JP2005016501A - Method of correspondence at time of overlap - Google Patents

Method of correspondence at time of overlap Download PDF

Info

Publication number
JP2005016501A
JP2005016501A JP2003207518A JP2003207518A JP2005016501A JP 2005016501 A JP2005016501 A JP 2005016501A JP 2003207518 A JP2003207518 A JP 2003207518A JP 2003207518 A JP2003207518 A JP 2003207518A JP 2005016501 A JP2005016501 A JP 2005016501A
Authority
JP
Japan
Prior art keywords
valve
intake
air
cycle
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003207518A
Other languages
Japanese (ja)
Inventor
Osamu Nakada
治 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003207518A priority Critical patent/JP2005016501A/en
Publication of JP2005016501A publication Critical patent/JP2005016501A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent air-fuel mixture or air entering an engine from an intake valve, an intake port from being discharged from an exhaust valve, an exhaust port without being done anything at a time of overlap when the intake valve, the intake port and the exhaust valve, the exhaust port simultaneously open when a piston valve and a rotary valve are used in a four-cycle engine, a six-cycle engine, an eight-cycle engine and a ten or more cycle engine. <P>SOLUTION: An intake vale for air only and an intake port for air only are newly provided and are opened without opening the intake valve and the intake port at the time of overlap. And the exhaust valve and the exhaust port are opened, and then the intake valve and the intake port are opened. The newly provided intake valve for only air and the intake port for only air are closed after the exhaust valve and the exhaust port are closed and before a piston lowers and reaches a bottom dead center. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、4サイクルエンジン(4サイクルガソリンエンジンと4サイクルディーゼルエンジンと筒内噴射4サイクルガソリンエンジン。)、6サイクルエンジン{〔ディーゼルエンジンと、ガソリンエンジンの、6サイクルエンジン(平成2年特許願第417964号)。〕と〔6サイクルディーゼルエンジン(平成8年特許願第140582号)。〕と〔6サイクルガソリンエンジン(平成8年特許願第151453号)。〕と〔筒内噴射6サイクルガソリンエンジン(平成8年特許願第172736号)。〕。}、8サイクルエンジン{〔8サイクルディーゼルエンジン(平成9年特許願第91265号)。〕と〔筒内噴射8サイクルガソリンエンジン(平成9年特許願第129090号)。〕と〔8サイクルガソリンエンジン(平成9年特許願第184308号)。〕。}、10サイクル以上のエンジン〔ガソリンエンジンとディーゼルエンジンと筒内噴射ガソリンエンジンの、10サイクル以上のエンジン(平成9年特許願第274908号)。〕にピストンバルブ(往復弁)、ロータリーバルブ{〔4サイクルエンジン、6サイクルエンジンに使用される、ピストンバルブに代わる、ロータリーバルブ(平成3年特許願第356145号)。〕と〔往復弁に代わる、回転弁(平成8年特許願第179726号)。〕。}を使用した時、最後の排気工程(4サイクルエンジンの場合は、ただの排気工程。)から1回目の吸気工程(4サイクルエンジンの場合は、ただの吸気工程。)に移る時、吸気弁(ガソリンエンジンの場合は、混合気専用の吸気弁。)、吸気口(ガソリンエンジンの場合は、混合気専用の吸気口。)と、排気弁、排気口が同時に開いている、オーバー・ラップ時の対応の方法に関する。
【0002】
【従来の技術】
従来の、4サイクルエンジン、6サイクルエンジン、8サイクルエンジン、10サイクル以上のエンジンに、ピストンバルブ、ロータリーバルブを使用した時の、最後の排気工程から1回目の吸気工程に移る時、吸気弁、吸気口と、排気弁、排気口が同時に開いている、オーバー・ラップ時の対応の方法においては、弁、気口の開閉タイミングを変えるものなどがあった。
【0003】
【発明が解決しようとする課題】
従来の、4サイクルエンジン、6サイクルエンジン、8サイクルエンジン、10サイクル以上のエンジンに、ピストンバルブ、ロータリーバルブを使用した時では、最後の排気工程から1回目の吸気工程に移る時、吸気弁、吸気口と、排気弁、排気口が同時に開いている、オーバー・ラップ時に、混合気、又は、空気は、何もされないまま、排気弁、排気口から排出される、と言う問題点があった。
【0004】
特に、ガソリンエンジンの場合においては、混合気が何もされず、排気弁、排気口から排出される、と言う事に問題点があった。
【0005】
本発明は、4サイクルエンジン、6サイクルエンジン、8サイクルエンジン、10サイクル以上のエンジンに、ピストンバルブ、ロータリーバルブを使用した時に、最後の排気工程から1回目の吸気工程に移る時、吸気弁、吸気口と、排気弁、排気口が同時に開いている、オーバー・ラップ時に、混合気、又は、空気が、何もされないまま排出される、事がない様にする事を目的としており、特に、ガソリンエンジンの場合は、オーバー・ラップ時に、混合気が、何もされないまま排出される、事がない様にする事を目的としている。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明の、4サイクルエンジン、6サイクルエンジン、8サイクルエンジン、10サイクル以上のエンジンに、ピストンバルブ、ロータリーバルブを使用した時においては、最後の排気工程から1回目の吸気工程に移る時、吸気弁、吸気口と、排気弁、排気口が同時に開いている、オーバー・ラップ時に、吸気弁、吸気口を開けずに、空気専用の吸気弁、空気専用の吸気口を新しく設け、それを開け、排気弁、排気口が閉じてから、吸気弁、吸気口を開き、新しく設けた、空気専用の吸気弁、空気専用の吸気口は、排気弁、排気口が閉じてから下死点に至る迄の間に閉じる(ディーゼルエンジンと筒内噴射ガソリンエンジンの場合は、新しく、空気専用の吸気弁、空気専用の吸気口を設けなくても、吸気弁、吸気口を兼用しても、同じ物質を吸気するのでよい。また、6サイクルガソリンエンジン、8サイクルガソリンエンジン、10サイクル以上のガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用した時でも、新しく、空気専用の吸気弁、空気専用の吸気口を設けなくても、既に有る、空気専用の吸気弁、空気専用の吸気口を兼用しても良い。そして、吸気口、空気専用の吸気口を兼用すると言う事は、同じロータリーバルブの、吸気口、空気専用の吸気口を使用するのではなく、吸気口のあるロータリーバルブ、空気専用の吸気口のあるロータリーバルブに、新しく、気口を設ける事である。)。
【0007】
【作用】
上記のように構成された、4サイクルエンジン、6サイクルエンジン、8サイクルエンジン、10サイクル以上のエンジンに、ピストンバルブ、ロータリーバルブを使用した時では、最後の排気工程から1回目の吸気工程に移る時、吸気弁、吸気口と、排気弁、排気口が同時に開いている、オーバー・ラップ時に、吸気弁、吸気口を開けずに、空気専用の吸気弁、空気専用の吸気口を新しく設け、それを開け、排気弁、排気口が閉じてから、吸気弁、吸気口を開き、新しく設けた、空気専用の吸気弁、空気専用の吸気口は、排気弁、排気口が閉じてから下死点に至る迄の間に閉じる事に因り、吸気弁、吸気口から筒内(シリンダーの中)に入った混合気、又は、空気は、何もされないまま、排気弁、排気口から排出される、と言う事が無くなる。
【0008】
特に、ガソリンエンジンの場合は、混合気が何もされないまま排出される、と言う事がなくなる。
【0009】
【発明の実施の形態】
実施例について、図面を参照して説明すると、図1においては、4サイクルエンジン、6サイクルエンジン、8サイクルエンジン、10サイクル以上のエンジンに、ピストンバルブ、ロータリーバルブを使用した時の、最後の排気工程から1回目の吸気工程に移る時、吸気弁、吸気口と、排気弁、排気口が同時に開いている、オーバー・ラップ時の対応の方法を示す為に、代表例として、4サイクルガソリンエンジンにピストンバルブを使用したエンジンを、横に区切って上から見たと仮定した、横断面図であり、要は、混合気専用の吸気弁と、排気弁と、最後の排気工程(この場合は、ただの排気工程。)から1回目の吸気工程(この場合は、ただの吸気工程。)に移る時、混合気専用の吸気弁と排気弁が同時に開いている、オーバー・ラップ時に、混合気専用の吸気弁を開けずに、空気専用の吸気弁を新しく設け、それを開け、排気弁が閉じてから、混合気専用の吸気弁を開き、新しく設けた空気専用の吸気弁は、排気弁が閉じてから下死点に至る迄の間に閉じる、空気専用の吸気弁と、プラグの配置を示した、横断面図である。
【0010】
また、以後、混合気専用の吸気弁は、弁a、であり、排気弁は、弁b、であり、空気専用の吸気弁は、弁c、である。
【0011】
そして、図1と図3に示される、弁aには吸気管と気化器、さらに、弁bには排気管、また、弁cには空気専用の吸気管、が取り付けてある。
【0012】
また、図1に示される、弁aと弁bと弁cとプラグの数は、最低限必要な数だけを示したものであり、配置と数と大きさは、この特許には含まない。
【0013】
図2に示される実施例では、4サイクルガソリンエンジンにピストンバルブを使用した時の、オーバー・ラップ時の対応の方法の時の、各ポイントの所在を示した図であり、普通は、混合気の吸気工程→圧縮工程→膨張工程→排気工程、と示すのであるが、各ポイントの所在を分り易くする為に、膨張工程完了直前のポイントから、膨張工程完了直前までのポイントを示す、クランク・シャフトの回転に合わせた図であり、ポイントdからポイントrは、
ポイントd 膨張工程完了直前〔ピストンが下降して、下死点に至る直前(ポイントdとポイントrは同一である。)。〕
ポイントe 排気工程開始直後(ピストンが上昇し始めた直後。)
ポイントf 排気工程中間(クランク・シャフトの回転角度で言うならば、上死点より20°手前の少し手前。)
ポイントg 排気工程中間(クランク・シャフトの回転角度で言うならは、上死点より20°手前を少し過ぎた所。)
ポイントh 排気工程完了直前(ピストンが上昇して、上死点に至る直前。)
ポイントi 吸気工程開始直後(ピストンが下降し始めた直後。)
ポイントj 吸気工程中間(クランク・シャフトの回転角度で言うならば、上死点から20°過ぎた所の少し手前。)
ポイントk 吸気工程中間(クランク・シャフトの回転角度で言うならば、上死点から20°過ぎた所を少し過ぎた所。)
ポイントl 吸気工程中間(クランク・シャフトの回転角度で言うならば、上死点から90°過ぎた所の少し手前。)
ポイントm 吸気工程中間(クランク・シャフトの回転角度で言うならば、上死点から90°過ぎた所を少し過ぎた所。)
ポイントn 吸気工程完了直前(ピストンが下降して、下死点に至る直前。)
ポイントo 圧縮工程開始直後(ピストンが上昇し始めた直後。)
ポイントp 圧縮工程完了直前〔ピストンが上昇して、上死点に至る直前(点火)。〕
ポイントq 膨張工程開始直後(ピストンが下降し始めた直後。)
ポイントr 膨張工程完了直前〔ピストンが下降して、下死点に至る直前(ポイントrとポイントdは同一である。)。〕
である。
【0014】
図3から図17に示される実施例では、図2に示される、ポイントdからポイントrまでの、各時点での、各弁の動きとプラグの点火時期とピストンの所在を示す為に、図1を、断面S−Sの方向から見たと仮定した、縦断面図であり、図3から図17は、
図3 膨張工程完了直前〔ポイントd(ポイントdとポイントrは同一である。)〕
弁aと弁bと弁cは、閉じている(弁bに、バルブ・タイミングは含まれていない。)。
図4 排気工程開始直後(ポイントe)
弁aは閉じ、弁bは開き、弁cは閉じている。
図5 排気工程中間(ポイントf)
弁aは閉じ、弁bは開き、弁cは閉じている。
図6 排気工程中間(ポイントg)
弁aは閉じ、弁bと弁cは開いている。
図7 排気工程完了直前(ポイントh)
弁aは閉じ、弁bと弁cは開いている。
図8 吸気工程開始直後(ポイントi)
弁aは閉じ、弁bと弁cは開いている。
図9 吸気工程中間(ポイントj)
弁aは閉じ、弁bと弁cは開いている。
図10 吸気工程中間(ポイントk)
弁aは開き、弁bは閉じ、弁cは開いている。
図11 吸気工程中間(ポイントl)
弁aは開き、弁bは閉じ、弁cは開いている。
図12 吸気工程中間(ポイントm)
弁aは開き、弁bと弁cは閉じている。
図13 吸気工程完了直前(ポイントn)
弁aは開き、弁bと弁cは閉じている。
図14 圧縮工程開始直後(ポイントo)
弁aと弁bと弁cは、閉じている(弁aに、バルブ・タイミングは含まれていない。)。
図15 圧縮工程完了直前〔ポイントp(点火)〕
弁aと弁bと弁cは、閉じている。
図16 膨張工程開始直後(ポイントq)
弁aと弁bと弁cは、閉じている。
図17 膨張工程完了直前〔ポイントr(ポイントrとポイントdは同一である。)〕
弁aと弁bと弁cは、閉じている(弁bに、バルブ・タイミングは含まれていない。)。
である。
【0015】
そして、ここで重要な事は、図5(ポイントf)から図12(ポイントm)までの、オーバー・ラップ時の、弁aと弁bと弁cの開閉を見る事である。
【0016】
また、6サイクルガソリンエンジン、8サイクルガソリンエンジン、10サイクル以上のガソリンエンジンに、ピストンバルブを使用した時の、オーバー・ラップ時の対応の方法の工程を示す、縦断面図は描かれていないが、オーバー・ラップ時の各弁の動きは同一なので、ここでは省く。
【0017】
また、6サイクルガソリンエンジン、8サイクルガソリンエンジン、10サイクル以上のガソリンエンジンの、2回目の吸気工程(空気の吸気工程)以降の吸気工程の時の弁も、弁cを兼用すれば良い。
【0018】
さらに、ディーゼルエンジン、筒内噴射ガソリンエンジンの、4サイクルエンジン、6サイクルエンジン、8サイクルエンジン、10サイクル以上のエンジンに、ピストンバルブを使用した時の、オーバー・ラップ時の対応の方法の工程を示す、縦断面図も描かれていないが、プラクを燃料噴射器、又は、プラグと燃料噴射器に代えれば、ガソリンエンジンに準じて、それぞれのエンジンの工程の縦断面図が描ける。
【0019】
また、ガソリンエンジンとディーゼルエンジンと筒内噴射ガソリンエンジンの、4サイクルエンジン、6サイクルエンジン、8サイクルエンジン、10サイクル以上のエンジンに、ロータリーバルブを使用した時の、オーバー・ラップ時の対応の方法の工程を示す、縦断面図も描かれていないが、ロータリーバルフを2つ用い、片方の断面(内形)を、H型、にして{〔4サイクルエンジン、6サイクルエンジンに使用される、ピストンバルブに代わる、ロータリーバルブ(平成3年特許願第356145号)。〕と〔4サイクルエンジン、6サイクルエンジンに使用される、ロータリーバルブの、吸排気の方法(平成4年特許願第218116号)。〕。}と〔往復弁に代わる、回転弁(平成8年特許願第179726号)。〕。}、気口を3種類設けるか、ロータリーバルブを3つ用いる〔4サイクルエンジン、6サイクルエンジンに使用される、ロータリーバルブの、1気筒あたり、1つのロータリーバルブで吸排気の工程を行う時の、2発火点化と、1気筒あたり、3つのロータリーバルブを用いる事と、2発火点化(平成6年特許願第174662号)。〕かして、気口を3種類設ければ、それぞれの、オーバー・ラップ時の対応の方法の工程を示す、縦断面図が描ける。
【0020】
【発明の効果】
本発明は、以上説明した様に構成されているので、以下に記載される様な効果を奏する。
【0021】
ガソリンエンジンとディーゼルエンジンと筒内噴射ガソリンエンジンの、4サイクルエンジン、6サイクルエンジン、8サイクルエンジン、10サイクル以上のエンジンに、ピストンバルブ、ロータリーバルブを使用した時、最後の排気工程から1回目の吸気工程に移る時、吸気弁、吸気口と、排気弁、排気口が同時に開いている、オーバー・ラップ時に、吸気弁、吸気口を開けずに、空気専用の吸気弁、空気専用の吸気口を新しく設け、それを開け、排気弁、排気口が閉じてから、吸気弁、吸気口を開き、新しく設けた、空気専用の吸気弁、空気専用の吸気口は、排気弁、排気口が閉じてから、ピストンが下降して下死点に至る迄の間に閉じる事に因り、吸気弁、吸気口から出た、混合気、又は、空気は、何もされないまま筒内(シリンダーの中)を通り、排気弁、排気口から排出される、と言う事が無くなる。
【0022】
特に、ガソリンエンジンの場合は、混合気が何もされないまま筒内を通り排出される、と言う事がなくなるので、燃料の無駄を省き、省資源、省エネルギーにつながる。
【図面の簡単な説明】
【図1】4サイクルガソリンエンジンにピストンバルブを使用した時の、オーバー・ラップ時の対応の方法の時の、弁aと弁bと弁cとプラグの配置を示す、横断面図である。
【図2】4サイクルガソリンエンジンにピストンバルブを使用した時の、図3から図17までの、ポイントdからポイントrの所在を示す、クランク・シャフトの回転に合わせた図である。
【図3】4サイクルガソリンエンジンにピストンバルブを使用した時の、オーバー・ラップ時の対応の方法の工程を示す、縦断面図である〔膨張工程完了直前(ポイントd=ポイントr)〕。
【図4】4サイクルガソリンエンジンにピストンバルブを使用した時の、オーバー・ラップ時の対応の方法の工程を示す、縦断面図である〔排気工程開始直後(ポイントe)〕。
【図5】4サイクルガソリンエンジンにピストンバルブを使用した時の、オーバー・ラップ時の対応の方法の工程を示す、縦断面図である〔排気工程中間(ポイントf)〕。
【図6】4サイクルガソリンエンジンにピストンバルブを使用した時の、オーバー・ラップ時の対応の方法の工程を示す、縦断面図である〔排気工程中間(ポイントg)〕。
【図7】4サイクルガソリンエンジンにピストンバルブを使用した時の、オーバー・ラップ時の対応の方法の工程を示す、縦断面図である〔排気工程完了直前(ポイントh)〕。
【図8】4サイクルガソリンエンジンにピストンバルブを使用した時の、オーバー・ラップ時の対応の方法の工程を示す、縦断面図である〔吸気工程開始直後(ポイントi)〕。
【図9】4サイクルガソリンエンジンにピストンバルブを使用した時の、オーバー・ラップ時の対応の方法の工程を示す、縦断面図である〔吸気工程中間(ポイントj)〕。
【図10】4サイクルガソリンエンジンにピストンバルブを使用した時の、オーバー・ラップ時の対応の方法の工程を示す、縦断面図である〔吸気工程中間(ポイントk)〕。
【図11】4サイクルガソリンエンジンにピストンバルブを使用した時の、オーバー・ラップ時の対応の方法の工程を示す、縦断面図である〔吸気工程中間(ポイントl)〕。
【図12】4サイクルガソリンエンジンにピストンバルブを使用した時の、オーバー・ラップ時の対応の方法の工程を示す、縦断面図である〔吸気工程中間(ポイントm)〕。
【図13】4サイクルガソリンエンジンにピストンバルブを使用した時の、オーバー・ラップ時の対応の方法の工程を示す、縦断面図である〔吸気工程完了直前(ポイントn)〕。
【図14】4サイクルガソリンエンジンにピストンバルブを使用した時の、オーバー・ラップ時の対応の方法の工程を示す、縦断面図である〔圧縮工程開始直後(ポイントo)〕。
【図15】4サイクルガソリンエンジンにピストンバルブを使用した時の、オーバー・ラップ時の対応の方法の工程を示す、縦断面図である{圧縮工程完了直前〔ポイントp(点火)〕}。
【図16】4サイクルガソリンエンジンにピストンバルブを使用した時の、オーバー・ラップ時の対応の方法の工程を示す、縦断面図である〔膨張工程開始直後(ポイントq)〕。
【図17】4サイクルガソリンエンジンにピストンバルブを使用した時の、オーバー・ラップ時の対応の方法の工程を示す、縦断面図である〔膨張工程完了直前(ポイントr=ポイントd)〕。
【符号の説明】
1 混合気専用の吸気弁(弁a)
2 排気弁(弁b)
3 最後の排気工程(この場合は、ただの排気工程。)から1回目の吸気工程(この場合は、ただの吸気工程。)に移る時、混合気専用の吸気弁と排気弁が同時に開いている、オーバー・ラップ時に、混合気専用の吸気弁を開けずに、空気専用の吸気弁を新しく設け、それを開け、排気弁が閉じてから、混合気専用の吸気弁を開き、新しく設けた空気専用の吸気弁は、排気弁が閉じてから下死点に至る迄の間に閉じる、空気専用の吸気弁(弁c)
4 プラク
5 気化器
6 吸気管
7 排気管
8 空気専用の吸気管
9 排気工程
10 吸気工程
11 圧縮工程
12 膨張工程
13 オーバー・ラップの間
14 ピストン
15 弁bと弁c
弁a 混合気専用の吸気弁
弁b 排気弁
弁c 最後の排気工程(この場合は、ただの排気工程。)から1回目の吸気工程(この場合は、ただの吸気工程。)に移る時、混合気専用の吸気弁と排気弁が同時に開いている、オーバー・ラップ時に、混合気専用の吸気弁を開けずに、空気専用の吸気弁を新しく設け、それを開け、排気弁が閉じてから、混合気専用の吸気弁を開き、新しく設けた空気専用の吸気弁は、排気弁が閉じてから下死点に至る迄の間に閉じる、空気専用の吸気弁
d ポイント〔膨張工程完了直前(ポイントd=ポイントr)〕
e ポイント(排気工程開始直後)
f ポイント(排気工程中間)
g ポイント(排気工程中間)
h ポイント(排気工程完了直前)
i ポイント(吸気工程開始直後)
j ポイント(吸気工程中間)
k ポイント(吸気工程中間)
l ポイント(吸気工程中間)
m ポイント(吸気工程中間)
n ポイント(吸気工程完了直前)
o ポイント(圧縮工程開始直後)
p ポイント〔圧縮工程完了直前(点火)〕
q ポイント(膨張工程開始直後)
r ポイント〔膨張工程完了直前(ポイントr=ポイントd)〕
S−S 断面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a four-cycle engine (four-cycle gasoline engine, four-cycle diesel engine and in-cylinder four-cycle gasoline engine), six-cycle engine {[diesel engine and gasoline engine, six-cycle engine (1990 patent application). No. 417964). ] And [6-cycle diesel engine (1996 Patent Application No. 140582). ] And [6-cycle gasoline engine (1996 Patent Application No. 151453). ] And [In-cylinder injection 6-cycle gasoline engine (1996 Patent Application No. 172736). ]. }, 8-cycle engine {[8-cycle diesel engine (1997 Patent Application No. 91265)]. ] And [In-cylinder injection 8-cycle gasoline engine (1997 Patent Application No. 129090). ] And [8-cycle gasoline engine (1997 patent application No. 184308). ]. } Engine of 10 cycles or more [Gasoline engine, diesel engine and in-cylinder injection gasoline engine of 10 cycles or more (1997 Patent Application No. 274908). ] Piston valve (reciprocating valve), rotary valve {[Rotary valve used in 4-cycle engine and 6-cycle engine instead of piston valve (Japanese Patent Application No. 356145)]. ] And [Rotary valve instead of reciprocating valve (1996 Patent Application No. 179726). ]. }, When moving from the last exhaust process (only exhaust process in the case of a 4-cycle engine) to the first intake process (only intake process in the case of a 4-cycle engine), the intake valve (In the case of a gasoline engine, the intake valve dedicated to the air-fuel mixture.), The intake port (the intake port dedicated to the air-fuel mixture in the case of a gasoline engine), the exhaust valve, and the exhaust port are open at the same time. It is related with the method of correspondence.
[0002]
[Prior art]
When moving from the last exhaust process to the first intake process when using a piston valve or rotary valve on a conventional 4-cycle engine, 6-cycle engine, 8-cycle engine, 10-cycle engine or more, an intake valve, In the method of handling at the time of overlap, where the intake port, the exhaust valve, and the exhaust port are open at the same time, there are things that change the opening and closing timing of the valve and the air port.
[0003]
[Problems to be solved by the invention]
When a piston valve or rotary valve is used in a conventional 4-cycle engine, 6-cycle engine, 8-cycle engine, or 10-cycle engine or more, when moving from the last exhaust process to the first intake process, There was a problem that the air-fuel mixture or the air was exhausted from the exhaust valve and the exhaust port without doing anything at the time of overlap when the intake port, the exhaust valve and the exhaust port were open at the same time .
[0004]
In particular, in the case of a gasoline engine, there is a problem in that the air-fuel mixture is not performed and is discharged from the exhaust valve and the exhaust port.
[0005]
When the piston valve and the rotary valve are used for a four-cycle engine, a six-cycle engine, an eight-cycle engine, an engine of 10 cycles or more, the present invention is arranged so that the intake valve, The purpose is to prevent the air-fuel mixture or air from being exhausted without doing anything when the air inlet, exhaust valve, and exhaust are open at the same time. In the case of a gasoline engine, the purpose is to prevent the air-fuel mixture from being discharged without being overdone when it is overlapped.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, when a piston valve or a rotary valve is used in a four-cycle engine, six-cycle engine, eight-cycle engine, or ten-cycle engine of the present invention, the first time from the last exhaust process. When moving to the intake process, the intake valve, intake port, exhaust valve, and exhaust port are open at the same time. Open a new port, open it, close the exhaust valve and the exhaust port, then open the intake valve and the intake port.The newly provided air-only intake valve and the air-only intake port are the exhaust valve and the exhaust port. Closed until the bottom dead center is reached (in the case of a diesel engine and an in-cylinder injection gasoline engine, the intake valve, intake air The same substance can be inhaled even when combined, and even when a piston valve or rotary valve is used on a 6-cycle gasoline engine, 8-cycle gasoline engine, 10-cycle gasoline engine or more, Even if there is no intake valve and air intake port, the existing air intake valve and air intake port may be combined, and the intake port and air intake port are also used. Instead of using the same rotary valve, the intake port and the intake port dedicated to air, it is to provide a new air port in the rotary valve with the intake port and the rotary valve with the intake port dedicated to air. ).
[0007]
[Action]
When a piston valve or rotary valve is used in a 4-cycle engine, 6-cycle engine, 8-cycle engine, or 10-cycle engine or more configured as described above, the process proceeds from the last exhaust process to the first intake process. At the time of overlap, the intake valve, the intake port, the exhaust valve, and the exhaust port are open at the same time, without opening the intake valve, the intake port, an air dedicated intake valve, an air dedicated intake port, Open it, close the exhaust valve and exhaust port, then open the intake valve and intake port. The newly provided air dedicated intake valve and air dedicated intake port will die after the exhaust valve and exhaust port are closed. Due to closing until the point is reached, the air-fuel mixture or air that has entered the cylinder (in the cylinder) from the intake valve or intake port is discharged from the exhaust valve or exhaust port without doing anything. There is no need to say .
[0008]
In particular, in the case of a gasoline engine, there is no need to say that the air-fuel mixture is exhausted without doing anything.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The embodiment will be described with reference to the drawings. In FIG. 1, the last exhaust when a piston valve and a rotary valve are used in a 4-cycle engine, a 6-cycle engine, an 8-cycle engine, and an engine of 10 cycles or more. As a typical example, a four-cycle gasoline engine is used to show how to handle an overlap when the intake valve, intake port, exhaust valve, and exhaust port are open at the same time. It is a cross-sectional view assuming that an engine using a piston valve is seen from above with a horizontal section. In short, the intake valve dedicated to the mixture, the exhaust valve, and the final exhaust process (in this case, When moving from the simple exhaust process to the first intake process (in this case, just the intake process), the intake and exhaust valves dedicated to the mixture are open at the same time. Open the intake valve dedicated to air without opening the intake valve dedicated to the air-fuel mixture, open it, close the exhaust valve, and then open the intake valve dedicated to the air-fuel mixture. The valve is a cross-sectional view showing the arrangement of an intake valve and a plug dedicated to air that are closed between the exhaust valve closing and the bottom dead center.
[0010]
Further, hereinafter, the intake valve dedicated to the mixture is the valve a, the exhaust valve is the valve b, and the intake valve dedicated to the air is the valve c.
[0011]
1 and FIG. 3, an intake pipe and a carburetor are attached to the valve a, an exhaust pipe is attached to the valve b, and an intake pipe dedicated to air is attached to the valve c.
[0012]
In addition, the number of valves a, b, c, and plugs shown in FIG. 1 is only the minimum necessary number, and the arrangement, number, and size are not included in this patent.
[0013]
In the embodiment shown in FIG. 2, the location of each point when using a piston valve in a 4-cycle gasoline engine and the corresponding method at the time of overlap is shown. Intake process → Compression process → Expansion process → Exhaust process, but in order to make it easier to understand the location of each point, it shows the points from the point just before the completion of the expansion process to the point just before the completion of the expansion process. It is a figure according to the rotation of the shaft, from point d to point r,
Point d Immediately before completion of the expansion process [immediately before the piston descends and reaches bottom dead center (point d and point r are the same). ]
Point e Immediately after the start of the exhaust process (immediately after the piston starts to rise)
Point f Middle of the exhaust process (in terms of crank shaft rotation angle, a little before 20 ° from top dead center)
Point g Middle of exhaust process (Crank / shaft rotation angle is a little past 20 ° from top dead center)
Point h Immediately before completion of the exhaust process (immediately before the piston moves up and reaches top dead center)
Point i Immediately after the start of the intake process (immediately after the piston starts to descend)
Point j Intake process middle (a little before 20 ° past top dead center in terms of crank shaft rotation angle)
Point k Intake process middle (in terms of crank shaft rotation angle, a little over 20 ° from top dead center)
Point l In the middle of the intake process (in terms of crank shaft rotation angle, a little before 90 ° from the top dead center)
Point m The middle of the intake process (in terms of crank shaft rotation angle, a little over 90 ° from the top dead center)
Point n Immediately before the completion of the intake process (immediately before the piston descends to the bottom dead center)
Point o Immediately after starting the compression process (immediately after the piston starts to rise)
Point p Immediately before completion of the compression process [immediately before the piston moves up and reaches top dead center (ignition). ]
Point q Immediately after the start of the expansion process (immediately after the piston starts to descend)
Point r Immediately before completion of the expansion process [immediately before the piston descends and reaches bottom dead center (point r and point d are the same). ]
It is.
[0014]
In the embodiment shown in FIGS. 3 to 17, in order to show the movement of each valve, the ignition timing of the plug, and the location of the piston at each time point shown in FIG. 1 is a vertical cross-sectional view assuming that 1 is viewed from the direction of the cross-section SS, FIG. 3 to FIG.
FIG. 3 Immediately before completion of the expansion process [point d (point d and point r are the same)]
Valve a, valve b and valve c are closed (valve timing is not included in valve b).
Fig. 4 Immediately after the start of the exhaust process (point e)
Valve a is closed, valve b is open, and valve c is closed.
Fig. 5 Intermediate stage of exhaust process (point f)
Valve a is closed, valve b is open, and valve c is closed.
Fig. 6 Intermediate stage of exhaust process (point g)
Valve a is closed and valves b and c are open.
Fig. 7 Immediately before the exhaust process is completed (point h)
Valve a is closed and valves b and c are open.
Fig. 8 Immediately after the start of the intake process (point i)
Valve a is closed and valves b and c are open.
Fig. 9 Intake process middle (point j)
Valve a is closed and valves b and c are open.
Fig. 10 Intake process middle (point k)
Valve a is open, valve b is closed, and valve c is open.
Fig. 11 Intake process middle (point 1)
Valve a is open, valve b is closed, and valve c is open.
Fig. 12 Intake process middle (point m)
Valve a is open and valves b and c are closed.
Fig. 13 Immediately before the completion of the intake process (point n)
Valve a is open and valves b and c are closed.
Fig. 14 Immediately after starting the compression process (point o)
Valve a, valve b, and valve c are closed (valve timing is not included in valve a).
Fig. 15 Immediately before completion of the compression process [point p (ignition)]
Valve a, valve b, and valve c are closed.
Fig. 16 Immediately after the start of the expansion process (point q)
Valve a, valve b, and valve c are closed.
FIG. 17 Immediately before completion of the expansion process [point r (point r and point d are the same)]
Valve a, valve b and valve c are closed (valve timing is not included in valve b).
It is.
[0015]
What is important here is to see the opening and closing of the valve a, the valve b, and the valve c at the time of overlap from FIG. 5 (point f) to FIG. 12 (point m).
[0016]
In addition, there are no longitudinal cross sections showing the steps of the corresponding method at the time of overlap when a piston valve is used on a 6-cycle gasoline engine, an 8-cycle gasoline engine, or a 10-cycle gasoline engine or more. Since the movement of each valve during overlap is the same, it is omitted here.
[0017]
Further, the valve c at the time of the intake process after the second intake process (air intake process) of the 6-cycle gasoline engine, the 8-cycle gasoline engine, and the gasoline engine of 10 cycles or more may also be used as the valve c.
[0018]
In addition, the steps of the method of responding at the time of overlap when using a piston valve for a diesel engine, a cylinder injection gasoline engine, a 4-cycle engine, a 6-cycle engine, an 8-cycle engine, an engine of 10 cycles or more Although a longitudinal sectional view is not shown, if the plaque is replaced with a fuel injector or a plug and a fuel injector, a longitudinal sectional view of each engine process can be drawn according to a gasoline engine.
[0019]
In addition, when a rotary valve is used on a 4-cycle engine, 6-cycle engine, 8-cycle engine, 10-cycle engine or more of a gasoline engine, a diesel engine, and an in-cylinder injection gasoline engine, a method of handling at the time of overlap Although the longitudinal cross-sectional view showing the process of (2) is not drawn, two rotary burfs are used, and one of the cross sections (inner shape) is H type {{used for 4-cycle engines and 6-cycle engines, A rotary valve (Japanese Patent Application No. 356145) that replaces the piston valve. ] And [Method of intake and exhaust of rotary valve used in 4-cycle engine and 6-cycle engine (Japanese Patent Application No. 218116). ]. } And [Rotary valve instead of reciprocating valve (1996 patent application No. 179726). ]. }, 3 types of air vents or 3 rotary valves are used [when the intake / exhaust process is performed with one rotary valve per cylinder of a rotary valve used in a 4-cycle engine and a 6-cycle engine. 2 ignition points, use of 3 rotary valves per cylinder, 2 ignition points (1994 patent application No. 174,661). Thus, if three types of air mouths are provided, a longitudinal sectional view showing the steps of the corresponding method at the time of overlap can be drawn.
[0020]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
[0021]
When a piston valve or rotary valve is used on a 4-cycle engine, 6-cycle engine, 8-cycle engine, 10-cycle engine or more of a gasoline engine, a diesel engine, and an in-cylinder injection gasoline engine, it is the first time from the last exhaust process. When moving to the intake process, the intake valve, the intake port, the exhaust valve, and the exhaust port are open at the same time. During the overlap, the intake valve and the intake port for air are used without opening the intake valve and the intake port. Open the intake valve and the exhaust port, and then open the intake valve and the intake port.The newly installed air dedicated intake valve and the air dedicated intake port close the exhaust valve and the exhaust port. The air-fuel mixture or air that has come out of the intake valve and the intake port is left in the cylinder (cylinder without any action) due to the piston being lowered and closing to the bottom dead center. Through the inside) of the exhaust valve, and it is discharged from the exhaust port, and it is unnecessary to say.
[0022]
In particular, in the case of a gasoline engine, there is no need to say that the air-fuel mixture is exhausted through the cylinder without doing anything, so fuel waste is eliminated, leading to resource and energy savings.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the arrangement of a valve a, a valve b, a valve c, and a plug when using a piston valve in a four-cycle gasoline engine in a corresponding method at the time of overlap.
FIG. 2 is a diagram illustrating the location from point d to point r in FIGS. 3 to 17 when a piston valve is used in a four-cycle gasoline engine, in accordance with the rotation of the crankshaft.
FIG. 3 is a longitudinal sectional view showing a process of a corresponding method at the time of overlap when a piston valve is used in a 4-cycle gasoline engine [immediately before the completion of the expansion process (point d = point r)].
FIG. 4 is a longitudinal sectional view showing a process of a method corresponding to an overlap when a piston valve is used in a four-cycle gasoline engine [immediately after the start of the exhaust process (point e)].
FIG. 5 is a longitudinal sectional view showing a process of a method corresponding to an overlap when a piston valve is used in a four-cycle gasoline engine [exhaust process middle (point f)].
FIG. 6 is a longitudinal sectional view showing a process of a method corresponding to an overlap when a piston valve is used in a 4-cycle gasoline engine [middle exhaust process (point g)].
FIG. 7 is a longitudinal sectional view showing a process of a method corresponding to an overlap when a piston valve is used in a four-cycle gasoline engine [immediately before the exhaust process is completed (point h)].
FIG. 8 is a longitudinal sectional view showing a process of a method corresponding to an overlap when a piston valve is used in a 4-cycle gasoline engine [immediately after the start of an intake process (point i)].
FIG. 9 is a longitudinal sectional view showing a process of a corresponding method at the time of overlap when a piston valve is used in a 4-cycle gasoline engine [intake process middle (point j)].
FIG. 10 is a longitudinal sectional view showing a process of a method corresponding to an overlap when a piston valve is used in a four-cycle gasoline engine [intake process middle (point k)].
FIG. 11 is a longitudinal sectional view showing a process of a method corresponding to an overlap when a piston valve is used in a four-cycle gasoline engine [intake process intermediate (point l)].
FIG. 12 is a longitudinal sectional view showing the steps of a method for dealing with an overlap when using a piston valve in a four-cycle gasoline engine [intake process middle (point m)].
FIG. 13 is a longitudinal sectional view showing a process of a method for dealing with an overlap when a piston valve is used in a 4-cycle gasoline engine [immediately before the completion of the intake process (point n)].
FIG. 14 is a longitudinal sectional view showing a process of a corresponding method at the time of overlap when a piston valve is used in a 4-cycle gasoline engine [immediately after the start of the compression process (point o)].
FIG. 15 is a longitudinal sectional view showing steps of a method for dealing with an overlap when a piston valve is used in a four-cycle gasoline engine {immediately before completion of the compression step [point p (ignition)]}.
FIG. 16 is a longitudinal sectional view showing a process of a corresponding method at the time of overlap when a piston valve is used in a 4-cycle gasoline engine [immediately after the start of the expansion process (point q)].
FIG. 17 is a longitudinal sectional view showing a process of a corresponding method at the time of overlap when a piston valve is used in a 4-cycle gasoline engine [just before completion of the expansion process (point r = point d)].
[Explanation of symbols]
1 Intake valve for air-fuel mixture (valve a)
2 Exhaust valve (valve b)
3 When moving from the last exhaust process (in this case, just the exhaust process) to the first intake process (in this case, just the intake process), the intake valve and exhaust valve dedicated to the mixture are opened simultaneously. At the time of overlap, without newly opening the intake valve dedicated to the mixture, newly installed the intake valve dedicated to air, opened it, closed the exhaust valve, then opened the intake valve dedicated to the mixture and newly installed The air-only intake valve closes between the time when the exhaust valve closes and the bottom dead center is reached (valve c)
4 Plaque 5 Vaporizer 6 Intake pipe 7 Exhaust pipe 8 Air-only intake pipe 9 Exhaust process 10 Intake process 11 Compression process 12 Expansion process 13 Overlap 14 Piston 15 Valve b and Valve c
Valve a Intake valve valve dedicated to air-fuel mixture b Exhaust valve valve c When moving from the last exhaust process (in this case, just the exhaust process) to the first intake process (in this case, just the intake process), When the air intake and exhaust valves for the air-fuel mixture are open at the same time. , The intake valve dedicated to the air-fuel mixture is opened, and the newly provided intake valve dedicated to the air is closed between the exhaust valve closing and the bottom dead center until the bottom dead center is reached. Point d = point r)]
e Point (immediately after starting the exhaust process)
f point (exhaust process middle)
g point (exhaust process middle)
h Point (immediately before the exhaust process is completed)
i point (immediately after the start of the intake process)
j points (mid-intake process)
k points (mid-intake process)
l point (middle of the intake process)
m points (middle of intake process)
n points (immediately before completion of the intake process)
o Point (immediately after starting the compression process)
p point [immediately before completion of compression process (ignition)]
q points (immediately after the start of the expansion process)
r point [just before completion of the expansion process (point r = point d)]
SS cross section

Claims (1)

4サイクルエンジン(4サイクルガソリンエンジンと4サイクルディーゼルエンジンと筒内噴射4サイクルガソリンエンジン。)、6サイクルエンジン{〔ディーゼルエンジンと、ガソリンエンジンの、6サイクルエンジン(平成2年特許願第417964号)。〕と〔6サイクルディーゼルエンジン(平成8年特許願第140582号)。〕と〔6サイクルガソリンエンジン(平成8年特許願第151453号)。〕と〔筒内噴射6サイクルガソリンエンジン(平成8年特許願第172736号)。〕。}、8サイクルエンジン{〔8サイクルディーゼルエンジン(平成9年特許願第91265号)。〕と〔筒内噴射8サイクルガソリンエンジン(平成9年特許願第129090号)。〕と〔8サイクルガソリンエンジン(平成9年特許願第184308号)。〕。}、10サイクル以上のエンジン〔ガソリンエンジンとディーゼルエンジンと筒内噴射ガソリンエンジンの、10サイクル以上のエンジン(平成9年特許願第274908号)。〕にピストンバルブ(往復弁)、ロータリーバルブ{〔4サイクルエンジン、6サイクルエンジンに使用される、ピストンバルブに代わる、ロータリーバルブ(平成3年特許願第356145号)。〕と〔往復弁に代わる、回転弁(平成8年特許願第179726号)。〕。}を使用した時、最後の排気工程(4サイクルエンジンの場合は、ただの排気工程。)から1回目の吸気工程(4サイクルエンジンの場合は、ただの吸気工程。)に移る時、吸気弁(ガソリンエンジンの場合は、混合気専用の吸気弁。)、吸気口(ガソリンエンジンの場合は、混合気専用の吸気口。)と、排気弁、排気口が同時に開いている、オーバー・ラップ時に、吸気弁、吸気口を開けずに、空気専用の吸気弁、空気専用の吸気口を新しく設け、それを開け、排気弁、排気口が閉じてから、吸気弁、吸気口を開き、新しく設けた、空気専用の吸気弁、空気専用の吸気口は、排気弁、排気口が閉じてから下死点に至る迄の間に閉じる(ディーゼルエンジンと筒内噴射ガソリンエンジンの場合は、新しく、空気専用の吸気弁、空気専用の吸気口を設けなくても、吸気弁、吸気口を兼用しても、同じ物質を吸気するのでよい。また、6サイクルガソリンエンジン、8サイクルガソリンエンジン、10サイクル以上のガソリンエンジンに、ピストンバルブ、ロータリーバルブを使用した時でも、新しく、空気専用の吸気弁、空気専用の吸気口を設けなくても、既に有る、空気専用の吸気弁、空気専用の吸気口を兼用しても良い。そして、吸気口、空気専用の吸気口を兼用すると言う事は、同じロータリーバルブの、吸気口、空気専用の吸気口を使用するのではなく、吸気口のあるロータリーバルブ、空気専用の吸気口のあるロータリーバルブに、新しく気口を設ける事である。)。4-cycle engine (4-cycle gasoline engine, 4-cycle diesel engine and in-cylinder 4-cycle gasoline engine), 6-cycle engine {[diesel engine and gasoline engine, 6-cycle engine (Japanese Patent Application No. 417964) . ] And [6-cycle diesel engine (1996 Patent Application No. 140582). ] And [6-cycle gasoline engine (1996 Patent Application No. 151453). ] And [In-cylinder injection 6-cycle gasoline engine (1996 Patent Application No. 172736). ]. }, 8-cycle engine {[8-cycle diesel engine (1997 Patent Application No. 91265)]. ] And [In-cylinder injection 8-cycle gasoline engine (1997 Patent Application No. 129090). ] And [8-cycle gasoline engine (1997 patent application No. 184308). ]. } Engine of 10 cycles or more [An engine of 10 cycles or more of a gasoline engine, a diesel engine and an in-cylinder injection gasoline engine (1997 Patent Application No. 274908). ] Piston valve (reciprocating valve), rotary valve {[Rotary valve instead of piston valve used in 4-cycle engines and 6-cycle engines (Japanese Patent Application No. 356145)). ] And [Rotary valve instead of reciprocating valve (1996 Patent Application No. 179726). ]. }, When moving from the last exhaust process (only exhaust process in the case of a 4-cycle engine) to the first intake process (only intake process in the case of a 4-cycle engine), the intake valve (In the case of a gasoline engine, the intake valve dedicated to the air-fuel mixture.), The intake port (the intake port dedicated to the air-fuel mixture in the case of a gasoline engine), the exhaust valve and the exhaust port are open at the same time. Without opening the intake valve and intake port, provide a new intake valve for air and intake port for air, open it, close the exhaust valve and exhaust port, open the intake valve and intake port, and newly install In addition, the air intake valve and the air intake port are closed between the exhaust valve and the exhaust port until the bottom dead center is reached (in the case of diesel engines and in-cylinder injection gasoline engines, the air Dedicated intake valve, air intake Even if the intake valve and intake port are combined, the same substance can be taken in. Also, 6-cycle gasoline engine, 8-cycle gasoline engine, 10-cycle gasoline engine, piston valve, rotary valve Even when a new air-conditioner is used, there is no need to provide a new air-only intake valve and air-only intake port, and the existing air-only intake valve and air-only intake port may be used together. To use the air intake port exclusively for the air, instead of using the air intake port and the air intake port of the same rotary valve, instead of using the air intake port and the rotary valve with the air intake port. , Creating a new mouth.)
JP2003207518A 2003-06-27 2003-06-27 Method of correspondence at time of overlap Pending JP2005016501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003207518A JP2005016501A (en) 2003-06-27 2003-06-27 Method of correspondence at time of overlap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003207518A JP2005016501A (en) 2003-06-27 2003-06-27 Method of correspondence at time of overlap

Publications (1)

Publication Number Publication Date
JP2005016501A true JP2005016501A (en) 2005-01-20

Family

ID=34190059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003207518A Pending JP2005016501A (en) 2003-06-27 2003-06-27 Method of correspondence at time of overlap

Country Status (1)

Country Link
JP (1) JP2005016501A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101251231B1 (en) 2005-05-24 2013-04-08 아이에프피 에너지스 누벨 Method of controlling scavenging of the burnt gas of an indirect-injection engine, notably a supercharged engine, and engine using such a method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101251231B1 (en) 2005-05-24 2013-04-08 아이에프피 에너지스 누벨 Method of controlling scavenging of the burnt gas of an indirect-injection engine, notably a supercharged engine, and engine using such a method

Similar Documents

Publication Publication Date Title
JP5826293B2 (en) Fuel injection type 6-cycle engine having a scavenging process
JP4322204B2 (en) Method for controlling a supercharged internal combustion engine comprising at least two cylinders and an engine using such a method
JP2005016501A (en) Method of correspondence at time of overlap
JP2000064864A5 (en)
JP2002106375A (en) Method for dealing with overlap
JP2000204985A (en) Method for coping with overlap
JPH09273430A (en) Six-cycle gasoline engine
JP2005009493A (en) Combustion method for supercharging four-stroke engine and engine using such method
JP2005076628A5 (en)
JP2000064864A (en) Method of coping with overlap time
JP2003201873A (en) Method for making stroke of piston in real expansion step at the time of expansion step longer than that in real compression step at the time of compression step, when piston valve and rotary valve are used for 4-cycle and 6-cycle engine
JP2004332708A (en) Method of adopting longer effective expansion stroke than effective compression stroke when using piston valve or rotary valve for 4-cycle engine or 6-cycle engine
JP2004251268A (en) Size of valve opened at top dead center and closed at bottom dead center in suction process and opened at bottom dead center and closed before top dead center in compression process and opening and closing of valve when the number of explosions of engine is at low rotation and high rotation
JP2007002834A (en) Four-stroke one-cycle engine performing output and cooling in one cycle
JPH10317986A (en) Eight-stroke gasoline engine
RU2207442C2 (en) Working cycle of internal combustion engine
JP2005240791A (en) Opening and closing of valve opened at lower dead center in compression stroke and closed prior to upper dead center and opening and closing of passage from valve to void space
JP2007024027A (en) Four-stroke one-cycle engine performing output and cooling in one cycle
JP2003262137A (en) Method for making actual expansion ratio larger than actual compression ratio when piston valve and rotary valve are used for 4-cycle engine, 6-cycle engine, 8-cycle engine, and 10-or-more cycle engine
JP2000274255A (en) Setting stroke for really expanding at time of expanding stroke longer than stroke for really compressing at time of compressing stroke when using piston valve and rotary valve for four-cycle engine and six-cycle engine
JP2000199441A (en) Method of sparing longer time in terms of strokes for actually expanding process in expansion process than actually compressing process in compression process in using piston valve or rotary valve in four-cycle engine or six-cycle engine
JP2001234770A (en) Method for taking really expanding stroke at expansion stroke longer than really compressing stroke at compression stroke when piston valve and rotary valve are used for four-cycle engine and six-cycle engine
JP2004301112A (en) Method for taking actual expanding stroke during expansion stroke longer in terms of stroke than in actual compressing stroke during compression stroke and countermeasure against tool long stroke, and direct injection 4-cycle gasoline engine performing opening/closing at low/high engine speed or at low/high load, and opening/closing of passage from valve in relation to size and number of valves
JP2001082187A (en) Method for making actual expansion stroke in expansion stroke longer in stroke than actual compression stroke in compression stroke in the case of using piston valve and rotary vlave in 4-cycle engine or 6-cycle engine
JP2002201947A (en) Method of taking longer true expansion stroke in expansion stroke than true compression stroke in compression stroke when piston valve and rotary valve are used for four-stroke cycle engine and six-stroke cycle engine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041022

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050429

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050505

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050723

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051112

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051217

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060505

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070101

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20070619

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20070626

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20071023