JP2005010038A - Visual examination device - Google Patents

Visual examination device Download PDF

Info

Publication number
JP2005010038A
JP2005010038A JP2003175081A JP2003175081A JP2005010038A JP 2005010038 A JP2005010038 A JP 2005010038A JP 2003175081 A JP2003175081 A JP 2003175081A JP 2003175081 A JP2003175081 A JP 2003175081A JP 2005010038 A JP2005010038 A JP 2005010038A
Authority
JP
Japan
Prior art keywords
inspection
outer peripheral
peripheral surface
width
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003175081A
Other languages
Japanese (ja)
Inventor
Ryoji Nogami
良治 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
JTEKT Machine Systems Corp
Original Assignee
Koyo Seiko Co Ltd
Koyo Machine Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd, Koyo Machine Industries Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2003175081A priority Critical patent/JP2005010038A/en
Publication of JP2005010038A publication Critical patent/JP2005010038A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technological means for setting the vicinity of the end part in the axial center direction of the image of the developed outer peripheral surface of an object to be inspected as a non-inspection target, even if the inclinations and linearities of the end parts in the axial center direction of the image are not necessarily constant. <P>SOLUTION: This visual examination device 1 is constituted so as to inspect the appearance of a columnar object W to be inspected and to be fed, while the object is rotated about the axis of a feed direction A and equipped with an imaging part 2 for imaging the outer peripheral surface of the object W, while being rotated to obtain the image of the developed outer peripheral surface becoming the inclined end part, wherein both end parts 25 and 25 in the axial center direction of the outer peripheral surface of the object W have an inclination and a processing part 4 for scanning the range of the developed outer peripheral surface 20 in the image obtained by the imaging part 2 to perform visual examination processing. In the processing part 4, a predetermined width D, as viewed in the axial center direction X from the position of the inclined end part 25, is set as a non-inspection target, on the basis of the inclined end part 25 of the developed outer peripheral surface 20 to inspect the inside of the developed outer peripheral surface 20. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、円柱状の検査対象物の外観検査装置に関するものである。
【0002】
【従来の技術】
円柱状の検査対象物の外観検査装置は、検査対象物を所定の位置で回転させながら外周面をカメラで撮像し、撮像した画像を処理して検査対象物の傷を検査するものであり、例えば、特許文献1に記載されたものがある。
【0003】
【特許文献1】
特開2001−335150号公報
【0004】
【発明が解決しようとする課題】
検査対象物を所定の位置において検査する場合、多くの検査対象物を検査する場合、検査に時間がかかる。そこで、本出願人らは、検査対象物を回転させながら搬送して検査時間の短縮を図ることを先の出願(特願2002−51778号)で提案している。
ここで、円柱状の検査対象物は、その軸方向寸法に公差のある場合がほとんどであり、そのため検査対象物の軸心方向端部の精度には個体差がある。この個体差を欠陥と判定しないようにするためには、検査対象物の軸心方向端部は検査対象外としたいところである。
【0005】
しかし、回転しながら搬送されている検査対象物の外周面を撮像すると、その画像中の検査対象物の外周面は、軸心方向両端部が傾きを持つ。この軸心方向両端部の傾き度合い及び直線性は、搬送速度の変化又は乱れによって変化し、一定であるとは限らない。
そこで、本発明は、検査対象物の展開外周面画像の軸心方向端部の傾き及び直線性が一定であるとは限らない場合であっても、軸心方向端部付近を検査対象外とするための新たな技術的手段を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、搬送方向の軸心まわりに回転しながら搬送される円柱状の検査対象物の外観検査装置であって、回転しながら搬送されている検査対象物の外周面を撮像して、当該検査対象物の外周面の軸心方向両端部が傾きを持っている傾斜端部となった展開外周面の画像を得る撮像部と、前記撮像部によって得た画像中の展開外周面の範囲を走査して外観検査処理を行う処理部と、を備え、前記処理部は、前記展開外周面の傾斜端部を基準として、当該傾斜端部位置から前記軸心方向にみて所定幅を検査対象外として前記展開外周面内の検査を行うことを特徴とする。
本発明では、展開外周面の傾斜端部を基準として、当該傾斜端部位置から所定幅の範囲を検査対象外とするため、傾斜端部の傾きが変化したり、非直線的になっても、容易に軸心方向端部付近の所定範囲を検査対象外とすることができる。
【0007】
外観検査装置は、検査対象外とする前記所定幅を調整する調整手段を、備えているのが好ましい。前記所定幅を調整できるため、検査対象物の種類に応じて、適切な検査範囲の設定が可能となる。
【0008】
また、外観検査装置は、搬送されることなく回転している検査対象物を撮像した画像から、検査対象物の軸心方向幅を検出する手段と、幅検出手段によって検出された幅よりも短い検査幅を設定する手段と、検査対象物の前記軸心方向幅及び前記検査幅とから、検査対象外とする前記所定幅を算出する手段と、を備えているのが好ましい。この場合、検査対象物の幅と検査幅とが決まると、自動的に検査対象外となる所定幅が決定される。
【0009】
【発明の実施の形態】
以下、本発明の好ましい実施形態を図面に基づいて説明する。図1に示すように、外観検査装置1は、搬送されている検査対象物(以下、「ワーク」という)Wを撮像する撮像部2と、撮像部2による撮像範囲におけるワークWへ光を照射する照明部3と、撮像部2からの画像の取り込み処理及び画像処理等を行う処理部4と、を備えている。
【0010】
また、外観検査装置1は、ワークWを撮像部2による撮像範囲へ送る搬送部5と、撮像範囲にあるワークWを回転させる回転部6と、を備えている。ワークWは、搬送部5及び回転部6によって、複数個が軸心方向Xに整列した状態で軸心方向Xと平行な搬送方向Aに送られながら軸心回りに回転する。
【0011】
搬送部5は、回転部6の上流側に位置しており、ワークWを下流側の回転部6側へ送り出すものである。この搬送部5は、ワーク搬送ベルト8と、ワーク押出ローラ9とを具備しており、整列した複数のワークWの下側に配置された搬送ベルト8と、ワークWの上側に配置された押出ローラ9と、でワークWを挟み込むように配置されている。両者8,9の回転によって、軸心方向Xに整列したワークWは、撮像部2による撮像範囲へ向けて搬送方向A側へ送り出され、撮像範囲を通り抜ける。すなわち、この外観検査装置1は、スルーフィード方式となっている。なお、搬送部5は、左右からワークWを挟み込んで回転することによってワークWを送り出すものであってもよく、その具体的構成は限定されない。
【0012】
この搬送部5は、ワークWを止めることなく、ほぼ一定の速度で連続的に送る。したがって、ワークWが撮像部2の撮像範囲に来ても、ワークWは停止せず、常時移動して撮像範囲を通り抜ける。このため、ワークWは撮像範囲を次々に通過して効率よく検査をすることができる。
【0013】
回転部6は、搬送部5から送られてきたワークWを軸心X回りに回転させるものであり、軸心がワークWの軸心方向Xと同方向に向けられた一対のワーク回転ローラ10,10を備えている。一対の回転ローラ10,10は、水平方向に並置されており、同方向に回転駆動される。ワークWは、搬送部5によって一対の回転ローラ10,10上に押し出され、回転ローラ10,10の回転によって所定方向に回転する。また、回転ローラ10,10上に押し出されたワークWは、後方のワークWによって搬送方向Aに押されることで、回転ローラ10,10上を搬送方向Aに移動する。すなわち、ワークWは、回転部6において、軸心回りに回転しながら搬送方向Aに移動する。
なお、本実施形態では、搬送部5と回転部とを別々の機構によって構成したが、ワークWの搬送機能と回転機能とを一体化した単一の機構によって構成してもよい。
【0014】
前記撮像部2は、回転しながら搬送されているワークWを撮像できるように、回転部6の上方に配置されている。この撮像部2は、ラインセンサカメラによって構成されており、撮像時のカメラ走査方向がX方向に一致するように設けられ、ワークWの頂部付近のX方向の線画像を取得する走査を行う。X方向の走査は、繰り返し行われるため、ワークWの回転に伴い、撮像部2はワークWの周方向に異なる位置を走査する。したがって、ワークWが1回転するとワークW外周面を展開した2次元画像が得られる。なお、ワークWが、X方向へ移動することなく回転だけしている場合には、展開外周面は矩形状となるが、回転とともにX方向へ移動している場合、展開外周面はX方向へ傾いたものとなる。
【0015】
外観検査装置1は、撮像部2による撮像タイミング取得するためのタイミング取得部としてワーク間検出部12を備えている。ワーク間検出部12は、撮像部2よりも搬送方向A後方側に配置されており、検出位置13を通過するワーク隙間部を検知するための接触センサや光センサなどで構成される。この検出位置13をワーク隙間部が通過すると、ワーク間検出部12は、処理部4に対してワーク間を検出したことを示す検出信号を出力する。ワーク間を検出することで、ワーク1個分の移動時間ごとのタイミングが得られ、ワークWの移動速度が変化しても、常にワーク1個分移動時間に相当するタイミングが得られる。なお、前記タイミングは、撮像部2によって得られた画像に基づいてワーク間位置を検出することで取得してもよい。
【0016】
図2及び図3は、撮像部2によって得られた画像に基づく外観検査処理の前処理としての検査幅設定処理を示している。この検査幅設定処理では、基準となるワークWを回転部6上に載せ、搬送停止状態で撮像し(ステップS1)、この撮像によって得られた画像に基づいて、検査幅と検査対象外の所定幅とを決定する(ステップS2〜S4)。
【0017】
具体的には、まず、回転部6に実際に検査されるものと同じ基準ワークWを載せ、回転部6によって軸心まわりに回転させる。このとき搬送方向Aへの移動は生じさせない。搬送されることなく回転しているワークWを撮像部2によって撮像すると(ステップS1)、図3のような基準画像が処理部4に取り込まれる。図3中において、白抜きの範囲20はワークWの展開外周面であり、範囲20の左右両側にある範囲21はワークW間のワーク隙間部である。展開外周面20は明るく映っているが、ワーク隙間部は暗く映っており、この明暗差によって、基準画像中の展開外周面20の軸心方向の幅(ワーク幅)W1を検出することができる(ステップS2)。
【0018】
ワークWの軸心方向の幅寸法には公差があるため、その幅寸法は、ワークWごとに個体差がある。この個体差をワークの欠陥と判定しないために、検査範囲を軸心方向の中央に持っていき、軸心方向両端を検査対象外とする。検査対象となる検査幅W2は、オペレータの入力によって設定される(ステップS3)。検査幅W2は、ワーク軸心方向幅W1よりも短い値に設定される。検査幅W2の入力は、図示しない入力手段(キーボード等)によって行われる。検査幅W2が入力によって設定できるため、検査幅W2は自由に設定でき、検査範囲の微調整が可能である。
【0019】
検査対象外の範囲は、W1とW2とに基づいて処理部4が算出する。具体的には、検査対象外とする場合の軸心方向の所定幅Dは、D=(W1−W2)/2として求められる(ステップS4)。この所定幅Dは、検査幅W2を微調整することで簡単に微調整できる。つまり、検査幅W2を設定・調整し、所定幅Dを算出する処理部2の機能が所定幅Dの調整手段として機能している。
【0020】
以上の検査前処理後、外観検査処理が行われる。外観検査処理の際には、複数のワークWが搬送方向に並んで連続的に搬送され、回転しながら撮像される。撮像で得られた画像は、ワークWのほぼ一回転分の画像であり、処理部2に取り込まれ、画像処理によってワークWの外観検査処理が行われる。図4及び図5は、外観検査処理のための検査画像の走査処理を示している。
【0021】
図5に示す画像には、検査対象となるワークWだけでなく、搬送方向の前後に隣接する他のワークWの展開外周面20,20の一部も映っている。また、図3の基準画像と異なり、搬送中に撮像したものであるため展開外周面が傾いている。つまり、図5において、右から左に向かう方向が搬送方向であり、上側が時間的に早く、下側に行くほど搬送方向(左方)に外周面の位置がずれている。このずれの分だけ、展開外周面の軸心方向(x方向)両端部25a、25bは、傾いた傾斜端部となっている。搬送速度が完全に一定でない場合には、図5のように、傾斜端部25a,25bは直線でなく曲線となる。また、ワークが撮像されるタイミングによっては、傾斜端部25a,25bの位置は、x方向に変動する。傾斜端部25aが変化すると、検査対象である展開外周面20の位置・形状も変化することになる。なお、図5におけるx,y座標は、図1のX,Y方向と一致している。図5の画像座標は、左上を原点:0として、x座標xm:0〜xmax、y座標yn:0〜ymaxの範囲の値をとる。
【0022】
位置・形状が必ずしも一定でない展開外周面20の検査をするため、検査範囲は傾斜端部25aの位置を基準に決定される。このため、外観検査処理の際には、まず、検査対象となるワークの展開外周面20の進行方向側傾斜端部25aの位置を検出する(ステップS5)。傾斜端部25aの位置は、展開外周面20とワーク隙間部21の境界を画像処理によって判別することによって求まる。傾斜端部25aの位置(座標)は、走査基準配列arr_x[yn]に格納される。走査基準配列は、1次元配列である。走査基準配列arr_x[yn]におけるynは図5のy座標であって0〜ymaxの範囲の値をとる。各配列値arr_x[yn]として、y座標がynのときのx座標が格納され、0〜xmaxの範囲の値をとる。
【0023】
既に説明したように、検査対象範囲は、展開外周面20の軸心方向両端部付近の所定幅Dを除いた軸心方向中間の検査幅W2である。検査幅設定処理では、矩形状の展開外周面20を基礎として検査幅W2が設定されているが、これを傾斜した展開外周面20に適用するため、次の範囲で画像の走査を行う。
【0024】
x座標xm:arr_x[yn]+D〜arr_x[yn]+D+W2
y座標yn:0〜ymax
【0025】
走査位置は、x座標に関し、走査基準配列arr_x[yn]によって示される傾斜端部25aの位置(arr_x[yn])から所定幅D分ほどシフトされる(arr_x[yn]+D)。つまり、所定幅Dは走査シフト量となっている。そして、x座標に関しては、シフトした位置から検査幅W2分の走査が行われる。この結果、傾斜端部25aから所定幅Dの間は、検査対象外となり、傾斜端部25bから所定幅Dの間も検査対象外となる。このように、傾斜端部25aを基準として走査を行うため、検査幅W2を設定するだけで、傾斜端部25a,25bの位置・形状が変化しても、自動的にシフト量Dが決定されるため、正確に検査対象範囲と対象外範囲とを区別して外観検査をすることができる。また、傾斜端部25a,25bの変化にかかわらず、基準画像によって検査幅W2を一律に調整できるため、簡単に検査対象範囲を調整できる。
【0026】
なお、本発明は、上記実施形態に限定されるものではない。例えば、傾斜端部25bを走査の基準位置としてもよい。
【0027】
【発明の効果】
発明によれば、展開外周面の傾斜端部を基準として、当該傾斜端部位置から所定幅の範囲を検査対象外とするため、傾斜端部の傾きが変化したり、非直線的になっても、容易に軸心方向端部付近の所定範囲を検査対象外とすることができる。
【図面の簡単な説明】
【図1】外観検査装置の模式図である。
【図2】検査幅設定処理のフローチャートである。
【図3】検査幅設定時のワーク画像である。
【図4】外観検査処理のための走査処理のフローチャートである。
【図5】外観検査時のワーク画像である。
【符号の説明】
1 外観検査装置
2 撮像部
4 処理部
A 搬送方向
D 所定幅
W ワーク
W1 軸心方向幅
W2 検査幅
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an appearance inspection apparatus for a cylindrical inspection object.
[0002]
[Prior art]
The columnar inspection object appearance inspection device is to inspect the outer periphery with a camera while rotating the inspection object at a predetermined position, process the imaged image, and inspect the inspection object for flaws, For example, there is one described in Patent Document 1.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-335150
[Problems to be solved by the invention]
When inspecting an inspection object at a predetermined position, when inspecting many inspection objects, the inspection takes time. Therefore, the applicants of the present application (Japanese Patent Application No. 2002-51778) have proposed that the inspection object is conveyed while being rotated to shorten the inspection time.
Here, most cylindrical inspection objects have tolerances in their axial dimensions, and therefore there are individual differences in the accuracy of the axial end of the inspection object. In order to prevent this individual difference from being determined as a defect, it is desired to exclude the axial direction end of the inspection object from the inspection object.
[0005]
However, when the outer peripheral surface of the inspection object being conveyed while rotating is imaged, the outer peripheral surface of the inspection object in the image is inclined at both axial ends. The degree of inclination and linearity at both ends in the axial direction change due to changes or disturbances in the conveyance speed and are not necessarily constant.
Therefore, the present invention excludes the vicinity of the axial end portion from the inspection target even when the inclination and linearity of the axial end portion of the developed outer peripheral surface image of the inspection target are not always constant. It aims at providing the new technical means for doing.
[0006]
[Means for Solving the Problems]
The present invention is an appearance inspection apparatus for a cylindrical inspection object that is conveyed while rotating around an axis in the conveying direction, and images the outer peripheral surface of the inspection object that is conveyed while rotating, An imaging unit that obtains an image of a developed outer peripheral surface in which both ends in the axial direction of the outer peripheral surface of the inspection target object are inclined ends, and a range of the developed outer peripheral surface in the image obtained by the imaging unit. A processing unit that scans and performs an appearance inspection process, and the processing unit excludes a predetermined width from the position of the inclined end portion in the axial direction with respect to the inclined end portion of the development outer peripheral surface. The inspection in the development outer peripheral surface is performed.
In the present invention, since the range of the predetermined width from the inclined end position is excluded from the inspection object with reference to the inclined end portion of the development outer peripheral surface, even if the inclination of the inclined end portion changes or becomes non-linear. Thus, a predetermined range near the end in the axial direction can be easily excluded from the inspection object.
[0007]
It is preferable that the appearance inspection apparatus includes an adjustment unit that adjusts the predetermined width that is not to be inspected. Since the predetermined width can be adjusted, an appropriate inspection range can be set according to the type of inspection object.
[0008]
Further, the appearance inspection apparatus is shorter than the width detected by the width detection means and means for detecting the axial width of the inspection object from the image obtained by imaging the inspection object rotating without being conveyed. It is preferable to include means for setting an inspection width and means for calculating the predetermined width to be excluded from the inspection object from the axial width of the inspection object and the inspection width. In this case, when the width of the inspection object and the inspection width are determined, a predetermined width that is not to be inspected is automatically determined.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the appearance inspection apparatus 1 irradiates light to the imaging unit 2 that images the inspection object (hereinafter referred to as “work”) W being conveyed, and the workpiece W in the imaging range by the imaging unit 2. And an illuminating unit 3 that performs image capturing from the image capturing unit 2 and a processing unit 4 that performs image processing and the like.
[0010]
In addition, the appearance inspection apparatus 1 includes a transport unit 5 that sends the workpiece W to the imaging range by the imaging unit 2 and a rotating unit 6 that rotates the workpiece W in the imaging range. The workpiece W is rotated about the axis while being conveyed in the conveying direction A parallel to the axial direction X in a state where a plurality of workpieces W are aligned in the axial direction X by the conveying unit 5 and the rotating unit 6.
[0011]
The conveyance unit 5 is located on the upstream side of the rotation unit 6 and sends the workpiece W to the rotation unit 6 side on the downstream side. The transport unit 5 includes a work transport belt 8 and a work extrusion roller 9, and includes a transport belt 8 disposed below the aligned works W and an extrusion disposed above the work W. The roller 9 is disposed so as to sandwich the workpiece W. Due to the rotation of both 8 and 9, the workpiece W aligned in the axial direction X is sent toward the conveyance direction A toward the imaging range by the imaging unit 2 and passes through the imaging range. That is, the appearance inspection apparatus 1 is a through-feed method. In addition, the conveyance part 5 may send out the workpiece | work W by pinching and rotating the workpiece | work W from right and left, and the specific structure is not limited.
[0012]
The transport unit 5 continuously feeds the work W at a substantially constant speed without stopping. Therefore, even if the workpiece W comes into the imaging range of the imaging unit 2, the workpiece W does not stop but always moves and passes through the imaging range. For this reason, the workpiece | work W can pass the imaging range one after another, and can test | inspect efficiently.
[0013]
The rotation unit 6 rotates the workpiece W sent from the conveyance unit 5 around the axis X, and a pair of workpiece rotation rollers 10 whose axis is directed in the same direction as the axis X of the workpiece W. , 10 are provided. The pair of rotating rollers 10 and 10 are juxtaposed in the horizontal direction and are driven to rotate in the same direction. The workpiece W is pushed onto the pair of rotating rollers 10 and 10 by the transport unit 5 and rotates in a predetermined direction by the rotation of the rotating rollers 10 and 10. Further, the workpiece W pushed out onto the rotating rollers 10 and 10 is moved in the conveying direction A by the rear workpiece W, and thus moves on the rotating rollers 10 and 10 in the conveying direction A. That is, the workpiece W moves in the transport direction A while rotating around the axis in the rotating unit 6.
In the present embodiment, the transport unit 5 and the rotating unit are configured by separate mechanisms, but may be configured by a single mechanism in which the transport function and the rotating function of the workpiece W are integrated.
[0014]
The imaging unit 2 is disposed above the rotating unit 6 so that the workpiece W being conveyed while rotating can be imaged. The imaging unit 2 is configured by a line sensor camera, is provided so that the camera scanning direction at the time of imaging coincides with the X direction, and performs scanning to acquire a line image in the X direction near the top of the workpiece W. Since scanning in the X direction is repeated, the imaging unit 2 scans different positions in the circumferential direction of the workpiece W as the workpiece W rotates. Therefore, when the work W rotates once, a two-dimensional image in which the outer peripheral surface of the work W is developed is obtained. When the workpiece W is rotated without moving in the X direction, the deployed outer peripheral surface is rectangular. However, when the workpiece W is moved in the X direction with rotation, the deployed outer peripheral surface is in the X direction. It will be inclined.
[0015]
The appearance inspection apparatus 1 includes an inter-work detection unit 12 as a timing acquisition unit for acquiring an imaging timing by the imaging unit 2. The inter-work detection unit 12 is disposed on the rear side in the transport direction A with respect to the imaging unit 2 and includes a contact sensor, an optical sensor, and the like for detecting a work gap portion passing through the detection position 13. When the workpiece gap portion passes through the detection position 13, the workpiece detection unit 12 outputs a detection signal indicating that the workpiece interval has been detected to the processing unit 4. By detecting the interval between the workpieces, the timing for each movement time for one workpiece can be obtained, and even when the movement speed of the workpiece W changes, the timing corresponding to the movement time for one workpiece is always obtained. Note that the timing may be acquired by detecting the inter-work position based on the image obtained by the imaging unit 2.
[0016]
2 and 3 show an inspection width setting process as a pre-process of the appearance inspection process based on the image obtained by the imaging unit 2. In this inspection width setting process, a reference workpiece W is placed on the rotating unit 6 and imaged in a transport stop state (step S1). Based on the image obtained by this imaging, the inspection width and a predetermined non-inspection object are selected. The width is determined (steps S2 to S4).
[0017]
Specifically, first, the same reference workpiece W that is actually inspected is placed on the rotating unit 6, and is rotated around the axis by the rotating unit 6. At this time, no movement in the transport direction A occurs. When the workpiece W rotating without being conveyed is imaged by the imaging unit 2 (step S1), a reference image as shown in FIG. In FIG. 3, a white range 20 is a developed outer peripheral surface of the workpiece W, and ranges 21 on the left and right sides of the range 20 are workpiece gap portions between the workpieces W. The developed outer peripheral surface 20 appears bright, but the workpiece gap portion appears darker, and the width (work width) W1 in the axial direction of the developed outer peripheral surface 20 in the reference image can be detected based on this brightness difference. (Step S2).
[0018]
Since there is a tolerance in the width dimension in the axial direction of the workpiece W, the width dimension has individual differences for each workpiece W. In order not to determine this individual difference as a workpiece defect, the inspection range is brought to the center in the axial direction, and both ends in the axial direction are excluded from inspection. The inspection width W2 to be inspected is set by an operator input (step S3). The inspection width W2 is set to a value shorter than the workpiece axial direction width W1. The inspection width W2 is input by input means (keyboard or the like) not shown. Since the inspection width W2 can be set by input, the inspection width W2 can be freely set, and the inspection range can be finely adjusted.
[0019]
The non-inspection range is calculated by the processing unit 4 based on W1 and W2. Specifically, the predetermined width D in the axial direction in the case of being excluded from the inspection target is obtained as D = (W1−W2) / 2 (step S4). The predetermined width D can be easily finely adjusted by finely adjusting the inspection width W2. That is, the function of the processing unit 2 that sets and adjusts the inspection width W2 and calculates the predetermined width D functions as an adjustment unit for the predetermined width D.
[0020]
After the above pre-inspection process, an appearance inspection process is performed. In the appearance inspection process, a plurality of workpieces W are continuously conveyed side by side in the conveyance direction and imaged while rotating. The image obtained by the imaging is an image for almost one rotation of the workpiece W, is taken into the processing unit 2, and an appearance inspection process of the workpiece W is performed by image processing. 4 and 5 show the scanning process of the inspection image for the appearance inspection process.
[0021]
In the image shown in FIG. 5, not only the workpiece W to be inspected, but also a part of the developed outer peripheral surfaces 20 and 20 of other workpieces W adjacent to the front and rear in the transport direction are shown. Further, unlike the reference image of FIG. 3, the developed outer peripheral surface is inclined because the image is taken during conveyance. That is, in FIG. 5, the direction from right to left is the transport direction, the upper side is earlier in time, and the position of the outer peripheral surface is shifted in the transport direction (leftward) as it goes downward. The axial direction (x direction) both ends 25a and 25b of the development outer peripheral surface are inclined end portions that are inclined by the amount of this shift. When the conveyance speed is not completely constant, the inclined end portions 25a and 25b are not straight but curved as shown in FIG. Further, depending on the timing at which the workpiece is imaged, the positions of the inclined ends 25a and 25b vary in the x direction. When the inclined end portion 25a changes, the position / shape of the development outer peripheral surface 20 to be inspected also changes. Note that the x and y coordinates in FIG. 5 coincide with the X and Y directions in FIG. The image coordinates in FIG. 5 take values in the range of x coordinate xm: 0 to xmax and y coordinate yn: 0 to ymax, with the upper left being the origin: 0.
[0022]
In order to inspect the development outer peripheral surface 20 whose position and shape are not necessarily constant, the inspection range is determined based on the position of the inclined end portion 25a. For this reason, in the appearance inspection process, first, the position of the inclined end portion 25a on the traveling direction side of the development outer peripheral surface 20 of the workpiece to be inspected is detected (step S5). The position of the inclined end portion 25a is obtained by discriminating the boundary between the development outer peripheral surface 20 and the work gap portion 21 by image processing. The position (coordinates) of the inclined end portion 25a is stored in the scanning reference array arr_x [yn]. The scanning reference array is a one-dimensional array. Yn in the scanning reference array arr_x [yn] is the y coordinate in FIG. 5 and takes a value in the range of 0 to ymax. As each array value arr_x [yn], the x coordinate when the y coordinate is yn is stored, and takes a value in the range of 0 to xmax.
[0023]
As already described, the inspection target range is the inspection width W2 in the middle in the axial direction excluding the predetermined width D in the vicinity of both ends in the axial direction of the development outer peripheral surface 20. In the inspection width setting process, the inspection width W2 is set on the basis of the rectangular developed outer peripheral surface 20, but in order to apply this to the inclined developed outer peripheral surface 20, the image is scanned in the following range.
[0024]
x-coordinate xm: arr_x [yn] + D to arr_x [yn] + D + W2
y coordinate yn: 0 to ymax
[0025]
The scanning position is shifted by a predetermined width D (arr_x [yn] + D) from the position (arr_x [yn]) of the inclined end portion 25a indicated by the scanning reference array arr_x [yn] with respect to the x coordinate. That is, the predetermined width D is a scanning shift amount. With respect to the x coordinate, scanning for the inspection width W2 is performed from the shifted position. As a result, the portion between the inclined end portion 25a and the predetermined width D is excluded from the inspection target, and the portion between the inclined end portion 25b and the predetermined width D is also excluded from the inspection target. As described above, since the scanning is performed based on the inclined end portion 25a, the shift amount D is automatically determined even if the position and shape of the inclined end portions 25a and 25b are changed simply by setting the inspection width W2. Therefore, the appearance inspection can be performed by accurately distinguishing the inspection target range and the non-target range. In addition, the inspection width W2 can be uniformly adjusted by the reference image regardless of the change in the inclined end portions 25a and 25b, so that the inspection object range can be easily adjusted.
[0026]
The present invention is not limited to the above embodiment. For example, the inclined end portion 25b may be used as a scanning reference position.
[0027]
【The invention's effect】
According to the invention, since the range of the predetermined width from the inclined end position is excluded from the inspection object with reference to the inclined end portion of the development outer peripheral surface, the inclination of the inclined end portion changes or becomes non-linear. In addition, it is possible to easily exclude a predetermined range in the vicinity of the end portion in the axial direction from the inspection target.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an appearance inspection apparatus.
FIG. 2 is a flowchart of an inspection width setting process.
FIG. 3 is a work image when an inspection width is set.
FIG. 4 is a flowchart of scanning processing for appearance inspection processing.
FIG. 5 is a work image at the time of appearance inspection.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Appearance inspection apparatus 2 Imaging part 4 Processing part A Conveying direction D Predetermined width W Work W1 Axial direction width W2 Inspection width

Claims (3)

搬送方向の軸心まわりに回転しながら搬送される円柱状の検査対象物の外観検査装置であって、
回転しながら搬送されている検査対象物の外周面を撮像して、当該検査対象物の外周面の軸心方向両端部が傾きを持っている傾斜端部となった展開外周面の画像を得る撮像部と、
前記撮像部によって得た画像中の展開外周面の範囲を走査して外観検査処理を行う処理部と、を備え、
前記処理部は、前記展開外周面の傾斜端部を基準として、当該傾斜端部位置から前記軸心方向にみて所定幅を検査対象外として前記展開外周面内の検査を行うことを特徴とする外観検査処理。
An appearance inspection device for a cylindrical inspection object conveyed while rotating around an axis in a conveyance direction,
The outer peripheral surface of the inspection object being conveyed while rotating is imaged to obtain an image of the developed outer peripheral surface in which both end portions in the axial direction of the outer peripheral surface of the inspection object are inclined end portions. An imaging unit;
A processing unit that scans a range of the developed outer peripheral surface in the image obtained by the imaging unit and performs an appearance inspection process,
The processing unit performs an inspection in the development outer peripheral surface with a predetermined width being excluded from an inspection object from the inclined end position in the axial direction with reference to the inclined end portion of the development outer peripheral surface. Appearance inspection process.
検査対象外とする前記所定幅を調整する調整手段を備えていることを特徴とする請求項1記載の外観検査装置。The appearance inspection apparatus according to claim 1, further comprising an adjusting unit that adjusts the predetermined width that is not to be inspected. 搬送されることなく回転している検査対象物を撮像した画像から、検査対象物の軸心方向幅を検出する手段と、
幅検出手段によって検出された幅よりも短い検査幅を設定する手段と、
検査対象物の前記軸心方向幅及び前記検査幅とから、検査対象外とする前記所定幅を算出する手段と、
を備えていることを特徴とする請求項1記載の外観検査装置。
Means for detecting the axial width of the inspection object from an image obtained by imaging the inspection object rotating without being conveyed;
Means for setting an inspection width shorter than the width detected by the width detection means;
Means for calculating the predetermined width to be excluded from the inspection object from the axial direction width of the inspection object and the inspection width;
The visual inspection apparatus according to claim 1, further comprising:
JP2003175081A 2003-06-19 2003-06-19 Visual examination device Pending JP2005010038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003175081A JP2005010038A (en) 2003-06-19 2003-06-19 Visual examination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003175081A JP2005010038A (en) 2003-06-19 2003-06-19 Visual examination device

Publications (1)

Publication Number Publication Date
JP2005010038A true JP2005010038A (en) 2005-01-13

Family

ID=34098389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003175081A Pending JP2005010038A (en) 2003-06-19 2003-06-19 Visual examination device

Country Status (1)

Country Link
JP (1) JP2005010038A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024431A (en) * 2003-07-03 2005-01-27 Koyo Seiko Co Ltd Visual inspection apparatus
WO2018036412A1 (en) * 2016-08-25 2018-03-01 四川行之智汇知识产权运营有限公司 Appearance detection system for cylinder product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024431A (en) * 2003-07-03 2005-01-27 Koyo Seiko Co Ltd Visual inspection apparatus
WO2018036412A1 (en) * 2016-08-25 2018-03-01 四川行之智汇知识产权运营有限公司 Appearance detection system for cylinder product
GB2567599A (en) * 2016-08-25 2019-04-17 Sichuan Xingzhi Zhihui Intellectual Property Operation Co Ltd Appearance detection system for cylinder product
GB2567599B (en) * 2016-08-25 2021-10-27 Sichuan Xingzhi Zhihui Intellectual Property Operation Co Ltd Appearance detection system for cylinder product

Similar Documents

Publication Publication Date Title
US6169600B1 (en) Cylindrical object surface inspection system
JP2010266284A (en) Non-lighting inspection apparatus
JP2018017639A (en) Surface defect inspection method and surface defect inspection device
JP5954284B2 (en) Surface defect inspection apparatus and surface defect inspection method
EP3399302A1 (en) Egg surface inspection apparatus
JP2012531598A (en) Apparatus and method for inspecting defects in discrete low-rigidity transparent or translucent bodies
JP2001255275A (en) Surface defect inspection method and device
JP2008286646A (en) Surface flaw inspection device
JP2003263627A (en) Image taking-in device
JP2003075906A (en) Camera mount device, camera device, inspecting device, and adjusting method for attitude and positions of plurality of linear ccd cameras
JP2000108316A (en) Apparatus for inspecting quality
JP2005010038A (en) Visual examination device
JP2010002232A (en) Inspection method of forged product
WO2022224636A1 (en) Inspection device
JP4252381B2 (en) Appearance inspection device
JP2020106295A (en) Sheet defect inspection device
JP2000018922A (en) Apparatus for thickness defect inspection and its inspection method
JPH02194307A (en) Curvature shape measuring instrument for plate-like body
JP2005010039A (en) Visual examination device
JP4023295B2 (en) Surface inspection method and surface inspection apparatus
JP2015059854A (en) Defect inspection method and defect inspection device
JP4216062B2 (en) Defect inspection method
JP2005010036A (en) Visual examination device
WO2011101893A1 (en) Method and device for detecting flaw on surface of flexible object to be tested
JP2005061955A (en) Inspection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050609

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070910

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080513