JP2005056771A - Coating liquid for transparent conductive film formation, transparent conductive film, and display device - Google Patents

Coating liquid for transparent conductive film formation, transparent conductive film, and display device Download PDF

Info

Publication number
JP2005056771A
JP2005056771A JP2003288383A JP2003288383A JP2005056771A JP 2005056771 A JP2005056771 A JP 2005056771A JP 2003288383 A JP2003288383 A JP 2003288383A JP 2003288383 A JP2003288383 A JP 2003288383A JP 2005056771 A JP2005056771 A JP 2005056771A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
fine particles
gold
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003288383A
Other languages
Japanese (ja)
Other versions
JP4225155B2 (en
Inventor
Masaya Yukinobu
雅也 行延
Kenji Kato
賢二 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003288383A priority Critical patent/JP4225155B2/en
Publication of JP2005056771A publication Critical patent/JP2005056771A/en
Application granted granted Critical
Publication of JP4225155B2 publication Critical patent/JP4225155B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide coating liquid for forming a transparent conductive film, as well as a transparent conductive film formed by using the coating liquid and a display device, with which a transparent conductive film of excellent conductivity can be obtained even in case of heating treatment made at low temperature, in forming the transparent conductive film on a transparent base material using the coating liquid for forming the transparent conductive film. <P>SOLUTION: The coating liquid for forming the transparent conductive film with fine particles containing gold and silver of an average particle size of 1 to 50 nm dispersed in a solvent, preferably, chained agglutinates of gilt silver fine particles as a main component has the surface of the fine particles containing gold and silver modified by halogen, with a halogen volume of 0.2 to 15 weight parts to 100 weight parts of the fine particles containing gold and silver. The coating liquid for forming the transparent conductive film is coated on the base material, is dried and heat treated at temperatures of 40 to 120°C to form the transparent conductive film. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、プラスチック基材や機能性有機層等の耐熱性が乏しい材質の上に透明導電膜を形成するのに適した透明導電膜形成用塗布液、その透明導電膜形成用塗布液により形成された透明導電膜、及びその透明導電膜を備えた表示装置に関するものである。   The present invention is formed by a transparent conductive film forming coating solution suitable for forming a transparent conductive film on a material having poor heat resistance such as a plastic substrate or a functional organic layer, and the transparent conductive film forming coating solution. The present invention relates to a transparent conductive film and a display device including the transparent conductive film.

現在、各種表示装置(ディスプレイ)、太陽電池、タッチパネル等では、反射防止・帯電防止等の機能性フィルムや透明電極として、プラスチック基材や機能性有機層等の耐熱性が乏しい材質の上に形成した透明導電膜が用いられている。この透明導電膜は、一般的に、インジウム錫酸化物(ITO)から構成され、スパッタリング法によりプラスチック基板等の透明基板上に形成する方法が広く採用されている。   Currently, in various display devices (displays), solar cells, touch panels, etc., they are formed on materials with poor heat resistance, such as plastic substrates and functional organic layers, as functional films for anti-reflection and anti-static and transparent electrodes. A transparent conductive film is used. This transparent conductive film is generally composed of indium tin oxide (ITO), and a method of forming on a transparent substrate such as a plastic substrate by a sputtering method is widely adopted.

上記スパッタリング法では、表面抵抗が数十〜数百Ω/□の優れた導電性を有する透明導電膜を基板上に形成することが可能である。しかしながら、この方法は、非常に高価な設備を必要とするうえ、成膜時に基板を加熱する必要があるため、耐熱性の低い基板を用いることができない等の欠点を有している。   In the sputtering method, it is possible to form a transparent conductive film having excellent conductivity with a surface resistance of several tens to several hundreds Ω / □ on a substrate. However, this method has drawbacks such as requiring very expensive equipment and heating the substrate at the time of film formation, so that a substrate having low heat resistance cannot be used.

そこで、貴金属含有微粒子を溶媒中に分散した透明導電膜形成用塗布液を用い、これを基板にスピンコート法等で塗布・乾燥し、更にその上にシリカゾルからなる透明コート層形成用塗布液を塗布・乾燥した後、200℃前後の温度で焼成して2層からなる透明導電膜を形成する方法(特開平9−115438号公報、特開平10−1777号公報、特開平10−110123号公報、特開平10−142401号公報、特開平10−182191号公報、特開平11−329071号公報、特開2000−124662号公報、特開2000−196287号公報)が提案されている。   Therefore, using a coating solution for forming a transparent conductive film in which noble metal-containing fine particles are dispersed in a solvent, this is coated and dried on a substrate by a spin coating method or the like, and further a coating solution for forming a transparent coating layer made of silica sol is formed thereon. After applying and drying, a method of forming a transparent conductive film having two layers by baking at a temperature of about 200 ° C. (Japanese Patent Laid-Open Nos. 9-115438, 10-1777, 10-110123) JP-A-10-142401, JP-A-10-182191, JP-A-11-329071, JP-A-2000-124662, and JP-A-2000-196287 have been proposed.

しかし、上記の2層からなる透明導電膜を形成する方法では、透明導電膜形成用塗布液及び透明コート層形成用塗布液をそれぞれ塗布・乾燥して2層コーティングとする必要があり、工程が煩雑であるうえ、透明導電膜の上に比較的電気絶縁性のある透明コート層が形成され、透明導電膜との電気的接続が取りにくいという問題があった。そのため、上記貴金属含有微粒子を含む透明導電膜形成用塗液にバインダーを添加して、単層で、且つ膜強度も改善された透明導電膜を得る方法も提案されている(特開平11−329071号公報)。   However, in the above method for forming a transparent conductive film composed of two layers, it is necessary to apply and dry the transparent conductive film forming coating liquid and the transparent coating layer forming coating liquid to form a two-layer coating, respectively. In addition to being complicated, there is a problem in that a transparent coating layer having a relatively electrical insulating property is formed on the transparent conductive film, making it difficult to establish electrical connection with the transparent conductive film. Therefore, a method of obtaining a transparent conductive film having a single layer and improved film strength by adding a binder to the coating liquid for forming a transparent conductive film containing the noble metal-containing fine particles has been proposed (Japanese Patent Laid-Open No. 11-329071). Issue gazette).

また、上記貴金属含有微粒子としては、金、銀、白金、ロジウム、ルテニウム、パラジウムから選択された少なくとも1種の貴金属の微粒子、これら貴金属の合金微粒子、あるいは、銀を除く上記貴金属により表面がコートされた貴金属コート銀微粒子のいずれかを適用することができる。そして、銀、金、白金、ロジウム、ルテニウム、パラジウム等の比抵抗を比較した場合、白金、ロジウム、ルテニウム、パラジウムの比抵抗は、それぞれ10.6、4.51、7.6、10.8μΩ・cmであり、銀及び金の1.62、2.2μΩ・cmに比べて高いため、表面抵抗の低い透明導電膜を形成するには銀微粒子や金微粒子を適用することが有利と考えられる。   The noble metal-containing fine particles have a surface coated with fine particles of at least one kind of noble metal selected from gold, silver, platinum, rhodium, ruthenium and palladium, alloy fine particles of these noble metals, or the noble metal excluding silver. Any of the precious metal coated silver fine particles can be applied. When the specific resistances of silver, gold, platinum, rhodium, ruthenium, palladium, etc. are compared, the specific resistances of platinum, rhodium, ruthenium, palladium are 10.6, 4.51, 7.6, 10.8 μΩ, respectively. Since it is cm, which is higher than 1.62 and 2.2 μΩ · cm of silver and gold, it is considered advantageous to apply silver fine particles or gold fine particles to form a transparent conductive film having a low surface resistance. .

ただし、銀微粒子は硫化や食塩水による劣化が激しいため、耐候性の面から用途が制限され、他方、金微粒子、白金微粒子、ロジウム微粒子、ルテニウム微粒子、パラジウム微粒子等には上記耐候性の問題はないが、コストが高いとう問題があった。これらの観点から、銀微粒子の表面に銀以外の貴金属をコーティングした平均粒径1〜100nmの貴金属コート銀微粒子、例えば金又は白金単体、あるいは金と白金の複合体をコーティングした貴金属コート銀微粒子を用いることも知られている(特開平11−228872号公報、特開平2000−268639号公報)。   However, silver fine particles are severely deteriorated by sulfidation and saline solution, so their use is limited from the viewpoint of weather resistance.On the other hand, the above-mentioned weather resistance problems are limited to gold fine particles, platinum fine particles, rhodium fine particles, ruthenium fine particles, palladium fine particles, etc. There was no problem, but the cost was high. From these viewpoints, noble metal-coated silver fine particles having an average particle diameter of 1 to 100 nm coated with a noble metal other than silver on the surface of silver fine particles, for example, noble metal-coated silver fine particles coated with gold or platinum alone, or a composite of gold and platinum. It is also known to use them (Japanese Patent Laid-Open Nos. 11-228872 and 2000-268639).

ところで、金属は可視光線に対して本来的に透明でないことから、上述した透明導電膜における高透過率と低抵抗を両立させるためには、できるだけ少量の金属微粒子が透明導電膜内において効率よく導電パスを形成していることが望ましい。つまり、溶媒と金属微粒子を主成分とする一般的な透明導電膜形成用塗布液を用いて得られる導電膜には、金属微粒子が相互に連接したネットワーク(網目状)構造が形成されていることが必要である。このようなネットワーク構造の形成により低抵抗且つ高透過率の透明導電膜が得られるが、これは、金属微粒子からなる網目状部分が導電パスとして機能する一方、網目状構造の穴の部分が光透過率を向上させる機能を果たすためと考えられている。   By the way, since metals are not inherently transparent to visible light, in order to achieve both high transmittance and low resistance in the above-described transparent conductive film, as little metal fine particles as possible can efficiently conduct in the transparent conductive film. It is desirable to form a path. In other words, the conductive film obtained using a general coating solution for forming a transparent conductive film mainly composed of a solvent and metal fine particles has a network (network-like) structure in which the metal fine particles are connected to each other. is required. By forming such a network structure, a transparent conductive film having a low resistance and a high transmittance can be obtained. This is because a mesh portion made of metal fine particles functions as a conductive path, while a hole portion of the mesh structure is a light path. It is considered to fulfill the function of improving the transmittance.

上記金属微粒子の発達したネットワーク構造を形成させる方法として、予め凝集した金属微粒子(金属微粒子の凝集体)が分散した透明導電膜形成用塗布液を用いる方法が知られている。例えば、一次粒子が分散されずに、一次粒子が小さな孔を持つ形で集合した二次粒子の状態で分散されている金属微粒子の分散液を用いる方法(「工業材料」、Vol.44,No.9,1996,p68−71)や、予め凝集させた金属微粒子を含む透明導電膜形成用塗布液を用いる方法(特開平11−329071号公報、特開2000−124662号公報、特開2000−196287号公報)などである。   As a method for forming a network structure in which the metal fine particles are developed, a method using a coating liquid for forming a transparent conductive film in which metal fine particles (aggregates of metal fine particles) previously aggregated is dispersed is known. For example, a method using a dispersion of fine metal particles dispersed in the form of secondary particles in which primary particles are aggregated in a form having small pores without being dispersed (“Industrial Materials”, Vol. 44, No. 0.9, 1996, p68-71) or a method using a coating liquid for forming a transparent conductive film containing pre-aggregated metal fine particles (Japanese Patent Laid-Open Nos. 11-329071, 2000-124662, and 2000-2000). No. 196287).

また、貴金属含有微粒子を含有した透明導電膜形成用塗布液を用いて単層あるいは2層の透明導電膜を形成する方法では、その形成工程において、基板上に塗布・乾燥した透明導電膜形成用塗布液を少なくとも120℃以上(多くの場合は150℃以上)で加熱処理し、貴金属含有微粒子同士の融着を行って透明導電膜の抵抗値を低下させる必要があった。例えば、特開平10−110123号公報には、透明導電膜形成用塗布液をガラスやプラスチック等の基材の表面に塗布し、約30〜100℃で乾燥させ、コロイド状金属微粒子を粒径約0.3μm以上の凝集粒子として凝集させた後、低屈折率透明膜形成用塗布液を塗布し、約150℃で加熱処理することにより凝集粒子を融着させて、連続した透明導電膜を形成させることが実施例に記載されている。   Further, in the method of forming a single-layer or two-layer transparent conductive film using a coating liquid for forming a transparent conductive film containing noble metal-containing fine particles, in the forming step, for forming a transparent conductive film coated and dried on a substrate It was necessary to heat-treat the coating solution at least at 120 ° C. or more (in many cases 150 ° C. or more), and fuse the noble metal-containing fine particles to reduce the resistance value of the transparent conductive film. For example, in JP-A-10-110123, a coating liquid for forming a transparent conductive film is applied to the surface of a substrate such as glass or plastic, dried at about 30 to 100 ° C., and colloidal metal fine particles having a particle size of about After agglomerating as aggregated particles of 0.3 μm or more, a coating solution for forming a low refractive index transparent film is applied, and heat treatment is performed at about 150 ° C. to fuse the aggregated particles to form a continuous transparent conductive film. Is described in the examples.

このように、透明導電膜形成用塗布液を用いて透明導電膜を形成する場合、120℃以下での加熱処理では貴金属含有微粒子間の融着が進まず、低抵抗の透明導電膜を得ることはできなかった。その理由は必ずしも明らかではないが、透明導電膜形成用塗布液においては、分散している貴金属含有微粒子が表面活性に乏しいため、一般的に高分子分散剤を用いて貴金属含有微粒子の分散安定性を確保していることに起因していると考えられる。即ち、貴金属含有微粒子の表面に吸着した高分子分散剤は、透明導電膜形成用塗布液中では立体障害効果により貴金属微粒子を安定化させるが、逆に透明導電膜中では貴金属含有微粒子間に介在して相互の接触を妨げるため、120℃を超えるような高温での加熱処理を行わないと、貴金属微粒子間の融着を十分進めることができないためであると推測される。   Thus, when forming a transparent conductive film using a coating liquid for forming a transparent conductive film, the heat treatment at 120 ° C. or lower does not proceed with fusion between noble metal-containing fine particles, and a low resistance transparent conductive film is obtained. I couldn't. The reason for this is not necessarily clear, but in the coating liquid for forming a transparent conductive film, since the dispersed noble metal-containing fine particles have poor surface activity, the dispersion stability of the noble metal-containing fine particles is generally reduced using a polymer dispersant. This is thought to be due to the fact that it is secured. That is, the polymer dispersant adsorbed on the surface of the noble metal-containing fine particles stabilizes the noble metal fine particles by the steric hindrance effect in the coating liquid for forming the transparent conductive film. In order to prevent mutual contact, it is assumed that the fusion between the noble metal fine particles cannot be sufficiently advanced unless heat treatment at a high temperature exceeding 120 ° C. is performed.

特開平9−115438号公報JP-A-9-115438 特開平10−1777号公報JP-A-10-1777 特開平10−110123号公報JP-A-10-110123 特開平10−142401号公報JP-A-10-142401 特開平10−182191号公報JP-A-10-182191 特開平11−329071号公報Japanese Patent Laid-Open No. 11-329071 特開2000−124662号公報JP 2000-124662 A 特開2000−196287号公報JP 2000-196287 A 特開平11−228872号公報JP-A-11-228872 特開2000−268639号公報JP 2000-268639 A 特開平10−110123号公報JP-A-10-110123 「工業材料」、Vol.44,No.9,1996,p68−71“Industrial Materials”, Vol. 44, No. 9, 1996, p.

本発明は、このような従来の問題点に鑑み、透明導電膜形成用塗布液を用いて透明基材上に透明導電膜を形成する際に、低温で加熱処理を行った場合であっても、貴金属含有微粒子が相互に融着して良好な導電パスを形成でき、優れた導電性の透明導電膜が得られると共に、耐熱性の低い基材を用いることができる透明導電膜形成用塗布液、その塗布液を用いて形成された透明導電膜、及び表示装置を提供することを目的とする。   In view of such conventional problems, the present invention is a case where a heat treatment is performed at a low temperature when a transparent conductive film is formed on a transparent substrate using a coating liquid for forming a transparent conductive film. , A coating solution for forming a transparent conductive film, in which noble metal-containing fine particles can be fused together to form a good conductive path, and an excellent conductive transparent conductive film can be obtained and a substrate having low heat resistance can be used. An object of the present invention is to provide a transparent conductive film formed using the coating liquid and a display device.

上記目的を達成するため、本発明が提供する請求項1に係わる透明導電膜形成用塗布液は、溶媒と、この溶媒に分散された平均粒径1〜50nmの金銀含有微粒子を主成分とし、該金銀含有微粒子の表面がハロゲンで修飾され、そのハロゲン量が金銀含有微粒子100重量部に対して0.2〜15重量部であることを特徴とする。   In order to achieve the above object, the coating liquid for forming a transparent conductive film according to claim 1 provided by the present invention is mainly composed of a solvent and gold-silver-containing fine particles having an average particle diameter of 1 to 50 nm dispersed in the solvent, The surface of the gold-silver-containing fine particles is modified with halogen, and the amount of halogen is 0.2 to 15 parts by weight with respect to 100 parts by weight of the gold-silver containing fine particles.

本発明の請求項2に係わる透明導電膜形成用塗布液は、上記請求項1に係わる透明導電膜形成用塗布液において、金銀含有微粒子が連鎖状凝集体を形成していることを特徴とするものである。   The coating liquid for forming a transparent conductive film according to claim 2 of the present invention is characterized in that the gold-silver-containing fine particles form a chain aggregate in the coating liquid for forming a transparent conductive film according to claim 1. Is.

また、本発明の請求項3に係わる透明導電膜形成用塗布液は、上記請求項1又は2に係わる透明導電膜形成用塗布液において、金銀含有微粒子が、銀微粒子の表面に金がコーティングされた金コート銀微粒子であって、金のコーティング量が銀100重量部に対し5〜1900重量部の範囲に設定されていることを特徴とする。   The transparent conductive film forming coating liquid according to claim 3 of the present invention is the transparent conductive film forming coating liquid according to claim 1 or 2, wherein the gold-silver-containing fine particles are coated with gold on the surface of the silver fine particles. The gold-coated silver fine particles are characterized in that the gold coating amount is set in the range of 5 to 1900 parts by weight with respect to 100 parts by weight of silver.

本発明は、また、請求項4に係わる透明導電膜として、上記請求項1〜3に記載の透明導電膜形成用塗布液を塗布・乾燥し、40〜120℃の温度で加熱処理して形成されることを特徴とする透明導電膜を提供する。また、請求項5に係わる透明導電膜は、上記請求項4に係わる透明導電膜において、40〜100℃の温度で加熱処理して形成されることを特徴とするものである。   The present invention also forms a transparent conductive film according to claim 4 by applying and drying the coating liquid for forming a transparent conductive film according to claims 1 to 3 and heat-treating it at a temperature of 40 to 120 ° C. A transparent conductive film is provided. The transparent conductive film according to claim 5 is the transparent conductive film according to claim 4, wherein the transparent conductive film is formed by heat treatment at a temperature of 40 to 100 ° C.

本発明の請求項6に係わる透明導電膜は、上記請求項1〜3に記載の透明導電膜形成用塗布液を塗布・乾燥した後、続けて透明コート層形成用塗布液を塗布・乾燥し、40〜120℃の温度で加熱処理して形成された、透明導電膜上に更に透明コート層を有する透明2層膜であることを特徴とする。   The transparent conductive film according to claim 6 of the present invention is formed by applying and drying the transparent conductive film forming coating solution according to claims 1 to 3 and subsequently applying and drying the transparent coating layer forming coating solution. The transparent two-layer film further having a transparent coating layer on the transparent conductive film formed by heat treatment at a temperature of 40 to 120 ° C.

更に、本発明は、請求項7に係わる表示装置として、上記請求項6に記載の透明導電膜が、表示面の前面に配置される前面板、あるいは表示素子内に形成されていることを特徴とする表示装置を提供するものである。   Further, according to the present invention, as the display device according to claim 7, the transparent conductive film according to claim 6 is formed in a front plate disposed in front of the display surface or in the display element. A display device is provided.

本発明によれば、ハロゲンで修飾された金銀含有微粒子が溶媒中に分散した透明導電膜形成用塗布液を用いることにより、120℃以下の低温で加熱処理を行っても、金銀含有微粒子の良好な導電パスを形成でき、優れた導電性の透明導電膜を形成することができる。従って、プラスチック基材や機能性有機層等の耐熱性が乏しい基材の上にも、高い透過率と共に優れた導電性を有する透明導電膜を低温で形成することが可能となった。   According to the present invention, by using a coating liquid for forming a transparent conductive film in which halogen-modified gold-silver-containing fine particles are dispersed in a solvent, the gold-silver-containing fine particles are excellent even when heat treatment is performed at a low temperature of 120 ° C. or lower. A conductive path can be formed, and an excellent conductive transparent conductive film can be formed. Therefore, it became possible to form a transparent conductive film having a high transmittance and an excellent conductivity on a substrate having poor heat resistance such as a plastic substrate or a functional organic layer at a low temperature.

また、本発明の透明導電膜形成用塗布液を用いて形成した透明導電膜は、ブラウン管(CRT)、プラズマディスプレイパネル(PDP)、蛍光表示管(VFD)、液晶ディスプレイ(LCD)、有機エレクトロルミネッセンス(EL)ディスプレイ等の表示装置に適用される反射防止・帯電防止等の機能性フィルムや透明電極、あるいはタッチパネルの透明電極等に適用することができ、特に、プラスチック基材や機能性有機層等の耐熱性が乏しい材質からなる基材を用いた表示装置等に好適に使用することができる。   The transparent conductive film formed using the coating liquid for forming a transparent conductive film of the present invention is a cathode ray tube (CRT), plasma display panel (PDP), fluorescent display tube (VFD), liquid crystal display (LCD), organic electroluminescence. It can be applied to anti-reflective and anti-static functional films and transparent electrodes applied to display devices such as (EL) displays, transparent electrodes of touch panels, etc., especially plastic substrates and functional organic layers, etc. It can be suitably used for a display device using a base material made of a material having poor heat resistance.

本発明の透明導電膜形成用塗布液においては、溶媒中に分散する導電性の金属微粒子として、表面がハロゲンで修飾された金銀含有微粒子を用いる。この透明導電膜形成用塗布液は、塗布・乾燥した後の加熱処理において、加熱処理温度を従来に比べて大幅に低下させた場合であっても、極めて良好な導電性を有する透明導電膜を形成することができる。   In the coating liquid for forming a transparent conductive film of the present invention, gold-silver-containing fine particles whose surface is modified with halogen are used as the conductive metal fine particles dispersed in the solvent. This coating solution for forming a transparent conductive film is a transparent conductive film having very good conductivity even when the heat treatment temperature after coating and drying is greatly reduced as compared with the prior art. Can be formed.

本発明において、金銀含有微粒子とは、一次粒子中に金及び銀を含有している微粒子であり、例えば、金と銀の合金微粒子、銀微粒子の表面に金をコーティングした金コート銀微粒子がある。かかる金銀含有微粒子は、比抵抗並びに耐候性の面から見ても最も好ましいが、更に本発明者らの研究により、金銀含有微粒子同士が融着しやすい性質を有しているため、透明導電膜中において形成されるネットワーク(網目状)構造の微粒子接点部分が低温での加熱処理によっても容易に融着し、低抵抗の透明導電膜を実現しやすいことが判明した。   In the present invention, gold-silver-containing fine particles are fine particles containing gold and silver in primary particles, such as gold-silver alloy fine particles, and gold-coated silver fine particles in which the surface of silver fine particles is coated with gold. . Such gold-silver-containing fine particles are most preferable from the viewpoint of specific resistance and weather resistance. However, since the inventors have further studied that the gold-silver-containing fine particles have a property of being easily fused, It was found that the fine particle contact portion of the network (mesh-like) structure formed therein can be easily fused even by heat treatment at a low temperature, and a low-resistance transparent conductive film can be easily realized.

上記金銀含有微粒子は、平均粒径が1〜50nmの範囲であることを要し、3〜20nmの範囲が好ましい。金銀含有微粒子の平均粒径が1nm未満では透明導電膜形成用塗布液の製造が困難となり、50nmを超えると得られる透明導電膜の曇り(ヘイズ値:光の散乱度合い)が高くなるためである。尚、ここでいう平均粒径とは、透過電子顕微鏡(TEM)で観察される微粒子の平均粒径を示している。   The gold-silver-containing fine particles need to have an average particle size in the range of 1 to 50 nm, and preferably in the range of 3 to 20 nm. This is because if the average particle size of the gold-silver-containing fine particles is less than 1 nm, it is difficult to produce a coating liquid for forming a transparent conductive film, and if it exceeds 50 nm, the resulting transparent conductive film becomes cloudy (haze value: degree of light scattering). . In addition, the average particle diameter here has shown the average particle diameter of the microparticles | fine-particles observed with a transmission electron microscope (TEM).

また、上記金銀含有微粒子は、その表面にハロゲンイオンが吸着することによってハロゲンで修飾されている。金銀含有微粒子の表面修飾のために添加するハロゲン元素については、塩素(Cl)、臭素(Br)、ヨウ素(I)から選ばれた少なくとも1種が好ましく、塗布液の安定性のみを考えた場合に特に著しい差は見られないが、膜の導電性を考慮すると塩素を用いることが望ましい。   The gold-silver-containing fine particles are modified with halogen by adsorbing halogen ions on the surface thereof. The halogen element added for the surface modification of the gold-silver-containing fine particles is preferably at least one selected from chlorine (Cl), bromine (Br), and iodine (I), and only considering the stability of the coating solution However, it is desirable to use chlorine in consideration of the conductivity of the film.

透明導電膜形成用塗布液に含まれるハロゲン量は、金銀含有微粒子100重量部に対し0.2〜15重量部、好ましくは0.5〜5重量部とする。このハロゲン量が0.2重量部より少ないと塗布液の安定性が悪くなり、逆に15重量部を超えても、金銀含有微粒子に対するハロゲンの吸着量に限界があるため、保存時の安定性の更なる向上が得られない。しかも、ハロゲン量が15重量部を超えると、イオン濃度が高くなるため反って金銀含有微粒子が凝集し易くなり、更には加熱処理時に金銀含有微粒子同士の融着も起こりにくくなるため、透明導電膜の加熱処理温度の低下さえも難しくなる。   The amount of halogen contained in the coating liquid for forming a transparent conductive film is 0.2 to 15 parts by weight, preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the gold-silver-containing fine particles. If the amount of halogen is less than 0.2 parts by weight, the stability of the coating solution becomes poor. Conversely, even if it exceeds 15 parts by weight, there is a limit to the amount of halogen adsorbed on the gold-silver-containing fine particles. The further improvement of cannot be obtained. In addition, if the halogen content exceeds 15 parts by weight, the ion concentration becomes high, so that the gold-silver-containing fine particles tend to aggregate, and further, the fusion of the gold-silver-containing fine particles hardly occurs during the heat treatment. Even the lowering of the heat treatment temperature becomes difficult.

このように金銀含有微粒子の表面をハロゲンで修飾することにより、金銀含有微粒子の安定性が向上する。そのメカニズムは明らかではないが、例えば、ハロゲンイオンが金銀含有微粒子の銀元素部分に吸着することで、金銀含有微粒子に強いマイナス電荷を与えていることが考えられる。更に、ハロゲンは高分子分散剤等に比べて物理的サイズが小さいため、透明導電膜中に存在した場合でも、加熱処理時における微粒子間の融着を阻害しにくいという利点がある。   Thus, the stability of the gold-silver-containing fine particles is improved by modifying the surface of the gold-silver-containing fine particles with halogen. Although the mechanism is not clear, it is conceivable that, for example, halogen ions are adsorbed on the silver element part of the gold-silver-containing fine particles, thereby giving a strong negative charge to the gold-silver-containing fine particles. Furthermore, since halogen has a smaller physical size than a polymer dispersant or the like, there is an advantage that even when it is present in a transparent conductive film, it is difficult to inhibit fusion between fine particles during heat treatment.

上記金銀含有微粒子の中では、耐侯性やコスト面だけでなく、その製造並びにハロゲン修飾が容易な点で、銀微粒子の表面に金をコーティングした金コート銀微粒子が好ましい。金コート銀微粒子における金のコーティング量は、耐候性及び塗布液のコスト等の点で、銀100重量部に対し5〜1900重量部が好ましく、50〜900重量部の範囲が更に好ましい。尚、金コート銀微粒子表面のハロゲン修飾は、銀微粒子表面に金をコーティングする過程において、一部の銀元素がハロゲンで修飾されながら金のコーティングが進行する、即ち金でコートされた金コート銀微粒子の表面に少量の銀元素が存在して、それがハロゲンで修飾されていると考えられるが、科学的にはまだ確認されていない。   Among the gold-silver-containing fine particles, gold-coated silver fine particles in which gold is coated on the surface of the silver fine particles are preferable in terms of not only weather resistance and cost, but also easy production and halogen modification. The gold coating amount in the gold-coated silver fine particles is preferably 5 to 1900 parts by weight and more preferably 50 to 900 parts by weight with respect to 100 parts by weight of silver in terms of weather resistance, coating solution cost, and the like. In addition, the halogen modification on the surface of the gold-coated silver fine particles means that in the process of coating gold on the surface of the silver fine particles, the gold coating proceeds while a part of the silver element is modified with the halogen, that is, gold-coated silver coated with gold. A small amount of silver element is present on the surface of the fine particle, which is considered to be modified with halogen, but it has not been confirmed scientifically.

また、透明導電膜形成用塗布液中の金銀含有微粒子は、一次粒子が鎖状に連接した連鎖状凝集体の形態であることが好ましい。金銀含有微粒子が透明導電膜形成用塗布液中で予め連鎖状凝集体を形成していると、成膜時に発達したネットワーク(網目状)構造を形成しやすくなり、また、連鎖状凝集体として連接した一次粒子である金銀含有微粒子間の結合部分は既にある程度融着しているため、より低温での加熱処理でも低抵抗の透明導電膜を形成することができる。   Moreover, it is preferable that the gold-silver containing fine particles in the coating liquid for forming a transparent conductive film are in the form of a chain aggregate in which primary particles are connected in a chain. If the gold-silver-containing fine particles form a chain aggregate in advance in the coating solution for forming a transparent conductive film, it becomes easy to form a network (network-like) structure developed at the time of film formation, and it is connected as a chain aggregate. Since the bonded portion between the gold-silver-containing fine particles which are the primary particles has already been fused to some extent, a low-resistance transparent conductive film can be formed even by heat treatment at a lower temperature.

上記金銀含有微粒子の連鎖状凝集体の形状としては、得られる透明導電膜の抵抗値の観点からみると、分岐がない直鎖状凝集体か、又は分岐部分の長さが主鎖長さの1/5以下である擬似直鎖状凝集体が好ましい。これらの連鎖状凝集体の平均主鎖長さは、20〜500nmが好ましく、30〜300nmが更に好ましい。また、連鎖状凝集体の平均主鎖長さと一次粒子の平均粒径(即ち、連鎖状凝集体の平均太さ)の比は、3〜100の範囲にあることが好ましい。   From the viewpoint of the resistance value of the obtained transparent conductive film, the shape of the chain aggregate of the gold-silver-containing fine particles is a linear aggregate without branching, or the length of the branched portion is the main chain length. Pseudo linear aggregates that are 1/5 or less are preferred. The average main chain length of these chain aggregates is preferably 20 to 500 nm, and more preferably 30 to 300 nm. The ratio of the average main chain length of the chain aggregate to the average particle size of the primary particles (that is, the average thickness of the chain aggregate) is preferably in the range of 3 to 100.

上記連鎖状凝集体の平均主鎖長さ及びその平均主鎖長さと一次粒子の平均粒径の比について、いずれかが上記の各範囲を外れると、良好な導電性を有する透明導電膜の形成が難しくなったり、透明導電膜形成用塗布液の濾過が困難になると同時に、透明導電膜形成用塗布液の保存安定性が低下したりするため、好ましくない。尚、連鎖状凝集体の平均主鎖長さと、貴金属含有微粒子の一次粒子の平均粒径は、透過電子顕微鏡(TEM)で観察された凝集体に対する値を示している。   Regarding the average main chain length of the chain aggregate and the ratio of the average main chain length to the average particle size of the primary particles, if any of the above-mentioned ranges is exceeded, formation of a transparent conductive film having good conductivity Is difficult, and filtration of the coating liquid for forming a transparent conductive film is difficult, and at the same time, the storage stability of the coating liquid for forming a transparent conductive film is lowered. In addition, the average main chain length of the chain aggregate and the average particle diameter of the primary particles of the noble metal-containing fine particles show values for the aggregate observed with a transmission electron microscope (TEM).

次に、本発明における透明導電膜形成用塗布液の製造方法を、金銀含有微粒子が金コート銀微粒子である場合を例にとって説明する。まず、既知の方法[例えば、Carey−Lea法:Am. J. Sci.,37,38,47(1889)参照]により、単分散銀微粒子のコロイド分散液を調製する。具体的には、硝酸銀水溶液に硫酸鉄(II)水溶液とクエン酸ナトリウム水溶液の混合液を加えて反応させ、沈降物を濾過・洗浄した後、純水を加えることによって、単分散銀微粒子のコロイド分散液が得られる。   Next, a method for producing a coating liquid for forming a transparent conductive film according to the present invention will be described taking as an example the case where the gold-silver-containing fine particles are gold-coated silver fine particles. First, a colloidal dispersion of monodispersed silver fine particles is prepared by a known method [for example, Carey-Lea method: see Am. J. Sci., 37, 38, 47 (1889)]. Specifically, a mixed solution of an iron (II) sulfate aqueous solution and an aqueous sodium citrate solution is added to a silver nitrate aqueous solution to cause a reaction. The precipitate is filtered and washed, and then pure water is added to the colloid of monodispersed silver fine particles. A dispersion is obtained.

この銀微粒子コロイド分散液に、ヒドラジン等の還元剤溶液と、金酸塩溶液を加えることにより、銀微粒子表面に金がコーティングされた金コート銀微粒子の分散液が得られる。その際に、還元剤溶液か又は金酸塩溶液、若しくは銀微粒子のコロイド状分散液にハロゲンを添加することにより、表面がハロゲンで修飾された金コート銀微粒子の分散液を得ることができる。金コート銀微粒子分散液中のハロゲンの量は、前述したように、金コート銀微粒子100重量部に対して、0.2〜15重量部の範囲とし、好ましくは0.5〜5重量部とする。   By adding a reducing agent solution such as hydrazine and a gold salt solution to this silver fine particle colloidal dispersion, a dispersion of gold-coated silver fine particles having the silver fine particle surface coated with gold is obtained. At that time, a dispersion of gold-coated silver fine particles whose surface is modified with halogen can be obtained by adding halogen to a reducing agent solution, a gold salt solution, or a colloidal dispersion of silver fine particles. As described above, the amount of halogen in the gold-coated silver fine particle dispersion is in the range of 0.2 to 15 parts by weight, preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the gold-coated silver fine particles. To do.

尚、上記金コート銀微粒子分散液のような金銀含有微粒子コロイド分散液の調製方法は、最終的に平均粒径1〜50nmの金銀含有微粒子の分散液が得られれば任意の方法でよく、上記方法に限定されるものではない。   The preparation method of the gold-silver-containing fine particle colloidal dispersion such as the gold-coated silver fine particle dispersion may be any method as long as a dispersion of gold-silver-containing fine particles having an average particle diameter of 1 to 50 nm is finally obtained. The method is not limited.

その後、透析、電気透析、イオン交換、限外濾過等の方法で、分散液内の電解質濃度を下げることが好ましい。電解質濃度を下げないと、一般にコロイドは電解質で凝集してしまうからであり、この現象はSchulze−Hardy則として知られている。このように電解質濃度を下げた金コート銀微粒子分散液は、減圧エバポレーター、限外濾過等の方法で濃縮処理して、単分散金コート銀微粒子の分散濃縮液とする。   Thereafter, the electrolyte concentration in the dispersion is preferably lowered by a method such as dialysis, electrodialysis, ion exchange, or ultrafiltration. This is because colloids generally aggregate in the electrolyte unless the electrolyte concentration is lowered, and this phenomenon is known as the Schulze-Hardy law. The gold-coated silver fine particle dispersion with the electrolyte concentration lowered in this way is concentrated by a method such as a vacuum evaporator, ultrafiltration or the like to obtain a dispersion-concentrated liquid of monodispersed gold-coated silver fine particles.

この単分散金コート銀微粒子の分散濃縮液を撹拌しながら、ヒドラジン溶液を少量ずつ添加し、例えば室温で数分から数時間程度保持することにより、金コート銀微粒子を連鎖状に凝集させる。その後、過酸化水素溶液を添加してヒドラジンを分解することで、連鎖状凝集金コート銀微粒子分散(濃縮)液が得られる。ヒドラジン溶液の添加により金コート銀微粒子に連鎖状の凝集が生じる理由は明らかではないが、ヒドラジンのアルカリイオンとしての働き、あるいは還元剤として系の電位を低下させる働きにより、金銀含有微粒子の安定性が低下して連鎖状に凝集するものと考えられる。   While stirring this monodispersed gold-coated silver fine particle dispersion, a hydrazine solution is added little by little, and kept at room temperature for several minutes to several hours, for example, thereby aggregating the gold-coated silver fine particles in a chain. Thereafter, a hydrogen peroxide solution is added to decompose hydrazine, whereby a chain-aggregated gold-coated silver fine particle dispersion (concentrated) liquid is obtained. The reason why chain-like agglomeration occurs in the gold-coated silver fine particles due to the addition of the hydrazine solution is not clear, but the stability of the gold-silver-containing fine particles by acting as an alkali ion of hydrazine or reducing the potential of the system as a reducing agent. Are considered to aggregate and form a chain.

尚、上記した凝集過程において、金コート銀微粒子の分散濃縮液にヒドラジン(N)溶液を添加すると金コート銀微粒子の安定性が低下(系のゼータ電位[絶対値]は低下)して連鎖状に凝集し、更に過酸化水素(H)溶液を添加すると上記ヒドラジンが分解除去され、連鎖状金コート銀微粒子の凝集状態を保ったままで、その安定性が再度向上(系のゼータ電位[絶対値]は増加)する。しかも、これら一連の反応は、下記反応式1に示されるように、反応生成物が水(HO)及び窒素ガス(N)だけで不純物イオンの副生がないため、金コート銀微粒子の連鎖状凝集体を得る方法としては極めて簡便で有効な方法である。 In the above-described aggregation process, when a hydrazine (N 2 H 4 ) solution is added to the dispersion concentrate of gold-coated silver fine particles, the stability of the gold-coated silver fine particles decreases (the zeta potential [absolute value] of the system decreases). When a hydrogen peroxide (H 2 O 2 ) solution is further added, the hydrazine is decomposed and removed, and the stability is improved again while maintaining the aggregated state of the chain gold-coated silver fine particles. Zeta potential [absolute value] increases. In addition, as shown in the following reaction formula 1, these series of reactions are performed by using only water (H 2 O) and nitrogen gas (N 2 ) as reaction products, and no by-product of impurity ions. This is a very simple and effective method for obtaining the chain aggregate.

[反応式1]
+2H → 4HO+N
[Reaction Formula 1]
N 2 H 4 + 2H 2 O 2 → 4H 2 O + N 2

上記金コート銀微粒子の連鎖状凝集体における凝集形態の制御に関しては、金コート銀微粒子の濃度、ヒドラジン溶液の濃度、ヒドラジン溶液の添加速度、処理液の撹拌速度、処理液の温度等を調整することで変えることが可能である。例えば、ヒドラジンを添加して連鎖状凝集金コート銀微粒子分散(濃縮)液を作製する際の金コート銀微粒子濃度が高いほど、分岐の長い連鎖状凝集体や環状凝集体等の複雑な連鎖状凝集体の個数割合が高くなり、相対的に分岐のない直鎖状凝集体及び分岐の短い擬似直鎖状凝集体の個数割合は低くなる。   Regarding the control of the aggregation form in the above-mentioned chain aggregate of gold coated silver fine particles, the concentration of the gold coated silver fine particles, the concentration of the hydrazine solution, the addition speed of the hydrazine solution, the stirring speed of the processing liquid, the temperature of the processing liquid, etc. are adjusted. It is possible to change. For example, the higher the gold-coated silver fine particle concentration when preparing a chain-aggregated gold-coated silver fine particle dispersion (concentrated) solution by adding hydrazine, the more complex the chain-like aggregates such as long-branched chain aggregates and cyclic aggregates The number ratio of the aggregates is increased, and the number ratio of the linear aggregates having relatively no branching and the quasi-linear aggregates having a short branch is decreased.

得られた連鎖状凝集金コート銀微粒子分散(濃縮)液に、有機溶剤等を添加して、微粒子濃度、水分濃度、高沸点有機溶剤濃度等の成分調整を行うことによって、連鎖状凝集金コート銀微粒子を含有する透明導電膜形成用塗布液が得られる。尚、上記した透明導電膜形成用塗液の製造方法は金コート銀微粒子の場合を例に説明したが、これ以外の金銀含有微粒子の場合も上記と同様にして透明導電膜形成用塗布液を製造することができる。   By adding an organic solvent or the like to the obtained chain-aggregated gold-coated silver fine particle dispersion (concentrated) liquid and adjusting the components such as the fine particle concentration, water concentration, and high-boiling organic solvent concentration, the chain-aggregated gold coat A coating liquid for forming a transparent conductive film containing silver fine particles is obtained. In addition, although the manufacturing method of the above-described coating liquid for forming a transparent conductive film has been described by taking the case of gold-coated silver fine particles as an example, in the case of other gold-silver containing fine particles, the transparent conductive film-forming coating liquid is prepared in the same manner as described above. Can be manufactured.

本発明の透明導電膜形成用塗布液においては、金銀含有微粒子(連鎖状凝集している)が0.1〜10重量%、水分が1〜50重量%、有機溶剤その他添加物が残部となるように、成分調整することが好ましい。連鎖状凝集体を構成する金銀含有微粒子が0.1重量%を下回ると十分な導電性能が得られず、10重量%を超えると金銀含有微粒子が不安定になって凝集しやすくなる。また、水分濃度が1重量%よりも少ない場合には、金銀含有微粒子の濃度が高くなり過ぎるため、金銀含有微粒子が不安定になって凝集しやすくなり、逆に50重量%を超えると透明導電膜形成用塗布液の塗布性が著しく低下する可能性がある。   In the coating liquid for forming a transparent conductive film of the present invention, 0.1 to 10% by weight of gold-silver-containing fine particles (chain aggregates), 1 to 50% by weight of water, and the remaining organic solvent and other additives. Thus, it is preferable to adjust the components. If the gold-silver-containing fine particles constituting the chain aggregate are less than 0.1% by weight, sufficient conductive performance cannot be obtained, and if it exceeds 10% by weight, the gold-silver-containing fine particles become unstable and easily aggregate. In addition, when the water concentration is less than 1% by weight, the concentration of the gold-silver-containing fine particles becomes too high, so that the gold-silver-containing fine particles become unstable and tend to aggregate. There is a possibility that the applicability of the film-forming coating solution is significantly lowered.

透明導電膜形成用塗布液に用いる有機溶剤としては、特に制限はなく、塗布方法や製膜条件により適宜に選定される。例えば、メタノール(MA)、エタノール(EA)、1−プロパノール(NPA)、イソプロパノール(IPA)、ブタノール、ペンタノール、ベンジルアルコール、ジアセトンアルコール等のアルコール系溶媒、アセトン、メチルエチルケトン(MEK)、メチルプロピルケトン、メチルイソブチルケトン(MIBK)、シクロヘキサノン、イソホロン等のケトン系溶媒、エチレングリコールモノメチルエーテル(MCS)、エチレングリコールモノエチルエーテル(ECS)、エチレングリコールイソプロピルエーテル(IPC)、プロピレングリコールメチルエーテル(PGM)、プロピレングリコールエチルエーテル(PE)、プロピレングリコールメチルエーテルアセテート(PGM−AC)、プロピレングリコールエチルエーテルアセテート(PE−AC)等のグリコール誘導体、ホルムアミド(FA)、N−メチルフォルムアミド、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、ジメチルスルフォキシド(DMSO)、N−メチル−2−ピロリドン(NMP)、エチレングリコール、ジエチレングリコール等が挙げられるが、これらに限定されるものではない。   There is no restriction | limiting in particular as an organic solvent used for the coating liquid for transparent conductive film formation, According to the coating method and film forming conditions, it selects suitably. For example, alcohol solvents such as methanol (MA), ethanol (EA), 1-propanol (NPA), isopropanol (IPA), butanol, pentanol, benzyl alcohol, diacetone alcohol, acetone, methyl ethyl ketone (MEK), methylpropyl Ketone solvents such as ketone, methyl isobutyl ketone (MIBK), cyclohexanone, isophorone, ethylene glycol monomethyl ether (MCS), ethylene glycol monoethyl ether (ECS), ethylene glycol isopropyl ether (IPC), propylene glycol methyl ether (PGM) , Propylene glycol ethyl ether (PE), propylene glycol methyl ether acetate (PGM-AC), propylene glycol ethyl ether Glycol derivatives such as acetate (PE-AC), formamide (FA), N-methylformamide, dimethylformamide (DMF), dimethylacetamide, dimethylsulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), Although ethylene glycol, diethylene glycol, etc. are mentioned, it is not limited to these.

本発明の透明導電膜形成用塗布液には、バインダー及び/又は有色顔料微粒子を添加してもよい。バインダーを添加した透明導電膜形成用塗布液を用いると、膜強度の高い透明導電膜を得ることができ、単層でも透明導電膜として十分使用することができる。添加するバインダーとしては、有機及び/又は無機のバインダーを用いることが可能であり、バインダーの種類については、使用する基材や透明導電膜の硬化条件等を考慮して適宜選定することができる。   You may add a binder and / or colored pigment microparticles | fine-particles to the coating liquid for transparent conductive film formation of this invention. When a coating liquid for forming a transparent conductive film to which a binder is added is used, a transparent conductive film having high film strength can be obtained, and even a single layer can be sufficiently used as a transparent conductive film. As the binder to be added, an organic and / or inorganic binder can be used, and the type of the binder can be appropriately selected in consideration of the substrate used, the curing conditions of the transparent conductive film, and the like.

上記有機バインダーとしては、熱可塑性樹脂、熱硬化性樹脂、常温硬化性樹脂、紫外線硬化性樹脂、電子線硬化性樹脂から選択される少なくとも1種が挙げられる。例えば、熱可塑性樹脂にはアクリル樹脂、PET樹脂、ポリオレフィン樹脂、塩化ビニル樹脂、ポリビニルブチラール樹脂、PVP樹脂、ポリビニルアルコール樹脂等があり、熱硬化性樹脂にはエポキシ樹脂等がある。また、常温硬化性樹脂には2液性のエポキシ樹脂やウレタン樹脂等があり、紫外線硬化性樹脂には各種オリゴマー、モノマー、光開始剤を含有する樹脂等があり、電子線硬化性樹脂には各種オリゴマー、モノマーを含有する樹脂等がある。ただし、当然のことながら、これら樹脂に限定されるものではない。   Examples of the organic binder include at least one selected from a thermoplastic resin, a thermosetting resin, a room temperature curable resin, an ultraviolet curable resin, and an electron beam curable resin. For example, the thermoplastic resin includes acrylic resin, PET resin, polyolefin resin, vinyl chloride resin, polyvinyl butyral resin, PVP resin, polyvinyl alcohol resin, and the like, and the thermosetting resin includes epoxy resin. In addition, room temperature curable resins include two-component epoxy resins and urethane resins, ultraviolet curable resins include resins containing various oligomers, monomers, and photoinitiators, and electron beam curable resins. There are various oligomers and resins containing monomers. However, as a matter of course, it is not limited to these resins.

また、無機バインダーとしては、シリカゾルを主成分とするバインダーを挙げることができる。無機バインダーは、弗化マグネシウム微粒子、アルミナゾル、ジルコニアゾル、チタニアゾル等があり、一部有機官能基で修飾されたシリカゾルを含んでいてもよい。上記シリカゾルとしては、オルトアルキルシリケートに水や酸触媒を加えて加水分解し、脱水縮重合を進ませた重合物、あるいは既に4〜5量体まで重合を進ませた市販のアルキルシリケート溶液を、更に加水分解と脱水縮重合を進行させた重合物等を利用することができる。   Moreover, as an inorganic binder, the binder which has a silica sol as a main component can be mentioned. Examples of the inorganic binder include magnesium fluoride fine particles, alumina sol, zirconia sol, titania sol, and the like, and may include silica sol partially modified with an organic functional group. As the silica sol, water or an acid catalyst is added to orthoalkyl silicate to hydrolyze, a polymer obtained by dehydrating condensation polymerization, or a commercially available alkyl silicate solution that has already been polymerized to 4 to 5 mer, Furthermore, the polymer etc. which advanced hydrolysis and dehydration condensation polymerization can be utilized.

尚、脱水縮重合が進行し過ぎると、溶液粘度が上昇して最終的には固化してしまうので、脱水縮重合の度合いについては、ガラス基板やプラスチック基板等の透明基板上に塗布可能な上限粘度以下に調整する。ただし、脱水縮重合の度合いは上記上限粘度以下のレベルであれば特に指定されないが、膜強度、耐候性等を考慮すると、重量平均分子量で500〜50000程度が好ましい。そして、アルキルシリケート加水分解重合物は、透明導電膜形成用塗布液の塗布・乾燥後の加熱処理時において脱水縮重合反応がほぼ完結し、硬いシリケート膜(酸化ケイ素を主成分とする膜)になる。   If the dehydration condensation polymerization proceeds too much, the solution viscosity increases and eventually solidifies, so the degree of dehydration condensation polymerization is the upper limit that can be applied on a transparent substrate such as a glass substrate or a plastic substrate. Adjust to below viscosity. However, the degree of dehydration-condensation polymerization is not particularly specified as long as it is a level equal to or lower than the above upper limit viscosity, but considering film strength, weather resistance, etc., a weight average molecular weight of about 500 to 50,000 is preferable. The alkyl silicate hydrolyzed polymer is almost completely dehydrated and condensed during the heat treatment after application and drying of the coating liquid for forming a transparent conductive film, thereby forming a hard silicate film (film mainly composed of silicon oxide). Become.

また、有色顔料微粒子を添加した透明導電膜形成用塗布液を用いると、透明導電膜の透過率や色を所定の値に自由に設定でき、例えば、表示装置(ディスプレイ)に用いる用途では、画像のコントラストを向上させて表示画面を更に見易くさせること等の要望に対応することが可能となる。   In addition, when a coating liquid for forming a transparent conductive film to which colored pigment fine particles are added is used, the transmittance and color of the transparent conductive film can be freely set to predetermined values. For example, in applications used for display devices (displays), images It is possible to meet the demand for improving the contrast of the display to make the display screen easier to see.

上記有色顔料微粒子としては、カーボン、チタンブラック、窒化チタン、複合酸化物顔料、コバルトバイオレット、モリブデンオレンジ、群青、紺青、キナクリドン系顔料、ジオキサジン系顔料、アントラキノン系顔料、ペリレン系顔料、イソインドリノン系顔料、アゾ系顔料、及びフタロシアニン系顔料から選択された1種以上の微粒子、あるいは更にその表面が酸化ケイ素でコーティング処理された上記微粒子を用いることができる。これらの有色顔料微粒子は、平均粒径5〜100nmが好ましく、有色顔料微粒子を溶媒に分散させた分散液として調合されることが好ましい。   The colored pigment fine particles include carbon, titanium black, titanium nitride, composite oxide pigment, cobalt violet, molybdenum orange, ultramarine, bitumen, quinacridone pigment, dioxazine pigment, anthraquinone pigment, perylene pigment, isoindolinone. One or more fine particles selected from pigments, azo pigments, and phthalocyanine pigments, or the above-mentioned fine particles whose surface is coated with silicon oxide can be used. These colored pigment fine particles preferably have an average particle diameter of 5 to 100 nm, and are preferably prepared as a dispersion in which colored pigment fine particles are dispersed in a solvent.

尚、上記バインダー及び/又は有色顔料微粒子の透明導電膜形成用塗布液への添加においては、貴金属含有微粒子のコロイド状分散液の製造において脱塩処理を施したのと同様の理由から、透明導電膜形成用塗布液内に配合する上記バインダー(バインダー溶液)及び有色顔料微粒子分散液についても、その脱塩を十分に行っておくことが望ましい。   In addition, in the addition of the binder and / or colored pigment fine particles to the coating liquid for forming a transparent conductive film, for the same reason as the desalting treatment in the production of the colloidal dispersion of noble metal-containing fine particles, It is desirable that the binder (binder solution) and the colored pigment fine particle dispersion mixed in the coating liquid for film formation be sufficiently desalted.

本発明の上記金銀含有微粒子を含有する透明導電膜形成用塗布液は、これを基材上に塗布・乾燥した後、40〜120℃、好ましくは40〜100℃、更に好ましくは40〜80℃の温度で加熱処理することにより、透明導電膜を形成することができる。また、透明導電膜形成用塗布液を基材上に塗布・乾燥した後、続けて透明コート層形成用塗布液を塗布・乾燥し、40〜120℃、好ましくは40〜100℃、更に好ましくは40〜80℃の温度で加熱処理すれば、透明導電膜上に更に透明コート層が形成された透明2層膜からなる透明導電膜を形成することもできる。更には、予め40〜120℃の温度に予熱した基材上に、透明導電膜形成用塗布液を塗布することによっても、透明導電膜を形成することが可能である。   The coating liquid for forming a transparent conductive film containing the gold-silver-containing fine particles of the present invention is applied to a substrate and dried, and then 40 to 120 ° C., preferably 40 to 100 ° C., more preferably 40 to 80 ° C. A transparent conductive film can be formed by heat treatment at a temperature of. Moreover, after apply | coating and drying the coating liquid for transparent conductive film formation on a base material, it apply | coats and dries the coating liquid for transparent coating layer formation continuously, 40-120 degreeC, Preferably it is 40-100 degreeC, More preferably If it heat-processes at the temperature of 40-80 degreeC, the transparent conductive film which consists of a transparent bilayer film in which the transparent coating layer was further formed on the transparent conductive film can also be formed. Furthermore, it is possible to form a transparent conductive film by applying a coating liquid for forming a transparent conductive film on a substrate preheated to a temperature of 40 to 120 ° C. in advance.

上記のごとく120℃以下の低温での加熱処理で低抵抗の透明導電膜が得られる理由は、金銀含有微粒子自身が融着しやすい性質を有していること、及び表面修飾したハロゲンは高分子分散剤等に比べて物理的サイズが小さいため、透明導電膜中の微粒子間に介在した場合でも、加熱処理時の微粒子間の融着を阻害しにくいこと等によるものと考えられる。更に、金銀含有微粒子が連鎖状凝集体を形成している場合においては、連鎖状凝集体における連接した一次粒子の金銀含有微粒子間の結合部分は既にある程度融着しているため、このことも低温での加熱処理により低抵抗の透明導電膜が得られる理由の一つと考えられる。   As described above, the reason why a transparent conductive film having a low resistance can be obtained by heat treatment at a low temperature of 120 ° C. or lower is that gold-silver-containing fine particles themselves have a property of being easily fused, and surface-modified halogen is a polymer. Since the physical size is smaller than that of the dispersant or the like, it is considered that, even when interposed between the fine particles in the transparent conductive film, it is difficult to inhibit the fusion between the fine particles during the heat treatment. Furthermore, in the case where the gold-silver-containing fine particles form a chain aggregate, since the bonded portion between the gold-silver-containing fine particles of the primary particles connected in the chain aggregate has already been fused to some extent, this is also a low temperature. This is considered to be one of the reasons why a low-resistance transparent conductive film can be obtained by the heat treatment.

ここで、透明基材上に上記透明導電膜を形成するには、以下の方法で行うことができる。即ち、上記金銀含有微粒子を含有する透明導電膜形成用塗布液を、基材上にスピンコート、スプレーコート、ワイヤーバーコート、ドクターブレードコート、インクジェット印刷等の手法にて塗布し、必要に応じて40〜80℃程度で乾燥した後、40〜120℃、好ましくは40〜100℃、更に好ましくは40〜80℃の温度での加熱処理を施して透明導電膜を形成する。加熱処理温度が40℃よりも低い場合には、金銀含有微粒子間の融着が進まず、低抵抗の透明導電膜が得られない。逆に120℃よりも高い温度で加熱処理した場合には、低抵抗の透明導電膜は得られるものの、プラスチックや機能性有機膜等の耐熱性の乏しい基材では熱ダメージが大きくなり、基材が収縮ないし変形や変質する等の不都合が発生する。   Here, in order to form the said transparent conductive film on a transparent base material, it can carry out with the following method. That is, the transparent conductive film forming coating solution containing the gold-silver-containing fine particles is applied onto the substrate by a method such as spin coating, spray coating, wire bar coating, doctor blade coating, ink jet printing, and the like. After drying at about 40 to 80 ° C., a heat treatment is performed at a temperature of 40 to 120 ° C., preferably 40 to 100 ° C., more preferably 40 to 80 ° C. to form a transparent conductive film. When the heat treatment temperature is lower than 40 ° C., the fusion between the gold and silver-containing fine particles does not proceed and a low resistance transparent conductive film cannot be obtained. Conversely, when heat treatment is performed at a temperature higher than 120 ° C., a low-resistance transparent conductive film can be obtained, but heat damage is increased in a base material with poor heat resistance such as a plastic or a functional organic film. Inconveniences such as shrinkage, deformation, or alteration occur.

また、上記透明2層膜からなる透明導電膜を形成する場合には、透明導電膜形成用塗布液を上記と同様の方法で塗布した後、続けて、例えば前述のシリカゾル等を主成分とする透明コート層形成用塗布液を上記と同様の方法によりオーバーコートして乾燥させ、上記と同様の加熱処理を施せばよい。透明2層膜においては、金銀含有微粒子のネットワーク(網目状)構造の穴の部分を介して、基材と酸化ケイ素等のバインダーマトリックスとの接触面積が増大するため、透明基材とバインダーマトリックスの結合が強くなり、強度の向上が図られる。   Further, when forming a transparent conductive film composed of the above-mentioned transparent two-layer film, after applying the transparent conductive film forming coating solution by the same method as described above, for example, the above-described silica sol or the like is the main component. The coating liquid for forming a transparent coat layer may be overcoated by the same method as described above, dried, and subjected to the same heat treatment as described above. In the transparent two-layer film, the contact area between the base material and the binder matrix such as silicon oxide increases through the hole portion of the network (network-like) structure of the gold-silver-containing fine particles. Bonding becomes stronger and strength is improved.

更に、金銀含有微粒子が酸化ケイ素を主成分とするバインダーマトリックス中に分散された透明導電膜の光学定数(n−ik)において、屈折率nはさほど大きくないが消衰係数kが大きいため、上記金銀含有微粒子を含む透明導電層と透明コート層の透明2層膜構造により、透明2層膜の反射率を大幅に低下できる。   Furthermore, in the optical constant (n-ik) of the transparent conductive film in which gold-silver-containing fine particles are dispersed in a binder matrix mainly composed of silicon oxide, the refractive index n is not so large but the extinction coefficient k is large. Due to the transparent two-layer film structure of the transparent conductive layer containing the gold-silver-containing fine particles and the transparent coat layer, the reflectance of the transparent two-layer film can be greatly reduced.

以上説明したように、本発明のハロゲンで修飾された金銀含有微粒子の透明導電膜形成用塗布液を適用した場合、上記のごとく40〜120℃、好ましくは40〜100℃、更に好ましくは40〜80℃という、従来に比べて低い温度での加熱処理により、高い透過率と優れた導電性を有する透明導電膜を形成することができる。従って、基材に熱ダメージを与えることなくなるため、プラスチック基材や機能性有機層等の耐熱性が乏しい材質の基材上にも、優れた導電性の透明導電膜を形成することが可能である。   As described above, when the coating liquid for forming a transparent conductive film of gold-silver-containing fine particles modified with halogen according to the present invention is applied, 40 to 120 ° C., preferably 40 to 100 ° C., more preferably 40 to 120 ° C. as described above. A transparent conductive film having high transmittance and excellent conductivity can be formed by heat treatment at a temperature of 80 ° C., which is lower than the conventional temperature. Therefore, since no heat damage is caused to the base material, it is possible to form an excellent conductive transparent conductive film on a base material having poor heat resistance such as a plastic base material or a functional organic layer. is there.

このように、本発明の透明導電膜形成用塗布液を適用して形成した透明導電膜は、高い透過率と優れた導電性を有するため、例えば、ブラウン管(CRT)、プラズマディスプレイパネル(PDP)、蛍光表示管(VFD)、液晶ディスプレイ(LCD)、有機エレクトロルミネッセンス(EL)ディスプレイ等の各種表示装置(ディスプレイ)の前面板に適用される反射防止・帯電防止等の機能性フィルムや透明電極の他、表示装置内部の透明電極として、あるいは太陽電池、タッチパネル等の透明電極等に用いることができる。中でも有機エレクトロルミネッセンス(EL)ディスプレイは、耐熱性が乏しい材質の基材を用いるため特に有効である。   Thus, since the transparent conductive film formed by applying the coating liquid for forming a transparent conductive film of the present invention has high transmittance and excellent conductivity, for example, a cathode ray tube (CRT), a plasma display panel (PDP) Of anti-reflection and anti-static functional films and transparent electrodes applied to the front plates of various display devices (displays) such as fluorescent display tubes (VFD), liquid crystal displays (LCD), and organic electroluminescence (EL) displays In addition, it can be used as a transparent electrode inside a display device or a transparent electrode such as a solar cell or a touch panel. Among them, an organic electroluminescence (EL) display is particularly effective because it uses a base material made of a material having poor heat resistance.

以下、本発明の実施例を具体的に説明するが、本発明はこれら実施例に限定されるものではない。また、本文中の「%」は、透過率、反射率、ヘイズ値の(%)を除いて「重量%」を示し、また「部」は「重量部」を示している。   Examples of the present invention will be specifically described below, but the present invention is not limited to these examples. Further, “%” in the text indicates “% by weight” excluding (%) of transmittance, reflectance, and haze value, and “part” indicates “part by weight”.

[実施例1]
Carey−Lea法により銀微粒子のコロイド分散液を調製した。具体的には、9%硝酸銀水溶液330gに、23%硫酸鉄(II)水溶液390gと37.5%クエン酸ナトリウム水溶液480gの混合液を加え、沈降物を濾過・洗浄した後、純水を加えて、単分散銀微粒子のコロイド分散液(Ag:0.1%)を調製した。
[Example 1]
A colloidal dispersion of silver fine particles was prepared by the Carey-Lea method. Specifically, a mixture of 390 g of 23% iron (II) sulfate aqueous solution and 480 g of 37.5% sodium citrate aqueous solution was added to 330 g of 9% silver nitrate aqueous solution, the precipitate was filtered and washed, and then pure water was added. Then, a colloidal dispersion of monodispersed silver fine particles (Ag: 0.1%) was prepared.

この銀微粒子のコロイド分散液1200gに、ヒドラジン1水和物(N・HO)の1%水溶液100.0gと、塩化ナトリウム(NaCl)0.2gに水を加えて3200gにした液と、金酸カリウム[KAu(OH)]水溶液(Au:0.15%)3200gとを加え、撹拌することにより、表面がハロゲンで修飾され且つ金でコーティングされた金コート銀微粒子のコロイド分散液を得た。 To 1,200 g of this colloidal dispersion of silver fine particles, water was added to 100.0 g of a 1% aqueous solution of hydrazine monohydrate (N 2 H 4 .H 2 O) and 0.2 g of sodium chloride (NaCl) to make 3200 g. The solution and 3200 g of potassium goldate [KAu (OH) 4 ] aqueous solution (Au: 0.15%) are added and stirred to colloid of gold-coated silver fine particles whose surface is modified with halogen and coated with gold A dispersion was obtained.

このハロゲンで修飾された金コート銀微粒子のコロイド分散液を、イオン交換樹脂(三菱化学(株)商品名:ダイヤイオンSK1B,SA20AP)で脱塩処理した後、限外濾過を行って、金コート銀微粒子の濃縮を行った。得られた液にエタノール(EA)を加え、ハロゲンで修飾された金コート銀微粒子の分散(濃縮)液(Ag−Au:1.6%、Cl:0.016%、水:20.0%、EA:78.3%)(A液)を得た。   The colloidal dispersion of gold-coated silver fine particles modified with halogen is desalted with an ion exchange resin (Mitsubishi Chemical Co., Ltd. trade name: Diaion SK1B, SA20AP), and then ultrafiltered to obtain a gold coat. The silver fine particles were concentrated. Ethanol (EA) was added to the resulting liquid, and a dispersion (concentration) liquid of gold-coated silver fine particles modified with halogen (Ag-Au: 1.6%, Cl: 0.016%, water: 20.0%) , EA: 78.3%) (Liquid A).

このA液60gを撹拌しながら、ヒドラジン水溶液(N・HO:0.8%)0.8gを1分間かけて添加した後、室温で15分間保持し、更に過酸化水素水溶液(H:1.6%)0.6gを1分間かけて添加することにより、ハロゲンで修飾された連鎖状凝集金コート銀微粒子分散(濃縮)液(B液)を得た。 While stirring 60 g of this liquid A, 0.8 g of a hydrazine aqueous solution (N 2 H 4 .H 2 O: 0.8%) was added over 1 minute, and then kept at room temperature for 15 minutes, and further a hydrogen peroxide aqueous solution By adding 0.6 g of (H 2 O 2 : 1.6%) over 1 minute, a chain-aggregated gold-coated silver fine particle dispersion (concentration) liquid (liquid B) modified with halogen was obtained.

尚、上記ハロゲンで修飾された金コート銀微粒子の分散(濃縮)液(A液)にヒドラジン溶液を添加した際の金コート銀微粒子の安定性低下、及び、ヒドラジン溶液の添加で凝集した金コート銀微粒子の分散(濃縮)液に過酸化水素溶液を添加した際の安定性向上は、それら分散(濃縮)液のゼータ電位の測定値から科学的に確認することができた。   In addition, the stability of the gold-coated silver fine particles when the hydrazine solution is added to the dispersion (concentration) liquid (liquid A) of the gold-coated silver fine particles modified with the halogen, and the gold coat aggregated by the addition of the hydrazine solution. The stability improvement when the hydrogen peroxide solution was added to the dispersion (concentration) liquid of silver fine particles could be scientifically confirmed from the measured value of the zeta potential of the dispersion (concentration) liquid.

次に、上記B液に、エタノール(EA)、プロピレングリコールモノメチルエーテル(PGM)、ジアセトンアルコール(DAA)、ホルムアミド(FA)を加え、ハロゲンで修飾された連鎖状凝集金コート銀微粒子を含有する実施例1に係る試料1の透明導電膜形成用塗布液(Ag:0.08%、Au:0.32%、Cl:0.004%、水:5.0%、EA:64.5%、PGM:20.0%、DAA:10%、FA:0.05%)を得た。   Next, ethanol (EA), propylene glycol monomethyl ether (PGM), diacetone alcohol (DAA), and formamide (FA) are added to the liquid B, and chain-aggregated gold-coated silver fine particles modified with halogen are contained. The coating solution for forming a transparent conductive film of Sample 1 according to Example 1 (Ag: 0.08%, Au: 0.32%, Cl: 0.004%, water: 5.0%, EA: 64.5% , PGM: 20.0%, DAA: 10%, FA: 0.05%).

この透明導電膜形成用塗布液を透過電子顕微鏡で観察したところ、ハロゲンで修飾された連鎖状凝集金コート銀微粒子は、一次粒径7.2nm程度の金コート銀微粒子が連接した連鎖状凝集体(主に、直鎖状凝集体と擬似直鎖状凝集体)を形成しており、その主鎖長さは100〜500nmであった。   When this coating solution for forming a transparent conductive film was observed with a transmission electron microscope, the chain-like aggregated gold-coated silver fine particles modified with halogen were linked aggregates of gold-coated silver fine particles having a primary particle size of about 7.2 nm. (Mainly linear aggregates and quasi-linear aggregates) were formed, and the main chain length was 100 to 500 nm.

次に、上記ハロゲンで修飾された連鎖状凝集金コート銀微粒子を含有する試料1の透明導電膜形成用塗布液を、濾過精度(ポアサイズ)10μmフィルターで濾過した後、40℃に加熱されたPETフィルム(厚さ100μm)上に、スピンコート(110rpmで10秒間の後、130rpmで90秒間)し、続けてシリカゾル液(C液)をスピンコート(130rpm、80秒間)した後、120℃で5分間加熱処理して、ハロゲンで修飾された連鎖状凝集金コート銀微粒子を含有する透明導電膜と、酸化ケイ素を主成分とするシリケート膜からなる透明コート層とで構成された透明2層膜、即ち、実施例1に係る試料1の透明導電膜を得た。   Next, the transparent conductive film forming coating solution of Sample 1 containing the chain-aggregated gold-coated silver fine particles modified with the halogen is filtered through a filter with a filtration accuracy (pore size) of 10 μm, and then heated to 40 ° C. A film (thickness: 100 μm) was spin-coated (at 110 rpm for 10 seconds and then at 130 rpm for 90 seconds), and then a silica sol solution (liquid C) was spin-coated (130 rpm, 80 seconds), then 5 ° C. at 120 ° C. A transparent two-layer film composed of a transparent conductive film containing chain-aggregated gold-coated silver fine particles modified with halogen, and a transparent coat layer composed of a silicate film containing silicon oxide as a main component; That is, the transparent conductive film of Sample 1 according to Example 1 was obtained.

尚、上記シリカゾル液(C液)は、メチル基を含有するシリカゾル液(コルコート社製、商品名:メチルシリケート51)16.9部、メチルトリメトキシシラン[CHSi(OCH)]2.8部、エタノール56.2部、1%硝酸水溶液7.9部、純水14.7部を用いて、SiO(酸化ケイ素)固形分濃度が10%で、重量平均分子量が1550のものを調製し、これにエタノール(EA)、プロピレングリコールモノメチルエーテル(PGM)、ジアセトンアルコール(DAA)を加え、SiO:0.8%、PGM:20%、DAA:10%、エタノール及びその他:残部となるように調整したものである。ここで、SiO固形分濃度は、上記メチル基を含有するシリカゾル液に含まれるケイ素元素(Si)が全て酸化ケイ素であると仮定して計算した値である。 The silica sol solution (C solution) is a methyl sol-containing silica sol solution (trade name: Methyl silicate 51, manufactured by Colcoat Co., Ltd.) 16.9 parts, methyltrimethoxysilane [CH 3 Si (OCH 3 ) 3 ] 2 2.8 parts, ethanol 56.2 parts, 1% nitric acid aqueous solution 7.9 parts, pure water 14.7 parts, SiO 2 (silicon oxide) solid content concentration 10%, weight average molecular weight 1550 To which ethanol (EA), propylene glycol monomethyl ether (PGM), diacetone alcohol (DAA) was added, and SiO 2 : 0.8%, PGM: 20%, DAA: 10%, ethanol and others: The balance is adjusted to be the rest. Here, the SiO 2 solid content concentration is a value calculated on the assumption that all silicon elements (Si) contained in the silica sol solution containing methyl groups are silicon oxide.

上記試料1に関して、透明導電膜形成用塗布液のAg−Au濃度と、金コート銀微粒子の表面修飾、及び透明導電膜形成用塗布液をPETフィルムに塗布した後の加熱処理温度、並びに得られた透明導電膜の構造を、それぞれ下記表1に示す。また、PETフィルム上に形成された透明導電膜の膜特性(表面抵抗、可視光透過率、ヘイズ値、ボトム波長/ボトム反射率)を、それぞれ下記表2に示す。   Regarding the sample 1, the Ag—Au concentration of the coating solution for forming the transparent conductive film, the surface modification of the gold-coated silver fine particles, and the heat treatment temperature after coating the coating solution for forming the transparent conductive film on the PET film, and the obtained The structures of the transparent conductive films are shown in Table 1 below. Table 2 below shows the film properties (surface resistance, visible light transmittance, haze value, bottom wavelength / bottom reflectance) of the transparent conductive film formed on the PET film.

ここで、ボトム反射率とは透明導電性基材の反射プロファイルにおいて極小の反射率をいい、ボトム波長とは反射率が極小における波長を意味している。また、表1を含め本明細書において透過率とは、特に言及しない限り、透明基材を含まない透明導電膜だけの可視光透過率の値である。尚、表2において、透明基材(PETフィルム)を含まない透明導電膜だけの可視光透過率は、下記の計算式1により求められる。また、透明導電膜のヘイズ値は、透明基材(PETフィルム)を含まない透明導電膜だけのヘイズ値であって、下記の計算式2により求められている。   Here, the bottom reflectance means a minimum reflectance in the reflection profile of the transparent conductive substrate, and the bottom wavelength means a wavelength at which the reflectance is a minimum. Further, the transmittance in this specification including Table 1 is a value of a visible light transmittance of only a transparent conductive film not containing a transparent substrate unless otherwise specified. In Table 2, the visible light transmittance of only the transparent conductive film not containing the transparent substrate (PET film) is obtained by the following calculation formula 1. Moreover, the haze value of a transparent conductive film is a haze value only of the transparent conductive film which does not contain a transparent base material (PET film), Comprising: The following formula 2 is calculated | required.

[計算式1]
透明基材を含まない透明導電膜だけの透過率(%)=[(透明基材ごと測定した透過率)/(透明基材の透過率)]×100
[計算式2]
透明基材を含まない透明導電膜だけのヘイズ値(%)=(透明基材ごと測定したヘイズ値)−(透明基材のヘイズ値)
[Calculation Formula 1]
Transmittance (%) of only transparent conductive film not including transparent substrate = [(transmittance measured for each transparent substrate) / (transmittance of transparent substrate)] × 100
[Formula 2]
Haze value (%) of only transparent conductive film not containing transparent substrate = (haze value measured for each transparent substrate) − (haze value of transparent substrate)

尚、透明導電膜の表面抵抗は、三菱化学(株)製の表面抵抗計ロレスタAP(MCP−T400)を用い測定した。ヘイズ値と可視光透過率は、村上色彩技術研究所製のヘイズメーター(HR−200)を用いて測定した。反射率は、日立製作所(株)製の分光光度計(U−4000)を用いて測定した。また、連鎖状凝集金コート銀微粒子の形状、その主鎖長さと一次粒径は、日本電子(株)製の透過電子顕微鏡で評価した。   The surface resistance of the transparent conductive film was measured using a surface resistance meter Loresta AP (MCP-T400) manufactured by Mitsubishi Chemical Corporation. The haze value and visible light transmittance were measured using a haze meter (HR-200) manufactured by Murakami Color Research Laboratory. The reflectance was measured using a spectrophotometer (U-4000) manufactured by Hitachi, Ltd. The shape of the chain-aggregated gold-coated silver fine particles, the main chain length, and the primary particle size were evaluated with a transmission electron microscope manufactured by JEOL.

[実施例2]
実施例1に係わる連鎖状凝集金コート銀微粒子を含有する透明導電膜形成用塗布液とシリカゾル液(C液)を用い、これらを順にPETフィルム上に塗布した後の加熱処理を90℃で10分間行った以外は実施例1と同様にして、ハロゲンで修飾された連鎖状凝集金コート銀微粒子を含有する透明導電膜と、酸化ケイ素を主成分とするシリケート膜からなる透明コート層とで構成された透明2層膜、即ち実施例2に係る試料2の透明導電膜を得た。
[Example 2]
Using the coating solution for forming a transparent conductive film and the silica sol solution (C solution) containing the chain-aggregated gold-coated silver fine particles according to Example 1 and applying them sequentially on the PET film, the heat treatment was performed at 90 ° C. for 10 hours. Except for carrying out for minutes, it comprised like the Example 1 by the transparent conductive film containing the chain-aggregated gold coat silver fine particle modified with the halogen, and the transparent coat layer which consists of a silicate film | membrane which has silicon oxide as a main component. The transparent two-layer film thus obtained, that is, the transparent conductive film of Sample 2 according to Example 2 was obtained.

[実施例3]
実施例1に係わる連鎖状凝集金コート銀微粒子を含有する透明導電膜形成用塗布液とシリカゾル液(C液)を用い、これらを順にPETフィルム上に塗布した後の加熱処理を60℃で20分間行った以外は実施例1と同様にして、ハロゲンで修飾された連鎖状凝集金コート銀微粒子を含有する透明導電膜と、酸化ケイ素を主成分とするシリケート膜からなる透明コート層とで構成された透明2層膜、即ち実施例3に係る試料3の透明導電膜を得た。
[Example 3]
Using the coating liquid for forming a transparent conductive film and the silica sol liquid (C liquid) containing the chain-aggregated gold-coated silver fine particles according to Example 1, and applying these in order on the PET film, the heat treatment was performed at 60 ° C. at 20 ° C. Except for carrying out for minutes, it comprised like the Example 1 by the transparent conductive film containing the chain-aggregated gold coat silver fine particle modified with the halogen, and the transparent coat layer which consists of a silicate film | membrane which has silicon oxide as a main component. The transparent two-layer film thus obtained, that is, the transparent conductive film of Sample 3 according to Example 3 was obtained.

[実施例4]
上記実施例1の加熱処理の代りに、40℃に予熱したPETフィルム上に、実施例1に係わる透明導電膜形成用塗布液及びシリカゾル液(C液)を塗布・乾燥させただけで、ハロゲンで修飾された連鎖状凝集金コート銀微粒子を含有する透明導電膜と、酸化ケイ素を主成分とするシリケート膜からなる透明コート層とで構成された透明2層膜、即ち実施例4に係る試料4の透明導電膜を得た。
[Example 4]
Instead of the heat treatment in Example 1, the transparent conductive film forming coating solution and the silica sol solution (C solution) according to Example 1 were applied and dried on a PET film preheated to 40 ° C. A transparent two-layer film composed of a transparent conductive film containing chain-aggregated gold-coated silver fine particles modified with a transparent coating layer composed of a silicate film mainly composed of silicon oxide, that is, a sample according to Example 4 4 transparent conductive films were obtained.

[実施例5]
実施例1のハロゲンで修飾された連鎖状凝集金コート銀微粒子分散(濃縮)液(B液)に、バインダー成分としてのシリカゾル液(D液)、エタノール(EA)、プロピレングリコールモノメチルエーテル(PGM)、ジアセトンアルコール(DAA)、ホルムアミド(FA)を加えて、ハロゲンで修飾された連鎖状凝集金コート銀微粒子とバインダー成分を含有する実施例5に係る試料5の透明導電膜形成用塗布液(Ag:0.08%、Au:0.32%、Cl:0.004%、SiO:0.1%、水:5.2%、EA:64.2%、PGM:20.0%、DAA:10%、FA:0.05%)を得た。
[Example 5]
In the chain-aggregated gold-coated silver fine particle dispersion (concentration) liquid (liquid B) modified with halogen in Example 1, silica sol liquid (liquid D), ethanol (EA), propylene glycol monomethyl ether (PGM) as binder components , Diacetone alcohol (DAA) and formamide (FA) are added, and the coating liquid for forming a transparent conductive film of Sample 5 according to Example 5 containing chain-aggregated gold-coated silver fine particles modified with halogen and a binder component ( Ag: 0.08%, Au: 0.32 %, Cl: 0.004%, SiO 2: 0.1%, water: 5.2%, EA: 64.2% , PGM: 20.0%, DAA: 10%, FA: 0.05%).

ここで、上記シリカゾル液(D液)は、メチル基を含有するシリカゾル液(コルコート社製、商品名:メチルシリケート51)16.9部、メチルトリメトキシシラン[CHSi(OCH)]2.8部、エタノール56.2部、1%硝酸水溶液7.9部、純水14.7部を用いて、SiO(酸化ケイ素)固形分濃度が10%で重量平均分子量が4500のものを調製し、最終的に、SiO固形分濃度が5.0%となるようにエタノールで希釈し、更にアニオン交換樹脂で脱イオン処理して得られたものである。尚、SiO固形分濃度は、上記メチル基を含有するシリカゾル液に含まれるケイ素元素(Si)が全て酸化ケイ素であると仮定して計算した値である。 Here, the silica sol liquid (D liquid) is a methyl sol-containing silica sol liquid (manufactured by Colcoat, trade name: methyl silicate 51) 16.9 parts, methyltrimethoxysilane [CH 3 Si (OCH 3 ) 3 ] 2.8 parts, ethanol 56.2 parts, 1% nitric acid aqueous solution 7.9 parts, pure water 14.7 parts, SiO 2 (silicon oxide) solid content concentration 10%, weight average molecular weight 4500 Was finally diluted with ethanol so that the solid concentration of SiO 2 was 5.0%, and further deionized with an anion exchange resin. The SiO 2 solid content concentration is a value calculated on the assumption that all silicon elements (Si) contained in the silica sol solution containing methyl groups are silicon oxide.

上記透明導電膜形成用塗布液を濾過精度(ポアサイズ)10μmフィルターで濾過した後、40℃に加熱されたPETフィルム(厚さ100μm)上に、スピンコート(110rpmで10秒間の後、130rpmで90秒間)し、90℃で10分間加熱処理して、ハロゲンで修飾された連鎖状凝集金コート銀微粒子と酸化ケイ素バインダーを含有する透明単層膜、即ち実施例5に係る試料5の透明導電膜を得た。   The transparent conductive film forming coating solution is filtered through a 10 μm filter with a filtration accuracy (pore size), and then spin-coated on a PET film (thickness: 100 μm) heated to 40 ° C. for 10 seconds at 110 rpm and then at 90 rpm at 130 rpm. Second) and a heat treatment at 90 ° C. for 10 minutes to form a transparent monolayer film containing chain-aggregated gold-coated silver fine particles modified with halogen and a silicon oxide binder, that is, the transparent conductive film of Sample 5 according to Example 5 Got.

[比較例1]
実施例1に係わる連鎖状凝集金コート銀微粒子を含有する透明導電膜形成用塗布液とシリカゾル液(C液)を用い、これらを順にPETフィルム上に塗布した後の加熱処理を150℃で10分間行った以外は実施例1と同様にして、ハロゲンで修飾された連鎖状凝集金コート銀微粒子を含有する透明導電膜と、酸化ケイ素を主成分とするシリケート膜からなる透明コート層とで構成された透明2層膜、即ち比較例1に係る試料6の透明導電膜を得た。
[Comparative Example 1]
Using the coating liquid for forming a transparent conductive film and the silica sol liquid (C liquid) containing the chain-aggregated gold-coated silver fine particles according to Example 1, and applying these in order on a PET film, the heat treatment was performed at 150 ° C. at 10 ° C. Except for carrying out for minutes, it comprised like the Example 1 by the transparent conductive film containing the chain-aggregated gold coat silver fine particle modified with the halogen, and the transparent coat layer which consists of a silicate film | membrane which has silicon oxide as a main component. The transparent two-layer film thus obtained, that is, the transparent conductive film of Sample 6 according to Comparative Example 1 was obtained.

[比較例2]
実施例5に係わるハロゲンで修飾された連鎖状凝集金コート銀微粒子とバインダー成分を含有する透明導電膜形成用塗布液を用い、PETフィルム上に塗布した後の加熱処理を150℃で10分間行った以外は実施例5と同様にして、ハロゲンで修飾された連鎖状凝集金コート銀微粒子と酸化ケイ素バインダーを含有する透明単層膜、即ち比較例2に係る試料7の透明導電膜を得た。
[Comparative Example 2]
Using the coating solution for forming a transparent conductive film containing halogen-modified chain-aggregated gold-coated silver fine particles and a binder component according to Example 5, heat treatment was performed at 150 ° C. for 10 minutes after coating on a PET film. In the same manner as in Example 5 except that, a transparent monolayer film containing chain-aggregated gold-coated silver fine particles modified with halogen and a silicon oxide binder, that is, a transparent conductive film of Sample 7 according to Comparative Example 2 was obtained. .

[比較例3]
実施例1における塩化ナトリウム(NaCl)0.2gの代わりにピロ燐酸カリウム(K)1.05gを用い、最終的にピロ燐酸(イオン)で修飾された連鎖状凝集金コート銀微粒子を含有する比較例3に係る試料8の透明導電膜形成用塗布液(Ag:0.08%、Au:0.32%、P:0.007%、水:5.0%、EA:64.5%、PGM:20.0%、DAA:10%、FA:0.05%)を調整した。
[Comparative Example 3]
Chain-aggregated gold-coated silver finally modified with pyrophosphoric acid (ion) using 1.05 g of potassium pyrophosphate (K 4 P 2 O 7 ) instead of 0.2 g of sodium chloride (NaCl) in Example 1 the coating liquid for forming transparent conductive film of the sample 8 of Comparative example 3 containing fine particles (Ag: 0.08%, Au: 0.32%, P 2 O 7: 0.007%, water: 5.0% EA: 64.5%, PGM: 20.0%, DAA: 10%, FA: 0.05%).

この透明導電膜形成用塗布液と実施例1のシリカゾル液(C液)を用い、これらを順にPETフィルム上に塗布した後の加熱処理を90℃で10分間行った以外は実施例1と同様にして、ピロ燐酸(イオン)で修飾された連鎖状凝集金コート銀微粒子を含有する透明導電膜と、酸化ケイ素を主成分とするシリケート膜からなる透明コート層とで構成された透明2層膜、即ち比較例3に係る試料8の透明導電膜を得た。   This transparent conductive film-forming coating solution and the silica sol solution (C solution) of Example 1 were used, and the same heat treatment as that of Example 1 was performed at 90 ° C. for 10 minutes after sequentially applying them on a PET film. A transparent two-layer film comprising a transparent conductive film containing chain-aggregated gold-coated silver fine particles modified with pyrophosphoric acid (ions) and a transparent coat layer composed of a silicate film containing silicon oxide as a main component That is, a transparent conductive film of Sample 8 according to Comparative Example 3 was obtained.

上記した実施例2〜5及び比較例1〜3についても、実施例1と同様に、各透明導電膜形成用塗布液のAg−Au濃度と、金コート銀微粒子の表面修飾、及び加熱処理温度、並びに透明導電膜の構造を、それぞれ下記表1に示した。また、PETフィルム上に形成された透明導電膜の膜特性(表面抵抗、可視光透過率、ヘイズ値、ボトム波長/ボトム反射率)を、それぞれ実施例1と同様に測定して下記表2に示した。   For Examples 2 to 5 and Comparative Examples 1 to 3 described above, similar to Example 1, the concentration of Ag-Au in the coating liquid for forming the transparent conductive film, the surface modification of the gold-coated silver fine particles, and the heat treatment temperature The structures of the transparent conductive film are shown in Table 1 below. Further, the film properties (surface resistance, visible light transmittance, haze value, bottom wavelength / bottom reflectance) of the transparent conductive film formed on the PET film were measured in the same manner as in Example 1 and shown in Table 2 below. Indicated.

Figure 2005056771
Figure 2005056771

Figure 2005056771
Figure 2005056771

上記表1〜2の結果から明らかなように、ハロゲンで修飾された金コート銀微粒子を含む透明導電膜形成用塗布液を用いて得られた透明2層膜構造の透明導電膜について、実施例1〜4に係る試料1〜4と比較例1に係る試料6を比較すると、試料1〜4の透明導電膜は加熱処理温度が40〜120℃と低いにもかかわらず表面抵抗が432〜560Ω/□であり、従来と同様の高温(150℃)の加熱処理で得られた試料6の透明導電膜と同等の良好な表面抵抗が得られている。ただし、比較例1に係わる試料6では、基材であるPETフィルムの熱収縮が一部で見られた。   As is clear from the results of Tables 1 and 2 above, examples of transparent conductive films having a transparent two-layer structure obtained using a coating liquid for forming a transparent conductive film containing gold-coated silver fine particles modified with halogen were described in Examples. When comparing the samples 1 to 4 according to 1 to 4 and the sample 6 according to the comparative example 1, the transparent conductive films of the samples 1 to 4 have a surface resistance of 432 to 560Ω despite the low heat treatment temperature of 40 to 120 ° C. / □, and a good surface resistance equivalent to that of the transparent conductive film of Sample 6 obtained by heat treatment at the same high temperature (150 ° C.) as in the prior art is obtained. However, in Sample 6 according to Comparative Example 1, a part of the heat shrinkage of the PET film as the substrate was observed.

また、ハロゲンで修飾された金コート銀微粒子とバインダーを含有する透明導電膜形成用塗布液を用いて得られた透明導電膜について、実施例5に係る試料5と比較例2に係る試料7を比較すると、試料5の透明導電膜は加熱処理温度が90℃と低いにもかかわらず表面抵抗が839Ω/□であり、従来と同様の高温(150℃)の加熱処理で得られた試料7の透明導電膜と同等の良好な表面抵抗が得られている。ただし、比較例2に係わる試料7では、基材であるPETフィルムの熱収縮が一部で見られた。   Moreover, about the transparent conductive film obtained using the coating liquid for transparent conductive film formation containing the gold-coated silver fine particles modified with halogen and the binder, Sample 5 according to Example 5 and Sample 7 according to Comparative Example 2 were used. In comparison, the transparent conductive film of Sample 5 has a surface resistance of 839 Ω / □ even though the heat treatment temperature is as low as 90 ° C., and the transparent conductive film of Sample 7 obtained by the heat treatment at the same high temperature (150 ° C.) as in the prior art. Good surface resistance equivalent to that of the transparent conductive film is obtained. However, in Sample 7 according to Comparative Example 2, a part of the heat shrinkage of the PET film as the substrate was observed.

更に、実施例2に係る試料2の透明導電膜と比較例3に係る試料8の透明導電膜を比較すると、共に加熱処理温度は90℃と同じであるにもかかわらず、ハロゲンで修飾された金コート銀微粒子を含む透明導電膜形成用塗布液を用いた試料2の透明導電膜の表面抵抗が428Ω/□であるのに対し、比較例3に係る試料8の透明導電膜形成用塗布液では金コート銀微粒子がハロゲン以外のアニオン(ピロ燐酸イオン)で修飾されているため、得られた透明導電膜の表面抵抗は11500Ω/□と非常に高い値となっている。   Furthermore, when the transparent conductive film of Sample 2 according to Example 2 and the transparent conductive film of Sample 8 according to Comparative Example 3 were compared, both were modified with halogen even though the heat treatment temperature was the same as 90 ° C. The surface resistance of the transparent conductive film of Sample 2 using a coating liquid for forming a transparent conductive film containing gold-coated silver fine particles is 428 Ω / □, whereas the coating liquid for forming a transparent conductive film of Sample 8 according to Comparative Example 3 is used. Since the gold-coated silver fine particles are modified with anions other than halogen (pyrophosphate ions), the surface resistance of the obtained transparent conductive film is a very high value of 11500 Ω / □.

しかも、実施例1〜5に係る試料1〜5の透明導電膜においては、基材であるPETフィルムへの熱ダメージも全く見られなかった。また、表1〜2に示された結果から明らかなように、透明2層膜構造の実施例1〜4に係る試料1〜4の透明導電膜では、良好な導電性に加えて、可視光透過率や反射防止機能など優れた光学的特性を有していることが分る。   And in the transparent conductive film of the samples 1-5 which concern on Examples 1-5, the heat damage to the PET film which is a base material was not seen at all. Further, as is clear from the results shown in Tables 1 and 2, in the transparent conductive films of Samples 1 to 4 according to Examples 1 to 4 having a transparent two-layer film structure, in addition to good conductivity, visible light It can be seen that it has excellent optical characteristics such as transmittance and antireflection function.

Claims (7)

溶媒と、この溶媒に分散された平均粒径1〜50nmの金銀含有微粒子を主成分とし、該金銀含有微粒子の表面がハロゲンで修飾され、そのハロゲン量が金銀含有微粒子100重量部に対して0.2〜15重量部であることを特徴とする透明導電膜形成用塗布液。 The main component is a solvent and gold-silver-containing fine particles having an average particle diameter of 1 to 50 nm dispersed in the solvent, and the surface of the gold-silver-containing fine particles is modified with halogen, and the halogen amount is 0 with respect to 100 parts by weight of the gold-silver containing fine particles. A coating solution for forming a transparent conductive film, characterized in that it is 2 to 15 parts by weight. 金銀含有微粒子が連鎖状凝集体を形成していることを特徴とする、請求項1に記載の透明導電膜形成用塗布液。 The coating liquid for forming a transparent conductive film according to claim 1, wherein the gold-silver-containing fine particles form a chain aggregate. 金銀含有微粒子が、銀微粒子の表面に金がコーティングされた金コート銀微粒子であって、金のコーティング量が銀100重量部に対し5〜1900重量部の範囲に設定されていることを特徴とする、請求項1又は2に記載の透明導電膜形成用塗布液。 The gold-silver-containing fine particles are gold-coated silver fine particles in which gold is coated on the surface of the silver fine particles, and the gold coating amount is set in a range of 5 to 1900 parts by weight with respect to 100 parts by weight of silver. The coating liquid for transparent conductive film formation of Claim 1 or 2. 請求項1〜3に記載の透明導電膜形成用塗布液を塗布・乾燥した後、40〜120℃の温度で加熱処理して形成されることを特徴とする透明導電膜。 A transparent conductive film formed by applying heat treatment at a temperature of 40 to 120 ° C. after applying and drying the coating liquid for forming a transparent conductive film according to claim 1. 40〜100℃温度で加熱処理して形成されることを特徴とする、請求項4に記載の透明導電膜。 The transparent conductive film according to claim 4, wherein the transparent conductive film is formed by heat treatment at a temperature of 40 to 100 ° C. 6. 請求項1〜3に記載の透明導電膜形成用塗布液を塗布・乾燥した後、続けて透明コート層形成用塗布液を塗布・乾燥し、40〜120℃の温度で加熱処理して形成された、透明導電膜上に更に透明コート層を有する透明2層膜であることを特徴とする透明導電膜。 It is formed by applying and drying the transparent conductive layer forming coating solution according to claim 1, followed by applying and drying the transparent coating layer forming coating solution, followed by heat treatment at a temperature of 40 to 120 ° C. A transparent conductive film comprising a transparent two-layer film further having a transparent coating layer on the transparent conductive film. 請求項4〜6に記載の透明導電膜が、表示面の前面に配置される前面板、あるいは表示素子内に形成されていることを特徴とする表示装置。 7. A display device, wherein the transparent conductive film according to claim 4 is formed in a front plate disposed in front of the display surface or in a display element.
JP2003288383A 2003-08-07 2003-08-07 Transparent conductive film, method for manufacturing the same, and display device Expired - Fee Related JP4225155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003288383A JP4225155B2 (en) 2003-08-07 2003-08-07 Transparent conductive film, method for manufacturing the same, and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003288383A JP4225155B2 (en) 2003-08-07 2003-08-07 Transparent conductive film, method for manufacturing the same, and display device

Publications (2)

Publication Number Publication Date
JP2005056771A true JP2005056771A (en) 2005-03-03
JP4225155B2 JP4225155B2 (en) 2009-02-18

Family

ID=34367048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003288383A Expired - Fee Related JP4225155B2 (en) 2003-08-07 2003-08-07 Transparent conductive film, method for manufacturing the same, and display device

Country Status (1)

Country Link
JP (1) JP4225155B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269379A (en) * 2005-03-25 2006-10-05 Sumitomo Osaka Cement Co Ltd Transparent conductive membrane and its manufacturing method
JP2006327187A (en) * 2005-04-26 2006-12-07 Sumitomo Chemical Co Ltd Production process of reflection preventive laminate
JP2007112112A (en) * 2005-09-20 2007-05-10 Dainippon Ink & Chem Inc Metal laminate and its manufacturing method
JP2008103208A (en) * 2006-10-19 2008-05-01 Fujikura Ltd Method of manufacturing transparent conductive board and method of manufacturing electrode substrate
JP2009302020A (en) * 2008-06-17 2009-12-24 Idemitsu Kosan Co Ltd Conductive particle and its manufacturing method
JP2010037464A (en) * 2008-08-06 2010-02-18 Asahi Kasei E-Materials Corp Porous membrane and transparent electrode using this
CN103756426A (en) * 2014-01-15 2014-04-30 芜湖市宝艺游乐科技设备有限公司 Fluorescent heat dissipation coating

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269379A (en) * 2005-03-25 2006-10-05 Sumitomo Osaka Cement Co Ltd Transparent conductive membrane and its manufacturing method
JP4535327B2 (en) * 2005-03-25 2010-09-01 住友大阪セメント株式会社 Transparent conductive film and method for producing the same
JP2006327187A (en) * 2005-04-26 2006-12-07 Sumitomo Chemical Co Ltd Production process of reflection preventive laminate
JP2007112112A (en) * 2005-09-20 2007-05-10 Dainippon Ink & Chem Inc Metal laminate and its manufacturing method
JP2008103208A (en) * 2006-10-19 2008-05-01 Fujikura Ltd Method of manufacturing transparent conductive board and method of manufacturing electrode substrate
JP2009302020A (en) * 2008-06-17 2009-12-24 Idemitsu Kosan Co Ltd Conductive particle and its manufacturing method
JP2010037464A (en) * 2008-08-06 2010-02-18 Asahi Kasei E-Materials Corp Porous membrane and transparent electrode using this
CN103756426A (en) * 2014-01-15 2014-04-30 芜湖市宝艺游乐科技设备有限公司 Fluorescent heat dissipation coating

Also Published As

Publication number Publication date
JP4225155B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
JP4479161B2 (en) Transparent conductive film, coating liquid for forming transparent conductive film, transparent conductive laminated structure, and display device
KR100630595B1 (en) Transparent conductive layered structure and method of producing the same, and coating liquid for forming transparent conductive layer used in production of transparent conductive layered structure and method of producing the same
JP4232480B2 (en) Method for producing noble metal-coated silver fine particle dispersion, coating liquid for forming transparent conductive layer, transparent conductive substrate and display device
JP5580153B2 (en) Metal fine particle dispersion, metal fine particle, production method of metal fine particle dispersion, etc.
JP2012136725A (en) Metal particulate dispersion liquid, metal particulate, and method for producing metal particulate dispersion liquid or the like
JP2002131531A (en) Heat wave reflecting transparent substrate, method for manufacturing the same and display device for which heat wave reflecting transparent substrate is applied
JP4225155B2 (en) Transparent conductive film, method for manufacturing the same, and display device
JP4035934B2 (en) Transparent conductive substrate, method for producing the same, coating solution for forming transparent conductive layer used for production of transparent conductive substrate, and method for producing the same
KR100755155B1 (en) Liquid coating material for forming transparent conductive layer
JP4225156B2 (en) Transparent conductive film forming coating liquid, transparent conductive film and display device
JP2006032197A (en) Transparent bilayer film and its manufacturing method
CN100519414C (en) Applying fluid for forming transparent coating film and base material with transparent coating film, and display device
JP2005154453A (en) Coating liquid for forming transparent conductive layer and transparent conductive base material
JP4325201B2 (en) Transparent conductive layer forming coating liquid and transparent conductive film
JP3750461B2 (en) Transparent conductive layer forming coating liquid, transparent conductive layer and transparent conductive substrate
JP2005209350A (en) Transparent conductive film and manufacturing method of the same
JP4258281B2 (en) Coating liquid for forming transparent conductive layer and method for producing the same
JP2004335410A (en) Forming method of transparent electric conductive layer
JP2003123543A (en) Transparent conductive base material and its manufacturing method
JP2005100721A (en) Manufacturing method of transparent conductive substrate and substrate and display device
JP2659541B2 (en) Transparent electrode for transparent tablet
JP2003132734A (en) Coating solution for forming transparent electroconductive layer
JP4420200B2 (en) Method for producing coating liquid for forming transparent conductive layer
KR100839405B1 (en) Transparent conductive film and method of preparing same
JP2002343149A (en) Forming method of transparent electric conductive layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees