JP2005045846A - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP2005045846A
JP2005045846A JP2003199566A JP2003199566A JP2005045846A JP 2005045846 A JP2005045846 A JP 2005045846A JP 2003199566 A JP2003199566 A JP 2003199566A JP 2003199566 A JP2003199566 A JP 2003199566A JP 2005045846 A JP2005045846 A JP 2005045846A
Authority
JP
Japan
Prior art keywords
power
value
voltage command
power conversion
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003199566A
Other languages
English (en)
Inventor
Tomomichi Ito
智道 伊藤
Takashi Ikimi
高志 伊君
Shuji Kato
修治 加藤
Hiromitsu Sakai
洋満 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003199566A priority Critical patent/JP2005045846A/ja
Publication of JP2005045846A publication Critical patent/JP2005045846A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】電力変換器の電圧利用率を低減せずに、電力変換器出力電圧零相電圧の3次高調波成分を低減する。
【解決手段】本発明の電力変換装置は3相の交流出力電圧指令値Vu、Vv、Vw の振幅に応じて3次高調波を加算する比率を変化させる手段と、新しい電圧指令値
Vun、Vvn、Vwn と搬送波とを比較して電力変換器のゲート信号を出力する手段とを有し、電力変換器の電圧指令値の振幅が所定の値より小さい場合には3次高調波をゼロとし、電圧指令値の振幅が所定の値より大きい場合には3次高調波を加算する比率を電圧指令値の振幅増加に従い増加させる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明はPWM制御される電力変換器に関し、特に電力変換器のPWM制御方法に関する。
【0002】
【従来の技術】
特許文献1には、3相交流の電圧指令値Vu、Vv、Vw の大小を逐次比較し、その中間の電圧指令値に0.5 を乗算し、その積である3次高調波VNを前記電圧指令値Vu、Vv、Vw に加算し、新たな3相電圧指令値Vun、Vvn、Vwn を算出し、該電圧指令値を三角波triと比較し、ゲート信号を作成するPWM制御方法が記載されている。
【0003】
【特許文献1】
特許第3233097号公報
【0004】
【発明が解決しようとする課題】
前記従来技術のPWM制御方法を用いると、変換器出力電圧に3次の零相電圧が多く含まれ、零相電流が流れる。
【0005】
鉄道システムにおいて、車両位置検出や車両制御信号伝達には交流系統の整数倍の周波数を用いることが多く、電力変換器の交流出力電圧に3次の零相成分を多く含まれると浮遊容量を介して零相電流が流れ、大地に対する直流部の電位変動を起こし、前記車両位置検出や車両制御信号のノイズとなるという問題がある。
【0006】
本発明の目的は前記零相電圧の3次成分によるノイズ低減を可能にする電力変換装置を実現することにある。
【0007】
【課題を解決するための手段】
上記の目的を達成するため、本発明の電力変換装置は3相の交流出力電圧指令値Vu、Vv、Vw の振幅に応じて3次高調波を加算する比率を変化させる手段と、新しい電圧指令値Vun、Vvn、Vwn と搬送波とを比較して電力変換器のゲート信号を出力する手段とを有し、電力変換器の電圧指令値の振幅が所定の値より小さい場合には3次高調波をゼロとし、電圧指令値の振幅が所定の値より大きい場合には3次高調波を加算する比率を電圧指令値の振幅増加に従い増加させる。
【0008】
【発明の実施の形態】
以下、本発明の詳細を、図面を参照しながら説明する。
【0009】
(実施例1)
図1は本実施例の電力変換装置の説明図である。図1において、符号1は電力変換器、2は変圧器、3は3相交流電源、4は負荷、5はPWM制御回路、100〜105は、例えばIGBTやパワーMOSFETなどの絶縁ゲート型電力半導体スイッチング素子、110、111はコンデンサ、200は中間値算出器、201は乗算器、202は加算器、204は変調率算出器、205は重畳量算出器、400は変圧器の中性点、401は直流側中性点、Vu、Vv、Vw は3相交流電圧指令値、Mは変調率、IRは3次重畳量、VNは3次高調波、Vun、Vvn、Vwn は新たな3相交流電圧指令値、Vdcはコンデンサ電圧である。
【0010】
電力変換器1のゲート信号発生方法を図1を参照しながら説明する。中間値算出器200は電圧指令値Vu、Vv、Vw を逐次比較し、その中間値を算出し、中間値に0.5を乗算し、その積を乗算器201に出力する。変調率算出器204は、電圧指令値Vu、Vv、Vw から電圧変調率Mを算出し、重畳量算出器205に出力する。ここで、電圧変調率Mとは電圧指令値Vu、Vv、Vw の振幅値をコンデンサ電圧Vdcで除算した商である。以下、電圧変調率Mを、単に変調率Mと略す。
【0011】
重畳量算出器205は変調率Mに応じて乗算器201に0以上1以下の値である3次重畳量IRを出力する。乗算器201は、中間値算出器200の出力値に0.5 を乗算した値と、重畳量算出器205の出力値とを乗算し、加算器202に出力する。加算器202は乗算器201の出力値を電圧指令値Vu、Vv、Vw にそれぞれ加算し、新たな電圧指令値Vun、Vvn、Vwn を算出し、比較器203に出力する。比較器203はVun、Vvn、Vwn と搬送波である三角波triとを大小比較し、絶縁ゲート型電力半導体スイッチング素子100〜105にゲート信号24を出力する。
【0012】
本実施例における変調率Mと3次重畳量IRとの関係を図2に示す。変調率Mが所定の値M1より小さいときは3次重畳量IR=0であり、変調率Mが所定の値M1より大きいときは3次重畳量IRは変調率Mの増加に従って増加する。図2では、変調率Mが所定の値M1より大きいときに、3次重畳量IRが変調率Mの1次関数になっている場合を示す。図2では、所定の値M1より変調率Mが大きい場合に3次重畳量が1次関数になっている場合を示したが、1次関数に限らずに、単調増加関数であれば、2次関数や、高次の関数、三角関数、対数関数などであってもよい。
【0013】
図3に本実施例の電力変換器1をPWM制御した場合に、変調率Mによる搬送波triと電圧指令値Vun との関係を示す。図3では、変調率M=0.9 〜2/√3の場合を示す。本実施例において、過変調を起こさない最大の変調率Mは2/√3となり、従来技術の3次重畳方法と同じ電圧利用率である。
【0014】
図4に、本実施例で電力変換器1を、変調率M=1.0 でPWM制御した場合の、搬送波triと、電圧指令値Vun、Vvn、Vwn と、変圧器2の2次端子電圧と、変圧器2の中性点400の電圧との関係を示す。図4で、Vu2、Vv2、Vw2は直流側中性点401から見た変圧器2の2次側端子電圧であり、VTRNは直流側中性点401から見た変圧器2の中性点400の電圧である。変圧器の中性点の電圧VTRNは、Vu2、Vv2、Vw2の零相成分に等しい。
【0015】
図5に電力変換器1を従来技術の3次重畳方法でPWM制御した場合の変圧器2の中性点の電圧VTRNの3次成分を破線で、本実施例の制御方法の場合の変圧器2の中性点の電圧VTRNの3次高調波成分を実線で示す。図5に示すように、本実施例のPWM制御回路で電力変換器1を制御すると、変調率Mが、M≦2/√3の領域で変圧器2の中性点の電圧VTRNに含まれる3次高調波成分が従来技術の3次重畳方法より低減される。
【0016】
本実施例によれば従来技術の3次重畳方法と同じ電圧利用率を保ちつつ、電力変換器1の出力電圧の零相成分に含まれる3次高調波成分を低減できるので、例えば電鉄などのように商用周波数の3倍周波数を信号として用いるシステムへのノイズを低減できる。
【0017】
(実施例2)
図6を用いて本実施例の電力変換装置について説明する。複数の電圧型PWM変換器の交流出力をトランスや相間リアクトルにより直列に多重接続して、電力変換器を大容量化する技術が知られている。このような多重変換器の容量は、多重数をnとすると単機変換器容量の約n倍になり、多重化によって、大容量の電力変換器を容易に実現できる。以下、本実施例では直流コンデンサに接続されて、単機変換器の直流部が共通に多重接続された多重変換器を、直流部共通多重変換器と記す。
【0018】
図6に多重数4の多重電力変換器を備えた電力変換装置を示す。本実施例では電力変換器1は図6に示すように直流部共通多重変換器であって、符号11〜14の単機変換器を備えている。なお、図6で図1と同じ符号は図1と同じ構成要素である。
【0019】
本実施例が実施例1と相違する点は、以下の通りである。比較器203は新たな電圧指令値Vun、Vvn、Vwn と搬送波tri1との大小を比較し、単機変換器11のゲート信号を出力し、同様に、新たな電圧指令値Vun、Vvn、Vwn と搬送波tri2、tri3、tri4との大小をそれぞれ比較し、単機変換器12、13、14のゲート信号をそれぞれ出力する。
【0020】
本実施例における変調率Mと重畳量IRとの関係は実施例1と同様に図2に示す関係である。変調率Mが所定の値M1より小さいときは3次重畳量IR=0であり、変調率Mが所定の値M1より大きいときは変調率Mの増加に従い増加する。本実施例では、M1=0.9としている。
【0021】
図7に本実施例で電力変換器1をPWM制御した場合の搬送波tri1、tri2、tri3、tri4と、電圧指令値Vun とを示す。本実施例では、過変調を起こさない最大変調率は2/√3となり、従来技術の3次重畳方法と同じ電圧利用率である。
【0022】
図7では、4つの搬送波tri1、tri2、tri3、tri4が位相が各々90度ずれた同じ振幅、同じ直流バイアスの三角波の場合を示すが、4つの搬送波tri1、tri2、tri3、tri4は位相と振幅が等しく、直流バイアスが異なる搬送波であっても良い。
【0023】
図8に従来技術と同様に3次重畳量IRを1に固定して電力変換器1をPWM制御した場合の搬送波tri1、tri2、tri3、tri4と電圧指令値の関係を示す。また、図9に本実施例で電力変換器1をPWM制御した場合の搬送波tri1、tri2、tri3、tri4と電圧指令値の関係を示す。変調率Mは1.0 である。なお、図8、図9で符号Vuv、Vvw、Vwuは、合成出力電圧線間電圧である。
【0024】
図8に示すように、従来技術と同様に3次重畳量IRを1に固定して電力変換器1をPWM制御した場合には、破線で囲った部分に示すように、合成出力電圧線間電圧Vuv、Vvw、Vwuが2αVdcとなるスイッチングタイミングがある。一方、本実施例で電力変換器1をPWM制御した場合は、図9に示すように合成出力電圧線間電圧Vuv、Vvw、Vwuには、電圧変化幅が2αVdcとなるスイッチングタイミングが無い。スイッチングによる大きな電圧変化幅は変圧器の絶縁破壊の原因にもなるために、電圧変化幅は小さいほうが望ましい。
【0025】
従来技術の3次重畳方法では、3相ある電圧指令値Vun、Vvn、Vwn のうち2相は絶対値が等しく、符号が逆転した値になっている。この電圧指令値を位相シフトした三角波と比較すると、合成出力電圧線間電圧にはスイッチングにより2αVdcの電圧変化が現れる。
【0026】
一方、本実施例では、変調率に応じて重畳量を可変にしているので、電圧指令値Vun、Vvn、Vwn のうち2相の絶対値が等しく符号が逆転した値になる状態を避けることができ、前記電圧変化幅を低減できる。
【0027】
本実施例で電力変換器1を変調率Mを1.0 に設定して、PWM制御した場合の、単機変換器11の搬送波と、電圧指令値と、単機変換器11の変圧器2次端子電圧と、変圧器2の中性点400の電圧の関係は、実施例1の図4と同様である。ここで符号Vu2、Vv2、Vw2は直流側中性点401から見た変圧器2次側端子電圧であり、VTRNは直流側中性点401から見た変圧器2の中性点400の電圧であって、この中性点の電圧VTRNはVu2、Vv2、Vw2の零相成分に等しい。
【0028】
本実施例でも、中性点400の電圧VTRNの3次高調波成分との関係は実施例1の図5と同様になり、変調率Mが、M≦2/√3の領域において中性点の電圧VTRNの3次高調波成分が従来技術の3次重畳方法より低減される。
【0029】
従って、本実施例によれば従来技術の3次重畳方法と同じ電圧利用率を保ちつつ、多重電力変換器の出力電圧の零相成分のうち3次高調波成分を低減でき、商用周波数の3倍周波数を信号周波数に用いるシステムへのノイズを低減できる。さらに多重電力変換器で従来技術の3次重畳方法を用いるときに現れるスイッチング時の合成出力電圧線間電圧の変化幅を低減できる。
【0030】
(実施例3)
以下、本実施例の電力変換装置を図10を用いて説明する。本実施例は直流部共通多重変換器に関するもので、多重数は4である。
【0031】
図10には電力変換器1とモータ7とを示す。図10で符号1は直流部共通多重変換器、2は変圧器、3は交流電源、5はPWM制御回路、6はダイオード整流器、11、12、13、14は単機変換器、110、111はコンデンサ、206は平均値算出器、201は乗算器、207は減算器、203は比較器、204は変調率算出器、205は重畳量算出器、Vu、Vv、Vw は3相交流電圧指令値、Mは変調率、IRは重畳量、VNは3次高調波、Vun、Vvn、Vwn は新たな電圧指令値である。
【0032】
平均値算出器206は電圧指令値Vu、Vv、Vw を逐次比較し、その最大値と最小値の平均値を出力し、平均値を乗算器201に出力する。変調率算出器204はVu、Vv、Vw より変調率Mを算出し、重畳量算出器205に出力する。
【0033】
重畳量算出器205は変調率Mに応じて乗算器201に0から1の値を出力する。乗算器201は平均値算出器206の出力値と重畳量算出器205の出力値を乗算し、減算器207に出力する。減算器207は乗算器201の出力値をVu、Vv、Vw からそれぞれ減算し、新たな電圧指令値Vun、Vvn、Vwn を算出し、比較器203に出力する。比較器203は新たな電圧指令値Vun、Vvn、Vwn と搬送波tri1と大小比較し、単機変換器11のゲート信号を出力し、新たな電圧指令値Vun、Vvn、Vwn と搬送波tri2と大小比較し、単機変換器12のゲート信号を出力し、新たな電圧指令値Vun、Vvn、Vwn と搬送波tri3と大小比較し、単機変換器13のゲート信号を出力し、新たな電圧指令値Vun、Vvn、Vwn と搬送波tri4と大小比較し、単機変換器14のゲート信号を出力する。
【0034】
本実施例での変調率Mと3次重畳量IRの関係は図2に示す通りであり、M1=0.9 としている。本実施例で電力変換器1をPWM制御した場合の搬送波tri1、tri2、tri3、tri4と、電圧指令値Vun との関係は実施例2で示した図7と同様であり、過変調を起こさない最大変調率は2/√3であって、従来技術の3次重畳方法と同じ電圧利用率を維持できる。
【0035】
ここで、搬送波tri1、tri2、tri3、tri4は位相が各々90度ずれている同じ振幅で同じ直流バイアスの三角波であるが、搬送波tri1、tri2、tri3、tri4は位相と振幅が等しく、直流バイアスが異なる搬送波であっても良い。
【0036】
変調率Mは1.0 で従来技術と同様に3次重畳量IRを1に固定して電力変換器1をPWM制御した場合の搬送波tri1、tri2、tri3、tri4と電圧指令値の関係は実施例2の図8と同様である。また、変調率Mは1.0 で本実施例で電力変換器1をPWM制御した場合の搬送波tri1、tri2、tri3、tri4と電圧指令値の関係も実施例2の図9と同様である。本実施例でも実施例2と同様に、図9の合成出力電圧線間電圧Vuv、Vvw、Vwuには、電圧変化幅が2αVdcとなるスイッチングタイミングが無い。
【0037】
スイッチングによる大きい電圧変化幅は変圧器の絶縁破壊の可能性を高めるため、できるだけ小さいことが望ましい。さらにモータを駆動する場合、一般にモータの回転数が上がると基本波に対する搬送波周波数の比が低下するため、電圧変化率が大きいことによるトルクリプルの増加が無視できない。ゆえに電圧変化幅は可能な限り低減する必要がある。
【0038】
従来技術の3次重畳方法では、3相ある新たな電圧指令値Vun、Vvn、Vwn のうち2相は絶対値が等しく、符号が逆転した値になる。この電圧指令値を位相シフトした三角波と比較すると、合成出力電圧線間電圧にはスイッチングにより2αVdcの電圧変化が現れる。一方、本実施例では、変調率に応じて重畳量を可変とすることにより、新たな電圧指令値Vun、Vvn、Vwnのうち2相の絶対値が等しく符号が逆転した値になる状態を避けることができ、電圧変化幅を低減できる。
【0039】
したがって、本発明によれば従来技術の3次重畳方法と同じ電圧利用率を保ちつつ、多重電力変換器において、従来技術の3次重畳方法を用いるときに現れるスイッチング時の合成出力電圧線間電圧の変化幅を低減できるため、変圧器及びモータでの絶縁破壊の可能性とトルクリプルの低減ができる。
【0040】
【発明の効果】
本発明によれば、電力変換器の電圧利用率を低減することなく、変換器出力電圧零相電圧成分の3次高調波成分を低減した電力変換装置を実現できる。
【図面の簡単な説明】
【図1】実施例1の電力変換装置の説明図。
【図2】実施例1の電力変換器の電圧変調率と3次重畳量との関係の説明図。
【図3】実施例1の電力変換器をPWM制御した際の、電圧変調率と搬送波と電圧指令値との関係の説明図。
【図4】実施例1の電力変換器をPWM制御した際の、搬送波と、電圧指令値と、変圧器の中性点電圧との関係の説明図。
【図5】実施例1の電力変換器の変圧器中性点電圧に含まれる3次高調波成分と電圧変調率と関係の説明図。
【図6】実施例2の電力変換装置の説明図。
【図7】実施例2の電力変換器をPWM制御した際の、搬送波と電圧指令値との関係の説明図。
【図8】実施例2の電力変換装置で3次重畳量を1に固定してPWM制御した場合の説明図。
【図9】実施例2の電力変換器で電圧変調率と3次重畳量とを図2に示す関係にした場合の説明図。
【図10】実施例3の電力変換装置の説明図。
【符号の説明】
1…電力変換器、2…変圧器、3…交流電源、4…負荷、5…PWM制御回路、6…ダイオード整流器、7…モータ、11、12、13、14…単機変換器、100、101、102、103、104、105、1100、1101、1102、1103、1104、1105、2100、2101、2102、2103、2104、2105…絶縁ゲート型電力半導体スイッチング素子、110、111…コンデンサ、200…中間値算出器、201…乗算器、202…加算器、203…比較器、204…変調率算出器、205…重畳量算出器、206…平均値算出器、207…減算器、400…変圧器中性点、401…直流側中性点、402…モータ中性点。

Claims (10)

  1. 直流電力を交流電力に変換、または交流電力を直流電力に変換する電力変換装置であって、
    該電力変換装置が、複数個の電力半導体スイッチング素子を備えた電力変換部と、該電力変換手段の制御部とを備え、
    該制御部が、交流出力電圧指令値の振幅に応じて3次高調波成分を該交流電圧指令値に加算する割合を変更する手段を有すことを特徴とする電力変換装置。
  2. 請求項1に記載の電力変換装置において、前記制御部が、前記交流出力電圧指令値の振幅が予め定めた値より小さい場合には前記3次高調波成分を加える割合をゼロとし、該予め定めた値を超えた場合には前記3次高調波を加える割合を前記交流出力電圧指令値の振幅の増加に従って増加させることを特徴とする電力変換装置。
  3. 直流電力を交流電力に変換、または交流電力を直流電力に変換する電力変換装置であって、
    該電力変換装置が、複数個の電力半導体スイッチング素子を備えた電力変換部と、該電力変換手段の制御部とを備え、
    該制御部が、3相ある電力変換器の交流出力電圧指令値の大小を逐次比較し、中間値を発生する中間値発生部と、前記3相交流電圧指令値の振幅値に応じて変化する値である重畳量を出力する重畳量発生部と、該重畳量と前記中間値を乗算し、前記3相交流電圧指令値にそれぞれ加算して新たな3相交流電圧指令値を作成する電圧指令値算出部と、該電圧指令値と搬送波とを比較してPWM信号を出力するPWM制御手段とを有することを特徴とする電力変換装置。
  4. 請求項3に記載の電力変換装置において、前記重畳量発生部が前記3相交流電圧指令値の振幅値に応じた第1の値を超えた場合に前記重畳量を出力することを特徴とする電力変換装置。
  5. 請求項3に記載の電力変換装置において、前記電力変換部が複数の単機電力変換器の交流側を多重接続した多重電力変換器であることを特徴とする電力変換装置。
  6. 請求項3に記載の電力変換装置において、前記電力変換部が複数の単機電力変換器の直流側を多重接続した多重電力変換器であることを特徴とする電力変換装置。
  7. 直流電力を交流電力に変換、または交流電力を直流電力に変換する電力変換装置であって、
    該電力変換装置が、複数個の電力半導体スイッチング素子を備えた電力変換部と、該電力変換手段の制御部とを備え、
    該制御部が、3相ある電力変換器の交流出力電圧指令値の大小を逐次比較し、該電圧指令値の最大値と最小値の平均値を算出する平均値算出部と、
    前記3相交流電圧指令値の振幅値に応じて変化する値である重畳量を出力する重畳量発生部と、該重畳量と前記平均値とを乗算し、前記3相交流電圧指令値からそれぞれから減算して新たな3相交流電圧指令値を作成する電圧指令値算出部と、該電圧指令値と搬送波を比較してPWM信号を出力するPWM制御手段を有することを特徴とする電力変換装置。
  8. 請求項7に記載の電力変換装置において、前記重畳量発生部が前記3相交流電圧指令値の振幅値に応じた第1の値を超えた場合に前記重畳量を出力することを特徴とする電力変換装置。
  9. 請求項7に記載の電力変換装置において、前記電力変換部が複数の単機電力変換器の交流側を多重接続した多重電力変換器であることを特徴とする電力変換装置。
  10. 請求項7に記載の電力変換装置において、前記電力変換部が複数の単機電力変換器の直流側を多重接続した多重電力変換器であることを特徴とする電力変換装置。
JP2003199566A 2003-07-22 2003-07-22 電力変換装置 Pending JP2005045846A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003199566A JP2005045846A (ja) 2003-07-22 2003-07-22 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003199566A JP2005045846A (ja) 2003-07-22 2003-07-22 電力変換装置

Publications (1)

Publication Number Publication Date
JP2005045846A true JP2005045846A (ja) 2005-02-17

Family

ID=34260289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003199566A Pending JP2005045846A (ja) 2003-07-22 2003-07-22 電力変換装置

Country Status (1)

Country Link
JP (1) JP2005045846A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006271073A (ja) * 2005-03-23 2006-10-05 Toshiba Mitsubishi-Electric Industrial System Corp 無停電電源装置及びその入力電流制御方法
JP2006304492A (ja) * 2005-04-21 2006-11-02 Meidensha Corp 直列多重pwmインバータの地絡検出方法
JP2009124799A (ja) * 2007-11-12 2009-06-04 Fuji Heavy Ind Ltd モータ制御装置
WO2014141398A1 (ja) * 2013-03-13 2014-09-18 株式会社日立製作所 Pwm制御方法とそれを用いた電力変換装置
US9178450B2 (en) 2011-09-30 2015-11-03 Mitsubishi Electric Corporation Control device and control method for electric motor, and motor and vehicle driving system to which the control device and control method are applied
EP3907868A1 (en) * 2020-05-08 2021-11-10 Hamilton Sundstrand Corporation Over-modulation pulse width modulation with maximum output and minimum harmonics
WO2022130731A1 (ja) * 2020-12-17 2022-06-23 日立Astemo株式会社 モータ制御装置、機電一体ユニット、昇圧コンバータシステム、電動車両システム、およびモータ制御方法
WO2023062779A1 (ja) * 2021-10-14 2023-04-20 東芝三菱電機産業システム株式会社 電力変換装置、三相電圧形インバータの制御方法及び制御プログラム
DE112021007417T5 (de) 2021-03-30 2024-01-11 Nidec Corporation Leistungsumwandlungsvorrichtung und motormodul

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006271073A (ja) * 2005-03-23 2006-10-05 Toshiba Mitsubishi-Electric Industrial System Corp 無停電電源装置及びその入力電流制御方法
JP4614439B2 (ja) * 2005-03-23 2011-01-19 東芝三菱電機産業システム株式会社 無停電電源装置及びその入力電流制御方法
JP2006304492A (ja) * 2005-04-21 2006-11-02 Meidensha Corp 直列多重pwmインバータの地絡検出方法
JP2009124799A (ja) * 2007-11-12 2009-06-04 Fuji Heavy Ind Ltd モータ制御装置
US9178450B2 (en) 2011-09-30 2015-11-03 Mitsubishi Electric Corporation Control device and control method for electric motor, and motor and vehicle driving system to which the control device and control method are applied
WO2014141398A1 (ja) * 2013-03-13 2014-09-18 株式会社日立製作所 Pwm制御方法とそれを用いた電力変換装置
EP3907868A1 (en) * 2020-05-08 2021-11-10 Hamilton Sundstrand Corporation Over-modulation pulse width modulation with maximum output and minimum harmonics
US11456680B2 (en) 2020-05-08 2022-09-27 Hamilton Sundstrand Corporation Over-modulation pulse width modulation with maximum output and minimum harmonics
WO2022130731A1 (ja) * 2020-12-17 2022-06-23 日立Astemo株式会社 モータ制御装置、機電一体ユニット、昇圧コンバータシステム、電動車両システム、およびモータ制御方法
DE112021007417T5 (de) 2021-03-30 2024-01-11 Nidec Corporation Leistungsumwandlungsvorrichtung und motormodul
WO2023062779A1 (ja) * 2021-10-14 2023-04-20 東芝三菱電機産業システム株式会社 電力変換装置、三相電圧形インバータの制御方法及び制御プログラム

Similar Documents

Publication Publication Date Title
US6594164B2 (en) PWM controlled power conversion device
JPH11318086A (ja) 供給電圧が無制限の静止電力変換装置
JP4929863B2 (ja) 電力変換装置
US20210058003A1 (en) Filter and afe power cell phase control
JPH0834695B2 (ja) 電力変換方法、電力変換装置およびその電力変換装置を用いた圧延システム
KR100547569B1 (ko) 11차와 13차 고조파를 동시에 제거하는 12차 능동필터
JP2005045846A (ja) 電力変換装置
KR102409013B1 (ko) 전력 변환 장치
EP3082246B1 (en) Systems and methods for controlling inverters
JP6394401B2 (ja) 5レベル電力変換器および制御方法
JP2888068B2 (ja) 並列多重インバータの制御方法及びその装置
JP2016046962A (ja) マルチレベル電力変換装置
JP2733724B2 (ja) 多巻線交流電動機の電流制御装置
US5615099A (en) Control system for single-phase PWM converter
WO2019038815A1 (ja) 電力変換装置および電動パワーステアリング装置
Massaq et al. A new space vector modulation technique for a hybrid 2/3-level inverter with minimized switching losses
JP4015795B2 (ja) 電力変換装置
JP3233097B2 (ja) 電力変換装置とその制御方法
JP4977040B2 (ja) 制御装置、電力変換装置及び制御方法
US11469685B2 (en) Filter and AFE power cell phase control
JP2008104253A (ja) 電力変換装置
Chai et al. Space vector PWM for three-to-five phase indirect matrix converters with d 2-q 2 vector elimination
JP4177983B2 (ja) 多重電力変換器とその制御方法
CA3049066A1 (en) H-type multilevel power converter
JP5894031B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080715