JP2005048902A - 成形ベローズの製造方法、および該方法により得られた成形ベローズ - Google Patents

成形ベローズの製造方法、および該方法により得られた成形ベローズ Download PDF

Info

Publication number
JP2005048902A
JP2005048902A JP2003282709A JP2003282709A JP2005048902A JP 2005048902 A JP2005048902 A JP 2005048902A JP 2003282709 A JP2003282709 A JP 2003282709A JP 2003282709 A JP2003282709 A JP 2003282709A JP 2005048902 A JP2005048902 A JP 2005048902A
Authority
JP
Japan
Prior art keywords
bellows
molded bellows
primary
molded
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003282709A
Other languages
English (en)
Inventor
Takehiro Nishijo
場 健 博 西
Masaharu Kawahara
原 政 春 川
Tatsuo Takamure
辰 雄 高牟礼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Valqua Industries Ltd
Nihon Valqua Kogyo KK
Original Assignee
Nippon Valqua Industries Ltd
Nihon Valqua Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Valqua Industries Ltd, Nihon Valqua Kogyo KK filed Critical Nippon Valqua Industries Ltd
Priority to JP2003282709A priority Critical patent/JP2005048902A/ja
Publication of JP2005048902A publication Critical patent/JP2005048902A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】
従来の成形ベローズに比べ、ばね定数が低い成形ベローズの製造方法、および該方法により得られた成形ベローズを提供することを目的とする。
【解決手段】
本発明に係る成形ベローズの製造方法は、
金属製管状部材に、外周方向に湾曲した複数の凸部を、軸方向に所定距離離間するように形成して、一次成形ベローズを形成する一次成形工程と、
前記一次成形工程で得られた一次成形ベローズを、軸方向に所定距離圧縮する圧縮工程と、
前記圧縮工程で圧縮された前記一次成形ベローズを、所定の温度で熱処理する熱処理工程と、
前記熱処理工程で熱処理された前記一次成形ベローズを、所定の長さとなるように軸方向に引き延ばす引張り工程と、
を有することを特徴とする。
【選択図】 図1

Description

本発明は、アキュムレータ、真空バルブ、加速器などに内蔵される成形ベローズの製造方法、および該方法により得られた成形ベローズに関する。
従来から、各種機器の密封部等には、金属製の溶接ベローズ、成形ベローズが広く用いられており、このうち成形ベローズは、溶接ベローズに比べて製造コストが低いため、多くの装置に用いられている。従来の成形ベローズの概略縦断面図を図3−2(F)に示す。図3−2(F)に示されるように、成形ベローズ100は、外周方向に湾曲した複数の凸部102と、隣り合う凸部102,102の間に形成された内方向に湾曲した凹部104とを有し、上端部と下端部にはリング状のフランジ106,108が備えられている。
しかしながら、従来の成形ベローズ100は、溶接ベローズと比べて、一定の軸方向の長さ(ベローズ長さ)において凸部102の数が少ない。したがって、溶接ベローズよりもばね定数が高く、同一のストロークを得るためには、倍以上のベローズ長さgが必要となる。したがって、スペースの限られた部位や、低いばね定数が要求される箇所では、成形ベローズを用いることは困難であった。
このような問題を解決するには、成形ベローズのばね定数を低くする必要があり、そのような方法としては、以下の方法がある。
(1)成形ベローズ100の凸部102の数を増やす。
(2)成形ベローズ100の板厚を薄くする。
(3)成形ベローズ100の凸部102の外径方向の高さh(スパン)を高くする。
(4)凸部102と凹部104の湾曲部の曲率半径を小さくすることにより、凸部102間の距離i(ピッチ)を小さくし、ベローズ長さgにおける凸部102の数を増やす。
しかしながら、上記(1)の方法は、成形ベローズの軸方向の長さが長くなるため問題がある。また、上記(2)および(3)の方法は、成形ベローズの強度自体が低下し、成形ベローズ内外の圧力差により成形ベローズが変形・座屈する要因となる。一方、上記(4)の方法は、効果的な方法であるが、凸部102間の距離i(ピッチ)を小さくするためには、成形において使用する金型の板厚を薄くする必要がある。そのため、金型の強度が低下し、成形ベローズを製造する際に金型が破損する恐れがある。
また、上記(4)の別方法としては、図8にその工程を示すように、凸部を形成して一次成形ベローズを成形し(S1)、一次成形ベローズを軸方向に圧縮し(S2)、圧縮された一次成形ベローズを軸方向に引っ張り(S3)、次いで熱処理する(S4)ことにより成形ベローズを製造する方法が提案されている(例えば、特許文献1参照)。
しかしながら、ベローズを軸方向に圧縮しても材料が充分な塑性変形を起こさず、除荷すると元の位置に戻ってしまう場合がある。したがって、このような方法では、一定のベローズ長さにおいて、ばね定数が低い成形ベローズを製造するには限界があった。
一方、加速器などの真空ダクトの継手部においては、軽量、非磁性、低放射化、低2次電子放出性等の理由から、チタン製の成形ベローズが用いられはじめている。しかしながら、チタンは、SUSと比較してスプリングバックが大きく、非特許文献1には15%ほどスプリングバックによる戻り角度の割合が大きいことが記載されている。したがって、特に、成形ベローズの材料としてスプリングバックの大きいチタン材を用いた場合、一定
のベローズ長さにおいて、ばね定数が低い成形ベローズを製造することはさらに困難であるという問題があった。
特開2002−5288号公報 「チタンの加工技術」(社)日本チタン協会編 日刊工業新聞社 P74図3−7、図3−8
本発明は、前記のような従来技術に伴う課題を解決しようとするものであって、従来の成形ベローズに比べ、ばね定数が低い成形ベローズの製造方法、および該方法により得られた成形ベローズを提供することを目的としている。
本発明は、前述したような従来技術における課題及び目的を達成するために発明されたものであって、本発明に係る成形ベローズの製造方法は、
(1)金属製管状部材に、外周方向に湾曲した複数の凸部を、軸方向に所定距離離間するように形成して、一次成形ベローズを形成する一次成形工程と、
前記一次成形工程で得られた一次成形ベローズを、軸方向に所定距離圧縮する圧縮工程と、
前記圧縮工程で圧縮された前記一次成形ベローズを、所定の温度で熱処理する熱処理工程と、
前記熱処理工程で熱処理された前記一次成形ベローズを、所定の長さとなるように軸方向に引き延ばす引張り工程と
を有することを特徴とする。
このように、圧縮工程と引張り工程との間に、所定の温度で熱処理する熱処理工程を行うことにより、圧縮により形成される所望のベローズ形状を保持することができ、ピッチの小さい成形ベローズが得られる。
したがって、従来の成形ベローズと比較して、同一のベローズ長さにおいて、ばね定数の小さい成形ベローズを製造することができる。
(2)前記圧縮工程において、一次成形ベローズを圧縮された状態に固定し、前記熱処理工程おいて、前記固定された一次成形ベローズを、所定の温度で熱処理することが好ましい。
このように、圧縮状態で固定された一次成形ベローズを、所定の温度で熱処理することにより、除荷後のスプリングバックにより圧縮前の状態に戻ってしまう材料を用いた場合であっても、圧縮により形成される所望のベローズ形状を除荷後も保持することができ、ピッチの小さい成形ベローズを得ることができる。
したがって、ベローズ材料に、どのような材料を用いた場合であっても、従来の成形ベローズと比較して、同一のベローズ長さにおいて、ばね定数の小さい成形ベローズを容易に製造することができる。
(3)前記圧縮工程において、前記一次成形ベローズに形成された複数の凸部間にスペーサーを介在させて該一次成形ベローズを軸方向に所定距離圧縮するとともに、その圧縮された状態で一次成形ベローズを固定することも好ましい。
このように、一次成形ベローズにリング状のスペーサーを配設し、軸方向に圧縮することにより、凸部と凹部の軸方向の幅を略同一とすることができ、さらに凸部と凹部の先端部の曲率半径を略同一とすることができる。
したがって、ピッチが小さく、凸部が多い成形ベローズを製造しても、ベローズの製品寿命に悪影響を及ぼすことがない。
(4)前記熱処理工程が、真空中、または不活性ガスの存在下で行われることが好ましい。
(5)前記熱処理工程が、前記金属製管状部材の再結晶温度以下となる温度で熱処理することが望ましい。
このような条件で、熱処理工程の行うことにより、一次成形ベローズの内部応力を緩和させることができる。したがって、スプリングバックを抑え、さらにピッチが小さく、かつ製品寿命に優れた成形ベローズを得ることができる。
(6)前記金属製管状部材が、チタンから形成されていることが好ましい。
本発明の製造方法によれば、成形ベローズの材料としてスプリングバックの大きいチタン材料を用いた場合であっても、ばね定数が低い成形ベローズを製造することができる。(7)本発明に係る成形ベローズは、前記(1)から(6)のいずれかに記載の方法により製造されたことを特徴とする。
(8)本発明に係るチタン製成形ベローズは、加速器に用いられることが好ましい。
本発明によれば、圧縮工程と引張り工程との間に、所定の温度で熱処理する熱処理工程を行っているため、圧縮により形成される所望のベローズ形状を保持することができ、ピッチの小さい成形ベローズが得られる。したがって、従来の成形ベローズと比較して、同一のベローズ長さにおいて、ばね定数の小さい成形ベローズを製造することができる。
また、本発明によれば、圧縮状態で固定された一次成形ベローズを、所定の温度で熱処理する熱処理工程を行う。そのため、除荷後のスプリングバックにより圧縮前の状態に戻ってしまうような材料を用いた場合であっても、圧縮により形成される所望のベローズ形状を除荷後も保持することができ、ピッチの小さい成形ベローズを得ることができる。したがって、ベローズ材料に、どのような材料を用いた場合であっても、従来の成形ベローズと比較して、同一のベローズ長さにおいて、ばね定数の小さい成形ベローズを容易に製造することができる。
以下、本発明の実施の形態を図面に基づいてより詳細に説明する。
なお、各図面において同一の部分を示す場合には、同一の符号を記す。
図1は、本発明の成形ベローズの製造方法の工程図、図2−1〜図2−4は一次成形ベローズの製造工程を表わす概略縦断面図、図3−1〜図3−3は、成形ベローズの製造工程を表わす概略縦断面図を示している。
本発明の成形ベローズの製造方法は、図3−3(F)に示される成形ベローズ1の製造方法であって、図1に示すように、
金属製管状部材に、外周方向に湾曲した複数の凸部を、軸方向に所定距離離間するように形成して、一次成形ベローズを形成する一次成形工程S1と、
前記一次成形工程S1で得られた一次成形ベローズを、軸方向に所定距離圧縮する圧縮工程S2と、
前記圧縮工程S2で圧縮された前記一次成形ベローズを、所定の温度で熱処理する熱処理工程S3と、
前記熱処理工程S3で熱処理された前記一次成形ベローズを、所定の長さとなるように軸方向に引き延ばす引張り工程S4と
を基本的に有する。
以下、図を用いて各工程について説明する。
一次成形工程S1は、金属製管状部材に、外周方向に湾曲した複数の凸部を、軸方向に所定距離離間するように形成して、図3−1に示すような一次成形ベローズ10を得る工程である。
図2−1から図2−4に、一次成形ベローズ10の製造工程を表わす概略縦断面図を示す。図に示すように、一次成形ベローズ10は成形機20によって製造される。
これらの図に示すように、成形機20は、第1金型部22と、第2金型部24と、マンドレル26とを基本的に備えている。
第1金型部22は、金型22aとホルダー部22bとからなり、第2金型部24は、金型24aとホルダー部24bとからなる。第1金型部22と第2金型部24は、図示しないアクチュエーターにより管状部材28の軸方向に接離自在に移動することができる。さらに、第1金型部22と第2金型部24は、2分割可能に構成されており、それぞれアクチュエーターにより径方向に移動することができる。
また、金型22aと金型24aの対向する面30,32は、金型22aと金型24aを圧接して管状部材28に形成しようとする所望の凸形状に合わせて、型が形成されるように構成されている。
マンドレル26は、ドーム状の先端部を有する略円柱形状を有しており、その内部には液体導入路34が軸方向に形成されている。液体導入路34は所定の位置で液圧室36に連通され、図示しない加圧液体供給装置は、液体導入路34を介して、液圧室36に加圧された液体を供給することができるように構成されている。
また、液圧室36には、液圧室36と管状部材28の内周面とが接する端部に、全周に亘って2本のOリング装着溝38,40が形成され、これらの溝には各々Oリング42,44が装着されており、供給された加圧液体が漏れないように構成されている。
このような成形機20を用いた一次成形ベローズ10の製造工程を以下に説明する。
まず、図2−1(A)に示すように、管状部材28をマンドレル26に挿入する。このとき第1金型部22と、第2金型部24とは、軸方向に所定距離離間させておく。この管状部材28は、具体的には、ベローズ材料(SUS、Ti、Al等)となる薄板(通常0.15〜0.3mm)をロール状に巻き、筒状に形を整えた後、継ぎ目を溶接して製造される。また、シームレス成形による溶接部のない管状部材を用いても良い。
次に、図2−1(B)に示すように、図示しない供給装置から加圧された液体46(たとえば水)を、液体導入路34を介して液圧室36に供給し、管状部材28の内周面に圧力をかけ、外径方向に膨張させる。
管状部材28を所定の量膨張させた後、図2−2(C)に示すように、液圧をかけた状態のまま第2金型部24を第1金型部22の方向に向かって移動させ、管状部材28の膨張した部位48を、外径方向に湾曲した凸部12に成形する。このようにして、凸部12
を全周に亘って形成する。本実施態様においては、凸部12が断面略U字状となる例によって説明するが、特に限定されるものではなく、波型形状であってもよい。
凸部12を形成した後、図2−2(D)に示すように、液圧を落として液体46を液圧室36、凸部12内から抜く。次いで、第2金型部24を第1金型部22から図示される方向に所定距離離間させた後、第1金型部22および第2金型部24を各々図示される外径方向に分割し、管状部材28から外径方向に離間させる。
外径方向に離間された、第1金型部22および第2金型部24を、次に凸部12を形成しようとする方向に所定距離移動させる。具体的には、図2−3(E)に示すように、第2金型部24を図2−1(A)に示した初期位置へ、第1金型部22を金型22aが凸部12を越えるように図示する方向へ移動させる。
これら金型部22,24を移動させた後、分割されていた第1金型部22をそれぞれ内径方向に移動させて閉じる(図2−3(F))。次いで、図2−4(G)に示すように、第1金型部22を図2−1(A)に示した初期位置まで移動させると共に、管状部材28をマンドレル26表面をスライドさせ、次の凸部12が形成される所定の位置に管状部材28をセットする。
次いで、分割されていた第2金型部24をそれぞれ内径方向に移動させて閉じ、管状部材28に次の凸部12を成形する準備が完了する(図2−4(H))。
このようにして、管状部材28に凸部12を順次成形していき、一次成形ベローズ10を成形する。
本実施態様においては、管状部材28の端部から凸部12を順次形成する例によって示したが、一次成形ベローズ10が得られるのであれば、成形方法は、特に限定されず、複数の凸部12を一度に液圧成形してもよい。
このようにして成形される一次成形ベローズ10は、図3−1(A)にその縦断面図を示すように、外周方向に湾曲した複数の凸部12が、軸方向に所定距離離間するように形成されている。さらに、隣り合う凸部12の間には、内方向に湾曲した凹部14が形成されている。
次に、前記工程で得られた一次成形ベローズ10を、軸方向に所定距離圧縮する圧縮工程S2を行う。
具体的には、まず、図3−1(B)に示すように、一次成形ベローズ10に形成された全ての凹部14に、リング状のスペーサー50を配設する。
リング状のスペーサー50は、図4にその上面図を示すように、2つの略U字状の部材52,54から形成されおり、その内周面52a,54aにより、一次成形ベローズの凹部14を両側から挟み込むように配設される。このとき、2つの略U字状の部材52,54は、図示しない固着具を介して固着されていてもよい。
リング状のスペーサー50は、特に限定されないが、たとえばSUSのような金属製のスペーサーが用いられる。また、その板厚は、特に限定されず、得られる成形ベローズの所望のベローズ長さにより適宜選択して用いられる。ベローズ長さとは、ベローズ上端から下端までの軸方向距離を意味する。
さらに、一次成形ベローズ10の上端部10aと下端部10bとに、その形状に合わせて、リング状のカラー部材51a,51bをそれぞれ装着する。カラー部材としては、金属製のものが用いられる。また、カラー部材51に代えて、フランジを予め固着してもよい。
次いで、スペーサー50とカラー部材51a,51bとが装着された一次成形ベローズを、軸方向に所定距離圧縮するとともに、その圧縮された状態で一次成形ベローズを固定する。
具体的には、図3−2(C)に示される圧縮装置60を用いて行われる。
圧縮装置60は、圧縮部62と、圧縮固定部64とからなり、圧縮固定部64は、断面略H字状の台座66と、断面下方凹状の加圧部材68とを基本的に備える。
台座66は、全周に亘って上方向に設けられた突設部66aを有し、一方、加圧部材68は、全周に亘って下方向に設けられた突設部68aを有する。さらに、台座66と加圧部材68の中心部を軸70が軸通し、軸70の下端部は台座66に固定されている。一方、軸70の上端部からは固着具72が挿嵌されており、圧縮部62により圧縮された加圧部材68を、所定の位置で固定することができるようになっている。
このような圧縮装置60において、突設部66aと突設部68aとの間に、前記のスペーサー50とカラー部材51a,51bとが装着された一次成形ベローズ10を設置し、図示しない駆動装置によって圧縮部62を軸方向に移動させる。突設部68aが、一次成形ベローズ10に装着されたリング状のカラー部材51aに当接した後も所定の距離下降を続け、一次成形ベローズ10を軸方向に圧縮する。一次成形ベローズ10は、圧縮後の軸方向の長さaが、「設計上のベローズ収縮時における成形ベローズ長さ×(0.8〜0.9)」程度の長さになるまで圧縮される。
一次成形ベローズ10を所定距離圧縮したのち、固着具72で加圧部材68を固定し、一次成形ベローズ10を圧縮した状態で固定する。
このように、一次成形ベローズ10に形成された全ての凹部14に、リング状のスペーサー50を配設して、軸方向に所定距離圧縮することにより、凸部12と凹部14とを均等に変形させることができ、これらの先端部の曲率半径を略同一とすることができる。したがって、図3−3(F)に示すように、得られる成形ベローズ1において、形成される凸部12の軸方向の幅bと、凹部14の軸方向の幅cとが略同一となる。したがって、一定のベローズ長さにおいてピッチが小さく、凸部の数が多い成形ベローズを製造することができ、さらに成形ベローズの製品寿命に悪影響を及ぼすことがない。
さらに、図5(A)に示すように、一次成形ベローズ10に形成された全ての凹部14に、リング状のスペーサー50を配設すると共に、一次成形ベローズ10に形成された全ての凸部12の内側に、リング状のスペーサー53を配設し、軸方向に所定距離圧縮することも好ましい。それにより、凸部12と凹部14とを均等に変形させることができ、これらの先端部の曲率半径を略同一とすることも可能である。
このスペーサー53は、図5(B)にその上面図を示すように、4つの略U字状の部材から形成されおり、一次成形ベローズの凸部12に内周面側から配設される。このとき、4つの略U字状の部材は、図示しない固着具を介して固着されてもよい。
また、本実施態様では、スペーサー50を凹部14に配置した例によって示したが、得
られる成形ベローズ1に形成される凸部12の軸方向の幅bと、凹部14の軸方向の幅cとが、均一でない場合であっても、それが成形ベローズの性能に影響を与えない程度であれば、スペーサー50を用いないで圧縮することも可能である。
また、前記圧縮工程S2において、一次成形ベローズ10を軸方向に圧縮するとともに、該ベローズ内部に加圧された液体を供給して、該ベローズの内周面側から外径方向に液圧を加え、凹部14の曲率半径を小さくすることも好ましい。
具体的には、図6に示すような圧縮装置61が用いられる。圧縮装置61は、軸部56,56がリング状の圧縮治具55a,55bの両端部を挿通し、圧縮治具55a,55bは軸部56上を互いに接離自在に移動可能に構成されている。この圧縮治具55a,55bの間に、スペーサー50が配設された一次成形ベローズ10を設置し、圧縮治具55a,55bをそれぞれ軸方向(図示方向)に移動させることにより一次成形ベローズ10が圧縮される。さらに、一次成形ベローズ10の外方向には、筒状のスペーサー押さえ部58が配置され、一次成形ベローズ10が圧縮される際にスペーサー50が所定の位置に保持されるように構成されている。リング状の圧縮治具55a,55bと一次成形ベローズ10には、マンドレル26が挿入されており、このマンドレル26は図示しない供給装置から加圧された液体46(たとえば水)を、液体導入路34を介して液圧室36に供給し、圧縮された一次成形ベローズ28の凹部14に内側から圧力をかけることができる。このように、一次成形ベローズ10の内周面側から外径方向に液圧を加えることにより、凹部14の曲率半径を小さくすることができる。このように一次成形ベローズ10に液圧をかけて成形した後、マンドレル26を抜き去り、図示しない固着具により、圧縮された状態で固定することができる。
このように、図6に示すような圧縮装置61を用いることにより、ピッチの小さい成形ベローズが得られ、従来の成形ベローズと比較して、同一のベローズ長さにおいて、ばね定数の小さい成形ベローズをより効率的に製造することができる。
次に、圧縮された状態で固定された一次成形ベローズ10を、所定の温度で熱処理する熱処理工程S3を行う。
具体的には、図3−2(D)に示すように、一次成形ベローズ10が圧縮固定された圧縮固定部64を、真空炉74に入れる。真空炉74内を、高真空〜超高真空領域まで真空引きした後、図示しないヒーターで炉内温度(熱処理温度)を150〜400℃まで昇温させる。所定の温度で30分〜1時間熱処理し、低温焼鈍を行う。真空条件は、1〜1×10-8Pa、好ましくは1×10-2〜1×10-8Paであることが望ましい。この様な条件で低温焼鈍を行うことにより、一次成形ベローズ10の内部応力を緩和させることができる。したがって、スプリングバックを抑え、さらにピッチが小さく、かつ製品寿命に優れた成形ベローズを得ることができる。
低温焼鈍の熱処理条件(温度・時間)は、ベローズ材料により好ましい範囲が異なり、ベローズ材料の再結晶温度以下の温度で低温焼鈍を行う。
具体的には、ベローズ材料としてSUSを用いた場合、熱処理温度を250〜400℃、好ましくは300〜350℃とし、10〜60分間、好ましくは30〜60分間、熱処理することが望ましい。一方、ベローズ材料としてTiを用いた場合、熱処理温度を150〜400℃、好ましくは150〜250℃とし、10〜60分間、好ましくは30〜60分間、熱処理することが望ましい。
このような条件で、それぞれの材料を低温焼鈍することにより、一次成形ベローズ10
の内部応力を緩和させることができる。したがって、スプリングバックを抑え、さらにピッチが小さく、かつ製品寿命に優れた成形ベローズを得ることができる。
低温焼鈍を行った後、真空中で室温になるまで約1時間放置(徐冷)し、次いで真空炉から取りだし、圧縮固定部64、スペーサー50およびカラー部材51a,51bを取り外し、熱処理された一次成形ベローズ10を得る。また、熱処理後、不活性ガスを真空炉に導入し、20分間程度で急冷させることも可能である。ただし、急冷の場合は徐冷とは異なり、ベローズ材料によっては残留応力が残り製品寿命に影響を与える可能性もある。
本実施態様においては、熱処理工程S3を真空中で行う例によって説明したが、大気中、または不活性ガス雰囲気下で行うこともできる。しかしながら、大気中で熱処理を行うと、一次成形ベローズ10の表面に酸化物が生じる可能性がある。特に、得られる成形ベローズが、加速器のダクト継手等の超高真空条件下で用いられる場合、この酸化物が超高真空中に水分(H2O)等のアウトガスを放出するため好ましくない。また、ベローズ材料
としてのチタンは、水素を吸収しやすく、得られる成形ベローズが真空中に水素を放出して、真空の質を低下させる要因ともなる。したがって、得られる成形ベローズが、真空条件下で用いられる場合には、真空中または不活性ガス雰囲気にて熱処理を行うことが好ましい。
また、不活性ガス雰囲気下で熱処理を行う場合、不活性ガスとしては高純度アルゴンが好ましく用いられる。しかしながらこの不活性ガスは高価なため、真空中で熱処理を行うほうが製造コストの面からより好ましい。
ただし、大量の一次成形ベローズ10を一度に熱処理する場合には、不活性ガス雰囲気下で熱処理を行うことも好ましい。つまり、炉の中に一次成形ベローズ10を大量に入れると、図示しないヒーターに対して、陰になる一次成形ベローズの温度が低くなるため、熱処理のムラが生じる場合がある。この場合、不活性ガスを導入することにより温度分布を均一にすることができる。したがって、一回の処理で多数の製品を処理する場合には不活性ガスを用いて熱処理することが好ましい。不活性ガスを用いる場合、一旦炉内を真空引きした後に不活性ガスを導入する。
さらに、熱処理工程S3を通常焼鈍により行うこともでき、熱処理条件(温度・時間)は、ベローズ材料により好ましい範囲が異なり、ベローズ材料の再結晶温度を超えた温度、または変態点温度以上の温度で熱処理を行う。
具体的には、ベローズ材料としてSUSを用いた場合、熱処理温度900〜1000℃で、10〜120分間熱処理し、一方、ベローズ材料としてTiを用いた場合、熱処理温度538〜816℃で、10〜120分間熱処理する。
このように、本発明の熱処理工程S3においては、圧縮された状態で固定された一次成形ベローズ10を、上述の条件で熱処理する。これに対し、従来のたとえば特開2002−5288号公報に記載の方法においては、1次成形後に圧縮を行い、その後引張り工程を経てから熱処理を行っている。この方法では圧縮しても、特にスプリングバックの大きいTi材の場合、除荷後のスプリングバックにより元の状態に近いピッチまで戻ってしまう。
しかしながら、本発明の製造方法によれば、圧縮されたベローズ形状を除荷後も保持することができるため、スプリングバックの大きい材料を用いた場合でも、ピッチの小さいベローズを製作することが可能となる。したがって、従来の成形ベローズと比較して、ばね定数の小さい成形ベローズを製造することができる。
次に、熱処理された一次成形ベローズ10を、所定の長さとなるように軸方向に引き延ばす引張り工程S4を行う。
具体的には、図3−3(E)に示すように、一次成形ベローズ10の両端部にリング状のフランジ76,77を溶接して固着し、引張り装置78を用いて一次成形ベローズ10を軸方向に引っ張る。
この引っ張り装置78は、基本的に、架台80と、昇降部材84とから構成されている。
架台80には、一対のフランジ固定部82が設けられ、その上端部が内方向に曲げられ断面逆L字状となり、突設部82aが設けられている。
一方、昇降部材84は、図示しない駆動部により昇降自在に構成され、その昇降部材84は、その下端部が内方向に曲げられ断面L字状となり、突設部84aが設けられている。
一方、一次成形ベローズ10に固着されたリング状のフランジ76,77は、一次成形ベローズ10の凸部12の外方に突出した外円部76a,77aを有する。したがって、図3−2(E)に示すように、フランジ76の外円部76aを、各々突設部82aの下面、突設部84aの上面に当接するように配置し、図示しない駆動部により、昇降部材84,84を図示する方向に同じ距離上昇させる。それにより、一次成形ベローズ10を軸方向に引っ張ることができる。通常、得られる成形ベローズのベローズ長さが、設計上の所望の長さになるまで延ばす。
このようにして、図3−3(F)に示されるような、本発明の成形ベローズ1を製造することができる。
図3−3(F)において、本発明の成形ベローズ1と、従来の成形ベローズ100とを比較して示す。
このように、本発明の本発明の成形ベローズ1は、従来の成形ベローズ100と比較して、同一のベローズ長さにおいて、凸部12の数が多く、ばね定数が約30〜40%低い成形ベローズを得ることができる。さらに、成形ベローズの製品寿命は、従来品とほぼ同等である。換言すれば、同じばね定数とした場合、既存の成形ベローズ100よりもベローズ長さが約25%短い成形ベローズを製造することができる。
本発明の成形ベローズは、上述の方法によって製造することができるが、成形ベローズの製品寿命を延ばしたい場合や、引張り工程S4における延ばし量が大きい場合には、再度熱処理工程S3と同様な条件でアニールを行うことも好ましい。
本発明の製造方法は、いずれのベローズ材料であっても成形ベローズを製造することができるが、特にスプリングバックの大きいTi材を用いた場合に有用である。
このようにして製造される本発明の成形ベローズは、アキュムレータ、真空バルブ、加速器、真空機器の軸シールなどに用いられ、同じベローズ長さにおいて従来の成形ベローズに比べてばね定数が低いため、加速器に用いることが特に好ましい。
以上、本発明の好ましい実施態様を説明したが、本発明はこれに限定されることはなく
本発明の目的を逸脱しない範囲で種々の変更が可能である。
〔実施例〕
以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
なお、以下の実施例において、ばね定数、成形ベローズの製品寿命は以下のようにして測定した。
<ばね定数>
引張圧縮試験機(製品名:オートグラフ、島津製作所製)にて、成形ベローズを、軸方向に圧縮荷重Fを徐々に印加すると同時に、成形ベローズの変形量Lを測定した。これらの結果より、次式にてばね定数(N/mm)を求めた。
式:ばね定数=F(N)/L(mm)
<成形ベローズの製品寿命>
図7に試験状態を示す該略縦断面図を示す。図に示すように、まず、成形ベローズ1の上端部に固着されたフランジ76を、テーブル90の下面に固定し、成形ベローズ1の下端部に固着されたフランジ77をステージ92の上面に固定する。また、テーブル90には、軸方向に貫通して排気管94が設けられており、排気管94を介して、テーブル90とステージ92との間に設置された成形ベローズ1内部を約10Paの真空にする。また、ステージ92は図示しない駆動装置により上下運動可能に構成されており、ステージ92を120回/分で上下運動させ、成形ベローズに繰り返し変位を与える。実施例1と比較例3は上下運動のストローク距離を10mm、実施例2と比較例4は22mmとして、成形ベローズの製品寿命を測定した。その結果、成形ベローズ1が破損し、真空状態の成形ベローズ内部に、空気が流入した時点における、繰り返し変位の回数を成形ベローズの製品寿命とした。
上述の成形ベローズの製造方法に準じて、成形ベローズを製造した。具体的には、まず、ベローズ材料(純チタン(JIS H4600 TP340C)、板厚0.2mm)からφ52mmの素管を製造
する。この素管を、図2-1から図2-4に示したように、液圧成形機20にセットし、凸部数が12個であり、軸方向のベローズ長さが80mmの一次成形ベローズ10を製造する。次いで、図3-1から図3-2に示すように、一次成形ベローズ10の凹部14に、スペーサー50(内径φ52.5mm、外径φ75mm、板厚1mm、2分割型(SUS製))を配置し、圧縮
装置60にて、フランジ面間が37mmとなるまで軸方向に圧縮し、その状態で固定する。一次成形ベローズ10を圧縮固定した状態で真空炉74に入れ、1×10-4Pa、200℃で30分間低温焼鈍を行った。その後、6時間かけて徐冷した後、真空炉74から取り出し、図3-3に示すように引張り装置78にて、フランジ面間距離が53mmとなるまで
延ばした。このようにして、実施例1の成形ベローズを製造した。この成形ベローズのばね定数および製品寿命を上記の方法により測定した。
成形ベローズのばね定数を表1に、製品寿命を表2に示す。
〔比較例1〕
実施例1と同様にして一次成形ベローズ10を製造する。この一次成形ベローズ10にスペーサーを配置することなく、そのまま圧縮装置60にて、ベローズの凸部12同士が密着するまで軸方向に圧縮する。一次成形ベローズ10を圧縮した後、除荷し、次いで引張り装置78にて、フランジ面間距離が72mmとなるまで延ばし、比較例1の成形ベローズを得た。この成形ベローズのばね定数を、上記の方法により測定した。
結果を表1に示す。
凸部数を18個とした以外は、実施例1と同様にして実施例2の成形ベローズを製造した。この成形ベローズのばね定数および製品寿命を上記の方法により測定した。
成形ベローズのばね定数を表1に、製品寿命を表2に示す。
〔比較例2〕
凸部数を18個とした以外は、比較例1と同様にして比較例2の成形ベローズを製造した。この成形ベローズのばね定数を、上記の方法により測定した。
結果を表1に示す。
Figure 2005048902
このように、同数の凸部を有する成形ベローズを、本願の製造法(実施例)と従来の製造法(比較例)とで製造した場合、実施例の成形ベローズは、比較例の成形ベローズに比べ、フランジ面間距離が減少し、ばね定数も若干低くなった。
〔比較例3〕
凸部数を8個とした以外は、比較例1と同様にして比較例2の成形ベローズを製造した。この成形ベローズのばね定数および製品寿命を、上記の方法により測定した。
結果を表2に示す。表2において、フランジ面間距離が略同一である実施例1と比較例3、さらに実施例2と比較例1を比較して示した。
Figure 2005048902
このように、フランジ面間距離が略同一である成形ベローズを、本願の製造法(実施例)と従来の製造法(比較例)とで製造した場合、実施例の成形ベローズは、比較例の成形ベローズに比べ、形成される凸部の数が増加し、ばね定数が低下した。しかしながら、成形ベローズの製品寿命は、従来の成形ベローズと同等であり、製品寿命の低下は認められなかった。
図1は、本発明に係る成形ベローズの製造方法の工程図を示す。 図2−1(A)〜(B)は、一次成形ベローズの製造工程を表わす概略縦断面図である。 図2−2(C)〜(D)は、一次成形ベローズの製造工程を表わす概略縦断面図である。 図2−3(E)〜(F)は、一次成形ベローズの製造工程を表わす概略縦断面図である。 図2−4(G)〜(H)は、一次成形ベローズの製造工程を表わす概略縦断面図である。 図3−1(A)〜(B)は、成形ベローズの製造工程を表わす概略縦断面図である。 図3−2(C)〜(D)は、成形ベローズの製造工程を表わす概略縦断面図である。 図3−3(E)〜(F)は、成形ベローズの製造工程を表わす概略縦断面図であり、図3−3(F)には、従来の成形ベローズの概略縦断面図を示す。 図4は、一次成形ベローズ10の凹部14に配設されるリング状のスペーサーの上面図である。 図5(A)は、圧縮工程における別の実施態様を示し、図5(B)は、一次成形ベローズ10の凸部12に配設されるリング状のスペーサーの上面図である。 図6は、本発明における圧縮装置の別の実施態様を示す。 図7は、実施例における、成形ベローズの製品寿命の試験状態を示す図である。 図8は、従来の成形ベローズの製造方法の工程図を示す。
符号の説明
1,100 成形ベローズ
10 一次成形ベローズ
10a 上端部
10b 下端部
12,102 凸部
14,104 凹部
20 成形機
22 第1金型部
22a,24a 金型
22b,24b ホルダー部
24 第2金型部
26 マンドレル
28 金属製管状部材
30,32 面
34 液体導入路
36 液圧室
38,40 Oリング装着溝
42,44 Oリング
46 液体
48 膨張部位
50,53 リング状のスペーサー
51a,51b カラー部材
52,54 略U字状部材
52a,54a 内周面
55a,55b 圧縮治具
56,70 軸
58 スペーサー押さえ部
60,61 圧縮装置
62 圧縮部
64 圧縮固定部
66 台座
68 加圧部材
66a,68a 突設部
72 固着具
74 真空炉
76,77,106,108 フランジ
76a,77a 外円部
78 引張り装置
80 架台
82 フランジ固定部
84 昇降部材
82a,84a 突設部
90 テーブル
92 ステージ
94 排気管

Claims (8)

  1. 金属製管状部材に、外周方向に湾曲した複数の凸部を、軸方向に所定距離離間するように形成して、一次成形ベローズを形成する一次成形工程と、
    前記一次成形工程で得られた一次成形ベローズを、軸方向に所定距離圧縮する圧縮工程と、
    前記圧縮工程で圧縮された前記一次成形ベローズを、所定の温度で熱処理する熱処理工程と、
    前記熱処理工程で熱処理された前記一次成形ベローズを、所定の長さとなるように軸方向に引き延ばす引張り工程と、
    を有することを特徴とする成形ベローズの製造方法。
  2. 前記圧縮工程において、一次成形ベローズを圧縮された状態に固定し、前記熱処理工程おいて、前記固定された一次成形ベローズを、所定の温度で熱処理することを特徴とする請求項1に記載の成形ベローズの製造方法。
  3. 前記圧縮工程において、前記一次成形ベローズに形成された複数の凸部間にスペーサーを介在させて該一次成形ベローズを軸方向に所定距離圧縮するとともに、その圧縮された状態で一次成形ベローズを固定することを特徴とする請求項2に記載の成形ベローズの製造方法。
  4. 前記熱処理工程が、真空中、または不活性ガスの存在下で行われることを特徴とする請求項1から3のいずれかに記載の成形ベローズの製造方法。
  5. 前記熱処理工程が、前記金属製管状部材の再結晶温度以下となる温度で熱処理することを特徴とする請求項1から4のいずれかに記載の成形ベローズの製造方法。
  6. 前記金属製管状部材が、チタンから形成されていることを特徴とする請求項1から5のいずれかに記載の成形ベローズの製造方法。
  7. 請求項1から6のいずれかに記載の方法により製造されたことを特徴とする成形ベローズ。
  8. 加速器に用いられることを特徴とする請求項7に記載の成形ベローズ。

JP2003282709A 2003-07-30 2003-07-30 成形ベローズの製造方法、および該方法により得られた成形ベローズ Withdrawn JP2005048902A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003282709A JP2005048902A (ja) 2003-07-30 2003-07-30 成形ベローズの製造方法、および該方法により得られた成形ベローズ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003282709A JP2005048902A (ja) 2003-07-30 2003-07-30 成形ベローズの製造方法、および該方法により得られた成形ベローズ

Publications (1)

Publication Number Publication Date
JP2005048902A true JP2005048902A (ja) 2005-02-24

Family

ID=34267838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003282709A Withdrawn JP2005048902A (ja) 2003-07-30 2003-07-30 成形ベローズの製造方法、および該方法により得られた成形ベローズ

Country Status (1)

Country Link
JP (1) JP2005048902A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101167258B1 (ko) * 2011-10-25 2012-07-23 심세종 스트레이트부를 갖는 성형 벨로우즈
KR20130111460A (ko) * 2012-03-30 2013-10-10 알레바 헤즈나 오토서스펜시옹 스프링을 제어된 범위로 설정하기 위한 장치 및 방법
WO2018159523A1 (ja) 2017-03-02 2018-09-07 イーグル工業株式会社 ベローズ
US10378649B2 (en) 2014-11-05 2019-08-13 Eagle Industry Co., Ltd. Metal bellows
US10520084B2 (en) 2015-09-23 2019-12-31 Eagle Industry Co., Ltd. Metal bellows

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101167258B1 (ko) * 2011-10-25 2012-07-23 심세종 스트레이트부를 갖는 성형 벨로우즈
KR20130111460A (ko) * 2012-03-30 2013-10-10 알레바 헤즈나 오토서스펜시옹 스프링을 제어된 범위로 설정하기 위한 장치 및 방법
JP2013223883A (ja) * 2012-03-30 2013-10-31 Allevard Rejna Autosuspensions 制御された範囲にスプリングを設定する装置および方法
KR102060201B1 (ko) * 2012-03-30 2019-12-27 알레바 헤즈나 오토서스펜시옹 스프링을 제어된 범위로 설정하기 위한 장치 및 방법
US10378649B2 (en) 2014-11-05 2019-08-13 Eagle Industry Co., Ltd. Metal bellows
US10520084B2 (en) 2015-09-23 2019-12-31 Eagle Industry Co., Ltd. Metal bellows
WO2018159523A1 (ja) 2017-03-02 2018-09-07 イーグル工業株式会社 ベローズ
US10830352B2 (en) 2017-03-02 2020-11-10 Eagle Industry Co., Ltd. Bellows

Similar Documents

Publication Publication Date Title
US7464572B2 (en) Process for forming tubular member
US7204119B2 (en) Hollow metallic ring seal for press
US20030126732A1 (en) Method of making a metallic bellows
JP3776886B2 (ja) 金属容器等の圧力ram形成方法
JPH01205833A (ja) 多辺形状の断面を有し部分的に補強されたフレーム部材の製造方法
JP6413187B2 (ja) 圧力容器のライナーの製造方法
CN102686330A (zh) 中空发动机气门的制造方法
JP2005048902A (ja) 成形ベローズの製造方法、および該方法により得られた成形ベローズ
CN112916878B (zh) 一种增材制造环形件矫形方法
JP4311639B2 (ja) 金属ベローズの製造方法
EP1166912B1 (en) Method of manufacturing metallic bellows
JP2003088927A (ja) 管状部材の熱間成形方法
JP2011256416A (ja) 金属リングの製造方法
JPH07204880A (ja) 溶接された金属製ダクト組立体の組立て方法
US11207821B2 (en) Method of making 3D tube and 3D tube made thereby
JP4721423B2 (ja) 成形方法及び成形用金型
US3512244A (en) Method of manufacturing bellows
US20030000270A1 (en) Forming large titanium parts
SU752522A1 (ru) Способ изготовлени пр моугольных ленточных магнитопроводов
KR20040022214A (ko) 금속 용기 및 이와 같은 것을 압력-램-성형하는 방법
RU2025177C1 (ru) Способ изготовления металлических газовых баллонов
SU1318319A1 (ru) Способ правки кольцевых изделий
WO2002024371A2 (en) Method and apparatus for the manufacturing of structural members
JP6784123B2 (ja) ガラス母材の製造方法および製造装置
JP2002005288A (ja) 金属ベローズの製造方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003