JP2005024373A - Stationary power supply current measuring device for semiconductor - Google Patents

Stationary power supply current measuring device for semiconductor Download PDF

Info

Publication number
JP2005024373A
JP2005024373A JP2003189921A JP2003189921A JP2005024373A JP 2005024373 A JP2005024373 A JP 2005024373A JP 2003189921 A JP2003189921 A JP 2003189921A JP 2003189921 A JP2003189921 A JP 2003189921A JP 2005024373 A JP2005024373 A JP 2005024373A
Authority
JP
Japan
Prior art keywords
power supply
supply current
semiconductor
measured
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003189921A
Other languages
Japanese (ja)
Inventor
Takuya Motoyama
拓也 本山
Akihiko Watanabe
昭彦 渡辺
Takakimi Shibauchi
孝公 芝内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003189921A priority Critical patent/JP2005024373A/en
Publication of JP2005024373A publication Critical patent/JP2005024373A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stationary power supply current measuring device for semiconductor which can precisely determine whether a semiconductor to be measured has defect parts or not. <P>SOLUTION: A stationary power supply current output from a power terminal of an LSI (DUT) to be measured 10 is sequentially converted to voltage signals by a power supply current converting circuit 12. Sample-and-hold circuits 14 and 15 generate a signal by sampling and holding the voltage signals using the first clock signal (CLK) and a signal by sampling and holding the voltage signals using the second clock signal having a phase difference against the first clock. A differential capacitor 16 generates a differential voltage signal by calculating the difference of those signals and inputs it to an LSI tester 20. The LSI tester 20 measures the differential voltage signal and determines whether the stationary power supply current is abnormal or not to determine whether the LSI to be measured 10 has defect parts or not. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体の静止電源電流を検査する半導体の静止電源電流検査装置に関する。
【0002】
【従来の技術】
従来、CMOSLSIの検査において、LSIの内部回路の全ノードについて網羅したテストパターンを作成することは非常に困難であり、95%程度の故障検出率を達成していれば良い方である。
【0003】
そこで、テストパターンで検出できない故障をスクリーニングするために、従来より静止電源電流テストが行われている(例えば、特許文献1参照。)。
CMOS論理回路において論理組み合わせが静止している場合、Pチャネルトランジスタ、Nチャネルトランジスタのいずれか一方がオフした状態となるので、ほとんど電流が流れることはなく、CMOSLSI内部の論理組み合わせを静止させた状態での電源電流(静止電源電流)は、CMOSLSIの内部論理回路が正常な場合には微小電流となる。一方、内部論理回路に故障個所がある場合には、CMOS論理回路からリーク電流が流れることになるので、異常電流が検出されたときには、そのCMOSLSIには故障箇所があることになる。
【0004】
そこで、従来の静止電源電流テストでは、LSIテスタにて所定の入力パターンを発生させて被測定半導体内部の論理組み合わせを静止させ、静止電源電流を測定し静止電源電流が異常電流であるか否かの判定を行うことで、被測定半導体に故障箇所があるか否かの判定を行っていた。
【0005】
しかしながら、近年、半導体の微細化が進むに伴なってゲート酸化膜の薄膜化が進み、ゲート耐圧が低下してきたため、電源電圧を下げる傾向にある。また、電源電圧が下がるとMOSトランジスタの電流が減り、回路の動作スピードが落ちるため、この回路動作スピードの劣化を防ぐためにMOSトランジスタの閾値電圧も電源電圧と同様に下げる傾向にある。
【0006】
一方、MOSトランジスタの特性として、閾値電圧が下がるとオフリーク電流が指数関数的に増えるという特徴がある。
従って、半導体の微細化が進み、回路規模が増大すると、静止電源電流が増大することになる。
【0007】
そのため、近年、静止電源電流を測定するためのLSIテスタの電流測定装置として、測定レンジの大きいものを使用する必要が生じてきた。
しかし、LSIテスタの電流測定装置は、大きい測定レンジを使用すると分解能も同様に大きくなり、半導体に故障箇所がある場合に発生する微小リーク電流を正確に検出することができないという問題があった。
【0008】
そのため、従来の静止電源電流テストでは、故障検出率が低下し、テストパターンで検出不可能な故障をスクリーニングすることが困難になってきた。
【0009】
【特許文献1】
特開2000−88914号公報(第2−3頁)
【0010】
【発明が解決しようとする課題】
本発明は、上記問題点に鑑み、静止電源電流を電圧信号に変換し、この電圧信号を位相差のある第1および第2のクロック信号によりサンプルアンドホールドして差分をとり、テスタにてこの差動信号を測定し静止電源電流が異常電流であるか否かを判定することにより、半導体に故障個所があるか否かの判定を正確に行うことができる半導体の静止電源電流検査装置を提供することを目的とする。すなわち、静止電源電流を電圧信号に変換するので、分解能の粗い大電流測定用の電流測定装置を使用せずに済み、正確な静止電源電流測定を行うことが可能となる。さらに、静止電源電流の差分をとって測定することになるので、内部論理組み合わせ静止時に定常的に流れる電流を省くことになり、より正確に微小リーク電流を検出できるようになる。従って、静止電源電流テストによる故障検出率を向上させ、テストパターンで検出不可能な故障個所のスクリーニングを行うことができるようになる。
【0011】
【課題を解決するための手段】
本発明の請求項1記載の半導体の静止電源電流検査装置は、被測定半導体内部の所定個所の論理組み合わせを静止させる入力パターンを発生するテスタを備え、前記所定個所の論理組み合わせ静止時の電源電流が異常電流であるか否かを判定する半導体の静止電源電流検査装置であって、被測定半導体から入力される電源電流を電圧信号に変換する変換回路と、前記電圧信号を第1のクロック信号によりサンプルアンドホールドした信号と前記第1のクロック信号に対して位相差を持たせた第2のクロック信号によりサンプルアンドホールドした信号との差分をとって差分電圧信号を生成する差動回路と、を有し、前記テスタにて前記差分電圧信号を測定し被測定半導体の電源電流が異常電流であるか否かを判定することを特徴とする。
【0012】
本発明の請求項2記載の半導体の静止電源電流検査装置は、請求項1記載の半導体の静止電源電流検査装置であって、前記差分電圧信号をデジタル信号に変換するアナログ/デジタル変換回路を有し、前記テスタにて前記アナログ/デジタル変換回路の出力と前記入力パターンに対する期待値パターンとを比較し被測定半導体の電源電流が異常電流であるか否かを判定することを特徴とする。
【0013】
本発明の請求項3記載の半導体の静止電源電流検査装置は、請求項1記載の半導体の静止電源電流検査装置であって、前記差分電圧信号を測定し被測定半導体の電源電流が異常電流であるか否かを判定する判定回路を有し、前記テスタにて前記判定回路の判定結果を検出することを特徴とする。
【0014】
本発明によれば、回路規模の大きい半導体に故障箇所がある場合に発生する微小リーク電流を正確に検出することができ、半導体に故障個所があるか否かの判定を正確に行うことができるので、静止電源電流テストによる故障検出率を向上させ、テストパターンで検出不可能な故障個所のスクリーニングを行うことができるようになる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。なお、ここで示す実施の形態はあくまでも一例であって、必ずしも以下の実施の形態に限定されるものではない。
【0016】
(実施の形態1)
図1は本実施の形態1に係る半導体の静止電源電流検査装置の構成を示すブロック図である。
【0017】
図1において、LSIテスタインターフェースボード11上には、被測定LSI(DUT)10の電源端子と接続され、静止電源電流を電圧信号に変換する電流電圧変換回路12と、第1のクロック信号(CLK)を遅延させる遅延回路13と、遅延回路13を通らない第1のクロック信号により上記電圧信号をサンプルアンドホールド(以下、サンプル&ホールドと称す。)するサンプルホールド回路14と、遅延回路13で遅延されたクロック信号(第2のクロック信号)により上記電圧信号をサンプル&ホールドするサンプルホールド回路15と、サンプルホールド回路14、15の出力の差分をとり差分電圧信号を生成する差動回路16が設けられている。
【0018】
また、LSIテスタ20は、被測定LSI10内部の所定個所の論理組み合わせを静止させる入力パターンを発生するとともに、差動回路16の出力を測定しその測定結果から静止電源電流が異常電流であるか否かを判定する。
【0019】
続いて、以上のように構成された検査装置の動作ついて説明する。
まず、LSIテスタ20より被測定LSI10へ所定の入力パターンを入力し、被測定LSI10内部の所定個所の論理組み合わせを静止させる。
【0020】
この状態で被測定LSI10の電源端子から出力される静止電源電流を電流電圧変換回路12にて電圧信号に順次変換する。
サンプルホールド回路14は、第1のクロック信号により電流電圧変換回路12の出力電圧をサンプル&ホールドする。同様に、サンプル&ホールド回路15は、遅延回路13を通り、第1のクロック信号に対して位相差を持った第2のクロック信号により電流電圧変換回路12の出力電圧をサンプル&ホールドする。
【0021】
差動回路16は、サンプルホールド回路14、15の出力の差分をとって差分電圧信号を生成しLSIテスタ20へ出力する。
LSIテスタ20は入力された差分電圧信号を測定して微小リーク電流の検出を行い、静止電源電流が異常電流であるか否かを判定することで、所定個所の論理回路が故障していないか判定する。
【0022】
本実施の形態1によれば、従来のように、実際に電源端子より出力される静止電源電流を直接LSIテスタにて測定するのではなく、一旦、LSIテスタインターフェースボード11上に設けた電流電圧変換回路により電圧に変換することにより、LSIテスタで測定する際に、分解能の粗い大電流測定用の電流測定装置を使用せずに済み、正確な静止電源電流測定が可能となる。さらに、静止電源電流の差分をとって内部論理組み合わせ静止時に定常的に流れる電流を省くことになるので、被測定LSIに故障箇所があった場合に流れる微小リーク電流をより検出し易くなる。その結果、静止電源電流テストによる故障検出率を向上させ、テストパターンで検出不可能な故障個所のスクリーニングを行うことができるようになる。
【0023】
(実施の形態2)
続いて、本実施の形態2に係る半導体の静止電源電流検査装置について説明する。
【0024】
図2は本実施の形態2に係る半導体の静止電源電流検査装置の構成を示すブロック図である。なお、前述した実施の形態1と同じ構成を有する部材には同一の番号を付して説明を省略する。
【0025】
本実施の形態2に係る検査装置は、LSIテスタインターフェースボード11上に差動回路16から出力されるアナログ信号をデジタル信号に変換するアナログ/デジタル変換回路(A/D変換回路)18を設け、LSIテスタ20が、このアナログ/デジタル変換回路18から出力されるデジタル信号を基に静止電源電流が異常電流であるか否かを判定する点が、実施の形態1と異なる。
【0026】
図2において、遅延回路17は第1のクロック信号(CLK)を遅延させてアナログ/デジタル変換回路18へ入力し、アナログ/デジタル変換回路18はこの遅延された第3のクロック信号により差動回路16の出力信号をデジタル信号へ変換する。また、LSIテスタ20は被測定LSI10内部の所定個所の論理組み合わせを静止させる入力パターンを発生するとともに、該入力パターンに対する期待値パターンを発生させ、デジタル化された差分電圧信号と該期待値パターンを比較することにより、静止電源電流が異常電流であるか否かを判定する。
【0027】
なお、遅延回路17は、少なくとも第1のクロック信号を遅延させた第2のクロック信号を用いるサンプルホールド回路15から信号が出力されるまでは、差動回路16から出力される信号を検査に使用しないようにするために設けられているが、LSIテスタ20側において、少なくとも第1のクロック信号を遅延させた第2のクロック信号を用いるサンプルホールド回路15から信号が出力されるまでの間、期待値比較を行わないようにしてもよく、このようにすれば遅延回路17を省くことができる。
【0028】
前述の実施の形態1では差動回路からの差動電圧信号をLSIテスタにて測定しその測定結果から異常電流の検出を行っていた。これに対し、本実施の形態2では、LSIテスタにて、デジタル化された差動電圧信号と期待値パターンとの比較を行えばよく、機能テスト的に異常電流の検出を行うことが可能となる。そのため、実施の形態1と比べて、アナログ信号の測定を行う必要がない分だけLSIテスタでの検査時間を短縮することができる。
【0029】
例えば、被測定LSI内の複数の論理回路ごとに検査動作を繰り返す場合においても、実施の形態1に比べてLSIテスタでの検査時間をあまり増加させることなく実施できる。
【0030】
(実施の形態3)
続いて、本実施の形態3に係る半導体の静止電源電流検査装置について説明する。
【0031】
図3は本実施の形態3に係る半導体の静止電源電流検査装置の構成を示すブロック図である。なお、前述した実施の形態1と同じ構成を有する部材には同一の番号を付して説明を省略する。
【0032】
本実施の形態3に係る検査装置は、LSIテスタインターフェースボード11上に差動回路16の出力を測定し静止電源電流が異常電流であるか否かを判定する判定回路19を設け、LSIテスタ20が、この判定回路19による判定結果を検出するのみである点が、実施の形態1と異なる。
【0033】
本実施の形態3では、LSIテスタは判定回路が出力する判定結果を検出するのみでよいので、LSIテスタでの検査時間を短縮することができる。そのため、例えば1台のLSIテスタにて複数の被測定LSIの検査を行う場合に、ある被測定LSIの判定中に他の被測定LSIへ入力パターンを発生する等できるようになる。
【0034】
また、実施の形態2のようにLSIテスタにて複雑な期待値パターンを発生させる必要もない。
【0035】
【発明の効果】
以上のように、本発明によれば、分解能の粗い大電流測定用の電流測定装置を使用せずに済み、さらに、内部論理組み合わせ静止時に定常的に流れる電流を省くことになるので、回路規模の大きい半導体に故障箇所がある場合に発生する微小リーク電流を正確に検出でき、半導体に故障個所があるか否かの判定を正確に行うことができるようになり、静止電源電流テストによる故障検出率を向上させ、テストパターンで検出不可能な故障個所のスクリーニングを行うことができるようになる。
【0036】
また、差動回路から出力されるアナログ信号をデジタル信号に変換するアナログ/デジタル変換回路を設け、テスタが、このアナログ/デジタル変換回路から出力されるデジタル信号と期待値パターンを比較することで静止電源電流が異常電流であるか否かを判定するので、テスタでの検査時間を短縮することができる。
【0037】
また、差動回路の出力を測定し静止電源電流が異常電流であるか否かを判定する判定回路を設け、テスタはこの判定回路による判定結果を検出するのみであるので、テスタでの検査時間を短縮することができ、さらに、テスタにて複雑な期待値パターンを発生させる必要もない。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る半導体の静止電源電流検査装置の構成を示すブロック図
【図2】本発明の実施の形態2に係る半導体の静止電源電流検査装置の構成を示すブロック図
【図3】本発明の実施の形態3に係る半導体の静止電源電流検査装置の構成を示すブロック図
【符号の説明】
10 被測定LSI(被測定半導体)
11 LSIテスタインターフェースボード
12 電流電圧変換回路
13、17 遅延回路
14、15 サンプルホールド回路
16 差動回路
18 アナログ/デジタル変換回路
19 判定回路
20 LSIテスタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor static power supply current inspection apparatus for inspecting a semiconductor static power supply current.
[0002]
[Prior art]
Conventionally, in the inspection of CMOS LSI, it is very difficult to create a test pattern that covers all nodes of the internal circuit of the LSI, and it is only necessary to achieve a failure detection rate of about 95%.
[0003]
Therefore, in order to screen for a failure that cannot be detected by a test pattern, a quiescent power supply current test has been conventionally performed (see, for example, Patent Document 1).
When the logic combination is stationary in the CMOS logic circuit, either the P-channel transistor or the N-channel transistor is turned off, so that almost no current flows and the logic combination inside the CMOS LSI is stationary. When the internal logic circuit of the CMOS LSI is normal, the power source current (static power source current) at is a very small current. On the other hand, when there is a failure location in the internal logic circuit, a leak current flows from the CMOS logic circuit. Therefore, when an abnormal current is detected, the CMOS LSI has a failure location.
[0004]
Therefore, in the conventional quiescent power supply current test, a predetermined input pattern is generated by the LSI tester to quiesce the logic combination inside the semiconductor under test, and the quiescent power supply current is measured to determine whether the quiescent power supply current is an abnormal current. Thus, it is determined whether or not there is a failure portion in the semiconductor to be measured.
[0005]
However, in recent years, the gate oxide film has been made thinner and the gate breakdown voltage has been lowered with the progress of miniaturization of semiconductors, so that the power supply voltage tends to be lowered. Further, when the power supply voltage is lowered, the current of the MOS transistor is reduced and the operation speed of the circuit is lowered. Therefore, the threshold voltage of the MOS transistor tends to be lowered similarly to the power supply voltage in order to prevent the circuit operation speed from being deteriorated.
[0006]
On the other hand, the characteristic of MOS transistors is that off-leakage current increases exponentially when the threshold voltage decreases.
Therefore, as the semiconductor becomes finer and the circuit scale increases, the quiescent power supply current increases.
[0007]
Therefore, in recent years, it has become necessary to use an LSI tester having a large measurement range as an LSI tester current measurement device for measuring a quiescent power supply current.
However, the LSI tester's current measurement device has a problem that when a large measurement range is used, the resolution increases as well, and a minute leak current generated when a semiconductor has a faulty part cannot be detected accurately.
[0008]
Therefore, in the conventional quiescent power supply current test, the failure detection rate has decreased, and it has become difficult to screen for failures that cannot be detected by the test pattern.
[0009]
[Patent Document 1]
JP 2000-88914 A (page 2-3)
[0010]
[Problems to be solved by the invention]
In view of the above problems, the present invention converts a quiescent power supply current into a voltage signal, samples and holds this voltage signal with first and second clock signals having a phase difference, takes a difference, and uses a tester to Provided is a semiconductor static power supply current inspection device capable of accurately determining whether or not a semiconductor has a failure by measuring a differential signal and determining whether or not the static power supply current is an abnormal current. The purpose is to do. That is, since the quiescent power supply current is converted into a voltage signal, it is not necessary to use a current measuring device for measuring a large current with a coarse resolution, and an accurate quiescent power supply current measurement can be performed. Further, since the difference between the quiescent power supply currents is measured, the current that steadily flows when the internal logic combination is stationary is omitted, and the minute leak current can be detected more accurately. Accordingly, it is possible to improve the failure detection rate by the quiescent power supply current test and to screen for a failure portion that cannot be detected by the test pattern.
[0011]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a semiconductor quiescent power supply current inspection apparatus including a tester for generating an input pattern for quiescing a logic combination at a predetermined location in a semiconductor to be measured. Is a semiconductor static power supply current inspection device for determining whether or not the current is an abnormal current, a conversion circuit for converting a power supply current input from a semiconductor to be measured into a voltage signal, and the voltage signal as a first clock signal A differential circuit that generates a differential voltage signal by taking a difference between the signal sampled and held by the first clock signal and a signal sampled and held by the second clock signal having a phase difference with respect to the first clock signal; And measuring the differential voltage signal with the tester to determine whether or not the power supply current of the semiconductor under measurement is an abnormal current.
[0012]
A semiconductor quiescent power supply current inspection device according to claim 2 of the present invention is the semiconductor quiescent power supply current inspection device according to claim 1, further comprising an analog / digital conversion circuit for converting the differential voltage signal into a digital signal. The tester compares the output of the analog / digital conversion circuit with an expected value pattern for the input pattern to determine whether or not the power supply current of the semiconductor to be measured is an abnormal current.
[0013]
A semiconductor quiescent power supply current inspection device according to claim 3 of the present invention is the semiconductor quiescent power supply current inspection device according to claim 1, wherein the differential voltage signal is measured and the power supply current of the semiconductor to be measured is an abnormal current. It has a determination circuit for determining whether or not there is, and the determination result of the determination circuit is detected by the tester.
[0014]
According to the present invention, it is possible to accurately detect a minute leak current that occurs when a semiconductor having a large circuit scale has a failure portion, and to accurately determine whether or not a semiconductor has a failure portion. Therefore, it is possible to improve the failure detection rate by the quiescent power supply current test and to screen for a failure portion that cannot be detected by the test pattern.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail. In addition, embodiment shown here is an example to the last, Comprising: It is not necessarily limited to the following embodiment.
[0016]
(Embodiment 1)
FIG. 1 is a block diagram showing a configuration of a semiconductor static power supply current inspection apparatus according to the first embodiment.
[0017]
In FIG. 1, on an LSI tester interface board 11, a current-voltage conversion circuit 12 connected to a power supply terminal of an LSI to be measured (DUT) 10 and converting a quiescent power supply current into a voltage signal, and a first clock signal (CLK ), A sample-and-hold circuit 14 that samples and holds the voltage signal by a first clock signal that does not pass through the delay circuit 13 (hereinafter referred to as “sample-and-hold”), and a delay by the delay circuit 13 A sample-and-hold circuit 15 that samples and holds the voltage signal based on the clock signal (second clock signal), and a differential circuit 16 that takes the difference between the outputs of the sample-and-hold circuits 14 and 15 and generates a differential voltage signal. It has been.
[0018]
Further, the LSI tester 20 generates an input pattern that causes a predetermined logic combination in the LSI 10 to be measured to be stationary, measures the output of the differential circuit 16, and determines whether the static power supply current is an abnormal current from the measurement result. Determine whether.
[0019]
Next, the operation of the inspection apparatus configured as described above will be described.
First, a predetermined input pattern is input from the LSI tester 20 to the LSI to be measured 10, and a logic combination at a predetermined location inside the LSI to be measured 10 is stopped.
[0020]
In this state, the quiescent power supply current output from the power supply terminal of the LSI to be measured 10 is sequentially converted into a voltage signal by the current-voltage conversion circuit 12.
The sample and hold circuit 14 samples and holds the output voltage of the current / voltage conversion circuit 12 in accordance with the first clock signal. Similarly, the sample and hold circuit 15 passes through the delay circuit 13 and samples and holds the output voltage of the current-voltage conversion circuit 12 by a second clock signal having a phase difference with respect to the first clock signal.
[0021]
The differential circuit 16 takes the difference between the outputs of the sample and hold circuits 14 and 15 to generate a differential voltage signal and outputs it to the LSI tester 20.
The LSI tester 20 measures the input differential voltage signal to detect a minute leak current, and determines whether or not the logic circuit at a predetermined location has failed by determining whether or not the quiescent power supply current is an abnormal current. judge.
[0022]
According to the first embodiment, unlike the prior art, the quiescent power supply current actually output from the power supply terminal is not directly measured by the LSI tester, but the current voltage once provided on the LSI tester interface board 11 is temporarily set. By converting the voltage into a voltage by the conversion circuit, it is not necessary to use a current measuring device for measuring a large current with a low resolution when measuring with an LSI tester, and an accurate quiescent power supply current measurement can be performed. Furthermore, since the difference between the quiescent power supply currents is taken and the current that constantly flows when the internal logic combination is at rest is omitted, it becomes easier to detect the minute leak current that flows when there is a failure in the LSI under measurement. As a result, it is possible to improve the failure detection rate by the quiescent power supply current test and to screen for a failure portion that cannot be detected by the test pattern.
[0023]
(Embodiment 2)
Next, a semiconductor static power supply current inspection apparatus according to the second embodiment will be described.
[0024]
FIG. 2 is a block diagram showing the configuration of the semiconductor static power supply current inspection apparatus according to the second embodiment. In addition, the same number is attached | subjected to the member which has the same structure as Embodiment 1 mentioned above, and description is abbreviate | omitted.
[0025]
The inspection apparatus according to the second embodiment includes an analog / digital conversion circuit (A / D conversion circuit) 18 that converts an analog signal output from the differential circuit 16 into a digital signal on the LSI tester interface board 11. The difference from the first embodiment is that the LSI tester 20 determines whether or not the quiescent power supply current is an abnormal current based on the digital signal output from the analog / digital conversion circuit 18.
[0026]
In FIG. 2, the delay circuit 17 delays the first clock signal (CLK) and inputs it to the analog / digital conversion circuit 18, and the analog / digital conversion circuit 18 uses the delayed third clock signal to perform a differential circuit. 16 output signals are converted into digital signals. In addition, the LSI tester 20 generates an input pattern that stops a logic combination at a predetermined location in the LSI 10 to be measured, generates an expected value pattern for the input pattern, and outputs the digitized differential voltage signal and the expected value pattern. By comparing, it is determined whether or not the stationary power supply current is an abnormal current.
[0027]
The delay circuit 17 uses the signal output from the differential circuit 16 for inspection until the signal is output from the sample hold circuit 15 using at least the second clock signal obtained by delaying the first clock signal. In the LSI tester 20 side, at least until the signal is output from the sample-and-hold circuit 15 using the second clock signal obtained by delaying the first clock signal. The value comparison may not be performed, and in this way, the delay circuit 17 can be omitted.
[0028]
In the first embodiment, the differential voltage signal from the differential circuit is measured by the LSI tester, and the abnormal current is detected from the measurement result. On the other hand, in the second embodiment, the LSI tester only has to compare the digitized differential voltage signal with the expected value pattern, and it is possible to detect an abnormal current in a functional test. Become. Therefore, compared with the first embodiment, the inspection time in the LSI tester can be shortened to the extent that it is not necessary to measure the analog signal.
[0029]
For example, even when the inspection operation is repeated for each of the plurality of logic circuits in the LSI to be measured, the inspection time in the LSI tester can be increased without much increase compared to the first embodiment.
[0030]
(Embodiment 3)
Next, a semiconductor static power supply current inspection apparatus according to the third embodiment will be described.
[0031]
FIG. 3 is a block diagram showing a configuration of a semiconductor static power supply current inspection apparatus according to the third embodiment. In addition, the same number is attached | subjected to the member which has the same structure as Embodiment 1 mentioned above, and description is abbreviate | omitted.
[0032]
The inspection apparatus according to the third embodiment includes a determination circuit 19 that measures the output of the differential circuit 16 on the LSI tester interface board 11 and determines whether or not the quiescent power supply current is an abnormal current, and the LSI tester 20 However, the present embodiment is different from the first embodiment in that only the determination result by the determination circuit 19 is detected.
[0033]
In the third embodiment, since the LSI tester only needs to detect the determination result output from the determination circuit, the inspection time in the LSI tester can be shortened. For this reason, for example, when a plurality of LSIs to be measured are inspected by one LSI tester, an input pattern can be generated to another LSI to be measured while determining a certain LSI to be measured.
[0034]
Further, it is not necessary to generate a complicated expected value pattern in the LSI tester as in the second embodiment.
[0035]
【The invention's effect】
As described above, according to the present invention, it is not necessary to use a current measuring device for measuring a large current with a low resolution, and furthermore, the current that flows constantly when the internal logic combination is stationary can be omitted. It is possible to accurately detect the minute leak current that occurs when there is a failure point in a large semiconductor, and to accurately determine whether or not there is a failure point in the semiconductor. The rate is improved, and it becomes possible to perform screening of a failure portion that cannot be detected by the test pattern.
[0036]
In addition, an analog / digital conversion circuit that converts the analog signal output from the differential circuit to a digital signal is provided, and the tester stops by comparing the expected value pattern with the digital signal output from the analog / digital conversion circuit. Since it is determined whether or not the power supply current is an abnormal current, it is possible to shorten the inspection time in the tester.
[0037]
In addition, a determination circuit that measures the output of the differential circuit and determines whether or not the quiescent power supply current is an abnormal current is provided, and the tester only detects the determination result by this determination circuit. In addition, it is not necessary to generate a complicated expected value pattern in the tester.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a semiconductor quiescent power supply current inspection apparatus according to a first embodiment of the present invention. FIG. 2 shows a configuration of a semiconductor quiescent power supply current inspection apparatus according to a second embodiment of the present invention. FIG. 3 is a block diagram showing a configuration of a semiconductor quiescent power supply current inspection apparatus according to a third embodiment of the present invention.
10 LSI to be measured (Semiconductor to be measured)
11 LSI Tester Interface Board 12 Current / Voltage Conversion Circuits 13 and 17 Delay Circuits 14 and 15 Sample Hold Circuit 16 Differential Circuit 18 Analog / Digital Conversion Circuit 19 Judgment Circuit 20 LSI Tester

Claims (3)

被測定半導体内部の所定個所の論理組み合わせを静止させる入力パターンを発生するテスタを備え、前記所定個所の論理組み合わせ静止時の電源電流が異常電流であるか否かを判定する半導体の静止電源電流検査装置であって、
被測定半導体から入力される電源電流を電圧信号に変換する変換回路と、前記電圧信号を第1のクロック信号によりサンプルアンドホールドした信号と前記第1のクロック信号に対して位相差を持たせた第2のクロック信号によりサンプルアンドホールドした信号との差分をとって差分電圧信号を生成する差動回路と、を有し、
前記テスタにて前記差分電圧信号を測定し被測定半導体の電源電流が異常電流であるか否かを判定する
ことを特徴とする半導体の静止電源電流検査装置。
A tester for generating an input pattern for quiescing a logic combination at a predetermined location inside a semiconductor to be measured, and a semiconductor quiescent power supply current test for determining whether the power supply current when the logic combination at the predetermined location is stationary is an abnormal current A device,
A conversion circuit for converting a power supply current input from a semiconductor to be measured into a voltage signal, a signal obtained by sampling and holding the voltage signal with a first clock signal, and a phase difference with respect to the first clock signal A differential circuit that takes a difference from the signal sampled and held by the second clock signal and generates a differential voltage signal;
A semiconductor static power supply current inspection apparatus, wherein the differential voltage signal is measured by the tester to determine whether or not the power supply current of the semiconductor to be measured is an abnormal current.
請求項1記載の半導体の静止電源電流検査装置であって、前記差分電圧信号をデジタル信号に変換するアナログ/デジタル変換回路を有し、前記テスタにて前記アナログ/デジタル変換回路の出力と前記入力パターンに対する期待値パターンとを比較し被測定半導体の電源電流が異常電流であるか否かを判定することを特徴とする半導体の静止電源電流検査装置。2. The semiconductor static power supply current inspection apparatus according to claim 1, further comprising an analog / digital conversion circuit that converts the differential voltage signal into a digital signal, and the output of the analog / digital conversion circuit and the input by the tester. A semiconductor static power supply current inspection apparatus, characterized by comparing an expected value pattern for a pattern and determining whether or not a power supply current of a semiconductor to be measured is an abnormal current. 請求項1記載の半導体の静止電源電流検査装置であって、前記差分電圧信号を測定し被測定半導体の電源電流が異常電流であるか否かを判定する判定回路を有し、前記テスタにて前記判定回路の判定結果を検出することを特徴とする半導体の静止電源電流検査装置。The semiconductor static power supply current inspection device according to claim 1, further comprising a determination circuit that measures the differential voltage signal and determines whether or not the power supply current of the semiconductor to be measured is an abnormal current. A quiescent power supply current inspection device for a semiconductor, wherein a determination result of the determination circuit is detected.
JP2003189921A 2003-07-02 2003-07-02 Stationary power supply current measuring device for semiconductor Pending JP2005024373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003189921A JP2005024373A (en) 2003-07-02 2003-07-02 Stationary power supply current measuring device for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003189921A JP2005024373A (en) 2003-07-02 2003-07-02 Stationary power supply current measuring device for semiconductor

Publications (1)

Publication Number Publication Date
JP2005024373A true JP2005024373A (en) 2005-01-27

Family

ID=34187952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003189921A Pending JP2005024373A (en) 2003-07-02 2003-07-02 Stationary power supply current measuring device for semiconductor

Country Status (1)

Country Link
JP (1) JP2005024373A (en)

Similar Documents

Publication Publication Date Title
JPH0954140A (en) Method and apparatus for testing of semiconductor integrated circuit
US7395480B2 (en) Test apparatus and test method
Vázquez et al. Built-in current sensor for/spl Delta/I/sub DDQ/testing
Kim et al. A practical built-in current sensor for I/sub DDQ/testing
US7539589B2 (en) Testing radio frequency and analogue circuits
JP2005024373A (en) Stationary power supply current measuring device for semiconductor
US8648617B2 (en) Semiconductor device and method of testing semiconductor device
TWI384241B (en) Measurement equipment, test system and measurement method
US5912562A (en) Quiescent current monitor circuit for wafer level integrated circuit testing
US20060261859A1 (en) Semiconductor integrated circuit device
JP2005030978A (en) Phase difference measuring apparatus, phase difference measurement method, and testing apparatus
JP4043743B2 (en) Semiconductor test equipment
JP3353288B2 (en) LSI test equipment
US7386407B2 (en) Semiconductor device test method using an evaluation LSI
KR100614646B1 (en) Built-in current sensor and current testing method thereof
EP1367403B1 (en) A method for detecting faults in electronic devices, based on quiescent current measurements
JP2009133762A (en) Semiconductor device and its test method
JP2006220504A (en) Method for testing semiconductor integrated circuit
JP2005030977A (en) Phase difference measuring apparatus, phase difference measurement method, and testing apparatus
JP2004309362A (en) Device and method for inspecting semiconductor
JP2000147071A (en) Characteristics inspection device for analogue circuit
JP2004095921A (en) Semiconductor device and its inspecting method
JP2004257815A (en) Inspection method of semiconductor integrated circuit and semiconductor integrated circuit device
JP2006119101A (en) Semiconductor testing device and test method of semiconductor integrated circuit
JP2004342161A (en) Semiconductor testing device and method