’−ジエチル−4,4’−ジアミノジフェニルメタン、4,4’−メチレンビス(シクロヘキシルアミン)、3,3’−ジメチル−4,4’−ジアミノジシクロヘキシルメタン、3,3’−ジメトキシ−4,4’−ジアミノジフェニルメタン、3,3’−ジエトキシ−4,4’−ジアミノジフェニルメタン、ビス(3−アミノフェニル)エーテル、ビス(4−アミノフェニル)エーテル、3,3’−ジエチル−4,4’−ジアミノジフェニルエーテル、3,3’−ジメトキシ−4,4’−ジアミノジフェニルエーテル、3,3’−ジメチル−4,4’−ジアミノジフェニルスルホン、3,3’−ジエチル−4,4’−ジアミノジフェニルスルホン、3,3’−ジメトキシ−4,4’−ジアミノジフェニルスルホン、3,3’−ジエトキシ−4,4’−ジアミノジフェニルスルホン、3,3’−ジメチル−4,4’−ジアミノジフェニルプロパン、3,3’−ジエチル−4,4’−ジアミノジフェニルプロパン、3,3’−ジメトキシ−4,4’−ジアミノジフェニルプロパン、3,3’−ジエトキシ−4,4’−ジアミノジフェニルプロパン、1,3−ビス(4−アミノフェニル)プロパン、2,2−ビス(4−アミノフェニル)プロパン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジメチル−4,4’−ジアミノジフェニルスルフィド、3,3’−ジエチル−4,4’−ジアミノジフェニルスルフィド、3,3’−ジメトキシ−4,4’−ジアミノジフェニルスルフィド、3,3’−ジエトキシ−4,4’−ジアミノジフェニルスルフィド、2,2’−ジアミノジエチルスルフィド、2,4’−ジアミノジフェニルスルフィド、1,2−ビス(4−アミノフェニル)エタン、1,1−ビス(4−アミノフェニル)エタン、o−トルイジンスルホン、ビス(4−アミノフェニル)ジエチルシラン、ビス(4−アミノフェニル)エチルホスフィンオキシド、ビス(4−アミノフェニル)−N−メチルアミン、1,2−ジアミノナフタレン、1,4−ジアミノナフタレン、1,5−ジアミノナフタレン、1,6−ジアミノナフタレン、1,7−ジアミノナフタレン、1,8−ジアミノナフタレン、2,3−ジアミノナフタレン、2,6−ジアミノナフタレン、1,4−ジアミノ−2−メチルナフタレン、1,5−ジアミノ−2−メチルナフタレン、1,3−ジアミノ−2−フェニルナフタレン、9,9−ビス(4−アミノフェニル)フルオレン、4,4’−ジアミノビフェニル、3,3’−ジアミノビフェニル、3,3’−ジクロロ−4,4’−ジアミノビフェニル、3、3’−ジメチル−4,4’−ジアミノビフェニル、3,4’−ジメチル−4,4’−ジアミノビフェニル、3,3’−ジメトキシ−4,4’−ジアミノビフェニル、2,4−ジアミノトルエン、2,5−ジアミノトルエン、2,6−ジアミノトルエン、3,5−ジアミノトルエン、1,3−ジアミノ−2,5−ジクロロベンゼン、1,4−ジアミノ−2,5−ジクロロベンゼン、1−メトキシ−2,4−ジアミノベンゼン、1,3−ジアミノ−4,6−ジメチルベンゼン、1,4−ジアミノ−2,5−ジメチルベンゼン、1,4−ジアミノ−2−メトキシ−5−メチルベンゼン、1,4−ジアミノ−2,3,5,6−テトラメチルベンゼン、1,4−ビス(2−メトキシ−4−アミノペンチル)ベンゼン、1,4−ビス(1,1−ジメチル−5−アミノペンチル)ベンゼン、o−キシレンジアミン、m−キシレンジアミン、p−キシレンジアミン、9,10−ビス(4−アミノフェニル)アントラセン、3,3’−ジアミノベンゾフェノン、2,6−ジアミノピリジン、3,5−ジアミノピリジン、1,3−ジアミノアダマンタン、3,3’−ジアミノ−1,1,1’−ジアダマンタン、N−(3−アミノフェニル)−4−アミノベンズアミド、4,4’−ジアミノベンズアニリド、4−アミノフェニル−3−アミノベンゾエート、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、2,2−ビス(3−アミノフェニル)ヘキサフルオロプロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)ヘキサフルオロプロパン、2,2−ビス[4−(2−クロロ−4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、1,1−ビス(4−アミノフェニル)−1−フェニル−2,2,2−トリフルオロエタン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]−1−フェニル−2,2,2−トリフルオロエタン、1,3−ビス(3−アミノフェニル)ヘキサフルオロプロパン、1,3−ビス(3−アミノフェニル)デカフルオロプロパン、2,2−ビス(3−アミノ−4−メチルフェニル)ヘキサフルオロプロパン、2,2−ビス(5−アミノ−4−メチルフェニル)ヘキサフルオロプロパン、1,4−ビス(3−アミノフェニル)ブタ−1−エン−3−イン等を挙げられるがこれらに限定されるものではない。これら化合物は、単独で用いてもよいし、2種類以上を適宜組み合わせて用いてもよい。
なお、本発明で用いられる上記他のジアミン(あるいはヒドロキシジアミンでもよい)の中でも、用途によっては、シロキサン結合(−Si−O−)を含むジアミン(説明の便宜上、シロキサンジアミンと称する)が用いられることが好ましい場合がある。
上記シロキサンジアミンとしては、具体的には、例えば、次に示す一般式(10)
Figure 2005060694
(ただし、式中R9は、炭素数1〜12のアルキル基またはフェニル基を示し、yは1〜40の整数を示し、zは1〜20の整数を示す。)
で表される化合物を挙げることができる。このようなシロキサンジアミンを用いれば、得られる(A−1)可溶性ポリイミド樹脂において、有機溶媒への溶解性を向上させることができる。
また、本発明においては、上記他のジアミンとして、シロキサンジアミン以外にも、イソホロンジアミン、ヘキサメチレンジアミン、ジアミノジシクロヘキシルメタン等を好適に用いることができる。これらジアミンを用いれば、得られる(A−1)可溶性ポリイミド樹脂の有機溶媒に対する溶解性と耐熱性とをより優れたものとすることができる。
本発明で用いられるジアミン成分としては、上記芳香族ジアミンを少なくとも含んでいればよく、好ましくは上記ヒドロキシジアミンをさらに含んでいればよいが、全ジアミン成分中のこれら各ジアミンの含有率を規定することで、得られる(A−1)可溶性ポリイミド樹脂の物性を優れたものとすることができる。
具体的には、原料として用いられる全ジアミン成分を100モル%としたときに、上記芳香族ジアミンを20〜99モル%の範囲内で用いるとともに、ヒドロキシジアミンを80〜1モル%の範囲内で用いることが好ましい。この含有率は、ヒドロキシジアミンとして上記3,3’−ジヒドロキシ−4,4’−ジアミノビフェニルを選択した場合でも同一である。上記各ジアミンの含有率が上記範囲内にあれば、得られる(A−1)可溶性ポリイミド樹脂の溶解性、半田耐熱性、PCT耐性が損なわれるような事態を回避することができる。
また、全ジアミン成分中における上記その他のジアミンの含有率は、特に限定されるものではないが、原料として用いられる全ジアミン成分を100モル%としたときに、10モル%未満の範囲内で用いられることが好ましい。
<イソシアネート成分>
上述したように、本発明で用いられる上記(A−1)可溶性ポリイミド樹脂は、酸二無水物成分とジアミン成分またはイソシアネート成分を反応させて得ることもできる。したがって、本発明では、上記ジアミン成分に代えて、原料としてイソシアネート成分を用いることができる。
本発明で用いられるイソシアネート成分は、上記(A−1)可溶性ポリイミド樹脂において、各種の有機溶媒に対する溶解性、耐熱性、半田耐熱性、PCT耐性、低吸水性、熱可塑性を優れたものとすることができるイソシアネートであればよいが、具体的には、前述したジアミンに対応するジイソシアネートを挙げることができる。
より具体的には、一般式(8)で表される芳香族ジアミン、やメタ位またはオルト位にアミノ基を有する芳香族ジアミンに対応するジイソシアネート〔例えば、1,3−ビス(3−アミノフェノキシ)ベンゼンに対応するジイソシアネート等〕、ヒドロキシジアミンに対応するジイソシアネート〔例えば、3,3’−ジヒドロキシ−4,4’−ジアミノビフェニルに対応するジイソシアネート等〕、シロキサンジアミンに対応するジイソシアネート、イソホロンジアミン、ヘキサメチレンジアミン、ジアミノジシクロヘキシルメタン等に対応するジイソシアネートを挙げることができるが、特に限定されるものではない。これら化合物は1種類のみを用いてもよいし2種類以上を組み合わせて用いてもよい。
<イミド環以外に導入可能な構造>
本発明において用いられる(A−1)可溶性ポリイミド樹脂としては、狭義のポリイミド樹脂の他に、ポリアミドイミド、ポリエステルイミド、ポリエーテルイミド等、イミド環以外の繰り返し単位を有する広義のポリイミド樹脂も含まれる。このように上記(A−1)可溶性ポリイミド樹脂には、イミド環以外の構造が導入されても良い。
ポリアミドイミドは、酸二無水物成分として無水トリメリット酸を用いるとともに、ジアミン成分またはイソシアネート成分として、芳香族を含むジアミンまたはイソシアネートを用いることにより合成することができる。
次に、ポリエステルイミドは、酸二無水物成分として、無水トリメリット酸を用いるとともに、上述したジアミン成分を用いることにより合成することができる。具体的には、まず、無水トリメリット酸およびジアミン成分との反応により、次に示す一般式(11)
Figure 2005060694
(ただし、式中R10は、2価の有機基を示す。)
で表されるようなイミド環を有するジカルボン酸を合成する。そして、このジカルボン酸を、後述する他の酸二無水物やジオールと反応させ、脱水縮合する。これによりポリエステルイミドを得ることができる。
次に、ポリエーテルイミドは、上述した各酸二無水物成分およびジアミン成分の少なくとも一方として、エーテル結合を有する化合物を用いることによって得られる。
ここで、ポリアミドイミドやポリエステルイミドにおいて酸二無水物成分として用いられる無水トリメリット酸は、他の酸二無水物と共重合させることが可能である。上記他の酸二無水物としては、具体的には、例えば、シュウ酸、マロン酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジオン酸、シクロヘキサンジカルボン酸、マレイン酸、マレイン酸無水物、イタコン酸、イタコン酸無水物、ダイマー酸、水添ダイマー酸などの脂肪族あるいは脂環族ジカルボン酸;テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルメタン−4,4−ジカルボン酸、ジフェニルエーテル−4,4−ジカルボン酸、ビス[(4−カルボキシ)フタルイミド]−4,4−ジフェニルエーテル、ビス[(4−カルボキシ)フタルイミド]−a,a’−メタキシレン、5−ヒドロキシイソフタル酸等の芳香族ジカルボン酸;ブタン−1,2,4−トリカルボン酸、ナフタレン−1,2,4−トリカルボン酸等のトリカルボン酸およびこれらの酸二無水物;ピロメリット酸、ベンゾフェノンテトラカルボン酸、ベンゼン−1,2,3,4−テトラカルボン酸、ビフェニルテトラカルボン酸、ナフタレンテトラカルボン酸、ペリレン−3,4,9,10−テトラカルボン酸、エチレングリコールビス(アンヒドロトリメリテート)、プロピレングリコールビス(アンヒドロトリメリテート)、3,3’,4’−オキシジフタル酸等のテトラカルボン酸およびこれらの酸二無水物;等を挙げることができるが特に限定されるものではない。これら化合物は単独で用いてもよいし、2種以上を適宜組み合わせて用いてもよい。
また、得られる(A−1)可溶性ポリイミド樹脂の有機溶媒に対する溶解性をより向上させることを目的として、(A−1)可溶性ポリイミド樹脂に脂肪族化合物成分、脂環族化合物成分、ビスフェノール化合物のアルキレンオキサイド付加物等を導入してもよい。
これらのうち、脂肪族化合物成分および脂環族化合物成分については、上述した酸二無水物成分、ジアミン成分またはイソシアネート成分として、脂肪族または脂環族の化合物を選択すれば、(A−1)可溶性ポリイミド樹脂の骨格中に脂肪族化合物成分および脂環族化合物成分を導入することができる。脂肪族または脂環族の化合物の具体的な例としては、ダイマー酸、水添ダイマー酸、イソホロンジアミン、ヘキサメチレンジアミン、ジアミノジシクロヘキシルメタンおよびそれらに対応するイソシアネート等を挙げることができるが、特に限定されるものではない。
また、ビスフェノール化合物のアルキレンオキサイド付加物としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、ビフェノール等のエチレンオキサイド付加物やプロピレンオキサイド付加物等を挙げることができる。これら化合物において、アルキレンオキサイドの付加量については特に限定されるものではないが、得られる(A−1)可溶性ポリイミド樹脂の熱安定性から見れば、平均で片末端5モル以下であればよく、3モル以下であることが好ましく、2モル以下であることがより好ましい。
上記脂肪族化合物成分、脂環族化合物成分、ビスフェノール化合物のアルキレンオキサイド付加物を(A−1)可溶性ポリイミド樹脂に導入する場合、これら成分は、溶解性を改良する効果が大きく、耐熱性を低下させる作用が小さい傾向にある。したがって、これら成分を導入する場合には、その導入量は、酸二無水物成分の全量、あるいは、ジアミン成分またはイソシアネート成分の全量に対して、1〜100モル%の範囲であればよい。これによって、得られる(A−1)可溶性ポリイミド樹脂における有機溶媒への溶解性、特に、芳香族系、ケトン系またはエーテル系溶媒への溶解性を改良することができる。
<(A−1)可溶性ポリイミド樹脂の合成>
本発明で用いられる上記(A−1)可溶性ポリイミド樹脂は、公知の方法で製造することができる。具体的には、上記(A−1)可溶性ポリイミド樹脂の合成方法(製造方法)は、用いられる原料の違いによって、大きく次の2つの方法に分けることができる。
まず第1の方法は、原料(モノマー成分)として、酸二無水物成分およびジアミン成分を用いる場合の方法であり、これらモノマー成分を重縮合させて前駆体であるポリアミド酸(ポリアミック酸)を合成し、これをさらに化学的または熱的に脱水環化(イミド化)させるという二段階の方法である。一方、第2の方法は、原料として、酸二無水物成分およびイソシアネート成分を用いる場合の方法であり、これらモノマー成分を重合してポリイミド樹脂を得るという一段階の方法である。
以下の説明では、第1の方法におけるポリアミド酸の合成(製造)およびポリアミド酸のイミド化と、第2の方法とをそれぞれ順に詳述する。
<第1の方法におけるポリアミド酸の合成(製造)方法>
ポリアミド酸の合成(製造)方法は、少なくとも1種の酸二無水物を含んでなる酸二無水物成分と、少なくとも1種のジアミンを含んでなるジアミン成分とを有機溶媒中で反応させる方法である。このとき、上記酸二無水物成分とジアミン成分とは実質的に等モルとなるように配合する。したがって、1種類のみの酸二無水物およびジアミンを用いる場合は、互いに等モルとなるように配合すればよいし、2種以上の酸二無水物および2種以上のジアミンを用いる場合、酸二無水物成分の全量(複数の酸二無水物の全量)とジアミン成分の全量(複数のジアミンの全量)とを実質的に等モルとなるように配合すればよい。複数の酸二無水物およびジアミンを用いる場合には、ポリアミド酸共重合体を任意に得ることができる。
上記ポリアミド酸の合成において、各モノマー成分を反応させる方法は特に限定されるものではないが、一般的には、有機溶媒中に、実質的に等モル量の酸二無水物成分およびジアミン成分を溶解させた後、各種反応条件を制御しながら重合が完了するまで攪拌する方法が用いられる。この方法により有機溶媒にポリアミド酸が溶解してなる溶液(以下、ポリアミド酸溶液と称する)を得ることができる。
上記酸二無水物成分およびジアミン成分を添加する順序としては、例えば、(1)ジアミン成分を有機溶媒に溶解させ、その後、酸二無水物成分を添加する、(2)酸二無水物成分を有機溶媒に溶解させ、その後、ジアミン成分を添加する、(3)有機溶媒中に適量のジアミン成分を加えて溶解させ、続いて、ジアミン成分に対してモル比で過剰となる酸二無水物成分を加え、加えた酸二無水物成分の過剰量に相当する量のジアミン成分を添加する、等の方法を挙げることができるが特に限定されるものではない。なお、ここでいう「溶解」とは、溶媒が溶質を完全に溶解した状態だけではなく、溶質が溶媒中に均一に分散または拡散して、実質的に溶解している状態と同じ状態となる場合を含むものとする。
上記ポリアミド酸の合成反応における合成条件は特に限定されるものではなく、上記モノマー成分を重合させることによってポリアミド酸を十分に合成できる条件であればよい。本発明では、合成条件のうち、温度条件、反応時間、使用する有機溶媒については、次に示すように規定すると好ましい。
まず、上記ポリアミド酸の合成反応における温度条件は、酸二無水物成分とジアミン成分とを重合させることができる温度範囲であれば特に限定されるものではないが、その上限は80℃以下であることが好ましく、50℃以下であることがより好ましく、30℃以下であることがさらに好ましく、20℃以下であることが特に好ましい。また、その下限は、特に限定されないが、反応が進行し、かつ、反応により生成するポリマーが析出しない温度以上であることが好ましい。具体的には、重合に用いられる原料に依存するが、−20℃以上が好ましく、0℃以上が特に好ましい。
次に、上記ポリアミド酸の合成反応における反応時間は、酸二無水物成分とジアミン成分との重合反応を完了させることができる時間であれば特に限定されるものではないが、その上限は一般的に50時間であれば十分であり、12時間以下であってもよい。一方、その下限は、30分以上であることが好ましく、3時間以上であることがより好ましい。
次に、上記ポリアミド酸の合成反応に使用する有機溶媒は、ポリアミド酸を十分に溶解できる溶媒であれば特に限定されるものではないが、通常は有機極性溶媒が用いられる。さらに、ポリアミド酸を合成する時の粘度の増加を抑制して攪拌しやすくする点や、得られる(A−1)可溶性ポリイミド樹脂を乾燥させやすくする点等から、ポリアミド酸を良好に溶解することができ、かつ、なるべく沸点の低い有機極性溶媒を選択することが好ましい。これによって、(A−1)可溶性ポリイミド樹脂の製造工程の効率化を図ることが可能となる。
ポリアミド酸の合成反応に使用する上記有機極性溶媒としては、具体的には、例えば、N,N−ジメチルスルホキシド、ジエチルスルホキシド等のスルホキシド系溶媒;N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド等のホルムアミド系溶媒;N,N−ジメチルアセトアミドやN,N−ジエチルアセトアミド等のアセトアミド系溶媒;N−メチル−2−ピロリドン、N−ビニル−2−ピロリドン等のピロリドン系溶媒;フェノール、o−クレゾール、m−クレゾール、p−クレゾール、キシレノール、ハロゲン化フェノール、カテコール等のフェノール系溶媒;ヘキサメチルホスファミド、γ−ブチロラクトン等を挙げることができるが特に限定されるものではない。
上記各有機極性溶媒は、単独で用いてもよいし、2種類以上を適宜混合して用いてもよい。さらに、必要に応じて、上記各有機極性溶媒と、キシレンまたはトルエン等の芳香族炭化水素とを組み合わせて用いてもよい。
上記合成方法により得られるポリアミド酸溶液の具体的な条件は特に限定されるものではないが、対数粘度については、次に示す範囲内とすることが好ましい。すなわち、ポリアミド酸を0.5g/N−メチル−2−ピロリドン100mlの濃度溶液とした場合に、30℃における対数粘度が0.2〜4.0(デシリットル/グラム)の範囲内であることが好ましく、0.3〜2.0(デシリットル/グラム)の範囲内であることがより好ましい。
<第1の方法におけるポリアミド酸のイミド化>
本発明で用いられる(A−1)可溶性ポリイミド樹脂は、上記合成方法により得られたポリアミド酸をイミド化することにより得られる。このイミド化の具体的な手法としては、特に限定されるものではないが、例えば、熱的手法または化学的手法により、ポリアミド酸溶液中のポリアミド酸を脱水閉環することによって行われる。ここでいう熱的手法とは、ポリアミド酸溶液を熱処理して脱水する方法であり、化学的手法とは、脱水剤を用いて脱水する方法である。これらの手法の他、減圧下で加熱処理を行うことによりイミド化する方法もある。
(1)熱的手法
上記熱的手法は、加熱によってポリアミド酸を脱水閉環する方法であれば特に限定されるものではない。具体的には、例えば、上記ポリアミド酸溶液を加熱処理することによってイミド化反応を進行させ、同時に溶媒を蒸発させる等の方法を挙げることができる。加熱処理の条件は特に限定されるものではないが、加熱温度が300℃以下であり、加熱時間が約5分〜10時間の範囲内であることが好ましい。また、トルエンやキシレン等の還流による熱環化法等も用いることができる。この熱的手法により、(A−1)可溶性ポリイミド樹脂を得ることができる。
(2)化学的手法
上記化学的手法は、例えば、上記ポリアミド酸溶液に、化学量論量以上の脱水剤と触媒とを加えることによって、脱水反応および有機溶媒の蒸発を行う方法を挙げることができる。この化学的手法により、(A−1)可溶性ポリイミド樹脂を得ることができる。
上記脱水剤としては、具体的には、例えば、無水酢酸等の脂肪族酸無水物;無水安息香酸等の芳香族酸無水物;N,N’−ジシクロヘキシルカルボジイミド、N,N’−ジイソプロピルカルボジイミド等のカルボジイミド類;等を挙げることができる。また、上記触媒としては、具体的には、例えば、トリエチルアミン等の脂肪族第3級アミン類;ジメチルアニリン等の芳香族第3級アミン類;ピリジン、α−ピコリン、β−ピコリン、γ−ピコリン、イソキノリン等の複素環式第3級アミン類;等を挙げることができる。
上記化学的手法の条件は特に限定されるものではないが、反応温度は100℃以下であることが好ましく、反応時間は、約1分〜50時間の範囲内であることが好ましい。また、有機溶媒の蒸発の条件も特に限定されるものではないが、加熱温度は200℃以下であることが好ましく、加熱時間は約5分〜12時間の範囲内であることが好ましい。
(3)減圧下での加熱処理
熱的手法および化学的手法以外の方法の一つとして、上記減圧下での加熱処理によるイミド化(説明の便宜上、減圧加熱手法と称する)が挙げられる。この減圧加熱手法によっても(A−1)可溶性ポリイミド樹脂を得ることができる。減圧加熱手法における処理条件としては、イミド化が実施できる条件であれば特に限定されるものではないが、処理条件のうち、加熱条件および圧力条件は次に示すように規定すると好ましい。
まず、加熱条件は、80〜400℃の範囲内であればよいが、効率よくイミド化および脱水を行うためには、その下限を100℃以上とすることが好ましく、120℃以上とすることがより好ましい。一方、加熱処理における最高温度(上限)は、得られる(A−1)可溶性ポリイミド樹脂の熱分解温度以下とすることが好ましい。したがって、加熱の上限は、通常、イミド化の完結温度である約180〜350℃の範囲内に設定されることが好ましい。
次に、圧力条件は低圧であればとくに限定されるものではないが、具体的には、0.001〜0.9気圧の範囲内であることが好ましく、0.001〜0.8気圧の範囲内であることがより好ましく、0.001〜0.7気圧の範囲内であることがさらに好ましい。換言すれば、減圧加熱手法における圧力の上限は1気圧未満であればよく、0.9気圧以下が好ましく、0.8気圧以下がより好ましく、0.7気圧以下がさらに好ましい。一方、下限は特に限定されるものではないが0.001気圧以上であればよい。
上記減圧加熱手法によりポリアミド酸をイミド化する方法では、イミド化によって生成する水を積極的に系外に除去することができる。そのため、ポリアミド酸の加水分解を抑制することができる。また、ポリアミド酸の原料である酸二無水物成分には、不純物として、片側開環物または両側開環物が含まれているが、減圧加熱手法を用いることにより、これら片側開環物または両側開環物を閉環させることができる。その結果、得られる(A−1)可溶性ポリイミド樹脂をより高分子量とすることができる。
(4)溶媒を蒸発させない固形化手法
上記の熱的手法および化学的手法、あるいは減圧加熱手法では、イミド化の過程で溶媒を蒸発させるようになっているが、例えば、熱的手法や化学的手法では、溶媒を蒸発させないで固形の(A−1)可溶性ポリイミド樹脂を得る手法もある。具体的には、この手法では、上記熱的手法または化学的手法によって得られる(A−1)可溶性ポリイミド樹脂の溶液を、貧溶媒中に加え、ポリイミド樹脂を析出させ、乾燥することにより、固形の(A−1)可溶性ポリイミド樹脂を得る。
この手法で用いられる貧溶媒としては、得られた(A−1)可溶性ポリイミド樹脂の溶液の溶媒とは良好に混合するが、(A−1)可溶性ポリイミド樹脂は溶解しにくい性質の溶媒であれば特に限定されるものではないが、具体的には、例えば、アセトン、メタノール、エタノール、イソプロパノール、ベンゼン、メチルセロソルブ(登録商標)、メチルエチルケトン、水等を挙げることができる。
この方法によれば、貧溶媒中で(A−1)可溶性ポリイミド樹脂を析出させるので、固形の(A−1)可溶性ポリイミド樹脂が得られるだけでなく、不純物を除去して精製することもできる。不純物としては、未反応のモノマー成分(酸二無水物・ジアミン)、無水酢酸やピリジン(化学的手法の場合)、トルエンやキシレン(熱的手法の場合)が挙げられる。貧溶媒で析出する手法では、これら不純物を除去して精製・乾燥することができるので、得られる(A−1)可溶性ポリイミド樹脂の品質を向上することが可能となる。
<第2の方法>
(A−1)可溶性ポリイミド樹脂を合成(製造)する第2の方法は、少なくとも1種の酸二無水物を含んでなる酸二無水物成分と、少なくとも1種のジイソシアネートを含んでなるイソシアネート成分とを有機溶媒中で反応させる方法である。このとき、上記第1の方法におけるポリアミド酸の合成と同様に、酸二無水物成分とイソシアネート成分とは実質的に等モルとなるように配合すればよい。
上記第2の方法において、各モノマー成分を反応させる方法は特に限定されるものではないが、一般的には、上記ポリアミド酸の合成と同様に、有機溶媒中に、実質的に等モル量の酸二無水物成分およびイソシアネート成分を溶解させた後、各種反応条件を制御しながら重合が完了するまで攪拌する方法が用いられる。この方法により有機溶媒にポリイミドが溶解してなる溶液(可溶性ポリイミド溶液)を1段階で得ることができる。
各モノマー成分の反応は、無触媒でも行うことができるが、イソシアネート成分と活性水素化合物との反応に対する触媒を用いることが好ましい。この触媒としては、例えば、3級アミン類、アルカリ金属化合物、アルカリ土類金属化合物、あるいはコバルト、チタニウム、錫、亜鉛などの金属、半金属化合物等を挙げることができる。なお、第2の方法において酸二無水物成分およびイソシアネート成分を添加する順序も特に限定されるものではなく、上記ポリアミド酸の合成方法に順ずればよい。
上記第2の方法において、(A−1)可溶性ポリイミド樹脂を合成する合成条件は特に限定されるものではなく、上記モノマー成分を重合させることによってポリイミドを十分に合成できる条件であればよい。本発明では、合成条件のうち、温度条件、使用する有機溶媒については、次に示すように規定すると好ましい。
まず、上記第2の方法の合成反応における温度条件は、酸二無水物成分とイソシアネート成分とを重合させることができる温度範囲であれば特に限定されるものではないが、通常は、50〜220℃の範囲内であることが好ましい。なお、反応時間も特に限定されるものではない。
次に、上記第2の方法の合成反応に使用する有機溶媒は、得られる(A−1)可溶性ポリイミド樹脂を十分に溶解できる溶媒であれば特に限定されるものではないが、上記ポリアミド酸の合成の場合と同様に、合成時の粘度の増加を抑制して攪拌しやすくする点や、得られる(A−1)可溶性ポリイミド樹脂を乾燥させやすくする点等から、ポリイミドを良好に溶解することができ、かつ、なるべく沸点の低い有機溶媒を選択することが好ましい。これによって、(A−1)可溶性ポリイミド樹脂の製造工程の効率化を図ることが可能となる。
第2の方法の合成反応に使用することができる上記有機溶媒としては、具体的には、例えば、N、N−ジメチルホルムアミド、N、N−ジメチルアセトアミド、N、N−ジエチルアセトアミド、N、N−ジメチルメトキシアセトアミド、N−メチル−2−ピロリドン、ヘキサメチルホスファミド等のアミド系有機溶媒;N−メチルカプロラクタム等のラクタム系有機溶媒;1,3−ジメチル−2−イミダゾリジノン、テトラメチル尿素等の尿素系有機溶媒;1,2−ジメトキシエタン、1,2−ビス(2−メトキシエチル)エタン、ビス[2−(2−メトキシエトキシ)エタン]等の炭化水素系有機溶媒;ビス(2−メトキシエチル)エーテル、ビス[2−(2−メトキシエトキシ)エチル]エーテル、1,3−ジオキサン、1,4−ジオキサン、テトラヒドロフラン、ジグライム等のエーテル系有機溶媒;γ−ブチロラクトン等のエステル系有機溶媒;ピリジン、ピコリン等のピリジン系有機溶媒;ジメチルスルホキシド、ジメチルスルホン、スルホラン等の硫黄系有機溶媒;ニトロメタン、ニトロエタン、ニトロベンゼン等のニトロ系有機溶媒;アセトニトリル等のニトリル系有機溶媒;等を挙げることができるが、これらに限定されるものではない、これら有機溶媒は単独で用いてもよいし、2種以上を適宜組み合わせて用いてもよい。
<可溶性ポリイミド溶液>
本発明における熱硬化性樹脂組成物の調製では、得られた(A−1)可溶性ポリイミド樹脂を所望の有機溶媒に溶解させることにより、可溶性ポリイミド溶液として用いることができる。可溶性ポリイミド溶液に用いられる有機溶媒としては、得られた(A−1)可溶性ポリイミド樹脂を溶解することができる有機溶媒であれば特に限定されるものではないが、例えば、上述したポリアミド酸の合成反応に使用する有機極性溶媒を挙げることができる。これら有機溶媒は単独で用いてもよいし、2種類以上を適宜組み合わせて用いてもよい。
上記可溶性ポリイミド溶液の濃度は特に限定されるものではなく、得られる熱硬化性樹脂組成物の用途(使用目的)や使用方法等によって適宜決定すればよいが、通常は1〜30重量%の範囲内であればよい。また、可溶性ポリイミド溶液における粘度も特に限定されるものではないが、通常は、N−メチル−2−ピロリドン溶液とした場合に、30℃における対数粘度が0.1〜2.5(デシリットル/グラム)の範囲にあることが好ましい。対数粘度がこの範囲内であれば、一般的に見て(A−1)可溶性ポリイミド樹脂の分子量を好適な値とすることができる。
なお、本発明にかかる熱硬化性樹脂組成物においては、(A)ポリイミド系樹脂として、少なくとも上記(A−1)可溶性ポリイミド樹脂が1種含まれていればよいが、(A−1)可溶性ポリイミド樹脂が2種以上含まれていてもよいし、それ以外のポリイミド樹脂が含まれていてもよい。また、この(A−1)可溶性ポリイミド樹脂としては、イミド化前の前駆体であるポリアミド酸であってもよい。熱硬化性樹脂組成物を調製する際に、各成分を配合する際に反応が起こりにくく安定性が高いことから、ポリアミド酸ではなくイミド化された(A−1)可溶性ポリイミド樹脂を用いることが好ましい。
本発明に係る熱硬化性樹脂組成物において、(A−1)可溶性ポリイミド樹脂の配合量は特に限定されるものではないが、熱硬化性樹脂組成物の全量を100重量(質量)%としたとき、その下限は20重量%以上であることが好ましく、30重量%以上であることがより好ましい。一方、その上限は、80重量%以下であることが好ましく、60重量%以下であることがより好ましい。(A−1)可溶性ポリイミド樹脂の配合量がこのような範囲内であれば、熱硬化性樹脂組成物の加工性や、当該熱硬化性樹脂組成物を硬化させて得られる硬化樹脂(硬化物)の誘電特性や耐熱性等の諸物性を優れたものとすることができる。
〔(B)ホスファゼン化合物〕
本発明に係る熱硬化性樹脂組成物においては、フェノール性水酸基を有する化合物、すなわち、上記(B−1)フェノキシホスファゼン化合物および/または(B−2)架橋フェノキシホスファゼン化合物が用いられる。上記(B−2)架橋フェノキシホスファゼン化合物は、上記(B−1)フェノキシホスファゼン化合物を架橋してなるホスファゼン化合物である。
上記(B−1)フェノキシホスファゼン化合物および/または(B−2)架橋フェノキシホスファゼン化合物を含むことにより、得られる熱硬化性樹脂組成物の耐熱性を損なうことなく難燃性を付与することができる。特に、本発明で用いられるホスファゼン化合物は、分子内にフェノール性水酸基を有するため、シアン酸エステル基と水酸基とが反応することにより、シアン酸エステルが形成する網目構造の中にホスファゼン骨格が取り込まれる。そのため、得られる熱硬化性樹脂組成物において、難燃剤が表面に析出(ブリードまたはジューシング)しにくくすることができ、難燃性をより一層向上することが可能となる。
しかも、分子内にフェノール性水酸基を有するため、イミド系樹脂との相溶性が著しく向上し、熱硬化性樹脂組成物を硬化させる場合には、後述する(C)シアン酸エステル化合物と反応し網目構造を形成することが可能となる。そのため、効率のよい硬化が可能となり、耐熱性に優れた硬化物を得ることができる。また、従来のホスファゼン化合物よりもアルカリ可溶性を向上させることも可能である。
<(B−1)フェノキシホスファゼン化合物>
本発明で用いられる(B−1)フェノキシホスファゼン化合物は、フェノール性水酸基を有するホスファゼン化合物であれば特に限定されるものではないが、具体的には、(B−11)環状フェノキシホスファゼン化合物および(B−12)鎖状フェノキシホスファゼン化合物の少なくとも一方が好ましく用いられる。
まず、上記(B−11)環状フェノキシホスファゼン化合物は、次に示す一般式(1)
Figure 2005060694
(ただし、式中mは3〜25の整数を示し、R1およびR2はフェニル基またはヒドロキシフェニル基(−C64OH)を示し、かつ、1分子中に少なくとも1個以上のヒドロキシフェニル基を含む。)
で表される構造を有している。
次に、上記(B−12)鎖状フェノキシホスファゼン化合物は、次に示す一般式(2)
Figure 2005060694
(ただし、式中nは3〜10000の整数を表し、R3およびR4はフェニル基またはヒドロキシフェニル基を示し、かつ、1分子中に少なくとも1個以上のヒドロキシフェニル基を含み、R5は−N=P(OC65)3、−N=P(OC65)2(OC64OH)、−N=P(OC65)(OC64OH)2、−N=P(OC64OH)3、−N=P(O)OC65、または−N=P(O)(OC64OH)を示し、R6は−P(OC65)4、−P(OC65)3(OC64OH)、−P(OC65)2(OC64OH)2、−P(OC65)(OC64OH)3、−P(OC64OH)4、−P(O)(OC65)2、−P(O)(OC65)(OC64OH)、または−P(O)(OC64OH)2を示す。)
で表される構造を有している。
上記(B−11)環状フェノキシホスファゼン化合物および(B−12)鎖状フェノキシホスファゼン化合物は、上記(A)ポリイミド系樹脂や後述する(D)その他の成分との相溶性が優れており、さらには、得られる熱硬化性樹脂組成物を硬化させた後の耐熱性も優れたものとすることができる。
上記(B−11)環状フェノキシホスファゼン化合物および(B−12)鎖状フェノキシホスファゼン化合物の製造方法は特に限定されるものではないが、具体的には、例えば、次の各文献に記載の方法により製造することができる。
文献A:横山正明ら、工業化学雑誌,Vol. 67, No. 9, p. 1378 (1964)
文献B:奥橋朋也ら、工業化学雑誌,Vol. 73, No. 6, p. 1164 (1970)
文献C:特開昭58−219190号公報
文献D:Alessandro Medici, et. al., Macromolecules, Vol. 25, No. 10, p. 2569 (1992)
文献E:特開昭54−145394号公報
文献F:特開昭54−145395号公報
例えば、4−メトキシフェノール、4−(ベンジルオキシ)フェノール等のように、2価フェノールの一方の水酸基がメチル基またはベンジル基で保護された化合物(説明の便宜上、保護フェノール化合物と称する)を合成し、さらにこれら化合物のアルカリ金属塩(例えば、リチウム塩、ナトリウム塩、カリウム塩等)を得る。得られた保護フェノール化合物のアルカリ金属塩(4−メトキシフェノールのアルカリ金属塩、または4−(ベンジルオキシ)フェノールのアルカリ金属塩)を、上記文献E・Fに記載されている塩化ホスホニトリルと反応させる。その後、さらにピリジンハロゲン化水素酸塩または三臭化ホウ素等と反応させることによって、メチル基またはベンジル基を脱保護して水酸基に変える。これによって、上記フェノキシホスファゼン化合物を合成することができる。
さらに、上記フェノキシホスファゼン化合物のうち、部分的に水酸基置換のフェノキシ基を有する化合物を製造する場合には、保護フェノール化合物のアルカリ金属、および/またはヒドロキシアルキルフェノールのアルカリ金属塩を得て、これを塩化ホスホニトリルと反応させる際に、アルコール系またはフェノール系化合物のアルカリ金属塩を同時に用いることによって製造することができる。
<(B−1)フェノキシホスファゼン化合物の合成(製造)の一例>
上記(B−11)環状フェノキシホスファゼン化合物および(B−12)鎖状フェノキシホスファゼン化合物の具体的な合成(製造)方法の一例について説明する。
まず、次に示す一般式(12)
Figure 2005060694
(ただし、式中mは3〜25の整数を示す。)
で表される環状ジクロルホスファゼン化合物、あるいは、次に示す一般式(13)
Figure 2005060694
(ただし、式中X2は−N=PCl3または−N=P(O)Clを示し、Y2は−PCl4または−P(O)Cl2を示し、nは3〜10000の整数を示す。)
で表される直鎖または鎖状ジクロルホスファゼン化合物からなる群より選ばれる少なくとも1種のジクロルホスファゼン化合物を原料ホスファゼン化合物として用いる。
上記一般式(12)または(13)で表される化合物に対して、次に示す一般式(14)および(15)
Figure 2005060694
Figure 2005060694
(ただし、各式中Mはアルカリ金属を示す。)
で表されるアルカリ金属フェノラートを反応させる。なお、上記一般式(15)で表されるアルカリ金属フェノラートにおいては、アルキルオキシ基(メトキシ基)の位置は特に限定されるものではない。
上記反応により、一般式(12)または一般式(13)で表される構造に、フェニル基およびメトキシフェニル基を導入することができる。このとき、一般式(12)または(13)で表される構造において、1分子中に少なくとも1個以上のメトキシフェニル基が導入されている必要がある。換言すれば、上記一般式(12)または(13)の化合物と、一般式(14)および(15)の化合物とを反応させる場合には、1分子中に少なくとも1個以上のメトキシフェニル基が導入されるように、一般式(15)の化合物の量(モル比換算)を含む反応条件を規定する必要がある。なお、反応条件の詳細については特に限定されるものではなく、公知の条件を用いればよい。
上記反応により得られた化合物に対して、ピリジンハロゲン化水素酸塩または三臭化ホウ素等との反応によって、メトキシフェニル基を脱保護し、水酸基に変換する。その結果、上記一般式(1)で表される(B−11)環状フェノキシホスファゼン化合物および(一般式(2)で表される)(B−12)鎖状フェノキシホスファゼン化合物を合成することができる。
<(B−2)架橋フェノキシホスファゼン化合物>
上記(B−2)架橋フェノキシホスファゼン化合物は、上述したように、フェノール性水酸基を少なくとも1つ有しており、上記(B−1)フェノキシホスファゼン化合物を架橋してなるホスファゼン化合物である。この(B−2)架橋フェノキシホスファゼン化合物は、上記(B−1)フェノキシホスファゼン化合物を公知の架橋基により架橋したものであればよいが、好ましくは、フェニレン系架橋基により上記(B−1)フェノキシホスファゼン化合物を架橋したものであることが好ましい。
上記フェニレン系架橋基とは、構造中にフェニル基を含んでいる架橋基であればよいが、具体的には、次に示すo−フェニレン基、m−フェニレン基、p−フェニレン基
Figure 2005060694
または、次に示す一般式(3)
Figure 2005060694
(ただし、式中R7は−C(CH3)2−、−SO2−、−S−または−O−を示し、pは0または1を示す。)
で表されるビスフェニレン基のうち、少なくとも何れか一つを含む架橋基を挙げることができる。
本発明においては、上記(B−2)架橋フェノキシホスファゼン化合物を合成(製造)する場合、上記フェノキシホスファゼン化合物として、該当するどのような化合物を用いてもよいが、上述した(B−11)環状フェノキシホスファゼン化合物、および/または(B−12)鎖状フェノキシホスファゼン化合物を用いることが好ましい。このとき、架橋基としても上記フェニレン系架橋基を用いることが好ましい。
さらに、(1)フェノキシホスファゼン化合物として、(B−11)環状フェノキシホスファゼン化合物、および/または(B−12)鎖状フェノキシホスファゼン化合物を用い、(2)架橋基として上記フェニレン系架橋基を用いた場合、これら(1)および(2)の条件が満たされているとき、架橋の条件を次の(3)および(4)を満たすように規定することが好ましい。
すなわち、(3)上記フェニレン系架橋基は、上記(B−1)フェノキシホスファゼン化合物((B−11)環状フェノキシホスファゼン化合物、および/または(B−12)鎖状フェノキシホスファゼン化合物)のフェニル基およびヒドロキシフェニル基が脱離した2個の酸素原子間に介在し、かつ、(4)当該架橋フェノキシホスファゼン化合物のフェニル基およびヒドロキシフェニル基の含有割合が、上記フェノキシホスファゼン化合物中のフェニル基およびヒドロキシフェニル基の総数を基準として50〜99.9%の範囲内となっていることが好ましい。
上記(1)〜(4)の条件を満たす(B−2)架橋フェノキシホスファゼン化合物を用いれば、得られる熱硬化性樹脂組成物において難燃性をより一層向上させることが可能となる。なお、上記(1)〜(4)の条件を満たす架橋フェノキシホスファゼン化合物を、(B−21)フェニレン系架橋フェノキシホスファゼン化合物と称する。
<(B−2)架橋フェノキシホスファゼン化合物の合成(製造)の一例>
上記(B−2)架橋フェノキシホスファゼン化合物の製造方法は特に限定されるものではないが、上記(B−21)フェニレン系架橋フェノキシホスファゼン化合物を例に挙げて、合成方法の一例を説明する。
まず、上記一般式(12)または(13)で表されるジクロルホスファゼン化合物とアルカリ金属フェノラートとを反応させる。このとき用いられるアルカリ金属フェノラートとしては、上記一般式(14)および(15)で表されるアルカリ金属フェノラートに加えて、次に示す一般式(16)および(17)
Figure 2005060694
Figure 2005060694
(ただし、式中、Mはアルカリ金属を示し、式中R7は−C(CH3)2−、−SO2−、−S−または−O−を示し、pは0または1を示す。)
で表されるアルカリ金属ジフェノラートとを併用する。
これによって得られる化合物は、一般式(12)または(13)で表される構造にメトキシフェニル基(およびフェニル基)が導入されるとともに、上記一般式(16)・(17)で表されるアルカリ金属ジフェノラートによって一般式(12)または(13)で表される構造が架橋された構造となっている。その後、ピリジンハロゲン化水素酸塩または三臭化ホウ素との反応によって、メチル基またはベンジル基を脱保護し水酸基に変える。これによって、一般式(1)および/または一般式(2)で表されるフェノキシホスファゼン化合物を芳香族ジオールで架橋した化合物、すなわち、上記(B−21)フェニレン系架橋フェノキシホスファゼン化合物を得ることができる。
上記フェノキシホスファゼン化合物(架橋体も含む)の配合量は、特に限定されるものではないが、熱硬化性樹脂組成物の全重量を100重量%とした場合、0.1〜50重量%の範囲内であることが好ましい。0.1重量%未満の場合には難燃性の付与の効果が小さくなる場合があり、50重量%以上の場合には、接着性の低下や力学特性の低下が見られる場合がある。
特に、本発明では、上記(A−1)可溶性ポリイミド樹脂と、(B)ホスファゼン化合物成分と、(C)シアン酸エステル化合物との合計重量に対する上記(B)ホスファゼン化合物の重量で表される重量混合比(B)/〔(A)+(B)+(C)〕が、0.01以上0.4以下の範囲内となっていることが好ましく、さらに好ましくは0.05以上0.4以下である。0.01未満の場合には難燃性の付与効果が小さく、0.4を超えると、半田耐熱性等の耐熱性や接着性、誘電特性が低下することがある。
また、上記(B)ホスファゼン化合物と、(C)シアン酸エステル化合物との合計重量に対する上記(A)ポリイミド系樹脂の重量で表される重量混合比(A)/〔(B)+(C)〕は、下限値が0.4以上であることが好ましく、0.5以上であることが特に好ましい。また、上限値は、2.0以下であることが好ましく、1.5以下であることが特に好ましい。
上記重量混合比が0.4未満となる、すなわち、上記熱硬化性樹脂組成物に含まれる(B)ホスファゼン化合物成分と(C)シアン酸エステル化合物成分との含有量が、(A)ポリイミド系樹脂成分の含有量に比べて相対的に大きくなると、硬化前の樹脂シートの流動性が高くなって、複素粘度の最低粘度が低下する。また、硬化後の樹脂シートの高温時における弾性率や線膨張係数等で表される耐熱性は高くなるが、GHz(ギガヘルツ)帯域において、低い誘電率および低い誘電正接(以下、優れた誘電特性と記載する)を実現することが困難となる。
これに対し、上記重量混合比が2.0を超える、すなわち、上記熱硬化性樹脂組成物に含まれる(A)ポリイミド系樹脂成分の含有量が、(B)ホスファゼン化合物成分と(C)シアン酸エステル化合物成分との含有量に比べて相対的に大きくなると、GHz帯域にて上記硬化後の樹脂シートが優れた誘電特性を得ることができるが、熱硬化性樹脂組成物と導体や回路基板との接着性や、熱硬化性樹脂組成物と導体や回路基板との貼り合わせ時の加工性が損なわれることになる。
本発明の熱硬化性樹脂組成物を上記重量混合比とすることによって、該熱硬化性樹脂組成物が硬化してなる硬化樹脂は、GHz帯域においても優れた誘電特性を示す。すなわち、上記熱硬化性樹脂組成物を150℃〜250℃の温度条件下で1時間〜5時間加熱することによって得られる硬化樹脂の誘電特性は、周波数1GHz〜10GHzにて、誘電率が3.3以下であり、また誘電正接が0.02以下となる。誘電率および誘電正接が上記の範囲内であれば、本発明の熱硬化性樹脂組成物を、回路基板の保護材料や層間絶縁材料として用いた場合にも、回路基板の電気的絶縁性を確保し、回路基板上の回路の信号伝達速度の低下や信号の損失を抑制することができるので、信頼性の高い回路基板を提供することが可能になる。
〔(C)シアン酸エステル化合物〕
次に、本発明に係る(C)シアン酸エステル化合物について説明する。本発明で用いる(C)シアン酸エステル化合物は、シアナート基とエステル結合とを有する化合物であれば特に限定されるものでないが、例えば、次に示す一般式(18)
Figure 2005060694
(ただし、式中R11は、単結合、芳香環を少なくとも1つ有する2価の有機基、−CH2−、−C(CH3)2−、C(CF3)2−、−CH(CH3)−、−CH(CF3)−、−SO2−、−S−、−O−から選択され、o、p、qは、それぞれ独立に0以上3以下の整数である。また、R12、R13は、それぞれ独立に−H、−CH3、−CF3から選択される有機基である。)
で表されるシアン酸エステル化合物から選択される少なくとも1種を用いることが好ましい。一般式(18)にて表されるシアン酸エステル化合物を用いることにより、熱硬化性樹脂組成物に優れた耐熱性を付与することができる。
また、一般式(18)で表されるシアン酸エステル化合物の中でも、可溶性ポリイミド樹脂との相溶性が高い点や、入手しやすい点などから、一般式群(5)
Figure 2005060694
(ただし、式中rは0以上4以下を示す。)
で表されるシアン酸エステル化合物から選択される少なくとも1種を用いることがより好ましく、次に示す一般式(19)
Figure 2005060694
で表されるシアン酸エステル化合物を用いることが特に好ましい。
本発明の熱硬化性樹脂組成物に用いられる(C)シアン酸エステル化合物としては、上記何れかのシアン酸エステル化合物を、単量体として用いることも可能であるが、単量体のシアナート基の一部を加熱などにより反応させたオリゴマーとして使用する事も可能である。また、オリゴマーと単量体とを併用して用いることも可能である。シアン酸エステル化合物のオリゴマーとしては、例えば、ロンザ社製の商品名BA200、旭チバ社製の商品名Arocy B−30、B−50、M−30、M−50等が挙げられる。これら(C)シアン酸エステル化合物は1種類のみを用いてもよいし2種類以上を適宜組み合わせて用いてもよい。
〔(D)その他の成分〕
本発明に係る熱硬化性樹脂組成物には、上記(A−1)可溶性ポリイミド樹脂、(B)ホスファゼン化合物、(C)シアン酸エステル化合物以外に(D)その他の成分が含まれていてもよい。(D)その他の成分は、得られる熱硬化性樹脂組成物の用途に応じて適宜選択されるものであって特に限定されるものではないが、具体的には、例えば、(D−1)熱硬化性を向上させるための硬化触媒、(D−2)その他の樹脂を挙げることができる。
<(D−1)硬化触媒>
本発明の熱硬化性樹脂組成物は、硬化後に優れた誘電特性を発現し得る程度まで(C)シアン酸エステル化合物を反応させることが必要であるものの、(C)シアン酸エステル化合物の反応には200℃以上の高温かつ2時間以上の時間を要する場合があるため、(C)シアン酸エステル化合物の反応を促進させるために、(D−1)硬化触媒を用いることが好ましい。
上記の(D−1)硬化触媒としては、(C)シアン酸エステル化合物の反応を促進し得る化合物であれば、特に限定されるものでない。具体的には、亜鉛(II)アセチルアセトナート、ナフテン酸亜鉛、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート、ナフテン酸コバルト 銅(II)アセチルアセトナート、ナフテン酸銅等の金属系触媒;N−(4−ヒドロキシフェニル)マレイミド、p−t−オクチルフェノール、クミルフェノール、フェノール樹脂等の水酸基を有する有機化合物;等を挙げることができる。また、これらの(D−1)硬化触媒は、単独であるいは適宜組み合わせて用いることができる。
上記の(D−1)硬化触媒のうち、より硬化を促進することができる点で、金属系の触媒を用いることが好ましく、特に亜鉛(II)アセチルアセトナート、銅(II)アセチルアセトナートが好ましい。(D−1)硬化触媒を混合する量は、用いる(D−1)硬化触媒の種類や反応を促進する程度によって異なる。例えば、硬化触媒が金属系硬化触媒であれば、(C)シアン酸エステル化合物100重量部に対して、0.001重量部〜0.1重量部の範囲内で用いることが好ましく、硬化触媒が有機化合物であれば、(C)シアン酸エステル化合物100重量部に対して0.1重量部〜20重量部の範囲で用いることが好ましい。特に、亜鉛(II)アセチルアセトナート、または銅(II)アセチルアセトナートを用いる場合は、(C)シアン酸エステル化合物100重量部に対して0.001重量部〜0.05重量部の範囲内で用いることが好ましい。(D−1)硬化触媒の使用量が上記範囲未満であると、反応を促進する硬化が得られにくく、上記範囲を超えると、得られる熱硬化性樹脂組成物の保存安定性に支障が生じる可能性があるため好ましくない。
<(D−2)その他の樹脂>
本発明の熱硬化性樹脂組成物は、熱硬化性成分として(C)シアン酸エステル化合物の他に、(D−2)その他の樹脂を含有していてもよい。(D−2)その他の樹脂は、接着性や耐熱性、加工性等の諸特性を改善させるものであれば、特に限定されないが、熱硬化性樹脂組成物の誘電特性を損なわない範囲で選択することが好ましい。(D−2)その他の樹脂としては、例えば、ビスマレイミド樹脂、ビスアリルナジイミド樹脂、フェノール樹脂、エポキシ樹脂、アクリル樹脂、メタクリル樹脂、ヒドロシリル硬化樹脂、アリル硬化樹脂、不飽和ポリエステル樹脂等の熱硬化性樹脂や高分子鎖の側鎖または末端にエポキシ基、アリル基、ビニル基、アルコキシシリル基、ヒドロシリル基等の反応性基を有する側鎖反応性基型熱硬化性高分子等を挙げることができる。また、熱硬化性樹脂組成物には、これらの樹脂を単独または適宜組み合わせて用いることができる。
<熱硬化性樹脂組成物の製造>
本発明に係る熱硬化性樹脂組成物の製造(調製)方法、すなわち、上記各成分の配合方法としては、特に限定されるものではないが、上記各成分を良好に溶解する有機溶媒に溶解させることにより、熱硬化性樹脂組成物の溶液を得る方法を挙げることができる。より具体的には、例えば、上記各成分を適当な溶媒に添加して攪拌することにより熱硬化性樹脂組成物の溶液を得てもよいし、上記各成分をそれぞれ適当な溶媒に溶解して成分毎の溶液を調製し、これを混合することによっても得ることができる。
このとき用いられる有機溶媒としては、ポリイミド系樹脂の溶剤として用いられる公知の有機溶媒を用いることができる。具体的には、例えば、芳香族炭化水素、ケトン類、エステル類、エーテル類(環状エーテル類、グリコールエーテル類など)、N−置換アミド類、アルコール類、カルボン酸類、アミン類、塩素系溶剤等の有機溶媒を挙げることができる。中でも、沸点が170℃以下、好ましくは160℃以下の低沸点の有機溶媒を好ましく用いることができる。
上記低沸点の有機溶媒としては、具体的には、例えば、テトラヒドロフラン、ジオキソラン、ジオキサン等の環状エーテル;エチレングリコールジメチルエーテル、トリグライム、ジエチレングリコール、エチルセロソルブ、メチルセロソルブ、ジエチルエーテル、各種プロピレングリコールエーテル等の鎖状エーテル等のエーテル類;メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;シクロペンタノン、シクロヘキサノン等のシクロアルカン類;酢酸エチル等のエステル類;等が好ましく用いられる。また、上記エーテル類に、トルエン、キシレン類、グリコール類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、環状シロキサン、鎖状シロキサン等を混合した混合溶媒も好ましく用いることができる。これら有機溶媒は、単独で用いてもよいし、2種類以上を適宜組み合わせた混合物として用いてもよい。また、水と相溶性を有する有機溶媒については、水との混合物として用いても良い。
このように、本発明に係る熱硬化性樹脂組成物は、有機溶媒(好ましくは低沸点の有機溶媒)に溶解した溶液であってもよい。このような熱硬化性樹脂組成物の溶液は、コーティング材として好適に用いることができる。したがって、本発明に係る熱硬化性樹脂組成物においては、上述した有機溶媒や水が、(D)その他の成分に含まれていてもよい。本発明に係る熱硬化性樹脂組成物の溶液の代表的な一例を挙げると、ジメチルホルムアミドまたはジメチルアセトアミドに、1重量%以上好ましくは5重量%以上溶解した溶液を挙げることができる。
<熱硬化性樹脂組成物の利用>
本発明に係る熱硬化性樹脂組成物の利用方法は特に限定されるものではないが、具体的には、例えば、上記熱硬化性樹脂組成物を用いて形成されてなる樹脂フィルムまたは樹脂シート、樹脂製剤等を挙げることができる。
上記樹脂フィルムは、例えば、プリント配線板用接着剤シート、カバーレイフィルム、プリント配線板用絶縁性回路保護膜、またはプリント配線板用基板として好適に用いることができ、上記樹脂製剤は、プリント配線板用接着剤、プリント配線板用封止剤、回路保護剤、またはカバーインクとして好適に用いることができる。
また、上記熱硬化性樹脂組成物、またはこれを用いた樹脂フィルムや樹脂製剤を用いて形成された樹脂層を少なくとも1層含む積層体も本発明の利用方法の一つである。この積層体は、例えば、回路基板、または多層プリント配線板として好適に用いることができる。
上記樹脂フィルム、樹脂製剤、積層体について、具体的な一例を挙げて説明する。
本発明に係る熱硬化性樹脂組成物は、上述した溶液状の状態で樹脂製剤として用いることができる。その他必要に応じて各種溶媒や添加剤を加えて樹脂製剤として用いてもよい。本発明に係る熱硬化性樹脂組成物を含む樹脂製剤は、コーティング剤またはワニスとして用いることができ、例えば、ガラス布、ガラスマット、芳香族ポリアミド繊維布、芳香族ポリアミド繊維マット等の各種繊維に含浸させることもできる。このように繊維に含浸させた熱硬化性樹脂組成物を半硬化させれば、繊維強化型樹脂シートを得ることができる。
また、本発明に係る熱硬化性樹脂組成物は、あらかじめシート状に成形加工しておくことによって、樹脂フィルムまたは樹脂シートとして用いることができる。具体的には、(1)熱硬化性樹脂組成物のみからなる単層シート、(2)基材として用いられるフィルム(フィルム基材)の片面あるいは両面に上記熱硬化性樹脂組成物からなる樹脂層を設けてなる2層シートまたは3層シート、(3)フィルム基材と熱硬化性樹脂組成物からなる樹脂層とを交互に積層した多層シート等の積層体を挙げることができる。
上記樹脂シートは、上述した熱硬化性樹脂組成物の溶液または樹脂製剤を支持体表面に流延または塗布・乾燥させて、フィルム状に成形することにより製造することができる。このフィルム状の熱硬化性樹脂組成物(樹脂フィルム)は、半硬化状態(Bステージ状態)にある。したがって、半硬化状態にある樹脂フィルムを上記支持体から剥離すれば、上記単層シートを得ることができる。また、上記積層体は、上記フィルム基材の表面に、上述した熱硬化性樹脂組成物の溶液または樹脂製剤を流延または塗布し、これを乾燥させる操作を繰り返すことによって、製造することができる。
上記フィルム基材の具体的な材質は特に限定されるものではなく、公知の樹脂フィルムや樹脂シートを用いることができるが、例えば、銅やアルミニウム等の金属を用いれば、金属付き積層体を得ることができる。すなわち、金属付き積層体は、少なくとも1つの熱硬化性樹脂組成物からなる樹脂層と、少なくとも1つの金属層とを含む積層体である。この樹脂層は、金属層の片面にのみ設けてもよいし、金属層と樹脂層とを交互に積層させてもよい。
上記金属付き積層体は、上述したように、熱硬化性樹脂組成物の溶液または樹脂製剤を金属層表面に流延または塗布して乾燥することによって製造することもできるが、上記樹脂シートに金属箔を貼り合せたり、樹脂シートの表面に化学めっきやスパッタリング等により金属層を形成したりすることでも製造することができる。さらに、上記金属層が回路基板の導体として用いることができる金属であれば、上記金属付き積層体の金属層に、ドライフィルムレジストや液状のレジスト等を用いて金属エッチング等を行って、所望のパターンの回路(以下、パターン回路)を形成することもできる。したがって、上記金属付き積層体の金属層にパターン回路を形成し、本発明に係る熱硬化性樹脂組成物からなる樹脂層を設ければ、フレキシブルプリント配線基板やビルドアップ回路基板等の回路基板として用いることが可能になる。
上記金属層としてパターン回路が形成された金属層を用いる場合には、樹脂層として上記半硬化状態の樹脂シートを用いてもよい。本発明に係る熱硬化性樹脂組成物を用いてなる半硬化状態の樹脂シートは、適度な流動性を有しているため、熱プレス処理、ラミネート処理(熱ラミネート処理)、熱ロールラミネート処理等の熱圧着処理を行う場合にパターン回路の埋め込みを好適に行うことができる。これにより、金属層と樹脂層とを良好に貼り合わせることができる。
上記熱圧着処理における処理温度は、圧着が十分にできる温度であれば特に限定されるものではないが、50〜200℃の範囲内であることが好ましく、60〜180℃の範囲内であることがより好ましく、80〜130℃の範囲内であることが特に好ましい。上記処理温度が200℃を超えると、熱圧着処理時に樹脂層が硬化してしまう可能性がある。一方、上記処理温度が50℃未満であると、樹脂層の流動性が低く、パターン回路を埋め込むことが困難となる。
上記パターン回路上に設けられる樹脂層は、パターン回路を保護する保護材料あるいは、多層の回路基板での層間絶縁材料となる。そのため、パターン回路を埋め込んだ後、露光処理、加熱キュア等を行うことによって、完全に硬化させることが好ましい。
なお、本発明に係る熱硬化性樹脂組成物を硬化させるときには、(C)シアン酸エステル化合物成分の硬化反応を十分に進行させるために、金属層と樹脂層とを貼り合せた後に、ポスト加熱処理を実施することが好ましい。ポスト加熱処理の条件は特に限定されるものではないが、150〜200℃の範囲内の温度条件下で、10分以上3時間以下の範囲内で加熱処理を行うことが好ましい。
このように、本発明に係る熱硬化性樹脂組成物は、上述した各成分を含んでいるため、誘電特性・耐熱性・難燃性に優れており、熱硬化性成分を含有しているため加工性・取扱性にも優れ、これら諸物性のバランスも優れたものとなっている。それゆえ、従来の絶縁層で生じる問題点を十分に解消することが可能になり、その結果、フレキシブル配線板(FPC)やビルドアップ多層回路基板などの積層材料等、低誘電率、低誘電正接が要求されるような各種積層構造体の製造に好適に用いることができる。
なお、本発明に係る熱硬化性樹脂組成物には、その特性を低下させない限り、前述した以外の成分が含まれていてもよいことは言うまでもない。同様に、本発明に係る熱硬化性樹脂組成物においては、前述した以外の工程が含まれていても良いことも言うまでもない。
以下、実施例および比較例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。当業者は、本発明の範囲を逸脱することなく、種々の変更、修正、および改変を行い得る。
なお、以下の実施例および比較例で得られた熱硬化性樹脂組成物の樹脂シートを加熱硬化してなる硬化物の誘電特性、およびガラス転移温度、半田耐熱性、難燃性は、次のようにして測定・評価した。
〔誘電特性〕
空洞共振器摂動法複素誘電率評価装置(商品名、関東電子応用開発社製)を用い、下記条件にて、硬化樹脂シートの誘電率および誘電正接を測定した。
測定周波数:3GHz、5GHz、10GHz、
測定温度 :22℃〜24℃
測定湿度 :45%〜55%
測定試料 :上記測定温度・測定湿度条件下で、24時間放置した樹脂シート
〔ガラス転移温度〕
DMS−200(セイコー電子工業社製)を用い、測定長(測定治具間隔)を20mmとして、下記の条件下で、硬化樹脂シートの貯蔵弾性率(ε’)の測定を行い、該貯蔵弾性率(ε’)の変曲点をガラス転移温度(℃)とした。
測定雰囲気:乾燥空気雰囲気下
測定温度 :20℃〜400℃の範囲内
測定試料 :幅9mm,長さ40mmにスリットした硬化樹脂シート
〔半田耐熱性〕
後述の実施例で得られた両面に銅層を有する銅箔積層体を下記条件にて調製、調湿した後に、260℃の溶融半田に1分間ディップし、片側の銅箔のみをエッチングし、その後、目視にて樹脂部分を観察し、発泡や膨れ等異常がなければ合格とした。
試料形状:15mm × 30mm
調湿条件:温度22.5℃〜23.5℃、湿度39.5%〜40.5%の環境下で24時間放置した。
〔難燃性〕
UL規格に準拠して評価した。
〔合成例1:原料ホスファゼン化合物の合成〕
還流冷却器、温度計、撹拌機、三塩化リン滴下器及び塩素ガス吹き込み管を備えた5Lのフラスコにクロルベンゼン2.5L、塩化アンモニウム182.5g(3.4モル)及び塩化亜鉛2.5gを仕込んで混合分散液を得た。該分散液を温度130℃に加熱して還流下で三塩化リン425.5gを9g/分の速度で48分間にわたって滴下すると同時に塩素ガス227gを5g/分の速度で46分間にわたって供給した。三塩化リン及び塩素ガスを供給した後、更に150分間還流(131℃)を行って反応を完結した。次いで吸引濾過して未反応の塩化アンモニウムを除去し、濾液を1.0〜3.0hPaの減圧下にて30〜50℃でクロルベンゼンを留去して反応生成物352gを得た。該反応生成物の三塩化リンを基準とした収率は98.1%であった。
得られた反応性生物をクロルベンゼンに再溶解し、再結晶によってヘキサクロロシクロトリホスファゼン及びオクタクロロシクロテトラホスファゼンの混合物(226g,ヘキサクロロシクロトリホスファゼン:76%,オクタクロロシクロテトラホスファゼン:24%)を得た。
再結晶で残ったクロルベンゼン溶液を濃縮し、環状クロロホスファゼンのホスファゼン化合物。但しmは3〜15の混合物)125gを得た。また、先に得たヘキサクロロシクロトリホスファゼン及びオクタクロロシクロテトラホスファゼンの混合物を、ヘキサンを用い3回再結晶することで、純度99.9%のヘキサクロロシクロトリホスファゼン155gを得た。
〔合成例2:(B−1)フェノキシホスファゼン化合物の合成〕
還流冷却器、温度計、撹拌機、滴下ロートを備えた2Lの4ツ口フラスコに純度99.9%のヘキサクロロシクロトリホスファゼン58g(0.5ユニットモル、NPCl2を1ユニットとする)、THF100mLを仕込んで溶液を得た。次に、別に調製した4−メトキシフェノールのNa塩のTHF溶液(4−メトキシフェノール68.3g(0.55モル)、ナトリウム11.1g(0.44g−atom)、THF200mL)を撹拌しながら、1時間かけて上記ヘキサクロロシクロトリホスファゼンのTHF溶液に滴下した。反応は激しい発熱であるので、反応温度が30℃ を越えないように適宜冷却して反応を行った。滴下終了後、引き続き6時間60℃で撹拌反応を行った。この反応にて得られた部分置換体の残存塩素量は15.78%であり、推定構造は、N33Cl3.36(OC64OCH3)2.63であった。
次に、別に調製したナトリウムフェノラートのTHF溶液(フェノール61.2g(0.65モル)、ナトリウム13.8g(0.6g−atom)、THF200mL)を、反応温度が30℃以下になるように冷却制御し1時間かけて滴下した。次いで室温下で5時間、還流温度で3時間反応を行い、反応を完結した。反応終了後、溶媒のTHFを減圧下に留去し、次にトルエン500mLを加えて生成物を再溶解し、さらに水300mLを加えて水洗分液した。有機層を5重量%水酸化ナトリウム水溶液による洗浄及び2重量%水酸化ナトリウム水溶液による洗浄を各々1回行った後に、(1+9)塩酸水溶液で1回洗浄、5重量%炭酸水素ナトリウム水で1回洗浄し、さらに水で2回洗浄し、水層を中性とした。次に有機層を分液し、無水硫酸マグネシウムで脱水し、トルエンを留去して淡黄色油状の生成物122.6g(収率95%)を得た。残存塩素量は0.01%以下であった。
上記の方法で得た4−メトキシフェノキシ基とフェノキシ基が混合置換したシクロトリホスファゼン116.2g(0.45ユニットモル)とピリジン塩酸塩583.6g(5.05モル)を、2Lの4ツ口フラスコに仕込み、徐々に昇温し、205〜210℃で1時間反応を行った。室温冷却後、水300mLを加えて反応生成物及び過剰のピリジン塩酸塩を溶解し、20重量%水酸化ナトリウム水溶液でpH6〜7に反応溶液を調製した。
次に酢酸エチル500mLを用いて抽出を4回行った後に、抽出液を合わせて、飽和硫酸ナトリウム水500mLで4回洗浄し、有機層を分液し、無水硫酸マグネシウムにより脱水処理後、減圧下にて酢酸エチルを留去した。次に濃縮物をメタノール200mLに溶解し水1.5L中に投入し、結晶を析出させる工程を3回繰り返して行い、得られた結晶を減圧乾燥し、黄色固体90.5g(収率81.8%)を得た。
得られた化合物の残存塩素量は0.01%以下であり、水酸基含有量は6.1%であった(理論値6.1%、組成式N33(OPh)3.36(OC64OH)2.63、水酸基当量279g/eq)。
〔合成例3:(A−1)可溶性ポリイミド樹脂の合成例〕
容量2000mlのガラス製フラスコに、ジメチルホルムアミド(DMF)に0.95当量の1,3−ビス(3−アミノフェノキシ)ベンゼン(APB)および0.05当量の3,3’−ジヒドロキシ−4,4’−ジアミノビフェニル(和歌山精化社製)を仕込み、窒素雰囲気下で撹拌溶解した。さらにフラスコ内を窒素置換雰囲気下、溶液を氷水で冷却しながら撹拌し、1当量の4,4’−(4、4’−イソプロピリデンジフェノキシ)ビスフタル酸無水物(IPBP)を添加しさらに3時間攪拌した。これによって、ポリアミド酸重合体溶液を得た。なお、DMFの使用量は、APB、3,3’−ジヒドロキシ−4,4’−ジアミノビフェニルおよびIPBPのモノマー仕込み濃度が30重量%となるように設定した。
得られたポリアミド酸溶液300gをフッ素樹脂コートしたバットに移し、真空オーブンで200℃×3時間、5mmHg(約0.007気圧、約5.65hPa)の圧力の条件で減圧加熱することによって、(A−1)可溶性ポリイミド樹脂を得た。
〔実施例1〕
上記合成例3で得られた可溶性ポリイミド樹脂50gと、シアン酸エステル化合物としてビスフェノールA系シアン酸エステル化合物である2,2’−ビス(4−フェニルシアナート)プロパン(商品名:BADCY、ロンザ社製)25.0gと、合成例2で得られたフェノキシホスファゼン化合物(水酸基当量=279g/eq)25.0gとをジオキソランに溶解し樹脂溶液を得た。その組成の概要を表1に示す。
得られた樹脂溶液を、支持体としての125μm厚のPETフィルム(商品名セラピールHP、東洋メタライジング社製)の表面上に流延した。その後、熱風オーブンにて60℃、80℃、100℃、120℃、140℃の各温度でそれぞれ3分加熱乾燥させて、PETフィルムを基材とする2層の樹脂シートを得た。該樹脂シートから、PETフィルムを剥離除去し、単層の樹脂シートを得た。得られた単層の樹脂シート(加熱硬化前)の厚みは50μmであった。得られた樹脂シートを18μmの圧延銅箔(商品名BHY−22B−T、ジャパンエナジー社製)で樹脂表面と銅箔粗化面とが接するように挟み込み、温度200℃、圧力3MPaの条件で1時間加熱加圧した後、銅箔積層体(単層樹脂シートを圧延銅箔で挟持した構成)を得た。
得られた両面に銅箔層を有する銅箔積層体を使用して半田耐熱性を評価した。その結果を表2に示す。更に、得られた銅箔積層体の銅箔をエッチングにより除去し硬化シートを得た。得られた硬化シートを用い誘電特性およびガラス転移温度、難燃性を測定した。その結果を表2に示す。
〔実施例2〜7〕
可溶性ポリイミド樹脂、ホスファゼン化合物、シアン酸エステル化合物、硬化促進剤を、表1に示すように所定の比率で混合した以外は、実施例1と同様にして本発明に係る熱硬化性樹脂組成物を得た。なお、シアン酸エステル化合物として、実施例2および3では、BADCYを用い、実施例4では、4,4’−メチレンビス(2,6−ジメチルフェニルシアナート)(商品名:Methylcy、ロンザ社製)を用いた。また、実施例5では、2,2’−ビス(4−フェニルシアナート)−ヘキサフルオロプロパン(商品名:fluorocy、ロンザ社製)を用い、実施例6では、オリゴ(3−メチレン−1,5−フェニレンシアナート)(商品名:PT−60、ロンザ社製)を用いた。
得られた熱硬化性樹脂組成物を用いて、実施例1と同様の方法・条件にて、樹脂シート(加熱硬化前)と硬化させた樹脂シートとを得た。得られたそれぞれの樹脂シートについて、半田耐熱性、誘電特性、ガラス転移温度、難燃性を測定した。その結果を表2に示す。
〔比較例1〕
上記合成例3で得られた可溶性ポリイミド樹脂50gと、シアン酸エステル化合物としてビスフェノールA系シアン酸エステル化合物である2,2’−ビス(4−フェニルシアナート)プロパン(商品名:BADCY、ロンザ社製)50.0gとをジオキソランに溶解し樹脂溶液を得た。その組成の概要を表1に示す。
得られた樹脂溶液を、支持体としての125μm厚のPETフィルム(商品名セラピールHP、東洋メタライジング社製)の表面上に流延した。その後、熱風オーブンにて60℃、80℃、100℃、120℃、140℃の各温度でそれぞれ3分加熱乾燥させて、PETフィルムを基材とする2層の樹脂シートを得た。該樹脂シートから、PETフィルムを剥離除去し、単層の樹脂シートを得た。得られた単層の樹脂シート(加熱硬化前)の厚みは50μmであった。得られた樹脂シートを18μmの圧延銅箔(商品名BHY−22B−T、ジャパンエナジー社製)で樹脂表面と銅箔粗化面とが接するように挟み込み、温度200℃、圧力3MPaの条件で1時間加熱加圧した後、銅箔積層体(単層樹脂シートを圧延銅箔で挟持した構成)を得た。
得られた両面に銅箔層を有する銅箔積層体を使用して半田耐熱性を評価した。その結果を表2に示す。更に、得られた銅箔積層体の銅箔をエッチングにより除去し硬化シートを得た。得られた硬化シートを用い誘電特性およびガラス転移温度、難燃性を測定した。その結果を表2に示す。
〔比較例2〕
上記合成例1で得られた可溶性ポリイミド樹脂50gと、シアン酸エステル化合物としてビスフェノールA系シアン酸エステル化合物である2,2’−ビス(4−フェニルシアナート)プロパン(商品名:BADCY、ロンザ社製)35.0gと、2,2−ビス(3,5−ジブロモ−4−ヒドロキシフェニル)プロパン(以下、TB−BPAと称する。和光純薬社製)15.0gとをジオキソランに溶解して樹脂溶液を得た。その組成の概要を表1に示す。
得られた樹脂溶液を、支持体としての125μm厚のPETフィルム(商品名:セラピールHP、東洋メタライジング社製)の表面上に流延した。その後、熱風オーブンにて60℃、80℃、100℃、120℃、140℃の各温度でそれぞれ3分間加熱乾燥させて、PETフィルムを基材とする2層の樹脂シートを得た。該樹脂シートから、PETフィルムを剥離除去し、単層の樹脂シートを得た。得られた単層の樹脂シート(加熱硬化前)の厚みは50μmであった。得られた樹脂シートを18μmの圧延銅箔(商品名:BHY−22B−T、ジャパンエナジー社製)で樹脂表面と銅箔粗化面とが接するように挟み込み、温度200℃、圧力3MPaの条件で1時間加熱加圧した後、銅箔積層体(単層樹脂シートを圧延銅箔で挟持した構成)を得た。
得られた両面に銅箔層を有する銅箔積層体を使用して半田耐熱性を評価した。その結果を表2に示す。更に、得られた銅箔積層体の銅箔をエッチングにより除去し硬化シートを得た。得られた硬化シートを用い、誘電特性およびガラス転移温度、難燃性を測定した。その結果を表2に示す。
Figure 2005060694
Figure 2005060694
このように本発明に係る熱硬化性樹脂組成物は、耐熱性、加工性(溶媒可溶性も含む)、誘電特性等の諸物性と、難燃性とを十分に両立させることが可能であり、特に、電子機器における情報処理能力の向上に十分に対応できる配線基板の製造に好適に用いることができる。そのため、例えば、本発明に係る熱硬化性樹脂組成物をワニス状の溶液等とした場合、接着剤、コーティング剤、あるいはインク等として有用な樹脂製剤とすることができる。また、本発明に係る熱硬化性樹脂組成物を樹脂シートまたは樹脂フィルムとした場合、フレキシブルプリント配線板(FPC)やビルドアップ回路基板等の回路基板に代表される積層体や、これを構成する積層材料等として好適に用いることができる。
したがって、本発明は、熱硬化性樹脂組成物を製造する各種樹脂産業や化学産業だけでなく、樹脂製剤や積層体等を製造する樹脂加工産業や、さらには回路基板等を製造する電子部品産業ひいては電子機器産業にも利用することができる。

Claims (12)

  1. (A)ポリイミド系樹脂および(B)ホスファゼン化合物を少なくとも含む樹脂組成物であって、
    上記(A)ポリイミド系樹脂として、有機溶媒に可溶性を示す(A−1)可溶性ポリイミド樹脂を含むとともに、
    上記(B)ホスファゼン化合物として、フェノール性水酸基を有する(B−1)フェノキシホスファゼン化合物、および/または、当該(B−1)フェノキシホスファゼン化合物を架橋してなり、フェノール性水酸基を少なくとも1つ有する(B−2)架橋フェノキシホスファゼン化合物を含んでおり、
    さらに、(C)シアン酸エステル化合物を含むことを特徴とする熱硬化性樹脂組成物。
  2. 上記(A)ポリイミド系樹脂と、(B)ホスファゼン化合物と、(C)シアン酸エステル化合物との合計重量に対する上記(B)ホスファゼン化合物の重量で表される重量混合比(B)/〔(A)+(B)+(C)〕が、0.01以上0.4以下の範囲内となっていることを特徴とする請求項1に記載の熱硬化性樹脂組成物。
  3. 上記(B−1)フェノキシホスファゼン化合物として、少なくとも、次に示す一般式(1)
    Figure 2005060694
    (ただし、式中mは3〜25の整数を示し、R1およびR2はフェニル基またはヒドロキシフェニル基を示し、かつ、1分子中に少なくとも1個以上のヒドロキシフェニル基を含む。)
    で表される(B−11)環状フェノキシホスファゼン化合物、および/または、次に示す一般式(2)
    Figure 2005060694
    (ただし、式中nは3〜10000の整数を表し、R3およびR4はフェニル基またはヒドロキシフェニル基を示し、かつ、1分子中に少なくとも1個以上のヒドロキシフェニル基を含み、R5は−N=P(OC65)3、−N=P(OC65)2(OC64OH)、−N=P(OC65)(OC64OH)2、−N=P(OC64OH)3、−N=P(O)OC65、または−N=P(O)(OC64OH)を示し、R6は−P(OC65)4、−P(OC65)3(OC64OH)、−P(OC65)2(OC64OH)2、−P(OC65)(OC64OH)3、−P(OC64OH)4、−P(O)(OC65)2、−P(O)(OC65)(OC64OH)、または−P(O)(OC64OH)2を示す。)
    で表される(B−12)鎖状フェノキシホスファゼン化合物を含むことを特徴とする請求項1または2に記載の熱硬化性樹脂組成物。
  4. 上記(B−2)架橋フェノキシホスファゼン化合物は、o−フェニレン基、m−フェニレン基、p−フェニレン基または次に示す一般式(3)
    Figure 2005060694
    (ただし、式中R7は−C(CH3)2−、−SO2−、−S−または−O−を示し、pは0または1を示す。)
    で表されるビスフェニレン基のうち、少なくとも何れか一つを含むフェニレン系架橋基により、上記(B−1)フェノキシホスファゼン化合物を架橋してなることを特徴とする請求項1ないし3の何れか1項に記載の熱硬化性樹脂組成物。
  5. 上記(B−2)架橋フェノキシホスファゼン化合物は、
    上記フェノキシホスファゼン化合物として(B−11)環状フェノキシホスファゼン化合物、および/または(B−12)鎖状フェノキシホスファゼン化合物が用いられるとともに、
    上記フェニレン系架橋基が、上記(B−1)フェノキシホスファゼン化合物のフェニル基およびヒドロキシフェニル基が脱離した2個の酸素原子間に介在し、かつ、当該架橋フェノキシホスファゼン化合物のフェニル基およびヒドロキシフェニル基の含有割合が、上記フェノキシホスファゼン化合物中のフェニル基およびヒドロキシフェニル基の総数を基準として50〜99.9%の範囲内となっている、フェノール性水酸基を少なくとも1つ有する(B−21)フェニレン系架橋フェノキシホスファゼン化合物であることを特徴とする請求項4に記載の熱硬化性樹脂組成物。
  6. 上記(A−1)可溶性ポリイミド樹脂は、脂肪族化合物成分、脂環族化合物成分、または、ビスフェノール化合物のアルキレンオキサイド付加物成分、のうち少なくとも一種から選ばれる有機溶媒溶解性付与成分を含み、低沸点の有機溶媒を含む混合溶媒に可溶性を示すことを特徴とする請求項1ないし5の何れか1項に記載の熱硬化性樹脂組成物。
  7. 上記(A−1)可溶性ポリイミド樹脂は、酸二無水物成分とジアミン成分またはイソシアネート成分とを反応させて得られるものであり、
    上記酸二無水物成分には、少なくとも、次に示す一般式(4)
    Figure 2005060694
    (ただし、式中Vは、直接結合、−O−、−O−T−O−、−O−CO−T−CO−O−、−(C=O)−、−C(CF3)2−または−C(CH3)2−を示し、Tは2価の有機基を示す。)
    で表される酸二無水物が含まれることを特徴とする請求項1ないし5の何れか1項に記載の熱硬化性樹脂組成物。
  8. 上記(A−1)可溶性ポリイミド樹脂は、酸二無水物成分とジアミン成分またはイソシアネート成分とを反応させて得られるものであり、
    上記ジアミン成分またはイソシアネート成分には、シロキサンジアミン、ヒドロキシジアミン、メタ位にアミノ基を有するジアミン、オルト位にアミノ基を有するジアミン、メタ位にアミノ基を有するイソシアネート、およびオルト位にアミノ基有するイソシアネートの少なくとも何れか含まれていることを特徴とする請求項1ないし5の何れか1項に記載の熱硬化性樹脂組成物。
  9. 上記(A−1)可溶性ポリイミド樹脂は、ジオキソラン、ジオキサン、テトラヒドロフラン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンから選択される少なくとも1種の有機溶媒に、15℃〜100℃の温度範囲において1重量%以上溶解することを特徴とする請求項1ないし8の何れか1項に記載の熱硬化性樹脂組成物。
  10. 上記(C)シアン酸エステル化合物は、次に示す一般式群(5)
    Figure 2005060694
    (ただし、式中rは0以上4以下を示す。)
    で表される化合物群から選択される少なくとも1種類からなっていることを特徴とする請求項1ないし9のいずれか1項に記載の熱硬化性樹脂組成物。
  11. 請求項1ないし請求項10の何れか1項に記載の熱硬化性樹脂組成物を用いて形成された樹脂層を少なくとも1層含んでいる積層体。
  12. 回路基板、または多層プリント配線板として用いられることを特徴とする請求項11に記載の積層体。
JP2004224711A 2003-07-30 2004-07-30 熱硬化性樹脂組成物およびその利用 Withdrawn JP2005060694A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004224711A JP2005060694A (ja) 2003-07-30 2004-07-30 熱硬化性樹脂組成物およびその利用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003204040 2003-07-30
JP2004224711A JP2005060694A (ja) 2003-07-30 2004-07-30 熱硬化性樹脂組成物およびその利用

Publications (1)

Publication Number Publication Date
JP2005060694A true JP2005060694A (ja) 2005-03-10

Family

ID=34379908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004224711A Withdrawn JP2005060694A (ja) 2003-07-30 2004-07-30 熱硬化性樹脂組成物およびその利用

Country Status (1)

Country Link
JP (1) JP2005060694A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005047995A (ja) * 2003-07-30 2005-02-24 Kaneka Corp 難燃性を向上させた耐熱性樹脂組成物およびその利用
JP2007091987A (ja) * 2005-09-30 2007-04-12 Tsuchiya Co Ltd 耐熱フレキシブル層形成用塗布液及びそれを用いて作製した硬化物
JP2009088499A (ja) * 2007-09-13 2009-04-23 Toray Ind Inc カバーレイフィルム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005047995A (ja) * 2003-07-30 2005-02-24 Kaneka Corp 難燃性を向上させた耐熱性樹脂組成物およびその利用
JP2007091987A (ja) * 2005-09-30 2007-04-12 Tsuchiya Co Ltd 耐熱フレキシブル層形成用塗布液及びそれを用いて作製した硬化物
JP2009088499A (ja) * 2007-09-13 2009-04-23 Toray Ind Inc カバーレイフィルム

Similar Documents

Publication Publication Date Title
US8501874B2 (en) Thermosetting resin composition, multilayer body using same, and circuit board
KR102485693B1 (ko) 폴리이미드, 접착제, 필름상 접착재, 접착층, 접착 시트, 수지 부착 동박, 동피복 적층판, 프린트 배선판, 그리고 다층 배선판 및 그 제조 방법
KR101064816B1 (ko) 폴리아믹산 용액, 폴리이미드 수지 및 이를 이용한 연성 금속박 적층판
US8124223B2 (en) Aramid filled polyimides having advantageous thermal expansion properties, and methods relating thereto
JP5019874B2 (ja) 熱硬化性樹脂組成物、及びそれを用いてなる積層体、回路基板
KR100834604B1 (ko) 내열성 조성물
CN106010421B (zh) 胶粘剂组合物、膜状胶粘材料、胶粘层、胶粘片、覆铜层叠板、布线板和印刷电路板
TWI400268B (zh) 熱固性樹脂組合物及其用途
JP5293182B2 (ja) 熱硬化性ポリイミド樹脂組成物
CN108690194B (zh) 聚酰亚胺、胶粘剂、胶粘材料、胶粘层、胶粘片、铜箔、覆铜层叠板、布线板及制造方法
KR102330421B1 (ko) 접착제, 필름상 접착재, 접착층, 접착 시트, 수지 부착 동박, 동피복 적층판, 프린트 배선판, 그리고 다층 배선판 및 그 제조 방법
KR100960174B1 (ko) 열경화성 수지 조성물, 이를 이용한 적층체 및 회로 기판
JP2005047995A (ja) 難燃性を向上させた耐熱性樹脂組成物およびその利用
WO2006118230A1 (ja) めっき用材料及びその利用
JP5014587B2 (ja) 活性エステル化合物およびその利用
JP4426774B2 (ja) 熱硬化性樹脂組成物、及びそれを用いてなる積層体、回路基板
WO2007083526A1 (ja) ポリイミドフィルムおよびその利用
JP2021070824A (ja) ポリイミド組成物、樹脂フィルム、積層体、カバーレイフィルム、樹脂付き銅箔、金属張積層板及び回路基板
JP2005060694A (ja) 熱硬化性樹脂組成物およびその利用
JP2006348086A (ja) 熱硬化性樹脂組成物およびその利用
JP3111441B2 (ja) プリント配線板用基板
JP2002371132A (ja) エポキシ基含有ポリイミド共重合体及びその硬化物
KR20240045119A (ko) 금속 피복 적층판, 회로 기판, 전자 디바이스 및 전자 기기
JP2001179910A (ja) ポリイミドボ−ド及びその製法
JPH1171457A (ja) ポリイミドシロキサン

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070521

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090331