JP2005019450A - Method of manufacturing diffused wafer - Google Patents

Method of manufacturing diffused wafer Download PDF

Info

Publication number
JP2005019450A
JP2005019450A JP2003178217A JP2003178217A JP2005019450A JP 2005019450 A JP2005019450 A JP 2005019450A JP 2003178217 A JP2003178217 A JP 2003178217A JP 2003178217 A JP2003178217 A JP 2003178217A JP 2005019450 A JP2005019450 A JP 2005019450A
Authority
JP
Japan
Prior art keywords
thickness
diffusion layer
impurity diffusion
wafer
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003178217A
Other languages
Japanese (ja)
Other versions
JP4311622B2 (en
Inventor
Koichi Sakagami
浩一 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2003178217A priority Critical patent/JP4311622B2/en
Publication of JP2005019450A publication Critical patent/JP2005019450A/en
Application granted granted Critical
Publication of JP4311622B2 publication Critical patent/JP4311622B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate the deviation of the thickness of an impurity nondiffused layer, particularly, in the outer peripheral section of a wafer from the specification caused by the in-plane fluctuation of the thickness of a diffused layer, and, at the same time, to make manufacturable a high-quality diffused wafer which is also improved in manufacturing efficiency. <P>SOLUTION: When the thickness of the impurity nondiffused layer is measured at a plurality of points and the aimed value at the time of performing mirror polishing is decided from the mean value etc. of the thickness, the deviation of the thickness of the impurity nondiffused layer, particularly, in the outer peripheral section of the wafer from the specification caused by the in-plane fluctuation of the thickness of the impurity diffused layer xj is eliminated. At the same time, the high-quality diffused wafer which is also improved in manufacturing efficiency can be manufactured without performing mirror polishing repeatedly. Consequently, the occurrence of the in-plane deviation of the thickness of the impurity nondiffused layer from the specification in the outer peripheral section of the wafer which occurs in the conventional method is eliminated and the problem about the manufacturing cost and manufacturing efficiency of the diffused wafer can be solved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、大出力トランジスタ、導電変調型バイポーラトランジスタ(IGBT)、サイリスタなどのディスクリート素子に用いられる拡散ウェーハの製造方法に関する。
【0002】
【従来の技術】
一般に、大出力トランジスタ、サイリスタなどのディスクリート素子の製造には、シリコンウェーハの片面に高濃度の不純物(ドーパント)を拡散させた拡散ウェーハが用いられている。この拡散ウェーハは、ボードに装着されたシリコンウェーハに、例えば常圧下でPOCl(オキシ塩化リン)雰囲気によるプレデポジションを施し、さらにドライブ拡散を施して、シリコンウェーハの両面に厚さxjの不純物拡散層を形成させる。次に、中央部の非不純物拡散層の厚さxiが仕様に合致するようにウェーハの片面を研削し、表面を鏡面研磨したものである。この鏡面研磨に先立ち、一つのロットから数枚のウェーハを抜き取り、SR法を用いて不純物拡散層の厚さxjを測定する。このSR法は、拡散ウェーハの断面が所定の角度になるように斜めに切断、研磨した上、2本の探針を用いて研磨面のn−領域(中央部)からn+領域(表面)にかけて走査しながら抵抗値の変化を求める方法である。このSR法で得られる抵抗値の変化は、図4に示すような曲線となり、拡散層ダレ部と抵抗値減少部とで形成される曲線の接線Aを引き、n−領域を表す直線Bとの交点Cを求め、この位置を拡散層と非不純物拡散層との境界としている。
【0003】
そして、SR法で得られた不純物拡散層の厚さxjの良否を判定するとともに、xjの平均値に基づいて鏡面研磨後の仕上げ厚さTを、T=〔xj(実測値の平均値)+xi(規格値)〕によって算出し、この値を指示値としてロットウェーハの平面研削と研磨とを行っている。
【0004】
しかしながら、上述のSR法を用いた場合、2探針による走査面の研磨状態や接線の引き方によって拡散層の厚さxjの実測値には大きな測定誤差が含まれている。
この測定誤差を減少させる方法の一つとして、例えば、次に示すような方法がある(特許文献1参照)。すなわち、この方法は、シリコンウェーハの両面に不純物拡散層を形成し、その一方の不純物拡散層を研削除去し、中央部の非不純物拡散層を露出させ、その露出面を鏡面研磨して、仕上げる方法である。そして、この方法では、図2に示すように、研削後のシリコンウェーハの厚さTbを測定するとともにフーリエ変換赤外分光光度計を用いて、非不純物拡散層の厚さxiaを測定し、そのxiaをSR法で測定した場合の非不純物拡散層の厚さxibを換算した上、シリコンウェーハの厚さTbから拡散層の厚さxjと非不純物拡散層の厚さの規格値xiとの和を減じた厚さに仕上げることを特徴としている。なお、上述したフーリエ変換赤外分光光度計を用いて、非不純物拡散層の厚さxiaを測定する方法は、FT−IR法と称し、SR法よりも測定精度が良く、測定誤差も小さいものとなる。
【0005】
以下、この方法について、シリコンウェーハの断面図である図2を用いて詳述する。
まず、シリコンウェーハの両面に不純物拡散を行ない、一方の面の拡散層を平面研削により除去し、非不純物拡散層を露出させる。図2aが、非不純物拡散層が露出した状態のシリコンウェーハの断面図である。図2aにおいて、符号10aが不純物拡散層であり、符号10bが非不純物拡散層である。上記非不純物拡散層10b側のシリコンウェーハの不純物濃度は、1014atoms/cm程度であり、一方、不純物拡散層側表面近傍の不純物濃度は、1020atoms/cm程度である。そして、その境界領域においては、不純物濃度が徐々に変化する中間領域となっている。
【0006】
次に、シリコンウェーハの厚さTbを、電子マイクロメータ、オプトマイクロメータ或いは静電容量方式の測定器など、公知の方法により計測する。
次いで、FT−IR法により、非不純物拡散層10bの厚さxiaを測定する。この方法によって測定される非不純物拡散層10bの厚さxiaは、不純物濃度が1017atoms/cm以下の層の厚さであるから、この値を不純物濃度が1020atoms/cm以下の層の厚さに変換する必要がある。換算のための補正値をeとすると、不純物濃度が1020/cm以下の層の厚さxibは、
xia+e=xib
として求めることができる(図2(a)参照)。そして、上述した補正値eは、不純物拡散層10aの厚さxjや抵抗率ρに依存する為、拡散ウェーハの品種毎にそれぞれ相関を求めた上、適切な値を定めておくものとする。したがって、不純物濃度が1020atoms/cm以上の拡散層10aの厚さxjは、
xj=Tb−xib
により算出される。この算式より求めたxjの値を不純物拡散層10aの規格値と照合し、良否を判定する。
【0007】
次に、このシリコンウェーハを鏡面研磨する際(図2(b)参照)、ウェーハ厚の指示値Tを下記の算式により求める。
T=xj+xi
ここで、xiは非不純物拡散層10bの厚さの規格値である。したがって、鏡面研磨による仕上げ加工時の研磨代cは、
c=Tb−(xj+xi)=Tb−T
となる。
この方法によって、上述のSR法による測定の測定誤差を改善した測定を行うことができると期待されている。
【0008】
ところで、近年においては、パワーデバイス特に導電変調型バイポーラトランジスタ(IGBT)などは高集積化が望まれ、さらに上述した非不純物拡散層10bの高精度化が要求されてきており、ウェーハ中央部1点のみならず、外周部にも規格が加えられ、かつ非不純物拡散層厚の規格の狭化も望まれている。なお、不純物拡散層10aがシリコンウェーハ面内で均一の場合は、シリコンウェーハの中央部の厚のみの管理で問題ないが、拡散ウェーハの製造上、必ずしも不純物拡散層が均一にならず、ウェーハ面内、またはロット内でも不純物拡散層の厚さ分布のバラツキが生ずる。そのため、中央部の非不純物拡散層の厚さが規格に入っても、外周部が規格外れとなるケースが多くなってきている。
また、規格下限外れ(完全不良)を恐れて、一度、鏡面研磨において、シリコンウェーハを厚く仕上げ、FT−IRにて測定し、再度、鏡面研磨を行なう方法も考えられるが、この方法は製造効率の点で問題がある。
【0009】
【特許文献1】特開平9−82670号公報
【0010】
【発明が解決しようとする課題】
上述した如く、従来の方法では、面内の非不純物拡散層の厚さのウェーハの外周部で規格外れが生じたり、また、製造コスト、製造効率の点で問題があった。
本発明はこれらの問題点を解決するためになされたものであり、その目的は、面内の拡散層の厚さのバラツキによる非不純物拡散層の厚さ、特に外周部での層厚の規格外れをなくすと共に、製造効率も向上させた高品質な拡散ウェーハを製造することが可能となる。
【0011】
【課題を解決するための手段】
本発明は、シリコンウェーハの両面に不純物を拡散し不純物拡散層と非不純物拡散層を形成する工程と、前記非不純物拡散層を露出する工程と、この露出した面を鏡面研磨する工程とを備えた拡散ウェーハの製造方法において、
1):鏡面研磨する工程前の前記シリコンウェーハをロット毎に複数枚用意し、
2):前記複数枚のシリコンウェーハの中央部の厚さを測定し、
3):前記複数枚のシリコンウェーハの中央部、及び周辺部の前記非不純物拡散層の厚さxiを測定し、
4):前記手順3)で測定した前記中央部の非不純物拡散層の厚さの平均値と、前記中央部及び周辺部を含んだすべての測定点の前記非不純物拡散層の厚さの平均値との差を求め、
5):前記手順4)で算出した値を、予め設定されている非不純物拡散層の厚さの製品規格値に加え、
6):前記手順3)で測定した前記中央部の非不純物拡散層の厚さと、前記手順5)で算出した値との差を、複数枚のシリコンウェーハ毎に算出し、
7):前記手順2)で測定した前記複数枚のシリコンウェーハの中央部の厚さの測定値から、前記手順6)で算出した値の差を、複数枚のシリコンウェーハ毎に算出し、
8):前記手順7)で算出した複数枚のシリコンウェーハ毎の値の平均値を、前記ロットの鏡面研磨の狙い厚さ値としてシリコンウェーハの鏡面研磨を行うことを特徴とする拡散ウェーハの製造方法である。
【0012】
本発明によれば、面内の不純物拡散層の厚さのバラツキによる非不純物拡散層の厚さ特に外周部での層厚の規格外れをなくし、製造効率も向上した高品質な拡散ウェーハを製造することが可能となる。
【0013】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施の形態を説明する。図1において工程(a)から工程(e)は拡散ウェーハの製造工程の流れを示す工程断面図である。
工程A:まず、図1(a)に示すように、両方がラップ処理されたシリコンウェーハを用意する。
工程B:このシリコンウェーハ(10)にPOCl雰囲気によるプレ拡散を施し、さらにドライブ拡散を行なってウェーハ両面に深さ(厚さ)xjの不純物拡散層10aを形成させる(図1(b))。
工程C:次に、図1(c)に示すように、シリコンウェーハの中腹部となる部分(非不純物拡散層10b)を、スライスし、不純物拡散層10aと不純物非拡散層10bとからなるシリコンウェーハを形成する。
工程D:次に、図1(c)のシリコンウェーハの非不純物拡散層10b側表面を研削して、図1(d)に示すような平滑な表面を有するシリコンウェーハを形成する。
工程E:次に、図1(d)のシリコンウェーハの非不純物拡散層10b側を、鏡面研磨して図1(e)に示す拡散ウェーハを製造する。
【0014】
本発明は、上記工程Eにおいて、鏡面研磨する研磨取り代を決定する方法に特徴を有するものであり、これにより得られた研磨取り代に従ってシリコンウェーハを鏡面研磨し、得られる拡散ウェーハの非不純物拡散層の厚さが、高い歩留まりで製品規格値の範囲に適合する方法を実現するものである。以下、工程Dによって得られるシリコンウェーハの断面図である図2(b)を用いてその方法を詳述する。
【0015】
まず、上記工程Dで研削加工したシリコンウェーハを用意する。
次に、製造する拡散ウェーハの1ロット中から数枚のシリコンウェーハのサンプルを抜き取り、抜き取ったサンプルすべてのシリコンウェーハの中央部の厚さTbを測定する。この測定は、前述の電子マイクロメータ、オプトマイクロメータ、あるいは静電容量方式など従来公知の方法を採用できる。また、測定するサンプルは、1ロット中数枚の抜き取り測定でもよいが、1ロット全数を測定するとより好ましい。
【0016】
次に、サンプルすべてのシリコンウェーハの面内の中央部及び周辺部を含めて複数の測定点において、非不純物拡散層10bの厚さxiを、FT−IR法など公知の方法によって測定する。シリコンウェーハの面内測定点は、中央部及び周辺部を複数箇所測定することが好ましい(下記実施例では面内5点について測定している)。また、周辺部の測定点は、シリコンウェーハの周縁部から5mm程度の内側箇所が好ましい。さらに、この非不純物拡散層の厚さ測定においては、前述の特許文献1に記載されている方法を採用することができる。
【0017】
次に、測定した中央部の非不純物拡散層10bの厚さxiの値の平均値と、中央部及び周辺部を含めた非不純物拡散層10bの厚さxiの面内多点の平均値を求め、中央部の非不純物拡散層10bの厚さxiの値の平均値と、面内多点の非不純物拡散層10bの厚さxiの平均値との差Aを算出する。
【0018】
次に、前記算出値Aと、その製品における非不純物拡散層10bの規格中心値との和Bを算出する。非不純物拡散層の規格中心値とは、例えば、ある品種の非不純物拡散層の厚さの規格を、50μm±3μm(47〜53μm)とした場合、その中心値、すなわち、50μmとなる。
【0019】
次に、最初に測定したシリコンウェーハの中央部の非不純物拡散層の厚さxiと前記算出値Bとの差Cを、シリコンウェーハ毎に算出(最初に測定した非不純物拡散層の厚さxi−算出値B)する。これが、各々のサンプルのシリコンウェーハの鏡面研磨取り代となる。
【0020】
次に、最初に測定したそれぞれのシリコンウェーハの中央部の厚さTbと、前記算出値Cとの、測定したシリコンウェーハ毎の差を求める。これが、それぞれのサンプルの最終ウェーハ狙い厚さとなる。この平均値を算出し、これを該ロット全体の鏡面研磨狙い厚さとして鏡面研磨を行う。
【0021】
以上の工程によって、面内の非不純物拡散層厚さの規格不適合を減少させ、製造効率の高い高品質な拡散ウェーハを実現できる。
【0022】
【実施例】
(実施例)
以下、本発明を具体的な実施例により説明する。ある所定のロットAを上述した実施形態に示したとおりに、工程Dまで加工を行った。次いで、該ロットから、鏡面加工狙い厚さ評価用のサンプルを5枚抜き取った。なお、本実施例における非不純物拡散層厚さの測定点は、シリコンウェーハの上面図である図3に示す5点で、その具体的な数値は、下記の表1に示すとおりである。
【0023】
【表1】

Figure 2005019450
【0024】
上記表1において、中央部の非不純物拡散層の厚さxiの平均値は、71.7μmで、中央部及び周辺部(周辺部1〜4)の非不純物拡散層の厚さの平均値は、71.172μmであった。この測定した、中央部の非不純物拡散層の厚さの平均値(71.7μm)から、中央部及び周辺部を含めた5点の非不純物拡散層の厚さの平均値(71.172μm)を差し引くと、0.528μmとなる。なお、非不純物拡散層の厚さxiの規格中心値は、50μmである。
【0025】
次いで、この差0.528μmに、規格中心値(50μm)を加え、その値を、各々の測定した中央部の非不純物拡散層の厚さxiから差し引く。その結果、下記表2に示すように、試料1から5までのそれぞれの値は、20.672μm、21.572μm、20.972μm、21.372μm、21.572μmとなり、この値が、各サンプルのシリコンウェーハにおいて鏡面研磨する値となる。この値を、元のシリコンウェーハの厚さから差し引いた値が、最終的なシリコンウェーハの厚さとなり、この狙い値を基準に鏡面研磨することになる。しかしながら、この値は、サンプルの個別の値であり、ロット内のすべてのシリコンウェーハに適合しているわけではない。それ故、このサンプルのシリコンウェーハの最終ウェーハ厚、すなわち、狙い値の平均を算出し、その値をロット内のすべてのシリコンウェーハの狙い値として、鏡面研磨処理する。
下記表2に、鏡面研磨した最終の拡散ウェーハの膜厚を併せて示す。
【0026】
【表2】
Figure 2005019450
【0027】
(比較例)
以下、本発明の従来の方法(比較例)を説明する。
上記実施例とは異なる別ロットBを用いて、上記実施例と同様にして、工程Dまで加工を行った。次いで、該ロットから鏡面研磨狙い厚さ評価用サンプルを5枚抜き取った。これらについて、シリコンウェーハの厚さ、及びシリコンウェーハの中央部の非不純物拡散層の厚さxiを測定した。次いで、このシリコンウェーハの中央部の非不純物拡散層の厚さxiの平均値から、非不純物拡散層の規格中心値(50μm)を差し引き、シリコンウェーハ毎に、研磨取り代を算出した。次いで、サンプルであるシリコンウェーハの厚さから、前記手順で算出した研磨取り代を差し引いた厚さを、シリコンウェーハ毎の最終狙い厚さとし、この平均値を、そのロットにおける最終鏡面研磨狙い厚さとして、鏡面研磨を行った。その結果を表3に示す。
【0028】
【表3】
Figure 2005019450
【0029】
なお、比較例のような算出方法、すなわち中央部の非不純物拡散層の厚さから、規格中心値を差し引いて、鏡面研磨取り代を算出し、次いで、研削後のシリコンウェーハの厚さからこの鏡面研磨取り代を差し引いて最終ウェーハ狙い厚さを算出し、その平均値を算出する方法で、実施例(ロットA)の最終鏡面研磨狙い厚さを計算すると、278.9μmとなる。すなわち、実施例との狙い厚さ(279.428μm)の差は、0.528μmとなった。
【0030】
次いで、本実施例と比較例によって求められた最終ウェーハ狙い厚を元に、それぞれのロットにおける100枚のシリコンウェーハについてそれぞれ鏡面研磨し、得られたシリコンウェーハの非不純物拡散層の厚さを測定し、規格範囲の適合性を検討した。その結果を表4に示す。
【0031】
【表4】
Figure 2005019450
【0032】
上記表4から明らかなように、本実施例の場合は、比較例と比べて、良品歩留まりで、17.1%の改善が見られた。特に、非不純物拡散層厚さ不足の不良については、実施例では、0.6%であったのに対して、比較例では、14.4%と格段に劣っていた。非不純物拡散層厚さ過剰の不良については、さらに研磨を行うことによって、良品となることがあるが、非不純物拡散層厚さ不足の不良については、全く補修によって良品とすることは不可能であり、この不良率が高いことは、従来方法が経済的な方法ではないことを示している。
【0033】
上述した実施例ではウェーハの拡散層、非不純物拡散層の測定数は、センターも含め5箇所としたが、さらに測定精度を高めるためには、より多点測定(例えば、中心からの半径をRとした場合の1/2Rの位置)、または、評価時間の短縮のために、中心部、外周部2点(例えば、図3でいう、周辺部1、周辺部3)でもかまわない。本発明を実施する上での好適な測定数は、3カ所から9カ所(9カ所は、図3でいうところの中心部から各周辺部に向かった半径Rの1/2Rの位置である。
【0034】
【発明の効果】
以上述べたごとく、本発明によれば、面内の不純物拡散層の厚さxjのバラツキによる非不純物拡散層の厚さxi、特に外周部での層厚の規格外れをなくすと共に、製造効率も向上させた高品質な拡散ウェーハを製造することが可能となる。
【図面の簡単な説明】
【図1】本発明の拡散ウェーハの製造方法を説明するための工程を示すシリコンウェーハの断面図。
【図2】本発明の実施形態を説明するためのシリコンウェーハの断面図。
【図3】本発明の実施形態を説明するためのシリコンウェーハの上面図。
【図4】従来例を説明するための図。
【符号の説明】
10a 不純物拡散層
10b 非不純物拡散層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a diffusion wafer used for a discrete element such as a high output transistor, a conductive modulation bipolar transistor (IGBT), or a thyristor.
[0002]
[Prior art]
In general, in the manufacture of discrete elements such as high-power transistors and thyristors, a diffusion wafer in which a high-concentration impurity (dopant) is diffused on one side of a silicon wafer is used. This diffusion wafer is pre-deposited in a POCl 3 (phosphorus oxychloride) atmosphere, for example, under normal pressure on a silicon wafer mounted on the board, and further drive diffusion is performed to diffuse an impurity of thickness xj on both sides of the silicon wafer. A layer is formed. Next, one surface of the wafer is ground so that the thickness xi of the non-impurity diffusion layer at the center matches the specification, and the surface is mirror-polished. Prior to this mirror polishing, several wafers are extracted from one lot, and the thickness xj of the impurity diffusion layer is measured using the SR method. In this SR method, the cross section of the diffusion wafer is obliquely cut and polished so as to have a predetermined angle, and then the n-region (center portion) to the n + region (surface) of the polished surface is used with two probes. This is a method of obtaining a change in resistance value while scanning. The change in the resistance value obtained by the SR method becomes a curve as shown in FIG. 4, and a tangent line A of the curve formed by the diffusion layer sagging portion and the resistance value decreasing portion is drawn to obtain a straight line B representing the n− region. Is obtained, and this position is defined as the boundary between the diffusion layer and the non-impurity diffusion layer.
[0003]
Then, whether the thickness xj of the impurity diffusion layer obtained by the SR method is good or bad is determined, and the finished thickness T after mirror polishing is calculated as T = [xj (average value of actually measured values) based on the average value of xj. + Xi (standard value)], and this value is used as an instruction value for surface grinding and polishing of the lot wafer.
[0004]
However, when the above-described SR method is used, the actual measurement value of the diffusion layer thickness xj includes a large measurement error due to the polished state of the scanning surface by the two probes and how to draw the tangent line.
One method for reducing this measurement error is, for example, the following method (see Patent Document 1). That is, this method forms an impurity diffusion layer on both surfaces of a silicon wafer, grinds and removes one of the impurity diffusion layers, exposes a non-impurity diffusion layer in the center, and finishes the exposed surface by mirror polishing. Is the method. In this method, as shown in FIG. 2, the thickness Tb of the silicon wafer after grinding is measured, and the thickness xia of the non-impurity diffusion layer is measured using a Fourier transform infrared spectrophotometer. The thickness xib of the non-impurity diffusion layer when xia is measured by the SR method is converted, and the sum of the thickness xj of the diffusion layer and the standard value xi of the thickness of the non-impurity diffusion layer is calculated from the thickness Tb of the silicon wafer. It is characterized by finishing to a reduced thickness. The method of measuring the thickness xia of the non-impurity diffusion layer using the above-described Fourier transform infrared spectrophotometer is called the FT-IR method, which has better measurement accuracy and smaller measurement error than the SR method. It becomes.
[0005]
Hereinafter, this method will be described in detail with reference to FIG. 2 which is a sectional view of a silicon wafer.
First, impurity diffusion is performed on both surfaces of the silicon wafer, and the diffusion layer on one surface is removed by surface grinding to expose the non-impurity diffusion layer. FIG. 2a is a cross-sectional view of the silicon wafer with the non-impurity diffusion layer exposed. In FIG. 2a, reference numeral 10a is an impurity diffusion layer, and reference numeral 10b is a non-impurity diffusion layer. The impurity concentration of the silicon wafer on the non-impurity diffusion layer 10b side is about 10 14 atoms / cm 3 , while the impurity concentration near the surface of the impurity diffusion layer side is about 10 20 atoms / cm 3 . The boundary region is an intermediate region where the impurity concentration gradually changes.
[0006]
Next, the thickness Tb of the silicon wafer is measured by a known method such as an electronic micrometer, an optomicrometer, or a capacitance type measuring instrument.
Next, the thickness xia of the non-impurity diffusion layer 10b is measured by the FT-IR method. The thickness xia of the non-impurity diffusion layer 10b measured by this method is the thickness of the layer having an impurity concentration of 10 17 atoms / cm 3 or less. Therefore, this value is less than 10 20 atoms / cm 3 . It is necessary to convert to the layer thickness. When the correction value for conversion is e, the thickness xib of the layer having an impurity concentration of 10 20 / cm 3 or less is
xia + e = xib
(See FIG. 2A). Since the correction value e described above depends on the thickness xj and resistivity ρ of the impurity diffusion layer 10a, an appropriate value is determined after obtaining the correlation for each type of diffusion wafer. Therefore, the thickness xj of the diffusion layer 10a having an impurity concentration of 10 20 atoms / cm 3 or more is
xj = Tb−xib
Is calculated by The value of xj obtained from this formula is checked against the standard value of the impurity diffusion layer 10a, and the quality is determined.
[0007]
Next, when this silicon wafer is mirror-polished (see FIG. 2B), an indication value T of the wafer thickness is obtained by the following formula.
T = xj + xi
Here, xi is a standard value of the thickness of the non-impurity diffusion layer 10b. Therefore, the polishing allowance c at the time of finishing by mirror polishing is
c = Tb- (xj + xi) = Tb-T
It becomes.
With this method, it is expected that measurement with improved measurement error due to the SR method described above can be performed.
[0008]
By the way, in recent years, high integration is desired for power devices, particularly conductive modulation bipolar transistors (IGBT), and further, high precision of the above-described non-impurity diffusion layer 10b has been demanded. In addition, a standard is added to the outer peripheral portion, and it is desired to narrow the standard of the non-impurity diffusion layer thickness. If the impurity diffusion layer 10a is uniform in the silicon wafer surface, there is no problem in managing only the thickness of the central portion of the silicon wafer. However, the impurity diffusion layer is not necessarily uniform in manufacturing the diffusion wafer, and the wafer surface Variations in the thickness distribution of the impurity diffusion layer also occur within or within a lot. For this reason, even if the thickness of the non-impurity diffusion layer in the central part falls within the standard, the outer peripheral part is often out of the standard.
In addition, there is a possibility that the silicon wafer is thickly finished once in mirror polishing and measured by FT-IR and mirror polishing is performed again. There is a problem in terms of.
[0009]
[Patent Document 1] Japanese Patent Laid-Open No. 9-82670
[Problems to be solved by the invention]
As described above, in the conventional method, there is a problem of off-specification at the outer peripheral portion of the wafer having the thickness of the in-plane non-impurity diffusion layer, and there are problems in terms of manufacturing cost and manufacturing efficiency.
The present invention has been made to solve these problems, and its purpose is to specify the thickness of the non-impurity diffusion layer due to variations in the thickness of the in-plane diffusion layer, particularly the layer thickness at the outer peripheral portion. It is possible to manufacture a high-quality diffusion wafer that eliminates detachment and improves manufacturing efficiency.
[0011]
[Means for Solving the Problems]
The present invention comprises a step of diffusing impurities on both sides of a silicon wafer to form an impurity diffusion layer and a non-impurity diffusion layer, a step of exposing the non-impurity diffusion layer, and a step of mirror polishing the exposed surface. In the method of manufacturing a diffusion wafer,
1): Prepare a plurality of silicon wafers for each lot before the mirror polishing process,
2): Measure the thickness of the center of the plurality of silicon wafers,
3): Measure the thickness xi of the non-impurity diffusion layer at the center and the periphery of the plurality of silicon wafers,
4): The average value of the thickness of the non-impurity diffusion layer in the central portion measured in the procedure 3) and the average thickness of the non-impurity diffusion layer at all measurement points including the central portion and the peripheral portion. Find the difference from the value
5): The value calculated in the above step 4) is added to the product standard value of the thickness of the non-impurity diffusion layer set in advance,
6): The difference between the thickness of the non-impurity diffusion layer in the central portion measured in the procedure 3) and the value calculated in the procedure 5) is calculated for each of a plurality of silicon wafers.
7): From the measured value of the thickness of the central portion of the plurality of silicon wafers measured in the procedure 2), the difference between the values calculated in the procedure 6) is calculated for each of the plurality of silicon wafers.
8): Manufacturing a diffusion wafer characterized in that the silicon wafer is mirror-polished using the average value of each of the plurality of silicon wafers calculated in the step 7) as a target thickness value for the mirror-polishing of the lot. Is the method.
[0012]
According to the present invention, a non-impurity diffusion layer thickness due to variations in the thickness of an in-plane impurity diffusion layer, in particular, a nonstandard thickness at the outer peripheral portion is eliminated, and a high-quality diffusion wafer with improved manufacturing efficiency is manufactured. It becomes possible to do.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, steps (a) to (e) are process cross-sectional views illustrating the flow of a manufacturing process of a diffusion wafer.
Step A: First, as shown in FIG. 1A, a silicon wafer in which both are lapped is prepared.
Step B: This silicon wafer (10) is subjected to pre-diffusion in a POCl 3 atmosphere, and further drive diffusion is performed to form an impurity diffusion layer 10a having a depth (thickness) xj on both surfaces of the wafer (FIG. 1 (b)). .
Step C: Next, as shown in FIG. 1C, a portion (non-impurity diffusion layer 10b) which becomes the middle part of the silicon wafer is sliced, and silicon formed of the impurity diffusion layer 10a and the impurity non-diffusion layer 10b. A wafer is formed.
Step D: Next, the non-impurity diffusion layer 10b side surface of the silicon wafer in FIG. 1C is ground to form a silicon wafer having a smooth surface as shown in FIG.
Step E: Next, the non-impurity diffusion layer 10b side of the silicon wafer of FIG. 1 (d) is mirror-polished to produce the diffusion wafer shown in FIG. 1 (e).
[0014]
The present invention is characterized in the method of determining the polishing allowance for mirror polishing in the above-mentioned step E. The silicon wafer is mirror polished according to the polishing allowance obtained thereby, and the non-impurities of the resulting diffusion wafer This realizes a method in which the thickness of the diffusion layer conforms to the range of product specification values with a high yield. Hereinafter, the method will be described in detail with reference to FIG. 2B which is a cross-sectional view of the silicon wafer obtained by the process D.
[0015]
First, a silicon wafer ground in the process D is prepared.
Next, several silicon wafer samples are extracted from one lot of diffusion wafers to be manufactured, and the thickness Tb of the central portion of all the extracted samples is measured. For this measurement, a conventionally known method such as the above-described electronic micrometer, optomicrometer, or electrostatic capacity method can be adopted. Further, the sample to be measured may be a sampling measurement of several pieces in one lot, but it is more preferable to measure the total number of one lot.
[0016]
Next, the thickness xi of the non-impurity diffusion layer 10b is measured by a known method such as the FT-IR method at a plurality of measurement points including the central portion and the peripheral portion in the plane of the silicon wafer of all the samples. As for in-plane measurement points of the silicon wafer, it is preferable to measure a plurality of central and peripheral portions (in the following examples, measurement is performed for five in-plane points). The measurement point in the peripheral part is preferably an inner part of about 5 mm from the peripheral part of the silicon wafer. Furthermore, in the thickness measurement of the non-impurity diffusion layer, the method described in Patent Document 1 can be employed.
[0017]
Next, the measured average value of the thickness xi of the non-impurity diffusion layer 10b in the central portion and the average value of in-plane multipoints of the thickness xi of the non-impurity diffusion layer 10b including the central portion and the peripheral portion are obtained. The difference A between the average value of the thickness xi of the central non-impurity diffusion layer 10b and the average value of the thickness xi of the in-plane non-impurity diffusion layer 10b is calculated.
[0018]
Next, the sum B of the calculated value A and the standard center value of the non-impurity diffusion layer 10b in the product is calculated. The standard center value of the non-impurity diffusion layer is, for example, the center value of 50 μm ± 3 μm (47 to 53 μm), that is, 50 μm when the standard of the thickness of a certain type of non-impurity diffusion layer is 50 μm ± 3 μm (47 to 53 μm).
[0019]
Next, the difference C between the first measured non-impurity diffusion layer thickness xi of the silicon wafer and the calculated value B is calculated for each silicon wafer (the first measured non-impurity diffusion layer thickness xi). -Calculated value B). This becomes the allowance for mirror polishing of the silicon wafer of each sample.
[0020]
Next, a difference for each measured silicon wafer between the first measured thickness Tb of each silicon wafer and the calculated value C is obtained. This is the final wafer target thickness for each sample. The average value is calculated, and this is mirror-polished with the thickness of the entire lot as the target for mirror-polishing.
[0021]
Through the above steps, non-conformity of the in-plane non-impurity diffusion layer thickness can be reduced, and a high-quality diffusion wafer with high manufacturing efficiency can be realized.
[0022]
【Example】
(Example)
Hereinafter, the present invention will be described with reference to specific examples. A predetermined lot A was processed up to step D as shown in the above-described embodiment. Next, five samples for thickness evaluation aiming at mirror finishing were extracted from the lot. In addition, the measurement points of the non-impurity diffusion layer thickness in this example are 5 points shown in FIG. 3 which is a top view of the silicon wafer, and specific numerical values are as shown in Table 1 below.
[0023]
[Table 1]
Figure 2005019450
[0024]
In Table 1 above, the average value of the thickness xi of the non-impurity diffusion layer in the central part is 71.7 μm, and the average value of the thickness of the non-impurity diffusion layers in the central part and the peripheral part (peripheral parts 1 to 4) is , 71.172 μm. From the measured average value of the thickness of the non-impurity diffusion layer in the central portion (71.7 μm), the average value of the thickness of the five non-impurity diffusion layers including the central portion and the peripheral portion (71.172 μm) Is subtracted to 0.528 μm. The standard center value of the thickness xi of the non-impurity diffusion layer is 50 μm.
[0025]
Next, a standard center value (50 μm) is added to this difference of 0.528 μm, and the value is subtracted from the thickness xi of each measured non-impurity diffusion layer at the center. As a result, as shown in Table 2 below, the values of samples 1 to 5 are 20.672 μm, 21.572 μm, 20.972 μm, 21.372 μm, 21.572 μm, and this value is the value of each sample. It is a value for mirror polishing in a silicon wafer. The value obtained by subtracting this value from the original thickness of the silicon wafer is the final thickness of the silicon wafer, and the mirror polishing is performed based on this target value. However, this value is an individual value for the sample and is not compatible with all silicon wafers in the lot. Therefore, the final wafer thickness of the silicon wafer of this sample, that is, the average of the target values is calculated, and the value is used as the target value of all the silicon wafers in the lot, and the mirror polishing process is performed.
Table 2 below also shows the film thickness of the final diffusion wafer subjected to mirror polishing.
[0026]
[Table 2]
Figure 2005019450
[0027]
(Comparative example)
Hereinafter, the conventional method (comparative example) of this invention is demonstrated.
Using another lot B different from the above example, processing was performed up to step D in the same manner as in the above example. Next, five samples for thickness evaluation aiming at mirror polishing were extracted from the lot. For these, the thickness of the silicon wafer and the thickness xi of the non-impurity diffusion layer at the center of the silicon wafer were measured. Next, the standard center value (50 μm) of the non-impurity diffusion layer was subtracted from the average value of the thickness xi of the non-impurity diffusion layer at the center of the silicon wafer, and the polishing allowance was calculated for each silicon wafer. Next, the thickness obtained by subtracting the polishing allowance calculated in the above procedure from the thickness of the sample silicon wafer is taken as the final target thickness for each silicon wafer, and this average value is the final mirror polishing target thickness for that lot. As a result, mirror polishing was performed. The results are shown in Table 3.
[0028]
[Table 3]
Figure 2005019450
[0029]
The calculation method as in the comparative example, that is, the specular polishing allowance is calculated by subtracting the standard center value from the thickness of the non-impurity diffusion layer in the center, and then this thickness is calculated from the thickness of the silicon wafer after grinding. When the final mirror polishing target thickness of the example (Lot A) is calculated by a method of calculating the final wafer target thickness by subtracting the mirror polishing removal allowance and calculating the average value thereof, it becomes 278.9 μm. That is, the difference in target thickness (279.428 μm) from the example was 0.528 μm.
[0030]
Next, 100 silicon wafers in each lot are mirror-polished based on the final wafer target thickness obtained by this example and the comparative example, and the thickness of the non-impurity diffusion layer of the obtained silicon wafer is measured. The compatibility of the standard range was examined. The results are shown in Table 4.
[0031]
[Table 4]
Figure 2005019450
[0032]
As apparent from Table 4 above, in the case of this example, an improvement of 17.1% was observed in the yield of non-defective products compared with the comparative example. Particularly, the defect of insufficient non-impurity diffusion layer thickness was 0.6% in the example, but was significantly inferior to 14.4% in the comparative example. Non-impurity diffusion layer thickness excess defects may become good products by further polishing, but non-impurity diffusion layer thickness insufficient defects cannot be made non-defective by repairs at all. The high defect rate indicates that the conventional method is not an economical method.
[0033]
In the embodiment described above, the number of measurement of the diffusion layer and the non-impurity diffusion layer of the wafer is 5 inclusive of the center. However, in order to further improve the measurement accuracy, more multipoint measurement (for example, the radius from the center is R In order to shorten the evaluation time, the center portion and two outer peripheral portions (for example, the peripheral portion 1 and the peripheral portion 3 in FIG. 3) may be used. The preferred number of measurements in the practice of the present invention is from 3 to 9 locations (9 locations are 1 / 2R of radius R from the center to the perimeter in the sense of FIG.
[0034]
【The invention's effect】
As described above, according to the present invention, the thickness xi of the non-impurity diffusion layer due to the variation in the in-plane impurity diffusion layer thickness xj, particularly the non-standard thickness of the outer peripheral portion is eliminated, and the manufacturing efficiency is also improved. An improved high quality diffusion wafer can be manufactured.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a silicon wafer showing steps for explaining a method for producing a diffusion wafer according to the present invention.
FIG. 2 is a cross-sectional view of a silicon wafer for explaining an embodiment of the present invention.
FIG. 3 is a top view of a silicon wafer for explaining an embodiment of the present invention.
FIG. 4 is a diagram for explaining a conventional example.
[Explanation of symbols]
10a Impurity diffusion layer 10b Non-impurity diffusion layer

Claims (1)

シリコンウェーハの両面に不純物を拡散し不純物拡散層と非不純物拡散層を形成する工程と、前記非不純物拡散層を露出する工程と、この露出した面を鏡面研磨する工程とを備えた拡散ウェーハの製造方法において、
1):鏡面研磨する工程前の前記シリコンウェーハを複数枚用意し、
2):前記複数枚のシリコンウェーハの中央部の厚さを測定し、
3):前記複数枚のシリコンウェーハの中央部、及び周辺部において、前記非不純物拡散層xiの厚さを測定し、
4):前記手順3)で測定した前記中央部の非不純物拡散層の厚さの平均値と、前記中央部及び周辺部を含んだすべての測定点の前記非不純物拡散層の厚さの平均値との差を求め、
5):前記手順4)で算出した値を、予め設定されている非不純物拡散層の厚さの製品規格値に加え、
6):前記手順3)で測定した前記中央部の非不純物拡散層の厚さと、前記手順4)で算出した値との差を、複数枚のシリコンウェーハ毎に算出し、
7):前記手順2)で測定した前記複数枚のシリコンウェーハの中央部の厚さの測定値から、前記手順6)で算出した値を、複数枚のシリコンウェーハ毎に算出し、
8):前記手順7)で算出した複数枚のシリコンウェーハ毎の値の平均値を、前記ロットの鏡面研磨の狙い厚さ値としてシリコンウェーハの鏡面研磨を行うことを特徴とする拡散ウェーハの製造方法。
A diffusion wafer comprising: a step of diffusing impurities on both sides of a silicon wafer to form an impurity diffusion layer and a non-impurity diffusion layer; a step of exposing the non-impurity diffusion layer; and a step of mirror polishing the exposed surface. In the manufacturing method,
1): Prepare a plurality of silicon wafers before the mirror polishing process,
2): Measure the thickness of the center of the plurality of silicon wafers,
3): Measure the thickness of the non-impurity diffusion layer xi at the center and the periphery of the plurality of silicon wafers,
4): The average value of the thickness of the non-impurity diffusion layer in the central portion measured in the procedure 3) and the average thickness of the non-impurity diffusion layer at all measurement points including the central portion and the peripheral portion. Find the difference from the value,
5): The value calculated in the above step 4) is added to the product standard value of the thickness of the non-impurity diffusion layer set in advance,
6): The difference between the thickness of the non-impurity diffusion layer in the central portion measured in the procedure 3) and the value calculated in the procedure 4) is calculated for each of a plurality of silicon wafers.
7): From the measurement value of the thickness of the central portion of the plurality of silicon wafers measured in the procedure 2), the value calculated in the procedure 6) is calculated for each of the plurality of silicon wafers.
8): Manufacturing a diffusion wafer characterized in that the silicon wafer is mirror-polished using the average value of each of the plurality of silicon wafers calculated in the step 7) as the target thickness value for the mirror-polishing of the lot. Method.
JP2003178217A 2003-06-23 2003-06-23 Diffusion wafer manufacturing method Expired - Lifetime JP4311622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003178217A JP4311622B2 (en) 2003-06-23 2003-06-23 Diffusion wafer manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003178217A JP4311622B2 (en) 2003-06-23 2003-06-23 Diffusion wafer manufacturing method

Publications (2)

Publication Number Publication Date
JP2005019450A true JP2005019450A (en) 2005-01-20
JP4311622B2 JP4311622B2 (en) 2009-08-12

Family

ID=34179915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003178217A Expired - Lifetime JP4311622B2 (en) 2003-06-23 2003-06-23 Diffusion wafer manufacturing method

Country Status (1)

Country Link
JP (1) JP4311622B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005217410A (en) * 2004-01-29 2005-08-11 Siltronic Ag Method of fabricating semiconductor wafer
JP2010141166A (en) * 2008-12-12 2010-06-24 Covalent Materials Corp Method for manufacturing diffused wafer
KR101198356B1 (en) * 2008-06-26 2012-11-08 섬코 테크시브 코포레이션 Process for producing diffusion wafer and diffusion wafer
CN115431163A (en) * 2021-06-01 2022-12-06 均豪精密工业股份有限公司 Method and apparatus for polishing sheet-like workpiece

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI550750B (en) * 2015-06-25 2016-09-21 力晶科技股份有限公司 Method for automatically monitoring film thickness uniformity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005217410A (en) * 2004-01-29 2005-08-11 Siltronic Ag Method of fabricating semiconductor wafer
KR101198356B1 (en) * 2008-06-26 2012-11-08 섬코 테크시브 코포레이션 Process for producing diffusion wafer and diffusion wafer
JP2010141166A (en) * 2008-12-12 2010-06-24 Covalent Materials Corp Method for manufacturing diffused wafer
CN115431163A (en) * 2021-06-01 2022-12-06 均豪精密工业股份有限公司 Method and apparatus for polishing sheet-like workpiece
CN115431163B (en) * 2021-06-01 2024-03-08 均豪精密工业股份有限公司 Method and apparatus for polishing sheet-like workpiece

Also Published As

Publication number Publication date
JP4311622B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
CN100339969C (en) Wafer shape evaluating method and device and device producing method, wafer and wafer selecting method
KR101577312B1 (en) Silicon Single Crystal Wafer, Process for Producing Silicon Single Crystal Wafer, and Method for Evaluating Silicon Single Crystal Wafer
CN104428882B (en) Evaluation method and production method for semiconductor wafers
US6975960B2 (en) Method for evaluating wafer configuration, wafer, and wafer sorting method
KR102352515B1 (en) Method for preparing resistivity standard sample and method for measuring resistivity of epitaxial wafer
US11587838B2 (en) Grinding control method and device for wafer, and grinding device
JPH118279A (en) Method for determining wafer characteristics using thick-film monitor
JP4311622B2 (en) Diffusion wafer manufacturing method
CN117197617B (en) Defect classification method and system for repeated defects
JP5361359B2 (en) Diffusion wafer manufacturing method
CN112071765A (en) Method for determining wafer processing parameters and wafer processing method
US10177049B2 (en) Embedded SiGe epitaxy test pad
CN107342254B (en) The calibration method of crystal edge etching machine bench
TWI681185B (en) Method for characterizing the interstitial oxygen concentration in a semiconductor ingot
JP2010225695A (en) Method of manufacturing diffusion wafer
CN112097656A (en) Detection system and detection method for edge removal width of wafer back sealing film
JP6525046B1 (en) Semiconductor wafer manufacturing method
CN108695182B (en) Method for checking detection precision of defect detection machine and product wafer
CN111415874A (en) Wafer detection method
JP3184161B2 (en) Surface inspection method for semiconductor wafer
JP7480745B2 (en) Evaluation method for wafer shape measuring instruments
US6231918B1 (en) Oxide film thickness standards and manufacturing methods thereof
JP3994139B2 (en) Evaluation method of grow-in defect density of silicon wafer
KR20100062528A (en) Detection method of epitaxial stacking faults on epitaxial wafer
Rennex Fourier Transform Infrared (FTIR) Determination Of Interstitial Oxygen Concentration Of Single-Side-Polished Silicon Wafers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4311622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term