JP2005042373A - Decorated material provided with contact aptitude - Google Patents

Decorated material provided with contact aptitude Download PDF

Info

Publication number
JP2005042373A
JP2005042373A JP2003202310A JP2003202310A JP2005042373A JP 2005042373 A JP2005042373 A JP 2005042373A JP 2003202310 A JP2003202310 A JP 2003202310A JP 2003202310 A JP2003202310 A JP 2003202310A JP 2005042373 A JP2005042373 A JP 2005042373A
Authority
JP
Japan
Prior art keywords
layer
protective layer
resin
wear resistance
decorative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003202310A
Other languages
Japanese (ja)
Other versions
JP4289548B2 (en
Inventor
Takami Sendai
尚見 仙臺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2003202310A priority Critical patent/JP4289548B2/en
Publication of JP2005042373A publication Critical patent/JP2005042373A/en
Application granted granted Critical
Publication of JP4289548B2 publication Critical patent/JP4289548B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Finishing Walls (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a decorated material equipped with abrasion and wear resistance satisfying FW standard of JAS, at the same time, even if the decorated material and an object come into contact with each other to rub against each other, no quality deterioration including variations in the external appearance such as blemish, gloss light, etc. occurs in both of them and also equipped with [contact aptitude] without causing any wear debris and abrasion smudge. <P>SOLUTION: The decorated material 10 is constituted by laminating a proper pattern layer 2 on a basic material 1 and laminating an abrasion resistance grant layer 3 of a thermosetting resin by two liquid setting urethane resin or the like and a protective layer 4 of an electrolytic radiation setting resin. The total thickness of the abrasion resistance grant layer and the protective layer is 18 to 30 μm, and the thickness t<SB>M</SB>of the abrasion resistance grant layer and the thickness t<SB>P</SB>of the protective layer are made as t<SB>M</SB>≥t<SB>P</SB>, a spherical inorganic particle of Mohs hardness 6 to 8 is added into the abrasion resistance grant layer by a mean primary particle diameter 8 to 15 μm, and the spherical inorganic particle of Mohs hardness 6 to 8 is added into the protective layer by a mean primary particle diameter 5 to 15 μm. These spherical inorganic particles can favorably use a spherical silica. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、建築物の内装、建具、家具などの表面化粧に利用可能な化粧材に関する。特に、化粧材自身の耐久性である耐摩耗性もさることながら、例えば、キッチン棚板、食器棚等の水平面用途で、その上に置かれる鍋や皿等の化粧材との接触物を傷付けない、つまり、化粧材自体及びそれに対する接触物の双方に、傷、艶光り等の外観変化を含めた品質低下を起こさない「接触適性」を備えた化粧材に関する。
【0002】
【従来の技術】
従来、表面にトップコート層として保護層を設けた所謂コート紙等の化粧シートを、更に板材等の基材にラミネートして化粧板や化粧部材等としたものが、内装材、建具、家具等に使用されている。
【0003】
そして、これらの化粧シート、化粧板、化粧部材等の各種形態の化粧材には、その用途に対応して各種物性が要求される。例えば、JAS規格では特殊加工化粧合板のFW(flat & wall)タイプ等を規定している。このFWタイプに対する耐摩耗性等の物性(以下、FW規格)を満足し得る化粧シートとしては、例えば、(1)2液硬化型ウレタン樹脂の保護層中に合成樹脂ビーズを添加したウレタン化粧シート、(2)低圧メラミン化粧シート、(3)電離放射線硬化性樹脂の保護層中に球状アルミナ等の鉱物系減摩剤を添加した電離放射線硬化化粧シート(特許文献1、特許文献2等参照)、(4)絵柄印刷後、樹脂含浸したダップ(ジアリルフタレート(DAP)樹脂含浸化粧材)或いはFF(finished foil)と呼ばれる化粧シート、等がある。そして、これら化粧シートはそれぞれ、性能やコストに於いて、下記表1の如き特性がある。なお、表1は、各化粧シートを木質板の基材に積層して化粧板としたときの大まかな性能での比較である。
【0004】
【表1】

Figure 2005042373
【0005】
なお、表1中、JAS摩耗B試験は、上述FW規格の耐摩耗性で規定している試験である。また、耐マーリング性は、他の物で表面が擦られ化粧材の表面が艶変化(艶光り)する事に対する耐性である。また、加工適性は、シート状での化粧材(化粧シート)を板材等の基材にロールで加圧して貼り合せ加工時に必要な可撓性(以下、脆くない、つまりブリトルでないという意味で耐ブリトル性とも言うことにする。)である。また、リサイクル性は、化粧材廃材を粉砕してパーチクルボードの原材料等として、再利用(リサイクル)可能な適性である。リサイクル性によって、シート状の化粧材(化粧シート)は、合板やパーチクルボードにラミネート加工し化粧材(化粧板等)として使用され、その目的を終了して廃材となった後に、再利用でき、環境問題に対応したものとなる。
【0006】
そして、化粧材を使用する際は、実際上はその使用部位ごとに、コストと性能を勘案して各種化粧材を組合わせて、システムキッチンや家具等の最終製品を構成している。例えば、棚板等の水平面の部位では、その上に鍋や皿等の物が置かれるので、耐摩耗性に優れたものを使用し、扉等の垂直面の部位では耐摩耗性能は多少落ちても、その分より低コストのものを使用する等の組合せである。
【0007】
【特許文献1】
特許第2740943号公報
【特許文献2】
特許第2860779号公報
【0008】
【発明が解決しようとする課題】
表1の如く、(3)の電離放射線硬化化粧シートは、コストの点を除けば、各種物性に優れたものである。ただ、その為には、高価な球状アルミナ等の添加が必要である。それは、無添加で耐摩耗性を出そうとするとブリトルとなって、十分な耐摩耗性と、加工適性に必要な可撓性とを両立できないからである。すなわち、無添加でFW規格を満足させる耐摩耗性を出す為には、電離放射線硬化性樹脂の保護層の厚みを厚くし、且つ電離放射線の照射量を大きくしたり組成を調整する等して架橋間分子量を小さく(例えば平均で200以下)して、表面硬度を高くする必要があるが、そうなると、保護層が脆くなって、ひいては、化粧シートが脆弱でブリトルとなって、可撓性が得られないのである。また、カールも大となる。
【0009】
また、保護層が脆弱となる結果、基材として使用できる繊維質基材にも制限が発生する。具体的には、例えば30g/m程度の一般紙や、紙間強化紙では電離放射線樹脂の硬化収縮応力に耐えられず、また硬くて脆弱な保護層の厚みが厚くなることで化粧シート自身も脆弱でブリトルになる為、それを防ぐには、高価な含浸紙を使用する必要があり、化粧シートとして非常に高価なものとなってしまうという問題がある。
【0010】
一方、近年、産業廃棄物処理の問題から、特にリサイクル性が重視されるようになってきており、この点で、耐摩耗性には優れてるが、(2)の低圧メラミン化粧シートや(4)のダップ或いはFF化粧シートは、望ましくない。また、これらは、近年重要視されている揮発性有機化合物(VOC)の問題もあり、望ましくない。リサイクル性の点では(1)の樹脂ビーズ添加のウレタン化粧シートがあり、またコスト的にも有利であるが、耐摩耗性が比較的低い上、特に耐マーリング性が劣る。なお、ウレタン化粧シートは、樹脂ビーズに代えて球状アルミナ等を添加すれば耐摩耗性は上がるが、低コストであると云うウレタン化粧シートの利点が失われる。尚且つ、それでも耐マーリング性は良くならない。
【0011】
以上の様に、コストの問題が無ければ、アルミナ等の無機質粒子を添加した電離放射線硬化化粧シートが良く、従って、耐摩耗性等が要求される部分には、電離放射線硬化化粧シートを使用し、そうでない部分には他の化粧シートを使用すれば、システムキッチンや家具等の製品全体としては、コストと性能をある程度バランスできる。
しかしながら、その為には、一つの最終製品を組み立てるのに、数種の化粧材を使用する為、製品の原材料管理が煩雑になったり、化粧材ごとに色調がバラツクなどの品質問題が発生しているのが現状である。この為、材料管理費・ロス削減の観点から、水平面用途・垂直面用途とも共通で使用できる様な化粧材が希求されていた。
【0012】
そこで、もしも、(3)の電離放射線硬化化粧シートで、その物性を満足しつつ、それをウレタン化粧シート並みのコストで実現できれば、水平・垂直面共通使用できる化粧材が得られるはずである。しかし、(3)の電離放射線硬化化粧シートを、水平面用途に使用するには、別の問題があった。それは、可撓性と耐摩耗性を両立させる為に、高硬度の無機質粒子として球状アルミナ等を添加している為に、耐摩耗性は非常に優れた性能が得られるのだが、それが逆に、化粧材に接する他の物を削ってしまうと云う問題である。具体的には、キッチン用底板などの用途で使用した場合、鍋(金属)や皿(陶器)の底を傷付け摩耗させ、その摩耗粉による汚れが発生し、また、布製品ではその繊維が破損する。そして更に、鍋底や皿底等が研磨されて出た研磨粉により、化粧材表面が汚染される為、化粧材の意匠性(外観品質)が不安定(汚れ、摩耗粉による黒ずみ発生による色調変化が発生)となってしまうと云う問題である。
【0013】
すなわち、本発明の課題は、JASのFW規格を満足して、垂直面及び水平面用途に使用可能な耐摩耗性を有し、さらにその上、化粧材と物とが互いに接触して擦れあっても、双方とも傷、艶光りなど外観変化を含めた品質低下が起きず、従って摩耗粉、摩耗汚れも発生しない「接触適性」も備え、耐ブリトル性も満足し、しかも安価な化粧材を化粧材を提供することである。
【0014】
【課題を解決するための手段】
上記課題を解決すべく本発明の化粧材は、基材上に、少なくとも、熱硬化性樹脂からなる耐摩耗性付与層、電離放射線硬化性樹脂からなる保護層を、順次積層してなる化粧材において、耐摩耗性付与層と保護層の総厚みが18〜30μmであり、且つ、耐摩耗性付与層の厚みtと保護層の厚みtがt≧tであり、且つ、耐摩耗性付与層中に平均一次粒子径8〜15μmでモース硬度6〜8の球状無機質粒子が添加され、保護層中に平均一次粒子径5〜15μmでモース硬度6〜8の球状無機質粒子が添加されている構成とした。
【0015】
この様な構成とすることで、基本的性能として、JAS(日本農林規格)が特殊加工化粧合板のタイプFWで規定する摩耗B試験による耐摩耗性を満足する上、保護層及び耐摩耗性付与層中には特定の球状無機質粒子を添加させてあるが、電離放射線硬化性樹脂からなる保護層の下側の耐摩耗性付与層は熱硬化性樹脂から構成し、しかも保護層の厚み以上にしてあるので、(シート状形態の化粧シートのときに)加工適性として望ましい可撓性が得られる耐ブリトル性も満足できる。
【0016】
しかも、保護層中へ添加する無機質粒子として、モース硬度及び粒子径を特定した球状無機質粒子を採用するので、耐摩耗性が得られると共に、接触物を傷付けることも無い。また、耐摩耗性付与層中にも、モース硬度及び粒子径を特定した球状無機質粒子を添加するので、保護層が削られ耐摩耗性付与層が露出する様になっても、耐摩耗性が得られると共に、接触物を傷付けることも無い。この為、化粧材自体の他、接触物も傷付けず、化粧材と接触物との双方ともに、傷や艶光りなど外観変化を含めた品質低下が起きず、従って摩耗粉、摩耗汚れも発生しない「接触適性」も付与できる。従って、化粧材を、水平面用途、例えば、システムキッチン用底板に使用した場合では鍋や皿の底を傷付け摩耗させて、その摩耗粉による汚れ等が発生する事が無い。
【0017】
さらに、保護層や耐摩耗性付与層中に添加する無機質粒子には、モース硬度9と高い球状アルミナ等に比べて安価な球状シリカ等を採用でき、しかも、保護層の樹脂は電離放射線硬化性樹脂とするが、耐摩耗性付与層の性樹脂は熱硬化性樹脂で良いので2液硬化型ウレタン樹脂等を使用できる結果、コスト的にも、(シート状物で比較すれば)ウレタン化粧シート並に安価にできる。
そして、これらの特性によって、水平面及び垂直面に共通使用できる化粧材となる。
【0018】
また、本発明の化粧材のより好ましい一形態は、上記構成に於いて、更に、少なくとも保護層中の球状無機質粒子が球状シリカである構成とする。
この様な構成とすることで、上述した如く安価にできる。従って、コスト的にも、水平面及び垂直面に共通使用し易い化粧材となる。
【0019】
また、本発明の化粧材のより好ましい一形態は、上記いずれかの構成に於いて、更に、耐摩耗性付与層の熱硬化性樹脂が、アクリルポリオールを用いた2液硬化型ウレタン樹脂である構成とした。
この様な構成とすることで、保護層や絵柄層との層間密着強度、耐油性(油浸透防止効果)が向上する。
【0020】
ここで、本発明の基本設計思想をまとめておくと、以下の通りである。即ち、
【0021】
(1)〔基材/塗膜〕構成の化粧材に於いて、耐摩耗性を発現させる為には、塗膜の厚みを厚くして塗膜自体が摩耗減量を負担して、直下の絵柄層、基材を保護すること、及び塗膜に樹脂よりも遙かに硬質の無機質粒子を添加し、その硬さで摩耗を食止めること、が必要である。
【0022】
(2)又、塗膜に接触した物の摩耗を防ぐ為、添加する無機質粒子は、モース硬度は6〜8、且つ形状は球状とする。この様な無機質粒子を摩耗力に対抗して十分強固に塗膜中に保持する為、樹脂(バインダー)は硬化性樹脂とする。
【0023】
(3)以上の(1)び(2)の条件のもとで、JAS規格タイプFWの摩耗B試験を満たすだけの耐摩耗性を得る為には、塗膜の総厚みは18μm以上必要である。但し、硬化性樹脂の膜厚が厚過ぎると、硬化収縮によりカールが発生し、更に塗膜が脆くなりブリトルとなる。尚且つ過剰コストとなる。それ故、総膜厚の上限値は30μm迄とする。
【0024】
(4)更に、塗膜表面の艶傷(マーリング)防止の為、該塗膜表面近傍(最大で上半分迄)は、硬化性樹脂の中でも特に、高架橋密度の電離放射線硬化性樹脂を選択する。これを保護層とする。但し、塗膜の総膜厚を全て電離放射線硬化性樹脂にしてしまうと、硬化収縮により、化粧材(特にシート状の場合)にカールが発生し又化粧材は脆くブリトルとなる。
【0025】
(5)よって、カールとブリトル防止の為、塗膜の裏面側半分以上は、或る程度の硬度は持ちながらも可撓性、柔軟性も有する、2液硬化型ウレタン樹脂等の熱硬化性樹脂とする。
【0026】
(6)その結果、膜厚は、耐摩耗付与層の膜厚t>=保護層の膜厚tとする。なお、空気中に生じる酸素ラジカルによる電離放射線の硬化阻害による塗膜物性の低下の影響を防止する為、保護層の膜厚tは下限値を1μmとすることが好ましい。
【0027】
(7)接触物の摩耗防止の為、各層に添加する無機粒子の粒径は、塗膜から大きく突出しない様に、その合計値が、膜厚の合計値を大きく超過し無いことが必要である。又、カール防止と、厚み方向に摩耗量を均一に分担させるため、好ましくは塗膜の厚み方向に粒子の粒径の極端な分布が無い様に設計する。なお且つ、耐摩耗性発現の為には、小粒子径の粒子を多数添加するよりも、大粒子径の粒子を少量添加する方が有効である。すると、各層の粒子の粒径は(略)同粒径で各々4.5〜15μmとすることが基本となる筈である。但し、表面汚染時の清掃性確保の為には塗膜表面の凹凸を少なくし、汚染の滞留を防ぐことが有効である。且つ、保護層の表面は粒子の頭出しを防ぎ、平滑化することが接触物の摩耗防止の点でも必要である。よって、これらの要求も加味すると、保護層中の粒子径は耐摩耗付与層中の粒子径よりも幾分小さくする必要が有る。よって、無機質粒子の平均一次粒子径は、耐摩耗性付与層中が8〜15μm、保護層中が5〜15μmとなる。
【0028】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施の形態を説明する。
【0029】
〔概要〕
先ず、図1は、本発明の化粧材10をその一形態で説明する断面図である。図1に例示の化粧材10は、基材1側から順に、基材1、絵柄層2、耐摩耗性付与層3、保護層4が積層された構成である。このうち、耐摩耗性付与層3と保護層4は、上述した如き本発明固有の層である。すなわち、耐摩耗性付与層3の樹脂は熱硬化性樹脂からなり、保護層4の樹脂は電離放射線硬化性樹脂からなり、しかも、これらの厚みは、耐摩耗性付与層3と保護層4の総厚みが18〜30μmで、耐摩耗性付与層の厚みtと保護層の厚みtがt≧tと、下側の耐摩耗性付与層の厚みを保護層の厚み以上としてある。
更に、耐摩耗性付与層3中には、平均一次粒子径8〜15μmでモース(Mohs)硬度が6〜8となる球状無機質粒子を添加し、保護層4中には平均一次粒子径5〜15μmでモース硬度が6〜8となる球状無機質粒子を添加しておく。これらの球状無機質粒子には例えば球状シリカを用いる。その場合、コスト等の点から、少なくとも表面側の保護層中は球状シリカとするのが好ましいが、更に好ましくは、耐摩耗性付与層も同様にコスト等の点から球状シリカとするのが良い。
【0030】
本発明でいう「接触適性」とは、化粧板や化粧シート等の各種形態の化粧材と、該化粧材と接触する物とが互い擦れあっても、双方とも傷、艶光りなど外観変化を含めた品質低下が起きない性能のことである。従来から、擦れたときの耐久性には耐摩耗性があるが、これは化粧材側の耐久性であり、化粧材に接触する物側にも注目した特性では無かった。そこで、本発明では、これら両方の耐久性能を示す一つの指標として新たに「接触適性」なる用語を定義した。
従って、「接触適性」があれば、化粧材及びその接触物のどちらからも、摩耗粉も発生せず、摩耗汚れも発生しない為、接触物との接触頻度が大きい用途、例えば水平面用途で使用した場合にも、常に清潔な状態が維持される。なお、本発明では、その一例として、接触物をキッチン回りを念頭に置いた生活中の対照物として、比較的柔らかい金属(鍋、やかん等)と、比較的硬い陶器(皿等)について、その性能を評価した。しかし、本発明の化粧材は、その接触物、使用環境、部位等がこれに限定されるものではない。
【0031】
なお、本発明の化粧材は、最低限、基材1、耐摩耗性付与層3、及び保護層4のみでも良いのだが、通常は、より高意匠とする為に、更に何らかの装飾処理が施され、その最も一般的なものが、図1に例示の様な絵柄層2の形成である。また、基材1は紙、樹脂シート、樹脂板や木質板、或いはこれらの積層体等、基本的には任意であり、基材が紙の場合は化粧紙乃至は化粧シート、樹脂シートの場合は化粧シート、基材が樹脂板や木質板の場合は化粧板等とも呼ばれ、また、化粧紙や化粧シートを板等に積層したものも化粧板等と呼ばれ、これら全てを含めて、本発明では化粧材と呼ぶ。
【0032】
以下、保護層4、耐摩耗性付与層3、絵柄層2、基材1の順に詳述する。
【0033】
〔保護層〕
先ず、保護層4は、化粧材の表面層として耐摩耗性、接触適性等の表面物性を付与する層である。本発明では、この保護層4は、その樹脂に電離放射線硬化性樹脂を用いてその架橋硬化物として構成し、なお且つ、耐摩耗性と共に接触適性も実現する為に、平均一次粒子径5〜15μmでモース硬度6〜8の球状無機質粒子を添加した層とする。電離放射線硬化性樹脂は、保護層中に添加する球状無機質粒子に対して、バインダー樹脂となり該粒子を分散保持する。
なお、保護層の厚みは通常5〜13μm程度とするが、後述する耐摩耗性付与層との関係に於いて特定関係とするのが好ましいが、この点については、後で詳述する。
また、保護層の形成は、グラビアコート、ロールコートなどの公知の塗工法で形成すれば良い。或いはまた、グラビア印刷等の公知の印刷法での全ベタ印刷で形成しても良い。
【0034】
保護層中に添加する球状無機質粒子は、耐摩耗性付与を目的とし、また艶調整も行えるものである。但し、球状アルミナ(モース硬度9)等のモース硬度が8超過の粒子は、化粧材に対する接触物を摩耗させてしまい接触適性が得られない。そこで、本発明では、モース硬度6〜8の球状無機質粒子を使用する。なお、モース硬度が6未満では、接触適性は得られたとしても、耐摩耗性が十分に得られない。また、モース硬度が6〜8の範囲であっても、粒子形状が球状でなく例えば不定形等であると、耐摩耗性自体が低下する他、粒子の角で接触物が研磨されてしまい、接触適性も十分に得られない。なお、球状とは、真球状、あるいは、球を扁平にした楕円球状、ならびに該真球や楕円球に近い形状等のように、粒子表面が滑らかな曲面で囲われたものでも良く、こららも含む。
この様な球状無機質粒子を電離放射線硬化性樹脂の保護層に添加しておくことで、球状無機質粒子は融点が通常1000℃以上と高いので、表面が金属や陶磁器などで摩耗された際に発生した熱等によって、(球状無機質粒子が軟化する事はもちろん無い上)化粧材表面が艶変化したり、摩耗によって摩耗粉が発生したとしても、保護層中に入り込むことを防止できる。
【0035】
なお、本発明で使用し得る球状無機質粒子は、その粒子形状、及び粒子サイズから、樹脂バインダー中での分散状態において、一次粒子が複数集まって凝集して二次(凝集)粒子となって、一次粒子形状は球状だが、不定形形状等の二次粒子となる様なこと(例えば一次粒子径がサブミクロンオーダーの微粒子シリカの場合)は無く、通常は、一次粒子のままバインダー樹脂中に分散保持される。
【0036】
また、保護層に含有させる球状無機質粒子は、平均一次粒子径が5〜15μmのものが好ましい。平均一次粒子径が15μmを超えると、表面平滑性が低下するとともに、保護層のバインダー樹脂が球状無機質粒子を保持する保持力が低下し、皿底などで摩耗されると球状無機質粒子が脱落し易くなり、耐摩耗性が発現し難くなる。また、紙等の浸透性の基材では塗膜形成時に塗液が基材に浸透すると層が薄い部分が発生し易くなり、また、樹脂バインダーと球状無機質粒子との間に空隙(欠損)が発生し、油や水性インキ等の汚染物質が層中に浸透し易くなり、耐汚染性も低下する。また、表面の平滑性が低下してザラザラしたテクスチャーとなり、化粧材としての商品価値も低下する。
一方、平均一次粒子径が5μm未満と小さすぎても、耐摩耗性が低下する上、インキ粘度の増加が顕著になり、この為に可能な添加量が少なくなり、物性・材料原価(球状無機質粒子は高価な電離放射線硬化性樹脂に対して増量剤と見ることができ、添加量が少ないと、より高価な樹脂分が増えるから原価アップとなる)の面からも劣ることになる。また、保護層の表面艶を希望艶に調整できなくなる。
以上の如く、保護層に含有させる球状無機質粒子は、平均一次粒子径が5〜15μmのものが好ましいが、より確実に上記の効果が得られる点で、平均一次粒子径はより好ましくは10〜14μmのものが望ましい。
【0037】
球状無機質粒子としては、所定のモース硬度、所定の平均一次粒子径を満足するものであれば特に制限は無い。但し、絵柄層の絵柄が曇らずに見える様にするには、保護層の透明性を高く、例えば可視光透過率80%以上に、できるものがより好ましい。可視光透過率が80%未満となると、絵柄層の曇りが顕著になり、鮮明性を大きく損ない、意匠性が低下するからである。なお、透明性は粒子の屈折率が、層に用いる樹脂の屈折率に近い程、得られる。この様な、硬度、粒径、さらには層に透明性も付与で得る、球状無機質粒子としては、例えば、市販品として入手し易いものの一つとして、結晶質の球状シリカを挙げることができる。また、この球状シリカは、各種特性に於いても好適な粒子である。
【0038】
球状無機質粒子としてシリカが適する理由としては、(1)シリカ自体が無色であること、(2)シリカは印刷および塗工分野にて艶消し剤として一般的に広く使用され、その表面処理含め多種多様な球状シリカが選定できること、(3)広く普及している材料であり、印刷および塗工実績が豊富で、比較的安価であること、(4)屈折率(NaD線(589nm)に於ける値)が1.4〜1.5で、多くの樹脂と屈折率が近似している為、光の散乱による白濁現象が発生せず、樹脂塗膜中に添加しても透明性を損なわなず、可視光透過率80%以上の良好なる透明性が得られること、などが挙げられる。
【0039】
ここで、球状シリカ添加の具体例を挙げれば、平均一次粒子径が5〜15μmの球状シリカを、樹脂分全量に対し10〜30質量%程度添加する。好ましい例を挙げれば、平均一次粒子径10〜14μmの球状シリカを樹脂分全量に対して15〜25%程度添加した保護層を厚み10〜14μmとする構成であり、更にそのなかでも好適なものを挙げれば、平均一次粒子径12μmの球状シリカを樹脂分全量に対して20%程度添加した保護層を厚み12μmに形成した構成である。
【0040】
なお、球状無機質粒子としては、その表面を、表面処理したものを用いても良く、樹脂バインダーの保持力が向上する。表面処理としては、シランカップリング剤等による公知の表面処理で良い。
【0041】
次に、保護層に用いる電離放射線硬化樹脂としては、具体的には、分子中にラジカル重合性不飽和結合または、カチオン重合性官能基を有する、プレポリマー(所謂オリゴマーも包含する)及び/又はモノマーを適宜混合した電離線により硬化可能な組成物が好ましくは用いられる。
なおここで電離放射線とは、分子を重合或いは架橋させ得るエネルギーを有する電磁波または荷電粒子を意味し、通常は、紫外線(UV)または電子線(EB)が用いられる。
【0042】
上記プレポリマー又はモノマーは、具体的には、分子中に(メタ)アクリロイル基、(メタ)アクリロイルオキシ基等のラジカル重合性不飽和基、エポキシ基などのカチオン重合性官能基等を有する化合物からなる。これらプレポリマー、モノマーは、単体で用いるか、或いは複数種混合して用いる。なお、ここで、例えば、(メタ)アクリロイル基とは、アクリロイル基又はメタクリロイル基の意味である。
また、電離放射線硬化性樹脂としては、ポリエンとポリチオールとの組み合わせによるポリエン/チオール系のプレポリマーも好ましくは用いられる。
【0043】
ラジカル重合性不飽和基を有するプレポリマーの例としては、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、メラミン(メタ)アクリレート、トリアジン(メタ)アクリレート、シリコーン(メタ)アクリレート等が使用できる。分子量としては、通常250〜100,000程度のものが用いられる。なお、ここで、例えば、(メタ)アクリレートとは、アクリレート又はメタクリレートの意味である。また、アクリレート(化合物)及びメタクリレート(化合物)を総称して、単にアクリレート(化合物)とも呼ぶ。
【0044】
ラジカル重合性不飽和基を有するモノマーの例としては、単官能モノマーでは、メチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等がある。また、多官能モノマーでは、ジエチレングリコールジ(メタ)アクリレート、ポロプレングリコールジ(メタ)アクリレート、トリメチールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイドトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタリスリトールヘキサ(メタ)アクリレート等もある。
【0045】
カチオン重合性官能基を有するプレポリマーの例としては、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ化合物等のエポキシ系樹脂、脂肪酸系ビニルエーテル、芳香族系ビニルエーテル等のビニルエーテル系樹脂のプレポリマーがある。チオールとしては、トリメチロールプロパントリチオグリコレート、ペンタエリストリトールテトラチオグリコレート等のポリチオールがる。また、ポリエンとしては、ジオールとジイソシアネートによるポリウレタンの両端にアリルアルコールを付加したもの等がある。
【0046】
なお、これらのなかでも、本発明において、好ましく用いるアクリルポリオールとイソシアネートとの2液硬化型ウレタン樹脂からなる特定の耐磨耗性付与層と組み合わせたときに、層間密着が良好で、球状無機質粒子の保持力に優れ、なお且つ、接触適性の性能上好ましいのは、アクリレート系又はメタクリレート系の電離放射線硬化性樹脂である。該樹脂としては、具体的には、エポキシ(メタ)アクリレートプレポリマーとトリメチロールプロパントリ(メタ)アクリレートとの混合系の組成物等を挙げることができる。
【0047】
なお、保護層中には、耐摩耗性を向上すると共に、鍋底摩耗試験や皿底摩耗試験での鍋底や皿底等の接触物との摩耗時に摩擦抵抗を低減して、層間に加わる衝撃を緩和し、層間剥離を防止する添加剤として、反応性シリコーン(例えば、シリコーン(メタ)アクリレート)やワックス等の公知の滑剤を、樹脂分全量に対して、それぞれ1〜2質量%程度添加することも望ましい。
【0048】
また、保護層に用いる電離放射線硬化性樹脂中には、物性調整の為に必要に応じ適宜、その他の樹脂として電離放射線非硬化性樹脂、例えば、塩化ビニル−酢酸ビニル共重合体、酢酸ビニル樹脂、アクリル樹脂、セルロース系樹脂等の熱可塑性樹脂を、添加しても良い。
また、上述滑剤以外にも、公知の添加剤、例えば、着色剤、安定剤、防カビ剤等を、必要に応じ適宜添加しても良い。
【0049】
なお、紫外線にて架橋硬化させる場合には、電離放射線硬化性樹脂に光重合開始剤を添加する。ラジカル重合性不飽和基を有する樹脂系の場合は、光重合開始剤として、アセトフェノン類、ベンゾフェノン類、チオキサントン類、ベンゾイン、ベンゾインメチルエーテル類を単独又は混合して用いることができる。また、カチオン重合性官能基を有する樹脂系の場合は、光重合開始剤として、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、メタロセン化合物、ベンゾインスルホン酸エステル等を単独又は混合物として用いることができる。
【0050】
なお、電離放射線の電子線源としては、コッククロフトワルトン型、バンデグラフト型、共振変圧器型、絶縁コア変圧器型、或いは、直線型、ダイナミトロン型、高周波型等の各種電子線加速器を用い、100〜1000keV、好ましくは、200〜300keVのエネルギーをもつ電子を照射するものが使用される。また、紫外線源としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク灯、ブラックライト、メタルハライドランプ等の光源が使用される。
【0051】
ところで、保護層は通常、無着色透明な層とするが、着色透明層としても良い。それは、保護層の下側に通常は設ける絵柄層を透視可能とする為である。なお、絵柄層無しの構成等では、無着色不透明、着色不透明等、不透明でも良い。
【0052】
〔耐摩耗性付与層〕
耐摩耗性付与層3は、化粧材がシート状のときに該化粧材がブリトルとなるのを防ぎつつ可撓性を維持して、且つ耐摩耗性を付与すると共に(耐摩耗性付与層が露出するまで保護層が摩耗したときの)接触適性をも付与する層である。この耐摩耗性付与層3は、樹脂に熱硬化性樹脂を用いてその架橋硬化物として構成し、なお且つ、耐ブリトル性と耐摩耗性向上とを両立させ、なお且つ接触適性も実現する為に、平均一次粒子径8〜15μmでモース硬度6〜8の球状無機質粒子を添加した層とする。該球状無機質粒子は、前記熱硬化性樹脂をバインダー樹脂としてその中に分散保持される。
なお、耐摩耗性付与層の形成は、グラビアコート、ロールコートなどの公知の塗工法で形成すれば良い。或いはまた、グラビア印刷等の公知の印刷法での全ベタ印刷で形成しても良い。
【0053】
耐摩耗性付与層に用いる熱硬化性樹脂としては、保護層で述べた様な電離放射線硬化性樹脂では樹脂自体がブリトルとなり易いので、電離放射線以外の硬化形式による熱硬化性樹脂を用いる。該熱硬化性樹脂としては、具体的には、2液硬化型樹脂等として利用される樹脂である。2液熱硬化型樹脂としては、2液硬化型ウレタン樹脂、2液硬化型ポリエステル樹脂、2液硬化型エポキシ樹脂等である。なかでも、絵柄層及び保護層との層間密着強度、耐油性(油浸透防止効果)の点から、OH価30程度のアクリルポリオールを主剤に用いた2液(熱)硬化型ウレタン樹脂が、好適な樹脂の一つであった。
【0054】
耐摩耗性付与層に添加する球状無機質粒子は、平均一次粒子径8〜15μmでモース硬度6〜8の粒子である。耐摩耗性付与層に添加する球状無機質粒子も、所定のモース硬度とすることで、保護層が摩耗して消失し耐摩耗性付与層が表面に露出する様になっても、該耐摩耗性付与層中に添加した無機質粒子によって、接触適性が損なわれるのを防止できる。この様な球状無機質粒子としては、保護層と同様に、例えば、結晶質の球状シリカ等が好適である。
また、保護層の場合と同様に、耐摩耗性付与層に含有させる球状無機質粒子も、絵柄層の絵柄が曇らない様にする為には、耐摩耗性付与層の透明性を高く、例えば可視光透過率80%以上に、出来るものがより好ましい。この点で、球状シリカ粒子は、この様な透明性を付与できる球状無機質粒子としても好適な粒子である。
【0055】
耐摩耗性付与層に含有させる球状シリカ等の球状無機質粒子には、次の様な作用効果があると考えられる。(1)耐摩耗性付与層の熱硬化性樹脂が硬化する際の凝集力を緩和し、カール、ブリトルを緩和する効果、(2)JAS摩耗B試験で使用されるS42研摩紙の研磨剤が絵柄層に到達するのを妨害することにより、絵柄層が引き裂かれることを防止する効果、である。
【0056】
そして、上記、二つの効果の観点から、球状無機質粒子の粒径と添加量は、平均一次粒子径は8〜15μmとし、添加量は5〜15部とするのが、好適であった。平均一次粒子径15μmを超えると、バインダー樹脂が球状無機質粒子を保持する保持力が低下し、耐摩耗性付与層が露出するまで摩耗したときに球状無機質粒子が脱落し易くなり、その分、耐摩耗性が低下する。一方、平均一次粒子径が8μm未満でも、(耐摩耗性付与層が露出するまで摩耗した後の)耐摩耗性が低下する。
なお、平均一次粒子径の下限値が、保護層が5μmで耐摩耗性付与層が8μmと、保護層の方が小さい理由は、化粧材の最表面のみに要求される性能として、接触物の傷付防止、及び汚染物の(易)清掃性が有る為である。これら2性能発現の為には、最表面層即ち保護層からの粒子突出、表面凹凸が(摩耗前、摩耗中とも)小さい方が好ましい。その為には、保護層中の粒子径は小さ目の方が良い。但し、粒子径が5μm未満になると耐摩耗性がJASFW規格B試験を満たすには不足となる。故に、保護層中の粒子の下限値は5μmとする。一方、最表面では無い耐摩耗性付与層には、接触物の傷付防止、及び汚染物の清掃性は要求され無い。その為、最表面層の粒子径を少なくした分も含め粒子径を大き目にする。但し、8μmを超過すると表面の平滑性が低下し、清掃性が悪くなる。故に耐摩耗性付与層の粒子径の下限値は8μmとなる。基本的考えとして、耐摩耗性を付与する役割の大半を耐摩耗性付与層に担わせ、保護層でその電離放射線硬化性樹脂による、耐マーリング性、表面強度等の特性を出すと共に、出来るだけ保護層表面は平滑にし、凹凸をなくす事により、清掃性を向上させることができる。以上の如く、耐摩耗性付与層に含有させる球状無機質粒子は、平均一次粒子径が8〜15μmのものが好ましいが、より確実にその効果が得られる点で、平均一次粒子径はより好ましくは10〜14μmのものが望ましい。
【0057】
ここで、好適な条件を例示すれば、平均一次粒子径10〜14μmの球状シリカを樹脂分全量に対して15〜25%程度添加したものが良く、さらにそのなかでも〕好適な具体例を挙げれば、平均一次粒子径12μmの球状シリカを、OH価30のアクリルポリオール樹脂100質量部に対して21質量%添加したものに、硬化剤としてイソシアネートを2.8質量部添加した配合の2液熱硬化型ウレタン樹脂で形成した耐摩耗性付与層であった。
【0058】
なお、耐摩耗性付与層も保護層と同様に、通常は、無着色透明な層とするが、着色透明層としても良い。それは、耐摩耗性付与層の下側に通常は設ける絵柄層を透視可能とする為である。なお、絵柄層無しの構成等では、無着色不透明、着色不透明等、不透明でも良い。
【0059】
〔耐摩耗性付与層と保護層の厚み〕
耐摩耗性付与層の厚みtと、保護層の厚みtは、これらの総厚みが18〜30μmとし、なお且つ、t≧tとするのが好ましい。それは、耐摩耗性の観点からは、保護層および耐摩耗性付与層の各厚みは、各々できるだけ厚い方が有利であるが、総厚み、及び各層の厚みの大小関係を満たさないと、硬化収縮によりカールがきつくなったり、シートが脆弱になる問題が発生したりするからである。
本発明者は、パーチクルボード等のボードにシート状の化粧材をロール加圧によりラミネートして、化粧材を化粧板として仕上げる際の加工適性と、耐摩耗性能の関係を研究した結果、上記総厚み、及び厚み関係を見出した。但し、保護層の膜厚tの下限値は最低1μm、好ましくは2.5μm以上、より好ましくは3.5μmは確保する。理由としては、電離放射線硬化性樹脂塗膜は一般に、その表面近傍の1μm未満の領域は空気中の酸素、或いは水蒸気による硬化反応阻害が起きる。若し保護層の厚みが薄くなり過ぎて1μmを下回ると、保護層は全て硬化阻害した層から成ることになり、耐マーリング性等の表面物性が不十分になり易い。仍って、此の点から保護層の膜厚tは最低1μm以上とする。更に、球状無機質粒子を外力に抵抗して固着する為には、保護層の膜厚は、添加する粒子の粒子径の50%以上、より好ましくは70%以上とする必要が有る。保護層中の球状無機質粒子の粒子径は下限値が5μmの為、故に、保護層の膜厚tの下限値は、好ましくは2.5μm以上、より好ましくは3.5μmと成る。
【0060】
なお、耐摩耗性の評価試験において、最も粗い研摩紙(S42研摩紙)の算術平均粗さRaが30μm程度であり、耐摩耗性付与層と保護層の総厚みが30μm超過となると、研摩紙の研摩剤絵柄層に到達する確率が下がり、耐摩耗性は総厚みが厚くなるほど向上するが、逆に化粧シートのカール、ブリトルが激しくなり加工適性が劣ることとなり、(これを回避する為には)基材シートの厚みを厚くしたり、材質に制限が出来てしまうことになる。
また、耐摩耗性付与層と保護層の総厚みが18μm未満では、耐摩耗性能が十分に得られない。
【0061】
以上の如く本発明では、耐摩耗性付与層と、電離放射線樹脂からなる保護層に、それぞれ、平均一次粒子径が8〜15μmの球状無機質粒子、5〜15μmの球状無機質粒子を適量添加することにより、添加した無機質粒子が研摩剤の化粧材内への進入を阻害し、耐摩耗性付与層と保護層との総厚みが18〜30μmあれば、水平面用途で使用可能な一定水準の耐摩耗性を発現できることを見出した。また、耐カール性、耐ブリトル性に優れた耐摩耗性付与層の厚み(t)を、電離放射線硬化樹脂からなる保護層の厚み(t)以上とすることにより、耐摩耗性に優れ、かつ、加工適性に優れた化粧シートが得られる事を見出したものである。
【0062】
〔絵柄層〕
絵柄層2は、化粧材を高意匠化できる点で、好ましくは設ける。絵柄層は、用途に応じて、従来公知の材料、方法によって形成すれば良い。すなわち、絵柄層2は、インキ(又は塗料)を用いて、グラビア印刷、スクリーン印刷、オフセット印刷、グラビアオフセット印刷、インキジェットプリント等の従来公知の印刷法、塗工法等で形成すれば良い。なお、全面ベタ柄のベタ柄層の場合は、ロールコート、グラビアコート等の公知の塗工法で形成しても良い。
【0063】
絵柄層の絵柄としては、木目模様や大理石など自然物を模倣した絵柄の他、人工的な抽象柄、単色ベタでもよく、求められる絵柄を任意に表現すれば良い。例えば、導管柄、板目、柾目等の木目模様、石目模様、砂目模様、梨地模様、布目模様、タイル調模様、煉瓦積調模様、皮絞模様等の自然物の模倣柄、文字、記号、幾何学模様等の抽象柄、或いは、全面ベタ柄、或いはこれら二種以上の組合せ等を用いる。
【0064】
絵柄層の形成に用いるインキ(又は塗液)は、一般的な、バインダー等からなるビヒクル、顔料や染料等の着色剤、これに適宜加える各種添加剤からなるものを用いることができる。例えば、バインダーの樹脂には、ニトロセルロース、酢酸セルロース、セルロースアセテートプロピオネート等のセルロース系樹脂、アクリル樹脂、ウレタン樹脂、塩化ビニル−酢酸ビニル共重合体、ポリエステル樹脂、アルキド樹脂等の樹脂を単独で又は混合して用いる。また、着色剤としては、例えば、チタン白、亜鉛華、カーボンブラック、鉄黒、弁柄、カドミウムレッド、黄鉛、チタンイエロー、コバルトブルー、群青等の無機顔料、アニリンブラック、キナクリドンレッド、ポリアゾレッド、イソインドリノンイエロー、ベンジジンイエロー、フタロシアニンブルー、インダスレンブルー等の有機顔料、二酸化チタン被覆雲母、貝殻、真鍮、アルミニウム等の鱗片状箔粉等から成る光輝性顔料、或いはその他染料等を用いる。
【0065】
この様なインキ(又は塗液)を絵柄層の形成に用いるが、具体的には、例えば基材が紙である場合はには、紙との接着性、インキ層間強度、耐油性能等の観点から、バインダーの樹脂は、2液熱硬化型樹脂とする事が望ましいが、熱可塑性樹脂を使用することも可能である。2液硬化型樹脂としては、熱硬化性のウレタン樹脂等を使用できるが、なかでも、特に望ましくは、例えば、OH価が30〜60程度のアクリルポリオール系の樹脂に、硬化剤としてイソシアネートを0.5〜1部添加したもの等は良好な特性が得られる。
【0066】
〔基材〕
基材1としては、例えば、紙、樹脂シート等のシートの他、板、立体物等と、基材の形状、材質等は基本的には特に制限は無く、化粧材の基材として従来公知の各種基材を用途に応じて使用することができる。なかでも、紙はコスト的にも有利であり好ましい基材の一種である。更に、紙を基材に用いた化粧シートつまり化粧紙を、木質板等の他の基材に積層する等した結果として、紙と木質板等の他の基材との積層体としての基材も、コスト的に安価に出来る好ましい基材である。
【0067】
繊維質の基材の一種である紙としては、例えば、薄葉紙、クラフト紙、一般紙、上質紙、リンター紙、バライタ紙、硫酸紙、和紙等が挙げられる。或いはこれらの紙中に、アクリル樹脂、スチレンブタジエンゴム、メラミン樹脂、ウレタン樹脂等の樹脂を添加(抄造後樹脂含浸、又は抄造時に内填)した樹脂含浸紙でも良い。具体的には、コストと隠蔽性に優れる点では、例えば、坪量30g/mのチタン白入り一般紙等が好ましい。また、コスト的に許すならば、坪量23g/m以上の紙間強化紙、含浸紙などの繊維質シートでも良い。
【0068】
また、紙系以外の繊維質の基材としては、ポリエステル樹脂、アクリル樹脂、ナイロン、ビニロン、硝子等の繊維からなる不織布等も用いられる。不織布は前記紙系の場合と同様に、樹脂を添加させたものでも良い。
【0069】
また、基材1として形状がシート状のものでは、紙等の繊維質基材の他に、塩化ビニル樹脂、ポリオレフィン系樹脂、ポリエステル樹脂、アクリル樹脂、ポリスチレン、ABS樹脂、ポリカーボネート樹脂、ポリアミド樹脂、セルロース系樹脂等の熱可塑性樹脂からなる樹脂フィルム(乃至はシート)も使用できる。
具体的には、例えば、ポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレン、ポリブテン、エチレン−プロピレン共重合体、エチレン−プロピレン−ブテン共重合体、オレフィン系熱可塑性エラストマー等が挙げられる。
また、ポリエステル樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、エチレン−テレフタレート−イソフタレート共重合体、ポリエチレンナフタレート、ポリエステル系熱可塑性エラストマー、非晶性ポリエステル等が挙げられる。
【0070】
なお、これら樹脂は、形状がシートの他、板、立体物の基材としても使用される。
また、樹脂系の基材としては、例えば、フェノール樹脂、尿素樹脂、不飽和ポリエステル樹脂、ウレタン樹脂、エポキシ樹脂、メラミン樹脂等の熱硬化性樹脂からなる熱硬化性樹脂板、フェノール樹脂、尿素樹脂、不飽和ポリエステル樹脂、ウレタン樹脂、エポキシ樹脂、メラミン樹脂、ジアリルフタレート樹脂等の樹脂を、硝子繊維不織布、布帛、紙、その他各種繊維質基材に含浸硬化させて複合化した所謂FRP(繊維強化プラスチック)板、等の樹脂板も有る。
【0071】
また、木質系の基材としては、例えば、杉、檜、樫、ラワン、チーク等からなる単板、合板、パーティクルボード、繊維板、集成材等の木質材料がある。木質系の基材では、シート、板、立体物として使用される。
また、金属系の基材としては、例えば、鉄、アルミニウム、ステンレス鋼、銅等の金属材料がある。金属系の基材は、シート(箔)、板、立体物として使用される。
また、無機非金属系の基材としては、例えば、押し出しセメント、スラグセメント、ALC(軽量気泡コンクリート)、GRC(硝子繊維強化コンクリート)、パルプセメント、木片セメント、石綿セメント、ケイ酸カルシウム、石膏、石膏スラグ等の非セラミックス窯業系材料、土器、陶器、磁器、セッ器、硝子、琺瑯等のセラミックス系材料等がある。無機非金属系の基材は、主として板や立体物として使用される。
【0072】
また、基材は、上述した如く、2種以上の基材を接着剤、熱融着等の公知の手段により、複合、積層した基材等も挙げられる。例えば、樹脂含浸紙やFRP等はその一例でもある。
また、一旦、シート状の基材を用いて化粧紙乃至は化粧シートとして化粧材を作製し、このシート状の化粧材を、別の基材(シート、板、立体物)に接着剤等を適宜用いて貼着して積層したものも本発明の化粧材であり、積層後の化粧材の基材は2種以上の基材が積層された構成の一例である。
【0073】
なお、基材が紙等でインキ乃至は塗液の浸透性を有する場合、その浸透性がその後の印刷や塗工に支障を来す際は、目止めする為に必要に応じ適宜、基材上に、予め公知のシーラー層を形成しておいても良い。また、絵柄層のベタ柄層で兼用させることもできる。
【0074】
〔用途〕
なお、本発明では化粧材の用途として、キッチン棚板、食器棚等、キッチン回りを主体に説明したきたが、これらの用途に限定されるものでは無い。これ以外にも、本発明の接触適性が活かされる用途、特に水平面用途等は好適な用途である。例えば、机、箪笥、戸棚等の家具、床、壁、階段等の建築物内装、扉、扉枠、窓枠等の建具、廻縁、幅木、手摺、腰壁等の造作部材等、各種用途で、その特性を活かすことができる。
【0075】
【実施例】
以下、実施例及び比較例により本発明を更に詳述する。
【0076】
〔実施例1〕
基材1として、坪量30g/mの酸化チタン入り一般紙を選定し、その片面に絵柄層2として、OH価60のアクリルポリオール樹脂(ガラス転移点Tg58℃、分子量26000)と酸化チタン(及びその他の着色顔料も含めて)とイソシアネートとを15:47:6(質量比)とした2液熱硬化型ウレタン樹脂インキをグラビアベタ印刷して、乾燥時(以下同様)膜厚7μmとなるように積層して、着色樹脂層として絵柄層を形成した。
【0077】
次に、この絵柄層2の上に、無着色透明な耐摩耗性付与層3として、平均一次粒子径12μmで結晶質の球状シリカと、OH価30のアクリルポリオール樹脂と、イソシアネートとを8:31:7(質量比)とした2液熱硬化型ウレタン樹脂インキを、グラビアベタ印刷法により、膜厚12μmとなるように積層した。
【0078】
次に、この耐摩耗性付与層3の上に、電離線放射線硬化樹脂からなる無着色透明な保護層4として、エポキシアクリレートプレポリマーとトリメチロールプロパントリアクリレートとシリコーンアクリレートと平均一次粒子径12μmで結晶質の球状シリカとを10:10:0.4:20(質量比)とした電離線放射線硬化性樹脂塗液をロールコート法により、膜厚12μmとなるように積層した後、電子線を照射〔175keV、30kGy(3Mrad)〕して、架橋硬化させ、目的とする化粧シート形態の化粧材を得た。なお、耐摩耗性付与層と保護層の総厚みは22μmであった。
【0079】
その後、得られた化粧シートを、70℃×24時間条件で養生して2液熱硬化型ウレタン樹脂を架橋硬化させた後、裏打ち基材となるパーチクルボード(縦180cm、横90cm、厚さ16mm)の片面に、尿素系接着剤を用いたローラ加圧によりラミネートして、化粧板形態の化粧材とした(図1参照)。なお、最終的に基材は紙とパーチクルボードとの積層体である。
そして、この化粧板について性能評価した。評価方法については、後で説明する。また、評価結果は表2に示す。
【0080】
〔実施例2〕
実施例1に於いて、耐摩耗性付与層の厚みは12μmから20μmに増やし、保護層の厚みは10μmのままで、総厚みを22μmから30μmに増やした他は、実施例1と同様にして、化粧材として化粧シート、更に化粧板を作製した。
【0081】
〔比較例1〕
実施例1に於いて、耐摩耗性付与層の厚みを10μmに減らし、保護層の厚みは耐摩耗性付与層よりも厚い20μmに増やして、総厚みを30μmとした他は、実施例1と同様にして、化粧材として化粧シート、更に化粧板を作製した。
【0082】
〔比較例2〕
実施例1に於いて、耐摩耗性付与層の厚みを5μmに減らし、保護層の厚みはそのままの10μmで、総厚みを15μmとした他は、実施例1と同様にして、化粧材として化粧シート、更に化粧板を作製した。
【0083】
〔比較例3〕
実施例1に於いて、耐摩耗性付与層の厚みを10μmに減らし、保護層の厚みも5μmに減らして、総厚みを15μmとした他は、実施例1と同様にして、化粧材として化粧シート、更に化粧板を作製した。
【0084】
〔性能評価方法〕
性能は、各実施例及び比較例で得た化粧板について、耐摩耗性(JAS摩耗B試験)と、耐ブリトル性、耐カール性、耐油性、接触適性で評価した。なお、各性能は次の様にして評価した。
【0085】
(1)耐摩耗性(JAS摩耗B試験):JASが特殊加工化粧合板のFWタイプで規定する、摩耗B試験に準じて研磨紙S42を用いて行った。なお、摩耗値が100回以上であれば、キッチン等の水平面用途には使用可能である。
【0086】
(2)耐ブリトル性:化粧シートをローラ圧でラミネートして化粧材とする際に、保護層や耐摩耗性付与層にクラックが発生せず、また化粧シートに可撓性があり加工適性があるものを良好(○)とし、クラックが発生したり可撓性が十分に得られず加工適性に劣るものは不良(×)と、評価した。
(3)耐カール性:化粧シートの状態でカールしないか、あってもラミネートに支障を来さず、ラミネート後もカールが出ないものは良好(○)、カールがきつくラミネートに支障を来したり、ラミネート後にカールが出るものは不良(×)と、評価した。
【0087】
(4)耐油性:化粧板上にサラダ油を滴下し、常温で24時間放置した後、油をウエスで拭き取ったときの、シミの発生状況を目視観察して評価した。シミが発生しないものは良好(○)、若干発生したものはやや良好(△)、明らかに発生したものは(×)と評価した。
ちなみに、キッチン用途で使用する化粧板は、料理の際に飛散した油が付着することがあり、また、その他の用途でもビス止め加工する際、ビスについた油によりシミが発生する為、耐油性能が要求される。
【0088】
(5)接触適性:以下の鍋底摩耗性と皿底摩耗性で評価した。
【0089】
(5−1)鍋底摩耗性は、質量2.5kg(荷重24.5N)のステンレス製鍋の底で、化粧板の表面を擦り、摩耗汚れと外観変化(艶の変化、傷の発生、層間剥離)の発生する摩耗回数を測定した。摩耗汚れと外観変化のいずれかが発生した摩耗回数が1万回未満のものは不良(×)と評価した。1万回以上のもの良好(○)と評価した。また、汚れ及び外観変化が軽微なものはやや良好(△)と評価した。なお、艶の変化は化粧板表面の変化(耐マーリング性)を、傷は双方の傷を、層間剥離は、化粧材の保護層、耐摩耗性付与層、絵柄層、基材等のこれら層間での剥離を調べた。
【0090】
(5−2)皿底摩耗性は、質量500g(荷重4.9N)の洋食皿を5枚重ねた皿底で、化粧板の表面を擦り、鍋底摩耗性と同様に、摩耗汚れと外観変化(艶の変化、傷の発生、層間剥離)の発生する摩耗回数を測定した。
【0091】
【表2】
Figure 2005042373
【0092】
〔性能評価結果:その1〕
表2に示す如く、実施例1と実施例2は、耐ブリトル性、耐カール性が良好で、化粧シートをパーチクルボードにラミネートする際の加工適性に優れていた。更に、出来上がった化粧板の耐摩耗性も、低圧メラミン化粧板と同等の性能(JAS摩耗B試験で摩耗値120程度)も可能と優れており、かつ、接触適性としての鍋底摩耗性と皿底摩耗性は、各々3万回(3回/日×30年に相当)を満足した。すなわち、キッチン用途で棚板、底板に長年使用しても劣化が起きない接触適性を有していた。
【0093】
一方、比較例1は、耐摩耗性は良好であったが、耐ブリトル性が劣り、化粧シートをパーチクルボードにラミネートする際、化粧シートの破断が激しく、、良好な化粧板が得られなかった。また、耐カール性が劣る為に、なんとかラミネート加工した化粧板も、化粧シートの端がカールして良好な化粧板は得られなかった。以上、ラミネートする際の加工適性が無かった。得られた化粧板の部分的に良好な部分について性能評価試験を行なったが、保護層の厚みが厚すぎて、その凝集力に耐え切れず、皿底摩耗した際の抵抗力によって、0.5万回で層間剥離が生じた。皿底摩耗性がない結果、キッチン用棚板、底板で使用した場合、数年で層間剥離のクレーム発生を予想し得るものであった。
【0094】
比較例2と比較例3は、耐ブリトル性及び耐カール性共に良好で、化粧シートをラミネート加工して化粧板とする加工適性は良好であったが、得られた化粧板の耐摩耗性(JAS摩耗B試験)が劣り、水平面用途で使用できる品質でなかった。また、耐油性も劣った。
【0095】
〔比較例4〕
実施例1に於いて、保護層中に含有させた球状シリカを、平均一次粒子径13μmでモース硬度9の球状アルミナに変更した他は、実施例1と同様にして、化粧材として化粧シート、更に化粧板を作製した。内容及び結果は、先の実施例1も併記して、他の比較例と共に、表3にまとめて示す。
【0096】
〔比較例5〕
実施例1に於いて、保護層中に含有させた球状シリカを、平均一次粒子径13μmでモース硬度9〜10の炭化ケイ素(粒子形状は不定形)に変更した他は、実施例1と同様にして、化粧材として化粧シート、更に化粧板を作製した。
【0097】
〔比較例6〕
実施例1に於いて、保護層中に含有させた球状シリカを、平均一次粒子径15μmでモース硬度2.5〜3.5の硫酸バリウム(粒子形状は不定形)に変更した他は、実施例1と同様にして、化粧材として化粧シート、更に化粧板を作製した。
【0098】
〔比較例7〕
実施例1に於いて、保護層中に含有させた球状シリカを無添加とした他は、実施例1と同様にして、化粧材として化粧シート、更に化粧板を作製した。
【0099】
【表3】
Figure 2005042373
【0100】
〔性能評価結果:その2〕
比較例4〜比較例7について、先の実施例1と同様にして、性能評価した。
【0101】
表3に示す如く、比較例4と比較例5の接触適性は、鍋底摩耗試験では、金属(鍋底)を摩耗して、数百回の摩耗で多量の金属粉が発生し、最終的には摩耗汚れが部分的に化粧板表層に入り込み、摩耗紛汚れが取れなくなった。清掃後の摩耗紛汚れ残りは比較的良好であったが、清潔性を要求されるキッチン用途では使用できるレベルではなかった。また、皿底摩耗試験では、化粧板は摩耗及び劣化は発生しなかったが、皿底を摩耗してしまい、陶器紛が発生した。
比較例4と比較例5のように、保護層にモース硬度が8を超える研摩剤となる無機質粒子を添加すると、耐磨耗性は向上するが、接触適性がなく、相手を傷付け、摩耗粉を発生する為、やはり水平面用途には適さないとの結果になった。また、テーブルトップに使用した場合には、衣服を摩耗劣化させてしまうことがわかった。
【0102】
次に、比較例6は、保護層にモース硬度の低い硫酸バリウムを無機質粒子として添加したものだが、これでは、JAS摩耗B試験において、S42研摩紙のアルミナ(モース硬度9)からなる鋭利な研摩粒子により、破壊・粉砕され易い為、無機質粒子が保護層から脱落しやすくなり、耐摩耗性も劣ることとなる。また、皿(陶器)などに対する接触適性も劣り、皿底で摩耗された場合も無機質粒子の粉砕、それによる保護層の摩耗も起こり、表面保護層の艶変化と保護層から摩耗粉が発生した。また、比較例7に比較してJAS摩耗B試験での耐摩耗性が劣ることになったのは、モース硬度の低い無機質粒子が、研摩紙の研摩剤であるところの鋭利なアルミナ粒子により破損、脱落が発生することによる。
なお、この様に保護層にモース硬度の低い無機質粒子を艶消し剤として添加する場合においても、接触適性は劣る結果となる。
【0103】
次に、比較例7は、保護層に無機質粒子を添加していないものであるが、この場合、硬化収縮を緩和する無機質粒子がない為、化粧シートの耐カール性、耐ブリトル性がやや劣り、ラミネート加工で化粧板とする際の加工適性が劣ることとなった。
また、JAS摩耗B試験において研磨紙の研磨剤が、絵柄層または基材(紙)にまで到達する確率を下げるのに十分な耐磨耗性付与層と保護層との厚みがあっても、耐摩耗性能が劣ることとなった。従って、適度なモース硬度(モース硬度6〜8)を有する球状無機質粒子が保護層及び耐摩耗性付与層中に存在することによって、S42研摩紙の研摩剤が化粧材内に進入し、化粧材を引き裂く(摩耗する)作用を緩和することが確認された。
また、適度なモース硬度を有する無機質粒子が添加されていない場合には、化粧材の表面硬度は電離放射線硬化性樹脂からなる保護層の硬度となり、やはり接触適性がなく、皿底摩耗試験を行うと化粧材表面に傷が付いたり、微量ではあるが摩耗粉を発生することとなった。
【0104】
〔実施例3〕
実施例1に於いて、保護層全量に対してスリップ剤として2質量%のポリエチレンワックスを添加した他は、実施例1と同様にして、化粧材として化粧シート、更に化粧板を作製した。これは保護層の滑り性を向上させたものである。
【0105】
〔比較例8〕
実施例1に於いて、保護層を、アクリルポリオール樹脂と平均一次粒子径12μmの球状シリカとイソシアネートと非反応性シリコーン(離型剤)とを31:8:12:2(質量比)とした2液熱硬化型ウレタン樹脂インキを用いて熱架橋硬化させて形成した他は、実施例1と同様にして、化粧材として化粧シート、更に化粧板を作製した。
【0106】
〔比較例9〕
実施例1に於いて、保護層を、アクリルポリオール樹脂と平均一次粒子径12μmの球状アルミナとイソシアネートと非反応性シリコーン(離型剤)とを31:8:12:2(質量比)とした2液熱硬化型ウレタン樹脂インキを用いて熱架橋硬化させて形成した他は、実施例1と同様にして、化粧材として化粧シート、更に化粧板を作製した。
【0107】
〔比較例10〕
実施例1に於いて、保護層を、エポキシアクリレートプレポリマーとトリメチロールプロパントリアクリレートとシリコーンアクリレートと平均一次粒子径12μmの球状シリカとポリエチレンワックスとを、10:10:0.4:20:2(質量比)とした電離放射線硬化性樹脂塗液を用いて電子線で架橋硬化させた他は、実施例1と同様にして、化粧材として化粧シート、更に化粧板を作製した。
【0108】
【表4】
Figure 2005042373
【0109】
〔性能評価結果、その3〕
表4に示す如く、実施例3は、実施例1に対して、保護層の滑り性が向上し、接触物との摩耗抵抗が低下し、より接触適性に優れた化粧材となった。また、耐摩耗性もより向上した。
【0110】
比較例8は、保護層を熱硬化型樹脂で構成したものであるが、鍋底摩耗性、皿底摩耗性に於いて、容易に且つ顕著に、艶変化が発生した。鍋や皿の接触物を傷付けたり、摩耗することはなかったが、化粧材の艶変化が容易に発生し、やはり接触適性がない化粧材となった。
【0111】
比較例9は、実施例1の保護層中の球状無機質粒子を球状シリカから球状アルミナに変えたものであり、比較例4の結果と同様に、鍋底摩耗性の評価試験では鍋底を摩耗し金属粉汚れを発生した。また、皿底摩耗性の評価試験でも比較例4と同様に皿底を摩耗し、摩耗粉を発生する結果となった。また、比較例4に比較し、摩耗熱により軟化した保護層中に摩耗粉が入りこみ易く、清掃しても摩耗汚れがとれなくなった。比較例4より、接触適性の劣る化粧材となった。
【0112】
比較例10は、実施例1の保護層の電離放射線硬化性樹脂中のシリコーンアクリレートを除いて(未添加)、滑り性をあえて低下させた化粧材である。JAS摩耗B試験、鍋底摩耗性には顕著な差は出なかったったが、皿底摩耗性の評価試験では摩耗抵抗が大幅に増大し、1,500回摩耗で絵柄層との間で層間剥離が発生した。接触適性が大幅に低下する結果となった。
【0113】
【発明の効果】
(1)本発明の化粧材によれば、JASが特殊加工化粧合板のタイプFWで規定する摩耗B試験による耐摩耗性を満足する上、(シート状形態の化粧シートのときに、ロール加圧で基材にラミネート加工する等の)加工適性として望ましい可撓性が得られる耐ブリトル性、及び低カール性も満足できる。
しかも、接触物を傷付けることも無い。この為、化粧材自体の他、接触物も傷付けず、化粧材と接触物との双方ともに、傷や艶光りなど外観変化を含めた品質低下が起きず、従って摩耗粉、摩耗汚れも発生しない「接触適性」も付与できる。従って、化粧材を、水平面用途、例えば、システムキッチン用底板に使用した場合では鍋や皿の底を傷付け摩耗させて、その摩耗粉による汚れ等が発生する事が無い。従って、水平面及び垂直面に共通使用できる化粧材となる。
【0114】
(2)更に、保護層や耐摩耗性付与層中に添加する無機質粒子を球状シリカとすれば、コスト的にも、(シート状物で比較して)ウレタン化粧シート並に安価にできる。従って、コスト的にも、水平面及び垂直面に共通使用し易い化粧材となる。
【0115】
(3)また、耐摩耗性付与層の熱硬化性樹脂を、アクリルポリオールを用いた2液硬化型ウレタン樹脂とすれば、保護層や絵柄層との層間密着強度、耐油性(油浸透防止効果)が向上する。
【図面の簡単な説明】
【図1】本発明の化粧材をその一形態で例示する断面図。
【符号の説明】
1 基材
2 絵柄層
3 耐摩耗性付与層
4 保護層
10 化粧材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a decorative material that can be used for surface makeup such as interiors of buildings, joinery, and furniture. In particular, in addition to wear resistance, which is the durability of the decorative material itself, for example, in horizontal plane applications such as kitchen shelves and cupboards, it damages contact objects with decorative materials such as pots and dishes placed on it. In other words, the present invention relates to a cosmetic material having “contact suitability” that does not cause deterioration in quality, including appearance changes such as scratches and glossiness, on both the cosmetic material itself and the contact object.
[0002]
[Prior art]
Conventionally, decorative sheets such as so-called coated paper provided with a protective layer as a top coat layer on the surface, and further laminated on a base material such as a plate material to make a decorative plate or a decorative member are interior materials, fittings, furniture, etc. Is used.
[0003]
And various physical properties are requested | required by various forms of decorative materials, such as these decorative sheets, a decorative board, and a decorative member, corresponding to the use. For example, the JAS standard defines a FW (flat & wall) type of specially processed decorative plywood. As a decorative sheet that can satisfy physical properties such as abrasion resistance (hereinafter referred to as FW standard) for the FW type, for example, (1) a urethane decorative sheet in which synthetic resin beads are added to a protective layer of a two-component curable urethane resin , (2) Low pressure melamine decorative sheet, (3) Ionizing radiation curable decorative sheet obtained by adding a mineral lubricant such as spherical alumina in the protective layer of ionizing radiation curable resin (see Patent Document 1, Patent Document 2, etc.) (4) After printing the pattern, there is a decorative sheet called dap (diallyl phthalate (DAP) resin-impregnated cosmetic) or FF (finished foil) impregnated with resin. Each of these decorative sheets has the characteristics shown in Table 1 in terms of performance and cost. In addition, Table 1 is a comparison in rough performance when each decorative sheet is laminated on a base material of a wooden board to make a decorative board.
[0004]
[Table 1]
Figure 2005042373
[0005]
In Table 1, the JAS wear B test is a test defined by the above-mentioned FW standard wear resistance. In addition, the marling resistance is resistance to the surface of the cosmetic material being rubbed (glossed) by rubbing the surface with another object. In addition, the processability means that the sheet-like decorative material (decorative sheet) is pressed against a base material such as a plate material with a roll to be flexible (hereinafter, not brittle, that is, not brittle). I'll call it the brittle nature.) In addition, the recyclability is the suitability that can be reused (recycled) as a raw material for particle board by pulverizing the waste cosmetic material. Depending on recyclability, sheet-like decorative materials (decorative sheets) can be used as decorative materials (decorative plates, etc.) by laminating them on plywood and particle boards. It corresponds to the problem.
[0006]
And when using cosmetics, the final product, such as a system kitchen and furniture, is actually constructed for each use site by combining various cosmetics in consideration of cost and performance. For example, on horizontal parts such as shelves, pots and dishes are placed on top of them, so use items with excellent wear resistance, and wear resistance on the vertical parts such as doors will be slightly reduced. However, it is a combination such as using a lower cost.
[0007]
[Patent Document 1]
Japanese Patent No. 2740943
[Patent Document 2]
Japanese Patent No. 2860797
[0008]
[Problems to be solved by the invention]
As shown in Table 1, the ionizing radiation curable decorative sheet of (3) is excellent in various physical properties except for the cost. However, for that purpose, addition of expensive spherical alumina or the like is necessary. This is because, if it is attempted to provide wear resistance without addition, it becomes a brittle, and sufficient wear resistance and flexibility necessary for workability cannot be achieved at the same time. That is, in order to provide wear resistance that satisfies the FW standard without addition, the thickness of the protective layer of the ionizing radiation curable resin is increased, the dose of ionizing radiation is increased, the composition is adjusted, etc. It is necessary to reduce the molecular weight between crosslinks (for example, 200 or less on average) and increase the surface hardness. However, if that happens, the protective layer becomes brittle, and the decorative sheet becomes brittle and brittle, so that flexibility is improved. It cannot be obtained. Also, the curl becomes large.
[0009]
Further, as a result of the protective layer becoming brittle, there is a limit to the fibrous base material that can be used as the base material. Specifically, for example, 30 g / m 2 With general paper of the degree and inter-paper reinforced paper, it cannot withstand the curing shrinkage stress of ionizing radiation resin, and since the thickness of the hard and brittle protective layer becomes thick, the decorative sheet itself becomes brittle and brittle. In order to prevent this, it is necessary to use expensive impregnated paper, and there is a problem that it becomes very expensive as a decorative sheet.
[0010]
On the other hand, in recent years, due to the problem of industrial waste treatment, recyclability has become particularly important. In this respect, although it has excellent wear resistance, the low-pressure melamine decorative sheet (2) and (4 ) Dup or FF decorative sheet is not desirable. These are also undesirable because of the problem of volatile organic compounds (VOCs), which have been regarded as important in recent years. In terms of recyclability, there is a urethane decorative sheet to which resin beads are added (1), and it is advantageous in terms of cost. However, the abrasion resistance is relatively low and the marling resistance is particularly inferior. In addition, the urethane decorative sheet is improved in wear resistance if spherical alumina or the like is added instead of resin beads, but the advantage of the urethane decorative sheet that it is low in cost is lost. Still, the marling resistance is not improved.
[0011]
As described above, if there is no problem of cost, an ionizing radiation-curing decorative sheet to which inorganic particles such as alumina are added is good. Therefore, an ionizing radiation-curing decorative sheet is used in a portion where abrasion resistance is required. If other decorative sheets are used for the other parts, the cost and performance can be balanced to some extent for the entire product such as the system kitchen and furniture.
However, in order to do so, several types of cosmetics are used to assemble one final product, which makes it difficult to manage the raw materials of the product and causes quality problems such as variations in color tone for each cosmetic material. This is the current situation. For this reason, from the viewpoint of material management costs and loss reduction, there has been a demand for a cosmetic material that can be used in common for both horizontal and vertical applications.
[0012]
Therefore, if the ionizing radiation-curing decorative sheet of (3) satisfies the physical properties and can be realized at the same cost as a urethane decorative sheet, a decorative material that can be used both horizontally and vertically should be obtained. However, there is another problem in using the ionizing radiation-curing decorative sheet of (3) for horizontal surface applications. In order to achieve both flexibility and wear resistance, spherical alumina etc. are added as high-hardness inorganic particles. In addition, it is a problem that other objects in contact with the cosmetic material are scraped off. Specifically, when used in applications such as kitchen bottom plates, the bottom of pots (metals) and dishes (pottery) is scratched and worn, causing dirt from the abrasion powder, and the fibers of fabric products are damaged. To do. Furthermore, since the surface of the cosmetic material is contaminated by the polishing powder produced by polishing the pan bottom, dish bottom, etc., the design (appearance quality) of the cosmetic material is unstable (change in color tone due to darkening due to dirt and abrasion powder) This is a problem that occurs.
[0013]
That is, the object of the present invention is to satisfy the JAS FW standard and to have wear resistance that can be used for vertical and horizontal plane applications. Furthermore, the cosmetic material and the object are rubbed in contact with each other. However, in both cases, there is no deterioration in quality including appearance changes such as scratches and shine, so there is also "contact suitability" that does not generate wear powder and wear stains, and it also has brittle resistance and is inexpensive. Is to provide materials.
[0014]
[Means for Solving the Problems]
In order to solve the above problems, the decorative material of the present invention is a decorative material obtained by sequentially laminating at least an abrasion resistance imparting layer made of a thermosetting resin and a protective layer made of an ionizing radiation curable resin on a base material. The total thickness of the wear resistance-imparting layer and the protective layer is 18-30 μm, and the thickness t of the wear-resistance imparting layer is t M And protective layer thickness t P Is t M ≧ t P In addition, spherical inorganic particles having an average primary particle diameter of 8 to 15 μm and a Mohs hardness of 6 to 8 are added to the wear resistance-imparting layer, and a Mohs hardness of 6 to 8 having an average primary particle diameter of 5 to 15 μm is added to the protective layer. The spherical inorganic particles were added.
[0015]
With this configuration, the basic performance satisfies the wear resistance according to the wear B test specified by JAS (Japan Agricultural Standards) with the type FW of specially processed decorative plywood, and also provides a protective layer and wear resistance. Although specific spherical inorganic particles are added in the layer, the wear resistance-imparting layer below the protective layer made of ionizing radiation-curable resin is made of a thermosetting resin and has a thickness greater than that of the protective layer. Therefore, the brittle resistance that can provide the desired flexibility as a processability (when the sheet is in the form of a decorative sheet) can also be satisfied.
[0016]
In addition, since the spherical inorganic particles whose Mohs hardness and particle diameter are specified are employed as the inorganic particles added to the protective layer, wear resistance is obtained and the contact object is not damaged. In addition, since spherical inorganic particles having a specified Mohs hardness and particle diameter are added to the wear resistance-imparting layer, even if the protective layer is shaved and the wear resistance-imparting layer is exposed, the wear resistance is improved. In addition to being obtained, the contact object is not damaged. For this reason, the contact material is not damaged in addition to the cosmetic material itself, and neither the cosmetic material nor the contact material is deteriorated in quality including appearance changes such as scratches and shine, and therefore, wear powder and dirt are not generated. "Contact suitability" can also be imparted. Therefore, when the decorative material is used for a horizontal surface, for example, for a bottom plate for a system kitchen, the bottom of the pan or the dish is damaged and worn, and contamination due to the abrasion powder does not occur.
[0017]
Further, the inorganic particles added to the protective layer and the wear resistance-imparting layer can employ spherical silica which is less expensive than spherical alumina having a Mohs hardness of 9 and high, and the resin of the protective layer is ionizing radiation curable. Although the resin is a resin, the thermosetting resin may be used as the property resin for the wear resistance-imparting layer, and as a result, a two-component curable urethane resin can be used. It can be made reasonably cheap.
And by these characteristics, it becomes a decorative material that can be used in common on a horizontal plane and a vertical plane.
[0018]
Further, a more preferable embodiment of the decorative material of the present invention has a configuration in which at least the spherical inorganic particles in the protective layer are spherical silica.
By adopting such a configuration, the cost can be reduced as described above. Therefore, in terms of cost, the cosmetic material is easy to use in common on the horizontal and vertical surfaces.
[0019]
Further, in a more preferable embodiment of the decorative material of the present invention, in any one of the above structures, the thermosetting resin of the wear resistance imparting layer is a two-component curable urethane resin using an acrylic polyol. The configuration.
By setting it as such a structure, the interlayer adhesion strength and oil resistance (oil penetration prevention effect) with a protective layer and a picture layer improve.
[0020]
Here, the basic design concept of the present invention is summarized as follows. That is,
[0021]
(1) In the decorative material of [base material / coating film], in order to exhibit wear resistance, the coating film itself increases the thickness of the coating film and bears the weight loss. It is necessary to protect the layer and the base material, and to add inorganic particles that are much harder than the resin to the coating film, and to stop the abrasion with the hardness.
[0022]
(2) Moreover, in order to prevent the abrasion of the thing which contacted the coating film, the inorganic particle to add adds Mohs hardness 6-8, and makes a shape spherical. The resin (binder) is a curable resin in order to hold such inorganic particles in the coating film sufficiently firmly against the abrasion force.
[0023]
(3) Under the conditions of (1) and (2) above, the total thickness of the coating must be 18 μm or more in order to obtain wear resistance sufficient to satisfy the wear B test of JAS standard type FW. is there. However, when the film thickness of the curable resin is too thick, curling occurs due to curing shrinkage, and the coating film becomes brittle and brittle. In addition, the cost is excessive. Therefore, the upper limit of the total film thickness is up to 30 μm.
[0024]
(4) Further, in order to prevent the surface of the coating film from being damaged (marling), the ionizing radiation curable resin having a high crosslinking density is selected in the vicinity of the coating film surface (up to the upper half) especially among the curable resins. . This is a protective layer. However, if the total film thickness of the coating film is made entirely of ionizing radiation curable resin, curling occurs in the decorative material (particularly in the case of a sheet) due to curing shrinkage, and the decorative material becomes brittle and brittle.
[0025]
(5) Therefore, in order to prevent curling and brittle, more than half of the back side of the coating has a certain degree of hardness, but also has flexibility and flexibility. Resin.
[0026]
(6) As a result, the film thickness is the film thickness t of the wear resistance imparting layer. M > = Film thickness t of protective layer P And In addition, in order to prevent the influence of the deterioration of the physical properties of the coating film due to the inhibition of ionizing radiation curing by oxygen radicals generated in the air, the thickness t of the protective layer P The lower limit is preferably 1 μm.
[0027]
(7) In order to prevent wear of the contact object, the total particle size of the inorganic particles added to each layer should not greatly exceed the total value of the film thickness so that it does not protrude greatly from the coating film. is there. Further, in order to prevent curling and to uniformly distribute the wear amount in the thickness direction, it is preferably designed so that there is no extreme distribution of particle size in the thickness direction of the coating film. In addition, in order to develop wear resistance, it is more effective to add a small amount of large particle size than to add a large number of small particle size particles. Then, the particle diameter of the particles in each layer should be basically (approximately) the same particle diameter of 4.5 to 15 μm. However, in order to ensure cleanability at the time of surface contamination, it is effective to reduce unevenness on the surface of the coating film and prevent contamination from staying. In addition, the surface of the protective layer needs to prevent the cueing of particles and smooth the surface in order to prevent wear of the contact object. Therefore, when these requirements are taken into consideration, the particle diameter in the protective layer needs to be somewhat smaller than the particle diameter in the wear resistance imparting layer. Therefore, the average primary particle diameter of the inorganic particles is 8 to 15 μm in the wear resistance imparting layer and 5 to 15 μm in the protective layer.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0029]
〔Overview〕
First, FIG. 1 is a cross-sectional view illustrating a decorative material 10 of the present invention in one form. A decorative material 10 illustrated in FIG. 1 has a configuration in which a base material 1, a pattern layer 2, an abrasion resistance imparting layer 3, and a protective layer 4 are laminated in order from the base material 1 side. Among these, the wear resistance imparting layer 3 and the protective layer 4 are layers unique to the present invention as described above. That is, the resin of the wear resistance imparting layer 3 is made of a thermosetting resin, the resin of the protective layer 4 is made of an ionizing radiation curable resin, and the thickness of the wear resistance imparting layer 3 and the protective layer 4 is as follows. The total thickness is 18-30 μm, and the thickness t of the wear resistance-imparting layer M And protective layer thickness t P Is t M ≧ t P And the thickness of the lower wear resistance-imparting layer is equal to or greater than the thickness of the protective layer.
Further, spherical inorganic particles having an average primary particle diameter of 8 to 15 μm and a Mohs hardness of 6 to 8 are added in the wear resistance imparting layer 3, and an average primary particle diameter of 5 to 5 is added in the protective layer 4. Spherical inorganic particles having a Mohs hardness of 6 to 8 at 15 μm are added. For example, spherical silica is used for these spherical inorganic particles. In that case, it is preferable to use spherical silica at least in the protective layer on the surface side from the viewpoint of cost and the like, but more preferably, the wear resistance imparting layer is also made of spherical silica from the viewpoint of cost and the like. .
[0030]
The term “contact suitability” as used in the present invention means that even if a decorative material of various forms such as a decorative board or a decorative sheet and an object in contact with the decorative material rub against each other, both change in appearance such as scratches and glossiness. This is a performance that does not cause quality degradation. Conventionally, the durability when rubbed has wear resistance, but this is the durability on the side of the decorative material, and not the characteristic focused on the object side in contact with the decorative material. Therefore, in the present invention, the term “contact suitability” is newly defined as one index indicating both durability performances.
Therefore, if there is "contact suitability", neither wear powder nor contact dirt will be generated from either the cosmetic material or its contact material, so it will be used in applications where contact frequency with the contact material is high, such as horizontal surface applications. In this case, the clean state is always maintained. In the present invention, as an example, a comparatively soft metal (a pot, a kettle, etc.) and a relatively hard ceramic (a dish, etc.) Performance was evaluated. However, the contact material, use environment, part, etc. of the cosmetic material of the present invention are not limited thereto.
[0031]
The cosmetic material of the present invention may be at least the base material 1, the wear resistance imparting layer 3, and the protective layer 4 at a minimum. The most common is the formation of the picture layer 2 as illustrated in FIG. The substrate 1 is basically arbitrary, such as paper, a resin sheet, a resin plate, a wooden board, or a laminate thereof. When the substrate is paper, it is a decorative paper or a decorative sheet, a resin sheet. Is a decorative sheet, when the base material is a resin board or a wooden board, it is also called a decorative board, etc., and a laminate of decorative paper or a decorative sheet on a board is also called a decorative board, etc. In the present invention, it is called a cosmetic material.
[0032]
Hereinafter, the protective layer 4, the wear resistance imparting layer 3, the pattern layer 2, and the substrate 1 will be described in detail in this order.
[0033]
[Protective layer]
First, the protective layer 4 is a layer that imparts surface properties such as wear resistance and contact suitability as a surface layer of a decorative material. In the present invention, the protective layer 4 is formed as a cross-linked cured product using an ionizing radiation curable resin as the resin, and in order to realize wear resistance and contact suitability, an average primary particle diameter of 5 to 5 is used. A layer to which spherical inorganic particles having a Mohs hardness of 6 to 8 at 15 μm are added is used. The ionizing radiation curable resin becomes a binder resin with respect to the spherical inorganic particles added to the protective layer and disperses and holds the particles.
Although the thickness of the protective layer is usually about 5 to 13 μm, it is preferable to have a specific relationship in relation to the wear resistance imparting layer described later, but this point will be described in detail later.
The protective layer may be formed by a known coating method such as gravure coating or roll coating. Or you may form by all the solid printing by well-known printing methods, such as gravure printing.
[0034]
The spherical inorganic particles added to the protective layer are for the purpose of imparting abrasion resistance and can also be adjusted in gloss. However, particles having a Mohs hardness of more than 8 such as spherical alumina (Mohs hardness 9) wear the contact with the decorative material, and contact suitability cannot be obtained. Therefore, in the present invention, spherical inorganic particles having a Mohs hardness of 6 to 8 are used. If the Mohs hardness is less than 6, even if contact suitability is obtained, sufficient wear resistance cannot be obtained. In addition, even if the Mohs hardness is in the range of 6 to 8, if the particle shape is not spherical, for example, an indeterminate shape, the wear resistance itself is reduced, and the contact object is polished at the corners of the particles, The contact suitability is not sufficiently obtained. The spherical shape may be a true spherical shape, an elliptical spherical shape obtained by flattening the spherical shape, or a shape in which the particle surface is surrounded by a smooth curved surface, such as a shape close to the true spherical shape or the elliptical sphere. Including.
By adding such spherical inorganic particles to the protective layer of ionizing radiation curable resin, the spherical inorganic particles usually have a melting point as high as 1000 ° C or higher, and this occurs when the surface is worn by metal or ceramics. Even if the surface of the decorative material changes its gloss or wear powder is generated due to wear, it can be prevented from entering into the protective layer.
[0035]
In addition, spherical inorganic particles that can be used in the present invention, from their particle shape and particle size, in a dispersed state in the resin binder, a plurality of primary particles are aggregated to become secondary (aggregated) particles, Although the primary particle shape is spherical, there is no such thing as secondary particles such as an irregular shape (for example, in the case of fine particle silica with a primary particle size of submicron order), and usually the primary particles are dispersed in the binder resin. Retained.
[0036]
The spherical inorganic particles contained in the protective layer preferably have an average primary particle diameter of 5 to 15 μm. When the average primary particle diameter exceeds 15 μm, the surface smoothness decreases, and the holding power for holding the spherical inorganic particles by the binder resin of the protective layer decreases, and the spherical inorganic particles fall off when worn on the dish bottom or the like. It becomes easy and wear resistance becomes difficult to express. Moreover, in the case of a permeable substrate such as paper, when the coating solution penetrates into the substrate during the formation of the coating film, a thin layer is likely to be generated, and there is a void (deficiency) between the resin binder and the spherical inorganic particles. Occurs and pollutants such as oil and water-based ink easily penetrate into the layer, and the stain resistance is also lowered. In addition, the smoothness of the surface is lowered and the texture becomes rough, and the commercial value as a cosmetic material is also lowered.
On the other hand, if the average primary particle size is too small as less than 5 μm, the abrasion resistance is lowered and the increase in ink viscosity becomes remarkable. The particles can be regarded as an extender for the expensive ionizing radiation curable resin, and if the addition amount is small, the cost increases because the more expensive resin component is increased. In addition, the surface gloss of the protective layer cannot be adjusted to the desired gloss.
As described above, the spherical inorganic particles to be contained in the protective layer preferably have an average primary particle diameter of 5 to 15 μm, but the average primary particle diameter is more preferably 10 to 10 in that the above effect can be obtained more reliably. The thing of 14 micrometers is desirable.
[0037]
The spherical inorganic particles are not particularly limited as long as they satisfy a predetermined Mohs hardness and a predetermined average primary particle diameter. However, in order to make the pattern of the pattern layer look unfogged, it is more preferable that the protective layer has high transparency, for example, a visible light transmittance of 80% or more. This is because when the visible light transmittance is less than 80%, the pattern layer becomes cloudy, sharpness is greatly deteriorated, and the design is deteriorated. In addition, transparency is obtained, so that the refractive index of particle | grains is near the refractive index of resin used for a layer. Examples of such spherical inorganic particles that can be obtained by imparting hardness, particle size, and transparency to the layer include, for example, crystalline spherical silica that is easily available as a commercial product. Further, this spherical silica is a suitable particle in various characteristics.
[0038]
The reason why silica is suitable as the spherical inorganic particle is as follows: (1) Silica itself is colorless; (2) Silica is widely used as a matting agent in the printing and coating fields, and includes various surface treatments. A variety of spherical silicas can be selected, (3) widely used materials, abundant in printing and coating, and relatively inexpensive. (4) Refractive index (NaD line (589 nm)) Value) is 1.4 to 1.5, and the refractive index is close to that of many resins. Therefore, the cloudiness phenomenon due to light scattering does not occur, and transparency is not impaired even when added to the resin coating. That is, good transparency with a visible light transmittance of 80% or more can be obtained.
[0039]
Here, if the specific example of spherical silica addition is given, about 10-30 mass% of spherical silica with an average primary particle diameter of 5-15 micrometers will be added with respect to resin whole quantity. Preferable examples include a configuration in which a spherical silica having an average primary particle size of 10 to 14 μm is added to a thickness of 10 to 14 μm with a protective layer of about 15 to 25% added to the total resin content. In other words, a protective layer having a thickness of 12 μm is formed by adding about 20% of spherical silica having an average primary particle diameter of 12 μm to the total resin content.
[0040]
In addition, as the spherical inorganic particles, those whose surfaces are surface-treated may be used, and the holding power of the resin binder is improved. The surface treatment may be a known surface treatment with a silane coupling agent or the like.
[0041]
Next, as the ionizing radiation curable resin used for the protective layer, specifically, a prepolymer (including so-called oligomers) having a radical polymerizable unsaturated bond or a cationic polymerizable functional group in the molecule and / or A composition that can be cured by ionizing radiation in which monomers are appropriately mixed is preferably used.
Here, ionizing radiation means electromagnetic waves or charged particles having energy capable of polymerizing or cross-linking molecules, and usually ultraviolet rays (UV) or electron beams (EB) are used.
[0042]
Specifically, the prepolymer or monomer is a compound having a radically polymerizable unsaturated group such as a (meth) acryloyl group or (meth) acryloyloxy group, a cationically polymerizable functional group such as an epoxy group in the molecule. Become. These prepolymers and monomers are used alone or in combination. Here, for example, the (meth) acryloyl group means an acryloyl group or a methacryloyl group.
Further, as the ionizing radiation curable resin, a polyene / thiol-based prepolymer based on a combination of polyene and polythiol is also preferably used.
[0043]
Examples of prepolymers having radically polymerizable unsaturated groups include polyester (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylate, melamine (meth) acrylate, triazine (meth) acrylate, and silicone (meth) acrylate. Etc. can be used. The molecular weight is usually about 250 to 100,000. Here, for example, (meth) acrylate means acrylate or methacrylate. In addition, acrylate (compound) and methacrylate (compound) are collectively referred to simply as acrylate (compound).
[0044]
Examples of the monomer having a radically polymerizable unsaturated group include methyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, phenoxyethyl (meth) acrylate and the like as monofunctional monomers. In addition, among polyfunctional monomers, diethylene glycol di (meth) acrylate, poroprene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane ethylene oxide tri (meth) acrylate, dipentaerythritol penta (meth) Examples include acrylate and dipentalysitol hexa (meth) acrylate.
[0045]
Examples of the prepolymer having a cationic polymerizable functional group include a prepolymer of an epoxy resin such as a bisphenol type epoxy resin or a novolac type epoxy compound, or a vinyl ether resin such as a fatty acid vinyl ether or an aromatic vinyl ether. Examples of the thiol include polythiols such as trimethylolpropane trithioglycolate and pentaerythritol tetrathioglycolate. Examples of the polyene include those obtained by adding allyl alcohol to both ends of polyurethane by diol and diisocyanate.
[0046]
Among these, in the present invention, when combined with a specific wear resistance-imparting layer comprising a two-component curable urethane resin of acrylic polyol and isocyanate, which is preferably used, the interlayer adhesion is good, and the spherical inorganic particles An acrylate-based or methacrylate-based ionizing radiation curable resin is preferable in view of its excellent holding power and contact performance. Specific examples of the resin include a mixed composition of an epoxy (meth) acrylate prepolymer and trimethylolpropane tri (meth) acrylate.
[0047]
In addition to improving wear resistance, the protective layer reduces the frictional resistance when it is worn with a contact object such as a pan bottom or a pan bottom in a pan bottom wear test or a pan bottom wear test, and applies an impact between the layers. As an additive for relaxing and preventing delamination, a known lubricant such as reactive silicone (for example, silicone (meth) acrylate) or wax is added in an amount of about 1 to 2% by mass with respect to the total amount of the resin. Is also desirable.
[0048]
In addition, in the ionizing radiation curable resin used for the protective layer, an ionizing radiation non-curable resin such as a vinyl chloride-vinyl acetate copolymer, a vinyl acetate resin is appropriately used as other resin as necessary for adjusting physical properties. Further, a thermoplastic resin such as an acrylic resin or a cellulose resin may be added.
In addition to the above-mentioned lubricants, known additives such as colorants, stabilizers, fungicides and the like may be added as necessary.
[0049]
In the case of crosslinking and curing with ultraviolet rays, a photopolymerization initiator is added to the ionizing radiation curable resin. In the case of a resin system having a radically polymerizable unsaturated group, acetophenones, benzophenones, thioxanthones, benzoin, and benzoin methyl ethers can be used alone or in combination as a photopolymerization initiator. In the case of a resin system having a cationic polymerizable functional group, an aromatic diazonium salt, an aromatic sulfonium salt, an aromatic iodonium salt, a metallocene compound, a benzoin sulfonic acid ester or the like is used alone or as a mixture as a photopolymerization initiator. be able to.
[0050]
As an electron beam source of ionizing radiation, various electron beam accelerators such as a cockcroft Walton type, a bandegraft type, a resonant transformer type, an insulated core transformer type, or a linear type, a dynamitron type, a high frequency type, etc. Those that irradiate with electrons having an energy of 100 to 1000 keV, preferably 200 to 300 keV are used. As the ultraviolet light source, a light source such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc lamp, a black light, a metal halide lamp is used.
[0051]
Incidentally, the protective layer is usually a non-colored transparent layer, but may be a colored transparent layer. This is to make it possible to see through the pattern layer that is normally provided below the protective layer. In addition, in a structure without a pattern layer, it may be opaque such as non-colored opaque and colored opaque.
[0052]
(Abrasion resistance layer)
The wear resistance-imparting layer 3 maintains flexibility while preventing the cosmetic material from becoming brittle when the cosmetic material is in the form of a sheet, and imparts abrasion resistance (the wear resistance imparting layer is It is also a layer that imparts contact suitability (when the protective layer is worn until exposed). The wear resistance imparting layer 3 is formed as a cross-linked cured product using a thermosetting resin as a resin, and is compatible with both brittle resistance and improved wear resistance, and also achieves contact suitability. In addition, a layer in which spherical inorganic particles having an average primary particle diameter of 8 to 15 μm and a Mohs hardness of 6 to 8 are added is used. The spherical inorganic particles are dispersed and held in the thermosetting resin as a binder resin.
In addition, what is necessary is just to form the abrasion-resistance provision layer by well-known coating methods, such as a gravure coat and a roll coat. Or you may form by all the solid printing by well-known printing methods, such as gravure printing.
[0053]
As the thermosetting resin used for the wear resistance-imparting layer, the ionizing radiation curable resin as described in the protective layer tends to be a brittle, and therefore a thermosetting resin by a curing method other than ionizing radiation is used. Specifically, the thermosetting resin is a resin used as a two-component curable resin or the like. Examples of the two-component thermosetting resin include a two-component curable urethane resin, a two-component curable polyester resin, and a two-component curable epoxy resin. Among these, from the viewpoint of interlayer adhesion strength between the pattern layer and the protective layer, and oil resistance (an effect of preventing oil penetration), a two-component (thermo) curable urethane resin using an acrylic polyol having an OH value of about 30 as a main ingredient is preferable. It was one of the most important resins.
[0054]
The spherical inorganic particles added to the wear resistance-imparting layer are particles having an average primary particle diameter of 8 to 15 μm and a Mohs hardness of 6 to 8. Even if the spherical inorganic particles added to the wear resistance-imparting layer have a predetermined Mohs hardness, even if the protective layer wears away and the wear-resistance imparting layer is exposed on the surface, the wear resistance It is possible to prevent contact suitability from being impaired by the inorganic particles added to the application layer. As such spherical inorganic particles, for example, crystalline spherical silica or the like is suitable as in the protective layer.
As in the case of the protective layer, the spherical inorganic particles contained in the wear resistance-imparting layer also have high transparency of the wear resistance-imparting layer so that the pattern of the pattern layer does not become cloudy. What is possible to make light transmittance 80% or more is more preferable. In this respect, the spherical silica particles are also suitable as spherical inorganic particles that can impart such transparency.
[0055]
The spherical inorganic particles such as spherical silica contained in the wear resistance imparting layer are considered to have the following effects. (1) The effect of relaxing the cohesive force when the thermosetting resin of the wear resistance-imparting layer is cured, and curling and brittle, (2) The abrasive of the S42 abrasive paper used in the JAS abrasion B test This is an effect of preventing the pattern layer from being torn by preventing the pattern layer from reaching the pattern layer.
[0056]
From the viewpoints of the above two effects, it is preferable that the spherical inorganic particles have an average primary particle size of 8 to 15 μm and an addition amount of 5 to 15 parts. When the average primary particle diameter exceeds 15 μm, the holding power for the binder resin to hold the spherical inorganic particles decreases, and the spherical inorganic particles are easily dropped when worn until the wear resistance-imparting layer is exposed. Abrasion is reduced. On the other hand, even if the average primary particle size is less than 8 μm, the wear resistance (after being worn until the wear resistance-imparting layer is exposed) is lowered.
The lower limit of the average primary particle diameter is 5 μm for the protective layer and 8 μm for the wear resistance-imparting layer. The reason why the protective layer is smaller is that the performance required only for the outermost surface of the decorative material is This is because it has scratch prevention and cleanability of contaminants. In order to express these two performances, it is preferable that the particle protrusion from the outermost surface layer, that is, the protective layer, and the surface unevenness (before and during wear) are small. For that purpose, a smaller particle size in the protective layer is better. However, when the particle diameter is less than 5 μm, the wear resistance is insufficient to satisfy the JASFW standard B test. Therefore, the lower limit value of the particles in the protective layer is 5 μm. On the other hand, the abrasion resistance-imparting layer that is not the outermost surface is not required to prevent damage to contact objects and cleanability of contaminants. For this reason, the particle diameter is increased including the amount of the particle diameter of the outermost surface layer reduced. However, if it exceeds 8 μm, the smoothness of the surface is lowered and the cleaning property is deteriorated. Therefore, the lower limit of the particle diameter of the wear resistance-imparting layer is 8 μm. As a basic idea, most of the role of imparting abrasion resistance is assigned to the abrasion resistance imparting layer, and the protective layer provides characteristics such as marling resistance and surface strength due to the ionizing radiation curable resin as much as possible. Cleanability can be improved by smoothing the surface of the protective layer and eliminating irregularities. As described above, the spherical inorganic particles contained in the wear resistance-imparting layer preferably have an average primary particle size of 8 to 15 μm, but the average primary particle size is more preferable in that the effect can be obtained more reliably. The thing of 10-14 micrometers is desirable.
[0057]
Here, as an example of preferable conditions, spherical silica having an average primary particle diameter of 10 to 14 μm is preferably added in an amount of about 15 to 25% with respect to the total amount of the resin component, and among them, a preferable specific example can be given. For example, a two-component heat of blending 2.8 parts by mass of isocyanate as a curing agent to 21 parts by mass of spherical silica having an average primary particle size of 12 μm added to 100 parts by mass of an acrylic polyol resin having an OH value of 30 It was an abrasion resistance imparting layer formed of a curable urethane resin.
[0058]
The wear resistance imparting layer is usually a non-colored transparent layer as well as the protective layer, but may be a colored transparent layer. This is to make it possible to see through the pattern layer that is normally provided below the wear resistance-imparting layer. In addition, in a structure without a pattern layer, it may be opaque such as non-colored opaque and colored opaque.
[0059]
[Thickness of wear-resistant layer and protective layer]
Wear resistance layer thickness t M And the thickness t of the protective layer P Has a total thickness of 18-30 μm, and t M ≧ t P Is preferable. From the viewpoint of wear resistance, it is advantageous that each thickness of the protective layer and the wear resistance imparting layer is as thick as possible. However, if the total thickness and the thickness relationship of each layer are not satisfied, curing shrinkage This is because curls become harder and the sheet becomes fragile.
As a result of studying the relationship between wearability and workability when laminating a sheet-like decorative material on a board such as a particle board by roll pressurization and finishing the decorative material as a decorative plate, the above total thickness And the thickness relationship was found. However, the thickness t of the protective layer P The lower limit of is at least 1 μm, preferably 2.5 μm or more, more preferably 3.5 μm. The reason for this is that ionizing radiation curable resin coatings generally inhibit the curing reaction due to oxygen or water vapor in the air in the region near 1 μm near the surface. If the thickness of the protective layer is too thin and less than 1 μm, the protective layer is entirely composed of a layer that is inhibited from curing, and surface physical properties such as marring resistance tend to be insufficient. From this point, the thickness t of the protective layer M Is at least 1 μm. Furthermore, in order to resist and fix the spherical inorganic particles against external force, the thickness of the protective layer needs to be 50% or more, more preferably 70% or more of the particle diameter of the particles to be added. Since the lower limit of the particle diameter of the spherical inorganic particles in the protective layer is 5 μm, the thickness t of the protective layer P Is preferably 2.5 μm or more, more preferably 3.5 μm.
[0060]
In the abrasion resistance evaluation test, when the arithmetic average roughness Ra of the roughest abrasive paper (S42 abrasive paper) is about 30 μm, and the total thickness of the wear resistance-imparting layer and the protective layer exceeds 30 μm, the abrasive paper The probability of reaching the abrasive pattern layer decreases, and the wear resistance increases as the total thickness increases, but conversely, the curling and brittle of the decorative sheet becomes intense and the processing suitability becomes inferior (to avoid this) I) The thickness of the base sheet is increased or the material is restricted.
Further, if the total thickness of the wear resistance-imparting layer and the protective layer is less than 18 μm, sufficient wear resistance performance cannot be obtained.
[0061]
As described above, in the present invention, appropriate amounts of spherical inorganic particles having an average primary particle diameter of 8 to 15 μm and spherical inorganic particles having 5 to 15 μm are added to the wear resistance-imparting layer and the protective layer made of ionizing radiation resin, respectively. Therefore, if the added inorganic particles impede the entry of the abrasive into the decorative material and the total thickness of the wear resistance-imparting layer and the protective layer is 18 to 30 μm, the wear resistance can be used at a certain level in a horizontal plane. It was found that sex can be expressed. In addition, the thickness of the wear resistance-imparting layer having excellent curl resistance and brittle resistance (t M ) Of the protective layer made of ionizing radiation curable resin (t P It has been found that a decorative sheet having excellent wear resistance and excellent processability can be obtained by the above.
[0062]
[Pattern layer]
The pattern layer 2 is preferably provided in that the decorative material can be highly designed. What is necessary is just to form a pattern layer by a conventionally well-known material and method according to a use. That is, the pattern layer 2 may be formed by using a known printing method such as gravure printing, screen printing, offset printing, gravure offset printing, ink jet printing, coating method, or the like using ink (or paint). In addition, in the case of the solid pattern layer of the whole surface solid pattern, you may form by well-known coating methods, such as a roll coat and a gravure coat.
[0063]
As the pattern of the pattern layer, in addition to a pattern imitating a natural object such as a wood grain pattern or marble, an artificial abstract pattern or a solid monochrome pattern may be used, and a required pattern may be arbitrarily expressed. For example, wood grain pattern such as conduit pattern, grain pattern, grain pattern, stone pattern, sand texture pattern, pear texture, cloth pattern, tile pattern, brickwork pattern, leather pattern, imitation pattern of natural objects, letters, symbols An abstract pattern such as a geometric pattern, a solid pattern, or a combination of two or more of these is used.
[0064]
As the ink (or coating liquid) used for forming the pattern layer, a general vehicle composed of a binder or the like, a colorant such as a pigment or dye, and various additives appropriately added thereto can be used. For example, as the binder resin, cellulose resins such as nitrocellulose, cellulose acetate, and cellulose acetate propionate, resins such as acrylic resins, urethane resins, vinyl chloride-vinyl acetate copolymers, polyester resins, and alkyd resins are used alone. Used in or mixed. Examples of the colorant include titanium white, zinc white, carbon black, iron black, petal, cadmium red, yellow lead, titanium yellow, cobalt blue, and ultramarine inorganic pigments such as aniline black, quinacridone red, polyazo red, Use is made of organic pigments such as isoindolinone yellow, benzidine yellow, phthalocyanine blue, and induslen blue, glitter pigments made of scaly foil powder such as titanium dioxide-coated mica, shells, brass, and aluminum, or other dyes.
[0065]
Such an ink (or coating liquid) is used for forming the pattern layer. Specifically, for example, when the substrate is paper, viewpoints such as adhesion to paper, strength between ink layers, oil resistance, etc. Therefore, the binder resin is preferably a two-component thermosetting resin, but a thermoplastic resin can also be used. As the two-component curable resin, a thermosetting urethane resin or the like can be used. Particularly, for example, an acrylic polyol resin having an OH value of about 30 to 60 is preferably used as a curing agent with an isocyanate of 0. Good characteristics can be obtained by adding 0.5 to 1 part.
[0066]
〔Base material〕
As the base material 1, for example, in addition to sheets such as paper and resin sheets, plates, three-dimensional objects, etc., the shape and material of the base material are basically not particularly limited, and are conventionally known as base materials for cosmetic materials. These various substrates can be used depending on the application. Among these, paper is advantageous in terms of cost and is a kind of preferable substrate. Furthermore, as a result of laminating a decorative sheet using paper as a base material, that is, decorative paper, on another base material such as a wooden board, the base material as a laminate of paper and another base material such as a wooden board Is a preferable base material that can be made inexpensively.
[0067]
Examples of the paper that is a kind of fibrous base material include thin paper, kraft paper, general paper, fine paper, linter paper, baryta paper, sulfuric acid paper, Japanese paper, and the like. Alternatively, resin-impregnated paper in which a resin such as acrylic resin, styrene-butadiene rubber, melamine resin, or urethane resin is added (impregnated with resin after paper making or embedded during paper making) may be used. Specifically, in terms of cost and concealment, for example, the basis weight is 30 g / m. 2 The general white paper with titanium white is preferable. In addition, if the cost permits, the basis weight is 23 g / m. 2 Fibrous sheets such as the above-mentioned inter-paper reinforcing paper and impregnated paper may be used.
[0068]
Further, as the fibrous base material other than paper, non-woven fabric made of fibers such as polyester resin, acrylic resin, nylon, vinylon, glass and the like are also used. The nonwoven fabric may be added with a resin as in the case of the paper type.
[0069]
In addition, when the substrate 1 is in the form of a sheet, in addition to a fibrous substrate such as paper, vinyl chloride resin, polyolefin resin, polyester resin, acrylic resin, polystyrene, ABS resin, polycarbonate resin, polyamide resin, A resin film (or sheet) made of a thermoplastic resin such as a cellulose resin can also be used.
Specifically, examples of the polyolefin resin include polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene-propylene-butene copolymer, and olefin thermoplastic elastomer.
Examples of the polyester resin include polyethylene terephthalate, polybutylene terephthalate, ethylene-terephthalate-isophthalate copolymer, polyethylene naphthalate, polyester-based thermoplastic elastomer, amorphous polyester, and the like.
[0070]
These resins are used not only as sheets but also as plates and base materials for three-dimensional objects.
Examples of the resin-based base material include thermosetting resin plates made of thermosetting resins such as phenol resin, urea resin, unsaturated polyester resin, urethane resin, epoxy resin, and melamine resin, phenol resin, and urea resin. So-called FRP (fiber reinforced), which is made by impregnating and curing a resin such as unsaturated polyester resin, urethane resin, epoxy resin, melamine resin, diallyl phthalate resin on glass fiber nonwoven fabric, fabric, paper, and other various fibrous base materials. There are also plastic plates such as plastic) plates.
[0071]
In addition, examples of the wood-based base material include wood materials such as veneer, plywood, particle board, fiberboard, and laminated wood made of cedar, straw, straw, lawan, teak, and the like. In the woody base material, it is used as a sheet, a plate, or a three-dimensional object.
Examples of the metal base material include metal materials such as iron, aluminum, stainless steel, and copper. Metal base materials are used as sheets (foil), plates, and three-dimensional objects.
Examples of inorganic non-metallic base materials include extruded cement, slag cement, ALC (lightweight cellular concrete), GRC (glass fiber reinforced concrete), pulp cement, wood chip cement, asbestos cement, calcium silicate, gypsum, There are non-ceramic ceramic materials such as gypsum slag, ceramic materials such as earthenware, ceramics, porcelain, setware, glass and glazing. Inorganic nonmetallic base materials are mainly used as plates and three-dimensional objects.
[0072]
Examples of the base material include a base material obtained by combining and laminating two or more kinds of base materials by a known means such as an adhesive or heat fusion as described above. For example, resin-impregnated paper, FRP, etc. are examples thereof.
In addition, once a decorative material is produced as a decorative paper or decorative sheet using a sheet-like base material, the sheet-like decorative material is applied to another base material (sheet, plate, three-dimensional object) with an adhesive or the like. A laminate suitably laminated and used is also a decorative material of the present invention, and the base material of the decorative material after stacking is an example of a configuration in which two or more kinds of base materials are stacked.
[0073]
In addition, when the base material is paper or the like and has permeability of ink or coating liquid, if the permeability impedes subsequent printing or coating, the base material is appropriately selected as necessary to prevent the problem. On the top, a known sealer layer may be formed in advance. Moreover, it can also be combined with the solid pattern layer of a pattern layer.
[0074]
[Use]
In the present invention, the use of the decorative material has been described mainly around the kitchen such as kitchen shelves and cupboards, but is not limited to these uses. In addition to this, applications in which the contact suitability of the present invention is utilized, particularly horizontal plane applications, are suitable applications. For example, furniture such as desks, baskets, cupboards, building interiors such as floors, walls, and stairs, doors, door frames, window frames, and other building components, edges, baseboards, handrails, waist walls The properties can be utilized in the application.
[0075]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
[0076]
[Example 1]
As the base material 1, the basis weight is 30 g / m. 2 General paper containing titanium oxide was selected, and on one side, as an image layer 2, an acrylic polyol resin having an OH value of 60 (glass transition point Tg 58 ° C., molecular weight 26000), titanium oxide (and other color pigments included) and isocyanate A two-component thermosetting urethane resin ink with a weight ratio of 15: 47: 6 (mass ratio) is gravure-printed and laminated to a thickness of 7 μm when dried (hereinafter the same), and a pattern as a colored resin layer A layer was formed.
[0077]
Next, on the pattern layer 2, as a non-colored transparent wear resistance-imparting layer 3, a crystalline spherical silica having an average primary particle diameter of 12 μm, an acrylic polyol resin having an OH number of 30 and an isocyanate are 8: A two-component thermosetting urethane resin ink of 31: 7 (mass ratio) was laminated by a gravure solid printing method so as to have a film thickness of 12 μm.
[0078]
Next, as an uncolored transparent protective layer 4 made of an ionizing radiation curable resin on the wear resistance imparting layer 3, an epoxy acrylate prepolymer, trimethylolpropane triacrylate, silicone acrylate, and an average primary particle diameter of 12 μm are used. After laminating an ionizing radiation curable resin coating solution made of crystalline spherical silica with a 10: 10: 0.4: 20 (mass ratio) to a film thickness of 12 μm by a roll coating method, Irradiation [175 keV, 30 kGy (3 Mrad)] was cross-linked and cured to obtain a decorative material in the form of a target decorative sheet. The total thickness of the wear resistance-imparting layer and the protective layer was 22 μm.
[0079]
Thereafter, the obtained decorative sheet is cured under conditions of 70 ° C. × 24 hours to crosslink and cure the two-component thermosetting urethane resin, and then a particle board (vertical 180 cm, horizontal 90 cm, thickness 16 mm) as a backing substrate The laminate was laminated on one side by roller pressurization using a urea-based adhesive to obtain a decorative material in the form of a decorative board (see FIG. 1). The substrate is finally a laminate of paper and particle board.
And performance evaluation was carried out about this decorative board. The evaluation method will be described later. The evaluation results are shown in Table 2.
[0080]
[Example 2]
In Example 1, the thickness of the wear resistance-imparting layer was increased from 12 μm to 20 μm, the thickness of the protective layer was still 10 μm, and the total thickness was increased from 22 μm to 30 μm. Then, a decorative sheet and a decorative plate were prepared as a decorative material.
[0081]
[Comparative Example 1]
In Example 1, the thickness of the wear resistance-imparting layer was reduced to 10 μm, the thickness of the protective layer was increased to 20 μm thicker than the wear resistance-giving layer, and the total thickness was 30 μm. Similarly, a decorative sheet and a decorative plate were prepared as a decorative material.
[0082]
[Comparative Example 2]
In Example 1, the thickness of the wear resistance-imparting layer was reduced to 5 μm, the thickness of the protective layer was 10 μm, and the total thickness was 15 μm. Sheets and decorative panels were prepared.
[0083]
[Comparative Example 3]
In Example 1, except that the thickness of the wear resistance-imparting layer was reduced to 10 μm, the thickness of the protective layer was reduced to 5 μm, and the total thickness was 15 μm. Sheets and decorative panels were prepared.
[0084]
[Performance evaluation method]
The performance was evaluated for the decorative plates obtained in each of the examples and comparative examples in terms of wear resistance (JAS wear B test), brittle resistance, curl resistance, oil resistance, and contact suitability. Each performance was evaluated as follows.
[0085]
(1) Abrasion resistance (JAS wear B test): It was performed using abrasive paper S42 according to the wear B test specified by JAS in the FW type of specially processed decorative plywood. In addition, if an abrasion value is 100 times or more, it can be used for horizontal surface uses, such as a kitchen.
[0086]
(2) Brittle resistance: When a decorative sheet is laminated with roller pressure to make a decorative material, no cracks are generated in the protective layer or the wear resistance imparting layer, and the decorative sheet is flexible and suitable for processing. Some were evaluated as good (◯), and cracks were generated or flexibility was not sufficiently obtained, and those with poor workability were evaluated as poor (x).
(3) Curling resistance: Good if it does not curl in the state of a decorative sheet or does not interfere with the laminate, and does not cause curling even after lamination (○). Those that curled after lamination were evaluated as poor (x).
[0087]
(4) Oil resistance: Salad oil was dropped on a decorative board and allowed to stand at room temperature for 24 hours, and then the appearance of spots was visually observed and evaluated when the oil was wiped off with a waste cloth. The case where no stain was generated was evaluated as good (◯), the case where it was slightly generated was evaluated as slightly good (Δ), and the case where it was clearly generated was evaluated as (×).
By the way, the decorative board used for kitchen use may have oil splashed during cooking, and when used for other purposes, the oil attached to the screw may cause stains. Is required.
[0088]
(5) Contact suitability: Evaluated by the following pan bottom wearability and dish bottom wearability.
[0089]
(5-1) Pan bottom wear resistance is the bottom of a stainless steel pan with a mass of 2.5 kg (load 24.5 N), rubbing the surface of the decorative plate, wear stains and appearance changes (changes in gloss, generation of scratches, interlayers) The number of wears where peeling occurred was measured. A case where the wear frequency in which either wear stain or appearance change occurred was less than 10,000 was evaluated as defective (x). It was evaluated as good (O) for 10,000 times or more. Moreover, the thing with slight stain | pollution | contamination and an external appearance change was evaluated as some favorable ((triangle | delta)). The change in gloss is the change in the decorative board surface (marling resistance), the flaw is in both flaws, and the delamination is in the layers between the protective layer of the decorative material, the wear resistance-imparting layer, the pattern layer, the base material, etc. Exfoliation at was examined.
[0090]
(5-2) Dish-bottom wear resistance is the same as the pan-bottom wear resistance, with the bottom of the plate being rubbed with five western dishes with a mass of 500 g (load 4.9 N). The number of wear occurrences (change in gloss, generation of scratches, delamination) was measured.
[0091]
[Table 2]
Figure 2005042373
[0092]
[Results of performance evaluation: Part 1]
As shown in Table 2, Example 1 and Example 2 had good brittle resistance and curl resistance, and were excellent in workability when laminating a decorative sheet on a particle board. Furthermore, the wear resistance of the finished decorative board is as good as that of the low-pressure melamine decorative board (the wear value is about 120 in the JAS wear B test), and the bottom wear resistance and the dish bottom as contact suitability are excellent. Each of the wear properties satisfied 30,000 times (equivalent to 3 times / day × 30 years). That is, it has contact suitability that does not deteriorate even when used for many years on a shelf board and a bottom board in kitchen use.
[0093]
On the other hand, Comparative Example 1 was good in abrasion resistance but poor in brittle resistance, and when the decorative sheet was laminated to the particle board, the decorative sheet was severely broken, and a good decorative board could not be obtained. Further, because of the poor curl resistance, the decorative board laminated somehow could not obtain a good decorative board because the edge of the decorative sheet was curled. As described above, there was no suitability for laminating. A performance evaluation test was performed on a partially good portion of the obtained decorative board. However, the protective layer was too thick to withstand the cohesive force, and due to the resistance force when the dish bottom was worn, the resistance was 0. Delamination occurred at 50,000 times. As a result of lack of dish-bottom wear, when used on kitchen shelves and bottom plates, claims for delamination could be expected in several years.
[0094]
In Comparative Example 2 and Comparative Example 3, both the brittle resistance and the curl resistance were good, and the processability to make a decorative sheet by laminating the decorative sheet was good, but the wear resistance ( JAS wear B test) was inferior, and was not of a quality that could be used in horizontal plane applications. Moreover, oil resistance was also inferior.
[0095]
[Comparative Example 4]
In Example 1, except that the spherical silica contained in the protective layer was changed to spherical alumina having an average primary particle diameter of 13 μm and a Mohs hardness of 9, a decorative sheet as a cosmetic material, Furthermore, a decorative board was produced. The contents and results are shown in Table 3 together with the other comparative examples together with the previous Example 1.
[0096]
[Comparative Example 5]
In Example 1, the spherical silica contained in the protective layer was changed to silicon carbide having an average primary particle diameter of 13 μm and a Mohs hardness of 9 to 10 (particle shape is indeterminate), as in Example 1. Thus, a decorative sheet and a decorative plate were prepared as a decorative material.
[0097]
[Comparative Example 6]
In Example 1, except that the spherical silica contained in the protective layer was changed to barium sulfate having an average primary particle diameter of 15 μm and a Mohs hardness of 2.5 to 3.5 (particle shape is irregular). In the same manner as in Example 1, a decorative sheet and a decorative plate were produced as a decorative material.
[0098]
[Comparative Example 7]
In Example 1, a decorative sheet and a decorative plate were produced as a cosmetic material in the same manner as in Example 1 except that the spherical silica contained in the protective layer was not added.
[0099]
[Table 3]
Figure 2005042373
[0100]
[Results of performance evaluation: Part 2]
About Comparative example 4-Comparative example 7, it carried out similarly to previous Example 1, and evaluated performance.
[0101]
As shown in Table 3, the contact suitability of Comparative Example 4 and Comparative Example 5 shows that in the pan bottom wear test, the metal (pan bottom) is worn and a large amount of metal powder is generated after several hundred wears. The abrasion stain partially penetrated the surface of the decorative board, and the abrasion powder stain could not be removed. Although the abrasion dust stain residue after cleaning was relatively good, it was not at a level that could be used in kitchen applications where cleanliness was required. In the dish-bottom wear test, the decorative board did not wear or deteriorate, but the dish-bottom was worn and ceramic powder was generated.
As in Comparative Example 4 and Comparative Example 5, when inorganic particles serving as an abrasive having a Mohs hardness of more than 8 are added to the protective layer, the wear resistance is improved, but there is no contact suitability, scratching the other party, As a result, it was still unsuitable for horizontal surfaces. In addition, it was found that when used on a table top, the clothes would wear and deteriorate.
[0102]
In Comparative Example 6, barium sulfate having a low Mohs hardness was added to the protective layer as inorganic particles. In this case, in the JAS abrasion B test, sharp polishing made of alumina (Mohs hardness 9) of S42 abrasive paper was used. Since the particles are easily broken and pulverized, the inorganic particles easily fall off from the protective layer, and wear resistance is poor. In addition, contactability with dishes (pottery) etc. is also poor, and even when worn on the bottom of the dish, inorganic particles are crushed, resulting in wear of the protective layer, resulting in gloss change of the surface protective layer and abrasion powder generated from the protective layer . Further, the abrasion resistance in the JAS abrasion B test was inferior to that of Comparative Example 7 because the inorganic particles having a low Mohs hardness were damaged by the sharp alumina particles that were abrasives for abrasive paper. Due to the occurrence of dropout.
Even when inorganic particles having a low Mohs hardness are added to the protective layer as a matting agent, the contact suitability is poor.
[0103]
Next, Comparative Example 7 is one in which inorganic particles are not added to the protective layer, but in this case, since there are no inorganic particles that relieve cure shrinkage, the curl resistance and brittle resistance of the decorative sheet are slightly inferior. Therefore, the processability when making a decorative board by laminating was inferior.
In addition, even if there is sufficient thickness of the abrasion resistance imparting layer and the protective layer to reduce the probability that the abrasive of the abrasive paper reaches the pattern layer or the base material (paper) in the JAS abrasion B test, Wear resistance performance was inferior. Accordingly, the presence of spherical inorganic particles having an appropriate Mohs hardness (Mohs hardness 6 to 8) in the protective layer and the wear resistance-imparting layer allows the abrasive of the S42 abrasive paper to enter the cosmetic material, and the cosmetic material. It was confirmed that the action of tearing (wearing) the material was alleviated.
In addition, when inorganic particles having an appropriate Mohs hardness are not added, the surface hardness of the decorative material is the hardness of a protective layer made of an ionizing radiation curable resin, which also has no contact suitability and is subjected to a dish bottom wear test. As a result, the surface of the decorative material was scratched or a slight amount of wear powder was generated.
[0104]
Example 3
In Example 1, a decorative sheet and a decorative plate were prepared as a cosmetic material in the same manner as in Example 1 except that 2% by mass of polyethylene wax was added as a slip agent to the total amount of the protective layer. This improves the slipperiness of the protective layer.
[0105]
[Comparative Example 8]
In Example 1, the protective layer was 31: 8: 12: 2 (mass ratio) of acrylic polyol resin, spherical silica having an average primary particle size of 12 μm, isocyanate, and non-reactive silicone (release agent). A decorative sheet and a decorative plate were produced as a decorative material in the same manner as in Example 1 except that it was formed by thermal crosslinking and curing using a two-component thermosetting urethane resin ink.
[0106]
[Comparative Example 9]
In Example 1, the protective layer was 31: 8: 12: 2 (mass ratio) of acrylic polyol resin, spherical alumina having an average primary particle size of 12 μm, isocyanate, and non-reactive silicone (release agent). A decorative sheet and a decorative plate were produced as a decorative material in the same manner as in Example 1 except that it was formed by thermal crosslinking and curing using a two-component thermosetting urethane resin ink.
[0107]
[Comparative Example 10]
In Example 1, the protective layer was made of epoxy acrylate prepolymer, trimethylolpropane triacrylate, silicone acrylate, spherical silica having an average primary particle size of 12 μm, and polyethylene wax, 10: 10: 0.4: 20: 2. A decorative sheet and a decorative plate were prepared as a cosmetic material in the same manner as in Example 1 except that the ionizing radiation curable resin coating solution (mass ratio) was crosslinked and cured with an electron beam.
[0108]
[Table 4]
Figure 2005042373
[0109]
[Performance evaluation results, part 3]
As shown in Table 4, Example 3 was a cosmetic material that was more excellent in contact suitability than Example 1 because the slipperiness of the protective layer was improved, the wear resistance with the contact object was reduced. In addition, the wear resistance was further improved.
[0110]
In Comparative Example 8, the protective layer was composed of a thermosetting resin, but gloss change occurred easily and significantly in the pan bottom wear resistance and the dish bottom wear resistance. Although there was no damage or wear to the contact material on the pan or dish, the gloss of the cosmetic material easily changed, and the cosmetic material was still incompatible with contact.
[0111]
In Comparative Example 9, the spherical inorganic particles in the protective layer of Example 1 were changed from spherical silica to spherical alumina. Similar to the result of Comparative Example 4, in the pot bottom wear evaluation test, the pot bottom was worn and the metal was Powdery dirt was generated. Further, in the dish bottom wear evaluation test, the dish bottom was worn in the same manner as in Comparative Example 4, resulting in generation of wear powder. Further, compared with Comparative Example 4, the wear powder easily enters the protective layer softened by the wear heat, and the wear dirt cannot be removed even after cleaning. From Comparative Example 4, it was a cosmetic material with poor contact suitability.
[0112]
Comparative Example 10 is a cosmetic material that dares to reduce the slipperiness except the silicone acrylate in the ionizing radiation curable resin of the protective layer of Example 1 (not added). Although there was no significant difference in the JAS wear B test and pan bottom wear resistance, the wear resistance was greatly increased in the dish bottom wear evaluation test, and delamination occurred between the pattern layer and the 1,500 times wear. Occurred. As a result, the contact suitability was greatly reduced.
[0113]
【The invention's effect】
(1) According to the decorative material of the present invention, the JAS satisfies the wear resistance by the wear B test specified by the specially processed decorative plywood type FW, and (in the case of a decorative sheet in sheet form, roll pressurization is performed. In addition, the brittle resistance and the low curl property that can provide the desired flexibility as the processability (such as laminating on a base material) can be satisfied.
Moreover, the contact object is not damaged. For this reason, the contact material is not damaged in addition to the cosmetic material itself, and neither the cosmetic material nor the contact material is deteriorated in quality including appearance changes such as scratches and shine, and therefore, wear powder and dirt are not generated. "Contact suitability" can also be imparted. Therefore, when the decorative material is used for a horizontal surface, for example, for a bottom plate for a system kitchen, the bottom of the pan or the dish is damaged and worn, and contamination due to the abrasion powder does not occur. Therefore, the decorative material can be used in common on the horizontal plane and the vertical plane.
[0114]
(2) Furthermore, if the inorganic particles added to the protective layer and the wear resistance-imparting layer are made of spherical silica, the cost can be reduced as compared with a urethane decorative sheet (compared with a sheet-like material). Therefore, in terms of cost, the cosmetic material is easy to use in common on the horizontal and vertical surfaces.
[0115]
(3) Also, if the thermosetting resin of the wear resistance-imparting layer is a two-component curable urethane resin using acrylic polyol, the interlayer adhesion strength with the protective layer and the pattern layer, oil resistance (oil penetration prevention effect) ) Will improve.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a decorative material according to an embodiment of the present invention.
[Explanation of symbols]
1 Base material
2 Pattern layer
3 Wear-resistant layer
4 Protective layer
10 Cosmetics

Claims (3)

基材上に、少なくとも、熱硬化性樹脂からなる耐摩耗性付与層、電離放射線硬化性樹脂からなる保護層を、順次積層してなる化粧材において、
耐摩耗性付与層と保護層の総厚みが18〜30μmであり、且つ、耐摩耗性付与層の厚みtと保護層の厚みtがt≧tであり、且つ、耐摩耗性付与層中に平均一次粒子径8〜15μmでモース硬度6〜8の球状無機質粒子が添加され、保護層中に平均一次粒子径5〜15μmでモース硬度6〜8の球状無機質粒子が添加されている、化粧材。
On the base material, at least a wear resistance imparting layer made of a thermosetting resin, a protective layer made of an ionizing radiation curable resin, and a decorative material formed by sequentially laminating,
The total thickness of the wear resistance imparting layer and the protective layer is 18 to 30 μm, the thickness t M of the wear resistance imparting layer and the thickness t P of the protective layer is t M ≧ t P , and the wear resistance Spherical inorganic particles having an average primary particle diameter of 8 to 15 μm and a Mohs hardness of 6 to 8 are added to the application layer, and spherical inorganic particles having an average primary particle diameter of 5 to 15 μm and a Mohs hardness of 6 to 8 are added to the protective layer. There are cosmetics.
少なくとも保護層中の球状無機質粒子が球状シリカである、請求項1記載の化粧材。The cosmetic material according to claim 1, wherein at least the spherical inorganic particles in the protective layer are spherical silica. 耐摩耗性付与層の熱硬化性樹脂が、アクリルポリオールを用いた2液硬化型ウレタン樹脂である、請求項1記載の化粧材。The cosmetic material according to claim 1, wherein the thermosetting resin of the wear resistance imparting layer is a two-component curable urethane resin using an acrylic polyol.
JP2003202310A 2003-07-28 2003-07-28 Cosmetic material with contact suitability Expired - Fee Related JP4289548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003202310A JP4289548B2 (en) 2003-07-28 2003-07-28 Cosmetic material with contact suitability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003202310A JP4289548B2 (en) 2003-07-28 2003-07-28 Cosmetic material with contact suitability

Publications (2)

Publication Number Publication Date
JP2005042373A true JP2005042373A (en) 2005-02-17
JP4289548B2 JP4289548B2 (en) 2009-07-01

Family

ID=34262063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003202310A Expired - Fee Related JP4289548B2 (en) 2003-07-28 2003-07-28 Cosmetic material with contact suitability

Country Status (1)

Country Link
JP (1) JP4289548B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028475A (en) * 1999-07-15 2001-01-30 Mitsubishi Gas Chem Co Inc Manufacture of polybenzazole fabric base-material printed wiring board
JP2014184675A (en) * 2013-03-25 2014-10-02 Dainippon Printing Co Ltd Decorative sheet and decorative laminate using the same
JP2015217599A (en) * 2014-05-16 2015-12-07 共同印刷株式会社 Decorative sheet and production method thereof
JP6131517B1 (en) * 2016-08-09 2017-05-24 東洋インキScホールディングス株式会社 Matte coating composition, cosmetic material and method for producing the same
JP2017221476A (en) * 2016-06-16 2017-12-21 Toto株式会社 counter
EP3466677A4 (en) * 2016-05-26 2019-12-11 Toppan Printing Co., Ltd. Decorative material
JP2020116839A (en) * 2019-01-24 2020-08-06 五洋紙工株式会社 Writable screen resin composition, writable screen using the same, and method for manufacturing the same
WO2021065043A1 (en) * 2019-09-30 2021-04-08 大日本印刷株式会社 Decorative material
WO2021065042A1 (en) * 2019-09-30 2021-04-08 大日本印刷株式会社 Decorative material
JP2021084242A (en) * 2019-11-25 2021-06-03 凸版印刷株式会社 Decorative paper
CN114867907A (en) * 2019-12-25 2022-08-05 株式会社可乐丽 Leather-like sheet

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028475A (en) * 1999-07-15 2001-01-30 Mitsubishi Gas Chem Co Inc Manufacture of polybenzazole fabric base-material printed wiring board
JP2014184675A (en) * 2013-03-25 2014-10-02 Dainippon Printing Co Ltd Decorative sheet and decorative laminate using the same
JP2015217599A (en) * 2014-05-16 2015-12-07 共同印刷株式会社 Decorative sheet and production method thereof
EP3466677A4 (en) * 2016-05-26 2019-12-11 Toppan Printing Co., Ltd. Decorative material
US10946610B2 (en) 2016-05-26 2021-03-16 Toppan Printing Co., Ltd. Decorative material
JP2017221476A (en) * 2016-06-16 2017-12-21 Toto株式会社 counter
JP6131517B1 (en) * 2016-08-09 2017-05-24 東洋インキScホールディングス株式会社 Matte coating composition, cosmetic material and method for producing the same
JP2018024744A (en) * 2016-08-09 2018-02-15 東洋インキScホールディングス株式会社 Matte coating composition, decorative material and production method of the same
JP2020116839A (en) * 2019-01-24 2020-08-06 五洋紙工株式会社 Writable screen resin composition, writable screen using the same, and method for manufacturing the same
WO2021065043A1 (en) * 2019-09-30 2021-04-08 大日本印刷株式会社 Decorative material
WO2021065042A1 (en) * 2019-09-30 2021-04-08 大日本印刷株式会社 Decorative material
JP2021084242A (en) * 2019-11-25 2021-06-03 凸版印刷株式会社 Decorative paper
JP7415481B2 (en) 2019-11-25 2024-01-17 Toppanホールディングス株式会社 decorative paper
CN114867907A (en) * 2019-12-25 2022-08-05 株式会社可乐丽 Leather-like sheet

Also Published As

Publication number Publication date
JP4289548B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
WO2018062299A1 (en) Decorative sheet and decorative material using same
JP6036490B2 (en) Manufacturing method of decorative sheet
JP2022132678A (en) Matte article and method for manufacturing same
JP2007261259A (en) Decorative sheet
JP4289548B2 (en) Cosmetic material with contact suitability
JP5454054B2 (en) Decorative sheet
JP2001138470A (en) Decorative material with hardwearing properties
US7291400B2 (en) Decorative sheet
JP7392352B2 (en) Decorative material
JP2011069060A (en) Decorative sheet for floor material, and decorative material for floor
JP5454057B2 (en) Decorative sheet
JP4402339B2 (en) Cosmetic material
JP7409371B2 (en) Decorative material
JP2011067975A (en) Decorative sheet and decorative material
JP4289527B2 (en) Cosmetic material
JP6679834B2 (en) Decorative sheet and veneer
JP2004167779A (en) Decorative material and its manufacturing method
JP6736841B2 (en) Decorative sheet and veneer
JP4922060B2 (en) Decorative sheet
JP6736844B2 (en) Decorative sheet and veneer
JP6707820B2 (en) Decorative sheets and boards
JP7392279B2 (en) Decorative material
WO2021065043A1 (en) Decorative material
JP4489216B2 (en) Abrasion resistant cosmetics
WO2021192881A1 (en) Decorative material and method for producing decorative material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090325

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4289548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees