WO2011101893A1 - Method and device for detecting flaw on surface of flexible object to be tested - Google Patents

Method and device for detecting flaw on surface of flexible object to be tested Download PDF

Info

Publication number
WO2011101893A1
WO2011101893A1 PCT/JP2010/000987 JP2010000987W WO2011101893A1 WO 2011101893 A1 WO2011101893 A1 WO 2011101893A1 JP 2010000987 W JP2010000987 W JP 2010000987W WO 2011101893 A1 WO2011101893 A1 WO 2011101893A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection object
scratch
inspection
wound
flexibility
Prior art date
Application number
PCT/JP2010/000987
Other languages
French (fr)
Japanese (ja)
Inventor
浩次 藤原
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to PCT/JP2010/000987 priority Critical patent/WO2011101893A1/en
Publication of WO2011101893A1 publication Critical patent/WO2011101893A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8914Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the material examined

Definitions

  • the present invention relates to a method and apparatus for inspecting the surface of a test object having flexibility.
  • toner images of each color of YMCK are synthesized on an intermediate transfer belt and transferred onto a sheet.
  • An intermediate transfer belt formed into a flexible sheet by injection molding may be used.
  • the surface of the intermediate transfer belt is usually formed in a mirror surface, and it is necessary to inspect whether the surface is scratched.
  • An illumination light source and a camera are arranged so as to capture specularly reflected light of a part of an object without a flaw, and a low-luminance part without specularly reflected light is detected as a flaw (2) specularly reflected light of a flaw of the object
  • An illumination light source and a camera are arranged so as to capture the light, and a high-luminance portion with specular reflection light is detected as a scratch.
  • a linear light source is arranged in parallel with the axis, and the irregularly reflected light from the surface of the rubber roller by the light source is photographed with a line camera (one-dimensional imaging means) and processed.
  • a line camera one-dimensional imaging means
  • the distance to the illumination light source is minimum at a position directly below the illumination light source, but as it goes to the periphery, And the irradiation angle also decreases. For this reason, there is a problem that the unevenness of illumination on the surface of the object is large.
  • the present invention provides a method and apparatus capable of easily inspecting a flaw on a surface of a test object having flexibility even if the flaw shape has a large variation, without omission. With the goal.
  • the apparatus according to the present invention is an apparatus for inspecting a scratch on the surface of an inspection object having flexibility, and conveying means for conveying the inspection object while deforming it so that the surface of the inspection object draws a curved surface.
  • Illuminating means for illuminating the surface of the inspection object from the convex side of the curved surface, imaging means for imaging the surface of the illuminated inspection object at predetermined time intervals, and obtained by the imaging means.
  • analyzing means for analyzing the detected image to detect scratches on the surface of the inspection object.
  • the inspection apparatus 1 of the present embodiment uses a flexible sheet-like object as the inspection object WK.
  • the inspection object WK is in the form of a sheet and has flexibility, and the surface has a specularity such as a metallic luster.
  • the reflected light on the surface of the inspection object WK has a very large regular reflection component compared to the irregular reflection component.
  • regular reflection does not occur at the scratched portion.
  • local regular reflection occurs in a direction different from the normal regular reflection direction according to the shape or depth of the scratch.
  • the inspection object WK may be in a strip shape having both ends, or may be endless (looped) by connecting both ends.
  • the inspection apparatus 1 includes a transport unit 11, an illumination unit 12, an imaging unit 13, a control unit 14, and the like.
  • the conveyance unit 11 conveys the inspection object WK while deforming it so that the surface of the inspection object WK is curved.
  • the conveyance unit 11 includes a columnar main roller 21, auxiliary rollers 22a and 22b, a rotation drive device (not shown), and the like. As the main roller 21 rotates, the sheet-like inspection object WK wound around the main roller 21 is conveyed in the direction of the arrow X1.
  • the inspection object WK is wound around the main roller 21 by a half circumference, and the wound portion draws a cylindrical curved surface KM. That is, the cross section of the part is circular arc shape.
  • the curved surface KM is a part of a cylindrical surface having an axis perpendicular to the transport direction X1, and is convex upward in the drawing.
  • the illumination unit 12 is disposed on the convex side of the curved surface KM, and illuminates the portion of the curved surface KM on the surface of the inspection object WK.
  • the illumination unit 12 emits diffuse light such as normal white light.
  • the illumination unit 12 is continuously lit during the inspection period.
  • the imaging unit 13 is an image sensor including an imaging element such as a CCD and a lens, and can image the entire curved surface KM of the inspection target WK.
  • the imaging unit 13 images the surface of the curved surface KM of the inspection object WK illuminated by the illumination unit 12 at a predetermined time interval ⁇ t.
  • the control unit 14 performs a calculation for detecting the presence or absence of a scratch on the surface of the inspection target WK based on the image obtained by the imaging unit 13 and controls the entire inspection apparatus 1.
  • the imaging unit 13 has a time interval ⁇ t set so that the same portion of the surface of the inspection object WK is imaged multiple times.
  • the control unit 14 includes a drive control unit 31, an analysis unit 32, an output unit 33, and the like.
  • the drive control unit 31 controls the main roller 21 to be driven at a predetermined speed and timing, controls the illumination unit 12 to be lit at a predetermined timing, and images the imaging unit 13 at a predetermined timing. Control.
  • the analysis unit 32 detects a scratch on the surface of the inspection object WK based on the state of the luminance values of a plurality of images obtained for the same portion of the surface of the inspection object WK.
  • the analysis unit 32 uses the luminance of each of the plurality of images obtained for the same portion of the surface of the inspection object WK for an image that is not regularly reflected by a normal surface.
  • the portion is extracted as a scratch or a scratch candidate portion.
  • the analysis unit 32 uses each of a plurality of images obtained for the same part of the surface of the inspection target object WK with respect to an image that is regularly reflected by a normal surface.
  • the portion is extracted as a scratch or a scratch candidate portion.
  • the analysis unit 32 includes a calculation unit that calculates the degree of variation in luminance values of a plurality of images obtained for the same portion of the surface of the inspection object WK.
  • the degree of variation of the luminance value calculated by the calculation unit is higher than the variation threshold TH1, the portion is extracted as a scratch or a scratch candidate portion.
  • the analysis unit 32 detects it as a scratch.
  • a recording unit that records the scratches detected by the analysis unit 32 in association with the positional information on the inspection target WK may be included.
  • the output unit 3 displays the inspection result on the display surface or outputs it by voice. Further, when a flaw is detected, information on the position of the inspection object WK is also displayed or output.
  • FIG. 1 illustrates a state in which the transport unit 11 transports the inspection object WK such that the curved surface KM is a part of a cylindrical surface having an axis perpendicular to the transport direction of the inspection object WK.
  • the inspection unit WK may be conveyed so that the conveyance unit 11 becomes a part of a cylindrical surface having an axis where the curved surface KM intersects at an acute angle with respect to the conveyance direction of the inspection object WK.
  • the other one curved surface has an acute angle with respect to the conveyance direction of the inspection object WK so that the conveyance unit 11 becomes a part of a cylindrical surface having an axis perpendicular to the conveyance direction of the inspection object WK.
  • the inspection object WK may be transported so as to draw two curved surfaces so as to be a part of a cylindrical surface having an axis intersecting with each other.
  • the illuminating unit 12 a point light source or a linear light source extending linearly may be used, and the lighting unit 12 may be continuously lit.
  • the illumination unit 12 may include a plurality of point light sources arranged in a direction parallel to the axis of the cylindrical surface forming the curved surface KM. In that case, you may control so that several point light sources light sequentially.
  • the inspection object WK is bent into a convex shape along the main roller 21 and the auxiliary rollers 22a and 22b, and is conveyed in the X1 direction at a constant speed V.
  • the imaging unit 13 is a monochrome image sensor having a lens 25 and an area sensor 26.
  • a half mirror 24 is provided in the optical path between the illumination unit 12 and the inspection object WK.
  • the imaging unit 13 is attached so that the horizontal direction of the image obtained by imaging is aligned with the transport direction (X1 direction).
  • the surface of the inspection object WK is illuminated by the illumination unit 12, and the reflected light is reflected by the half mirror 24 and enters the imaging unit 13.
  • the imaging unit 13 determines which part or which pixel in the image is a flaw part or a flaw candidate part according to the intensity (luminance) of incident light.
  • the inspection object WK receives illumination light from various angles as it is transported by the transport unit 11. In addition, since the inspection object WK is bent convexly toward the illumination unit 12, the range of the incident angle ⁇ of the illumination light at each part of the surface of the inspection object WK is not bent (that is, a plane surface). In the case of).
  • the illumination light LG from the illumination unit 12 is incident on the surface (curved surface KM) of the workpiece WK.
  • the incident angle ⁇ of the illumination light LG on the work WK changes as ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4. That is, ⁇ 1 ⁇ 2 ⁇ 3 ⁇ 4..., And the incident angle ⁇ gradually increases along the conveyance direction of the inspection object WK.
  • the illumination light LG is incident from the front of the surface of the inspection object WK, and the incident angle ⁇ is approximately 90 degrees.
  • the illumination light LG is incident at a very steep angle, and the incident angle ⁇ is close to 0 degree or 180 degrees.
  • the incident angle ⁇ of the illumination light LG with respect to the curved surface KM of the inspection object WK is in a wide range of approximately 0 to 180 degrees.
  • the illuminating unit 12 is used to set the incident angle ⁇ in the range of 0 to 180 degrees with respect to the range corresponding to the curved surface KM.
  • the incident angle ⁇ in the range of 0 to 180 degrees with respect to the range corresponding to the curved surface KM.
  • the amount of illumination light LG varies greatly and becomes non-uniform.
  • FIG. 4A shows a relatively shallow scratch KA.
  • the light regularly reflected by the scratch KA passes through the optical path a and enters the imaging unit 13. This optical path a depends on the position and shape of the scratch KA.
  • FIG. 4 (B) shows a relatively deep scratch KB at the same position as the scratch KA shown in FIG. 4 (A).
  • the light regularly reflected by the scratch KB passes through the optical path b without passing through the optical path a, and therefore does not enter the imaging unit 13.
  • FIG. 4 (C) shows a state where the scratch KB shown in FIG. 4 (B) has further moved in the transport direction.
  • the light specularly reflected by the scratch KB passes through the optical path b ′ and enters the imaging unit 13. Therefore, at the position shown in FIG. 4C, the imaging unit 13 can capture the regular reflection of the scratch KB.
  • the specularly reflected light from the scratch KA or the scratch KB can be captured by the imaging unit 13 at any position on the curved surface KM. That is, by transporting the inspection object WK along the curved surface KM, various shapes of scratches can be detected at any position on the curved surface KM.
  • the irradiation angle (incident angle ⁇ ) of the illumination light LG with respect to the scratch K by the illumination unit 12 changes in a wide range, and various shapes are obtained.
  • the regular reflection light with respect to the scratch can be captured by the imaging unit 13.
  • Each image G is an image of a portion corresponding to the curved surface KM at each timing with respect to the inspection object WK.
  • the image G1 is an image captured at a specific time t1.
  • the image G2 is an image captured at time t2 that is delayed by a time interval ⁇ t from time t1.
  • the image G3 is an image captured at a time t3 that is further delayed by a time interval ⁇ t than the time t2. In this way, images G4, 5, 6.
  • a scratch image KG1 corresponding to the scratch K of the inspection object WK is shown.
  • the wound image KG1 is a result of regular reflection of the wound K on the inspection object WK.
  • flaw images KG2 and 3 due to regular reflection of the flaw K of the inspection object WK are shown.
  • these images G1 to G3 are combined by overlapping them in accordance with the coordinate system of the inspection target WK. That is, the luminance image GT is obtained by superimposing these images G1 to G3 in accordance with the position of the surface of the inspection object WK.
  • the three images G1, G2, and G3 are sequentially shifted in the X direction by a distance Sx corresponding to the time interval ⁇ t.
  • the distance Sx is the shift amount of each image G and can be represented by the number of pixels on the image G. That is, the shift amount (number of pixels) Sx can be expressed by the following equation (1) using the conveyance speed V of the inspection object WK and the size ⁇ x of one pixel along the conveyance direction X1 in the image G.
  • the direction X in which the images G are sequentially shifted is the direction opposite to the conveyance direction X1 of the inspection target WK. Further, in the luminance image GT, the upper right end is the coordinate origin (0, 0), which is the Y direction downward from the origin (0, 0) and the X direction from the origin (0, 0) to the left.
  • the luminance value (density value) DR of each pixel is determined as follows. (1) The maximum value (DRmax) among the luminance values DR of all the images corresponding to the pixel. (2) A value indicating the degree of variation in the luminance values DR of all the images corresponding to the pixel. For example, the ratio (DRmax / DRmin) between the maximum value DRmax and the minimum value DRmin among the luminance values DR of all the images corresponding to the pixel is used.
  • the luminance image GT in which the luminance value DR of each pixel is determined according to (1) above is the luminance image GTA shown in FIG.
  • the luminance image GT in which the luminance value DR of each pixel is determined according to (2) above is the luminance image GTB shown in FIG.
  • the luminance value DR at each pixel position (x, y) is the maximum value (DRmax) among the luminance values DR of all the images corresponding to the pixel.
  • the luminance value DR at each pixel position (x, y) is the ratio (DRmax / DRmin) between the maximum value DRmax and the minimum value DRmin among the luminance values DR of all the images corresponding to the pixel. ).
  • the luminance value DR of each pixel is checked for these two luminance images GTA and GTB.
  • the method of checking is that when the luminance value DR is higher than the first luminance threshold value TK1 for the luminance image GTA and the luminance value DR is higher than the variation threshold value TH1 for the luminance image GTB, the pixel is determined. Extract as a candidate part of a wound.
  • TK1 a value larger than the luminance due to irregular reflection and smaller than the luminance due to regular reflection is set as the first luminance threshold value TK1.
  • An appropriate multiple value for example, “1.5”, “2”, “3” or the like is set as the fluctuation threshold TH1.
  • these threshold values may be calibrated for each position and optimized according to the position.
  • the fact that the luminance value DR is higher than the first luminance threshold value TK1 means that it can be considered to be due to regular reflection light.
  • the fact that the luminance value DR is higher than the fluctuation threshold value TH1 means that it can be considered that there is specularly reflected light according to the transport position of the inspection object WK. In this way, a scratch candidate portion (scratch candidate pixel) is extracted.
  • FIG. 7 (A) shows a scratch candidate pixel or a continuous pixel in the image GW showing the inspection object WK as a scratch candidate image KKG.
  • the length L1 and the thickness L2 of the scratch candidate image KKG are measured.
  • the measured length L1 and thickness L2 of the scratch candidate image KKG are not less than the predetermined length LL1 and not less than the predetermined thickness LL2, they are detected as scratches K.
  • the analysis unit 32 includes an image input unit 321, an image composition unit 322, a scratch candidate extraction unit 323, a threshold storage unit 324, a determination unit 325, a threshold storage unit 326, and the like.
  • the image input unit 321 takes in the image G from the imaging unit 13 and temporarily stores it. That is, the imaging by the imaging unit 13 is continuously performed at a predetermined time interval ⁇ t, but the captured image G is captured together with a reference time, for example, an elapsed time from when the inspection target WK passes the reference position.
  • each captured image G is converted into an image corresponding to a flattened cylindrical shape.
  • the size ( ⁇ x, ⁇ y) of the surface area of the inspection object WK corresponding to one pixel of the image G is obtained in advance.
  • the size ( ⁇ x, ⁇ y) of one pixel of the image G may be obtained, for example, by imaging a grid chart having a known size instead of the inspection object WK.
  • the storage capacity of the memory of the image input unit 321 is limited, only the latest N predetermined images G are stored. When the number of captured images G exceeds N, the oldest image G at that time may be discarded in order.
  • the image composition unit 322 synthesizes the captured image G to generate luminance images GTA and GTB.
  • the shift amount Sx is also constant.
  • the N images G are overlapped by shifting in the X direction (horizontal direction) by the shift amount Sx, and two luminance images GTA and GTB connected to each other are generated.
  • the scratch candidate extraction unit 323 extracts scratch candidate pixels. That is, in the two luminance images GTA and GTB, the luminance value DR of each pixel is compared with the first luminance threshold value TK1 and the variation threshold value TH1 stored in the threshold value storage unit 324, and both are Pixels larger than the threshold are extracted as scratch candidate pixels.
  • the determination unit 325 compares the scratch candidate pixel or the scratch candidate image KKG in which the scratch candidate pixel is continuous with the length LL1 and the thickness LL2, which are threshold values stored in the threshold storage unit 326, and the threshold is used. If it is greater than the value, it is determined to be a scratch K.
  • the inspection object WK If it is determined that it is a scratch K, the inspection object WK outputs a display or an alarm indicating that the inspection target WK is defective due to the scratch K. Further, if necessary, an image of the scratch K is displayed on a display surface of a display device (not shown). Further, the image of the wound K is recorded in the recording unit 34 together with the position information on the inspection object WK.
  • the position of the center of gravity (x, y) of the detected wound K is converted into coordinates on the inspection object WK, and the position of the damage K on the inspection object WK is specified. Then, the position of the specified wound K is recorded in the memory of the recording unit 34 together with the local image and imaging time of the wound K. At that time, the local image of the wound K may be recorded as the earliest image capturing time of the related image.
  • the coordinates (X, Y) on the inspection target WK have the origin (0, 0) as the starting point of the first image captured at the start of the inspection of the inspection target WK, and the conveyance direction of the inspection target WK.
  • the opposite direction may be X, and the direction orthogonal thereto may be Y (see FIG. 7).
  • a position corresponding to the center of the first image captured at the start of inspection of the inspection object WK may be set as the origin.
  • conversion from the coordinates (x, y) of the kth image taken from the start of the inspection to the coordinates (X, Y) on the inspection object WK can be performed as follows.
  • a plurality of images G are captured from the imaging unit 13 (# 11).
  • the plurality of images G are associated with the coordinate system of the inspection object WK to generate two luminance images GTA and GTB (# 12).
  • the scratch K is detected (# 13).
  • a scratch candidate pixel or a scratch candidate image may be first extracted, and if it is larger than a threshold value, it may be determined that it is a scratch K.
  • the local image and the coordinate position of the detected scratch K are displayed and recorded in the memory (# 14).
  • the surface of the sheet-like inspection object WK can be easily inspected even if the surface of the surface K has a large variation in the shape of the surface. Depending on the configuration, it can be easily performed in-line without leakage.
  • the inspection object WK can be inspected by illuminating at various angles in time series.
  • the portion of the image G that has a large amount of regular reflection light from the normal portion without the scratch K of the inspection target WK may be excluded from processing.
  • the reason is that even if the target is not treated, it is sufficient if the specularly reflected light from the scratch K is captured in the other part (area). Further, even if there is specular reflection light in a region not to be processed, the scratches K are often relatively shallow scratches, that is, the depressions are often shallow, and the quality of the inspection target WK is a problem. This is because there is a high possibility that it will not be.
  • an area where there is a lot of specularly reflected light from the normal part without the scratch K of the inspection object WK is not excluded from the processing target, but the area is used for detection of the scratch K by another processing method. It may be combined with the method described in.
  • an area ER ⁇ b> 1 with much regular reflection light from the normal part is excluded from the processing target.
  • a portion without specular reflection light is detected, and it is assumed that it is a scratch or a candidate portion thereof.
  • the luminance value DR of each pixel included in the region ER1 is compared with the second luminance threshold value TK2 in FIG. 8, and the luminance value DR is lower than the second luminance threshold value TK2, What is necessary is just to extract the part as a flaw or a candidate part of a flaw.
  • the region ER1 a portion where regular reflection always occurs may be set as the region ER1.
  • the second luminance threshold value TK2 may be set to a value larger than the luminance due to irregular reflection and smaller than the luminance due to regular reflection.
  • the region ER1 having a large amount of regular reflection light from the normal part without the scratch K of the inspection object WK is shown in FIG.
  • the inspection object WK has a rectangular or linear shape over the entire width. In this case, it is easy to detect regular reflection due to the scratch K in a portion other than the region ER1.
  • the region ER1 having a large amount of regular reflection light from the normal portion where there is no damage K on the inspection target WK is an extremely limited portion on the inspection target WK.
  • the scratch K is V-shaped and extends in a straight line in the conveyance direction (that is, the X1 direction) of the inspection object WK, it is difficult to detect the damage. The reason is that it may be difficult for the imaging unit 13 to capture the regular reflected light of the scratches K extending in a straight line in the transport direction even when the inspection object WK is transported.
  • a plurality of point light sources are arranged in a line in the Y direction (direction parallel to the axis of the curved surface KM), and the point light sources are controlled so as to light up quickly and sequentially.
  • the direction of specularly reflected light due to the scratch K changes variously, and the specularly reflected light is easily captured by the imaging unit 13.
  • another curved surface KM obtained by rotating the axis of the curved surface KM is formed on the inspection object WK, and the similar inspection is performed.
  • FIG. 11 is a diagram illustrating an example of an inspection apparatus 1B that performs inspection by conveying the inspection object WK so as to draw two curved surfaces.
  • the inspection apparatus 1B is provided with two inspection apparatuses 1BA and 1BB.
  • One inspection device 1BA is substantially the same as the inspection device 1 described above. That is, the main roller 21 and the auxiliary rollers 22a and 22b transport the inspection target WK in the transport direction X1, and form a curved surface KM1 that is a cylindrical surface having an axis along the direction Y perpendicular to the transport direction X1.
  • the curved surface KM1 is illuminated by the illumination unit 12BA, which is a line light source extending in the axial direction, and the image G is captured by the imaging unit 13BA.
  • the main roller 21B and the auxiliary rollers 22Ba, 22Bb have axes inclined with respect to the transport direction X1.
  • a curved surface KM2 that is a cylindrical surface having an axis inclined with respect to the transport direction X1 is formed.
  • the curved surface KM2 is illuminated by the illumination unit 12BB which is a line light source extending in the axial direction, and the image G is captured by the imaging unit 13BB.
  • main roller 21B and the auxiliary rollers 22Ba and 22Bb are to maintain the shape so as to draw the curved surface KM2 with respect to the inspection object WK, their surfaces slide relative to each other. It should be possible to move.
  • the conveyance direction of the inspection object WK may be changed by the main roller 21B.
  • the inspection target WK may be bent at a right angle to the depth direction of the paper with respect to the transport direction X1 in FIG.
  • the inspection object WK may be bent at a right angle so as to face the upward direction in the drawing with respect to the transport direction X1 in FIG.
  • the imaging unit 13 may be configured by arranging a plurality of cameras vertically above the half mirror 24.
  • a candidate portion of a scratch Extracted as.
  • only one luminance image GTA or luminance image GTB may be generated, and a scratch candidate portion may be extracted using only the generated one luminance image GTA or luminance image GTB.
  • the curved surface KM is a part of a cylindrical surface
  • a curved surface other than the cylindrical surface for example, the cross section may be elliptical, parabolic, or the like.
  • the transport unit 11, the illumination unit 12, the imaging unit 13, the control unit 14, the analysis unit 32, or the configuration, the structure, the circuit, the shape, the number, the arrangement, and the like of each unit or the entire inspection apparatus 1 are the gist of the present invention. Can be changed accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

In order to detect flaws on a surface of a flexible object to be tested thoroughly and easily even if the shapes of the flaws significantly vary, a device for detecting flaws on a surface of a flexible object to be tested comprises a conveying means that conveys the object while deforming the object such that the surface of the object is curved; an illuminating means that illuminates the surface of the object from a side of the object to which the surface of the object is convexed; an image capturing means that captures images of the surface of the illuminated object at predetermined time intervals; and an analyzing means that analyzes the images obtained by the image capturing means and detects flaws on the surface of the object.

Description

可撓性を有する検査対象物の表面の傷を検査する方法および装置Method and apparatus for inspecting scratch on surface of inspection object having flexibility
 本発明は、可撓性を有する検査対象物の表面の傷を検査する方法および装置に関する。 The present invention relates to a method and apparatus for inspecting the surface of a test object having flexibility.
 従来より、電子写真プロセスを有した複写機またはMFP(Multi Function Peripherals)などのカラーの画像形成装置では、中間転写ベルト上でYMCKの各色のトナー像が合成され、これが用紙に転写される。中間転写ベルトとして、射出成型によって可撓性を有したシート状に形成されたものが用いられることがある。中間転写ベルトは、通常、その表面が鏡面に形成されるものであり、表面に傷がないかどうかを検査する必要がある。 Conventionally, in a color image forming apparatus such as a copying machine or an MFP (Multi Function Peripherals) having an electrophotographic process, toner images of each color of YMCK are synthesized on an intermediate transfer belt and transferred onto a sheet. An intermediate transfer belt formed into a flexible sheet by injection molding may be used. The surface of the intermediate transfer belt is usually formed in a mirror surface, and it is necessary to inspect whether the surface is scratched.
 従来より、シート状または紙状の対象物について、その表面の傷の有無の検査をインラインで行って生産の歩留まりを上げたいという要望がある。その検査において、対象物が鏡面性の表面である場合には検査が難しく、種々の方法が提案されている。鏡面性の表面の傷を検出する方法は大きく分けて次の2通りがある。
(1) 対象物の傷なしの部分の正反射光を捉えるように照明光源およびカメラを配置し、正反射光のない低輝度部分を傷として検出する
(2) 対象物の傷の正反射光を捉えるよう照明光源およびカメラを配置し、正反射光のある高輝度部分を傷として検出する
 このうち、上記(1)においては、カメラと対象物との位置関係が少しでも変わると、正反射部分をカメラで捉えられなくなるなど、対象物をインラインで検査する場合の振動に弱いという欠点がある。
2. Description of the Related Art Conventionally, there is a desire to increase the production yield of a sheet-like or paper-like object by in-line inspection for the presence or absence of scratches on the surface thereof. In the inspection, when the object is a specular surface, the inspection is difficult, and various methods have been proposed. There are two main methods for detecting a specular surface scratch.
(1) An illumination light source and a camera are arranged so as to capture specularly reflected light of a part of an object without a flaw, and a low-luminance part without specularly reflected light is detected as a flaw (2) specularly reflected light of a flaw of the object An illumination light source and a camera are arranged so as to capture the light, and a high-luminance portion with specular reflection light is detected as a scratch. Of these, in (1) above, if the positional relationship between the camera and the object changes even slightly, regular reflection There is a drawback that it is vulnerable to vibration when inspecting an object in-line, such as being unable to capture the part with a camera.
 また、上記(2)においては、振動などで対象物とカメラとの相対位置が変動しても比較的影響を受けにくいものの、傷の形状は様々であるので、傷によっては照明光源とカメラとの最適な位置関係が異なるという欠点がある。 In the above (2), although the relative position between the object and the camera varies due to vibration or the like, it is relatively less affected, but the shape of the scratch varies. There is a drawback in that the optimal positional relationship of is different.
 上記(2)の欠点の対処法として、いろいろの角度から光を照射するとともに、通常部分からの正反射光が入らない位置に複数のカメラを配置する、という方法が提案されている(例えば特許文献1)。 As a countermeasure for the above-mentioned defect (2), there has been proposed a method of irradiating light from various angles and arranging a plurality of cameras at positions where regular reflection light from a normal portion does not enter (for example, patents). Reference 1).
 なお、ゴムローラの傷を検査するために、その軸と平行に線状の光源を配置し、光源によるゴムローラの表面からの乱反射光をラインカメラ(一次元撮像手段)で撮影して画像処理することが提案されている(特許文献2)。 In order to inspect the scratches on the rubber roller, a linear light source is arranged in parallel with the axis, and the irregularly reflected light from the surface of the rubber roller by the light source is photographed with a line camera (one-dimensional imaging means) and processed. Has been proposed (Patent Document 2).
 しかし、特許文献1の方法では、傷の形状などによっては正反射光がカメラに入射しないため、傷の検出漏れが生じる率が高い。これを防ぐためには、多数のカメラを設置する必要があり、装置が複雑になるという欠点がある。 However, in the method of Patent Document 1, specularly reflected light does not enter the camera depending on the shape of the flaw and the like, so the rate of occurrence of flaw detection failure is high. In order to prevent this, it is necessary to install a large number of cameras, and there is a disadvantage that the apparatus becomes complicated.
 また、シート状の対象物について、対象物を広げたままの状態で検査を行った場合に、照明光源の直下位置では照明光源までの距離が最小であるが、周辺にいくにしたがって照明光源までの距離が大きくなり、かつ照射角度も小さくなる。そのため、対象物の表面における照明のムラが大きいという問題もある。 In addition, when a sheet-like object is inspected with the object being spread out, the distance to the illumination light source is minimum at a position directly below the illumination light source, but as it goes to the periphery, And the irradiation angle also decreases. For this reason, there is a problem that the unevenness of illumination on the surface of the object is large.
 特許文献2の方法においては、ゴムローラのように元々円筒状の対象物に対して、傷を強調して撮像するように工夫されている。つまり、引用文献2によると、その段落番号0004~0008に記載されるように、対象物が円筒状である場合には照明を均一に当てることが難しいので、照明をゴムローラの端に近い部分にあてる。そして、照明により生じる明るい部分と暗い部分との間をラインカメラで撮影することにより、画像処理をやりやすくしている。
特開2007-218889 特開平9-14942
In the method of patent document 2, it is devised so that an image of an originally cylindrical object such as a rubber roller may be emphasized and picked up. That is, according to the cited document 2, as described in the paragraph numbers 0004 to 0008, when the object is cylindrical, it is difficult to uniformly illuminate, so the illumination is placed near the end of the rubber roller. Hit Image processing is facilitated by photographing with a line camera between a bright part and a dark part generated by illumination.
JP2007-218889 JP 9-14942 A
 本発明は、可撓性を有する検査対象物の表面の傷について、その傷の形状のバリエーションが大きい場合であっても傷の検査を漏れなく容易に行うことのできる方法および装置を提供することを目的とする。 The present invention provides a method and apparatus capable of easily inspecting a flaw on a surface of a test object having flexibility even if the flaw shape has a large variation, without omission. With the goal.
 本発明に係る装置は、可撓性を有する検査対象物の表面の傷を検査する装置であって、検査対象物の表面が曲面を描くように当該検査対象物を変形させながら搬送する搬送手段と、前記曲面の凸となった側から前記検査対象物の表面を照明する照明手段と、照明された検査対象物の表面を所定の時間間隔で撮像する撮像手段と、前記撮像手段により得られた画像を解析して検査対象物の表面の傷を検出する解析手段と、を有する。 The apparatus according to the present invention is an apparatus for inspecting a scratch on the surface of an inspection object having flexibility, and conveying means for conveying the inspection object while deforming it so that the surface of the inspection object draws a curved surface. Illuminating means for illuminating the surface of the inspection object from the convex side of the curved surface, imaging means for imaging the surface of the illuminated inspection object at predetermined time intervals, and obtained by the imaging means. And analyzing means for analyzing the detected image to detect scratches on the surface of the inspection object.
本発明の実施形態に係る検査装置の構成を示す図である。It is a figure showing the composition of the inspection device concerning the embodiment of the present invention. 本発明の実施形態に係る検査装置の正面図である。It is a front view of the inspection apparatus which concerns on embodiment of this invention. 検査対象物の搬送による照明光の入射角度の変化を示す図である。It is a figure which shows the change of the incident angle of the illumination light by conveyance of a test subject. 傷の形状による正反射光の角度の相違を示す図である。It is a figure which shows the difference in the angle of the regular reflection light by the shape of a flaw. 複数の画像を重ね合わせて輝度画像を生成する様子を説明する図である。It is a figure explaining a mode that a brightness picture is generated by superimposing a plurality of pictures. 生成された2つの輝度画像の例を示す図である。It is a figure which shows the example of the two produced | generated brightness | luminance images. 画像に現れた傷を示す図である。It is a figure which shows the damage | wound which appeared in the image. 解析部の構成の例を示すブロック図である。It is a block diagram which shows the example of a structure of an analysis part. 検査装置における処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence in a test | inspection apparatus. 曲面における正反射の領域の例を示す図である。It is a figure which shows the example of the area | region of regular reflection in a curved surface. 2つの曲面を描くように検査対象物を搬送する例を示す図である。It is a figure which shows the example which conveys an inspection target object so that two curved surfaces may be drawn.
 以下、可撓性を有する検査対象物WKの表面の傷を検査する検査装置1の実施形態について説明する。 Hereinafter, an embodiment of the inspection apparatus 1 that inspects the surface of the inspection object WK having flexibility will be described.
 本実施形態の検査装置1は、可撓性を有するシート状のものを検査対象物WKとする。つまり、検査対象物WKは、シート状であって可撓性を有しており、表面が金属光沢物などのような鏡面性を有している。 The inspection apparatus 1 of the present embodiment uses a flexible sheet-like object as the inspection object WK. In other words, the inspection object WK is in the form of a sheet and has flexibility, and the surface has a specularity such as a metallic luster.
 検査対象物WKの表面での反射光は、乱反射成分に比較して正反射成分が極めて大きい。検査対象物WKの表面に傷がある場合に、傷の部分では正反射とはならない。その場合に、傷の形状または深さなどに応じて、通常の正反射の方向とは異なった方向に局部的な正反射が起こる。 The reflected light on the surface of the inspection object WK has a very large regular reflection component compared to the irregular reflection component. When there is a scratch on the surface of the inspection object WK, regular reflection does not occur at the scratched portion. In this case, local regular reflection occurs in a direction different from the normal regular reflection direction according to the shape or depth of the scratch.
 なお、検査対象物WKは、両端を有した帯状であってもよく、その両端が接続されて無端状(ループ状)になったものであってもよい。 Note that the inspection object WK may be in a strip shape having both ends, or may be endless (looped) by connecting both ends.
 図1において、検査装置1は、搬送部11、照明部12、撮像部13、および制御部14などを備える。 1, the inspection apparatus 1 includes a transport unit 11, an illumination unit 12, an imaging unit 13, a control unit 14, and the like.
 搬送部11は、検査対象物WKの表面が曲面を描くように、検査対象物WKを変形させながら搬送する。 The conveyance unit 11 conveys the inspection object WK while deforming it so that the surface of the inspection object WK is curved.
 搬送部11は、円柱状の主ローラ21、補助ローラ22a,22b、および図示しない回転駆動装置などを備える。主ローラ21が回転することにより、主ローラ21に巻き付けられたシート状の検査対象物WKが、矢印X1の方向に搬送される。 The conveyance unit 11 includes a columnar main roller 21, auxiliary rollers 22a and 22b, a rotation drive device (not shown), and the like. As the main roller 21 rotates, the sheet-like inspection object WK wound around the main roller 21 is conveyed in the direction of the arrow X1.
 図1においては、検査対象物WKは、主ローラ21に半周分巻き付けられ、巻き付けられた部分が、円筒面状の曲面KMを描く。つまり、その部分の断面が円弧状である。曲面KMは、搬送方向X1に対して直角方向の軸を持った円筒面の一部であり、図の上方に凸となっている。 In FIG. 1, the inspection object WK is wound around the main roller 21 by a half circumference, and the wound portion draws a cylindrical curved surface KM. That is, the cross section of the part is circular arc shape. The curved surface KM is a part of a cylindrical surface having an axis perpendicular to the transport direction X1, and is convex upward in the drawing.
 照明部12は、曲面KMの凸となった側に配置され、検査対象物WKの表面における曲面KMの部分を照明する。照明部12は、通常の白色光などの拡散光を放射する。照明部12は、検査の期間中は連続的に点灯される。 The illumination unit 12 is disposed on the convex side of the curved surface KM, and illuminates the portion of the curved surface KM on the surface of the inspection object WK. The illumination unit 12 emits diffuse light such as normal white light. The illumination unit 12 is continuously lit during the inspection period.
 撮像部13は、CCDなどの撮像素子およびレンズなどを内蔵した画像センサであり、検査対象物WKの曲面KMの全体を撮像可能である。撮像部13は、照明部12によって照明された検査対象物WKの曲面KMの表面を、所定の時間間隔Δtで撮像する。 The imaging unit 13 is an image sensor including an imaging element such as a CCD and a lens, and can image the entire curved surface KM of the inspection target WK. The imaging unit 13 images the surface of the curved surface KM of the inspection object WK illuminated by the illumination unit 12 at a predetermined time interval Δt.
 制御部14は、撮像部13により得られた画像に基づいて、検査対象物WKの表面の傷の有無を検出するための演算などを行うとともに、検査装置1の全体を制御する。 The control unit 14 performs a calculation for detecting the presence or absence of a scratch on the surface of the inspection target WK based on the image obtained by the imaging unit 13 and controls the entire inspection apparatus 1.
 なお、撮像部13は、検査対象物WKの表面の同じ部分が複数回に渡って撮像されるように、時間間隔Δtが設定されている。 Note that the imaging unit 13 has a time interval Δt set so that the same portion of the surface of the inspection object WK is imaged multiple times.
 制御部14は、駆動制御部31、解析部32、および出力部33などを有する。 The control unit 14 includes a drive control unit 31, an analysis unit 32, an output unit 33, and the like.
 駆動制御部31は、主ローラ21を所定の速度およびタイミングで駆動するように制御し、照明部12を所定のタイミングで点灯するように制御し、撮像部13を所定のタイミングで撮像するように制御する。 The drive control unit 31 controls the main roller 21 to be driven at a predetermined speed and timing, controls the illumination unit 12 to be lit at a predetermined timing, and images the imaging unit 13 at a predetermined timing. Control.
 解析部32において、検査対象物WKの表面の同じ部分について得られた複数の画像の輝度値の状態に基づいて、検査対象物WKの表面の傷を検出する。 The analysis unit 32 detects a scratch on the surface of the inspection object WK based on the state of the luminance values of a plurality of images obtained for the same portion of the surface of the inspection object WK.
 例えば、解析部32は、検査対象物WKの表面が鏡面である場合に、正常な表面による正反射のない画像について、検査対象物WKの表面の同じ部分について得られた複数の画像の各輝度値のいずれかが第1輝度しきい値TK1よりも高いときに、その部分を傷であるとしまたは傷の候補部分として抽出する。 For example, when the surface of the inspection object WK is a mirror surface, the analysis unit 32 uses the luminance of each of the plurality of images obtained for the same portion of the surface of the inspection object WK for an image that is not regularly reflected by a normal surface. When any of the values is higher than the first luminance threshold value TK1, the portion is extracted as a scratch or a scratch candidate portion.
 また、解析部32は、検査対象物WKの表面が鏡面である場合に、正常な表面により正反射となった画像について、検査対象物WKの表面の同じ部分について得られた複数の画像の各輝度値のいずれかが第2輝度しきい値TK2よりも低いときに、その部分を傷であるとしまたは傷の候補部分として抽出する。 In addition, when the surface of the inspection target object WK is a mirror surface, the analysis unit 32 uses each of a plurality of images obtained for the same part of the surface of the inspection target object WK with respect to an image that is regularly reflected by a normal surface. When any one of the luminance values is lower than the second luminance threshold value TK2, the portion is extracted as a scratch or a scratch candidate portion.
 また、解析部32は、検査対象物WKの表面の同じ部分について得られた複数の画像の輝度値の変動の度合いを算出する算出部を有する。算出部で算出された輝度値の変動の度合いが、変動しきい値TH1よりも高いときに、その部分を傷であるとしまたは傷の候補部分として抽出する。 Also, the analysis unit 32 includes a calculation unit that calculates the degree of variation in luminance values of a plurality of images obtained for the same portion of the surface of the inspection object WK. When the degree of variation of the luminance value calculated by the calculation unit is higher than the variation threshold TH1, the portion is extracted as a scratch or a scratch candidate portion.
 また、解析部32は、抽出した傷の候補部分が所定の長さと所定の太さを有する場合に、それを傷として検出する。 In addition, when the extracted candidate part of the scratch has a predetermined length and a predetermined thickness, the analysis unit 32 detects it as a scratch.
 また、解析部32によって検出された傷について、検査対象物WKにおける位置情報に関連付けて記録する記録部を有していてもよい。 Further, a recording unit that records the scratches detected by the analysis unit 32 in association with the positional information on the inspection target WK may be included.
 出力部3は、検査結果を、表示面に表示し、または音声により出力する。また、傷が検出された場合に、検査対象物WKにおけるその位置についての情報を、同じく表示しまたは出力する。 The output unit 3 displays the inspection result on the display surface or outputs it by voice. Further, when a flaw is detected, information on the position of the inspection object WK is also displayed or output.
 なお、図1に示す例は、搬送部11が、曲面KMが検査対象物WKの搬送方向に垂直な軸を持つ円筒面の一部となるように、検査対象物WKを搬送する状態を示している。しかし、搬送部11が、曲面KMが検査対象物WKの搬送方向に対して鋭角に交わる軸を持つ円筒面の一部となるように、検査対象物WKを搬送するようにしてもよい。 The example illustrated in FIG. 1 illustrates a state in which the transport unit 11 transports the inspection object WK such that the curved surface KM is a part of a cylindrical surface having an axis perpendicular to the transport direction of the inspection object WK. ing. However, the inspection unit WK may be conveyed so that the conveyance unit 11 becomes a part of a cylindrical surface having an axis where the curved surface KM intersects at an acute angle with respect to the conveyance direction of the inspection object WK.
 また、搬送部11が、1つの曲面が検査対象物WKの搬送方向に垂直な軸を持つ円筒面の一部となるよう、他の1つの曲面が検査対象物WKの搬送方向に対して鋭角に交わる軸を持つ円筒面の一部となるよう、2つの曲面を描くように検査対象物WKを搬送するようにしてもよい。 Further, the other one curved surface has an acute angle with respect to the conveyance direction of the inspection object WK so that the conveyance unit 11 becomes a part of a cylindrical surface having an axis perpendicular to the conveyance direction of the inspection object WK. The inspection object WK may be transported so as to draw two curved surfaces so as to be a part of a cylindrical surface having an axis intersecting with each other.
 照明部12として、点光源または線状に延びる線光源を用い、連続的に点灯させてもよい。しかし、照明部12として、曲面KMを形成する円筒面の軸と平行な方向に配列された複数の点光源を含んでもよい。その場合に、複数の点光源が順次点灯するように制御してもよい。 As the illuminating unit 12, a point light source or a linear light source extending linearly may be used, and the lighting unit 12 may be continuously lit. However, the illumination unit 12 may include a plurality of point light sources arranged in a direction parallel to the axis of the cylindrical surface forming the curved surface KM. In that case, you may control so that several point light sources light sequentially.
 以下、さらに詳しく説明する。 The following is a more detailed explanation.
 図2において、検査対象物WKは、主ローラ21および補助ローラ22a,22bを伝って凸状に曲げられ、一定の速度VでX1方向に搬送される。撮像部13は、レンズ25およびエリアセンサ26を有したモノクロの画像センサである。照明部12と検査対象物WKとの間の光路中に、ハーフミラー24が設けられている。撮像部13は、撮像によって得られる画像の水平方向が搬送方向(X1方向)に揃うように取り付けられる。 2, the inspection object WK is bent into a convex shape along the main roller 21 and the auxiliary rollers 22a and 22b, and is conveyed in the X1 direction at a constant speed V. The imaging unit 13 is a monochrome image sensor having a lens 25 and an area sensor 26. A half mirror 24 is provided in the optical path between the illumination unit 12 and the inspection object WK. The imaging unit 13 is attached so that the horizontal direction of the image obtained by imaging is aligned with the transport direction (X1 direction).
 検査対象物WKの表面は、照明部12によって照明され、その反射光がハーフミラー24で反射され、撮像部13に入射する。撮像部13は、入射した光の強さ(輝度)に応じて、画像中のいずれの部分またはいずれの画素が傷の部分であるか、または傷の候補部分であるかを判断する。 The surface of the inspection object WK is illuminated by the illumination unit 12, and the reflected light is reflected by the half mirror 24 and enters the imaging unit 13. The imaging unit 13 determines which part or which pixel in the image is a flaw part or a flaw candidate part according to the intensity (luminance) of incident light.
 検査対象物WKは、搬送部11により搬送されるにつれて、いろいろな角度から照明光を受けることになる。また、検査対象物WKは、照明部12の側に凸状に曲げられているため、検査対象物WKの表面の各部における照明光の入射角αの範囲は、曲げられていない場合(つまり平面の場合)と比べて大きい。 The inspection object WK receives illumination light from various angles as it is transported by the transport unit 11. In addition, since the inspection object WK is bent convexly toward the illumination unit 12, the range of the incident angle α of the illumination light at each part of the surface of the inspection object WK is not bent (that is, a plane surface). In the case of).
 すなわち、図3に示されるように、照明部12からの照明光LGが、ワークWKの表面(曲面KM)に対して入射する。ワークWKへの照明光LGの入射角αは、α1、α2、α3、α4…のように変化する。つまり、α1<α2<α3<α4…であり、検査対象物WKの搬送方向に沿って、入射角αは徐々に大きくなる。 That is, as shown in FIG. 3, the illumination light LG from the illumination unit 12 is incident on the surface (curved surface KM) of the workpiece WK. The incident angle α of the illumination light LG on the work WK changes as α1, α2, α3, α4. That is, α1 <α2 <α3 <α4..., And the incident angle α gradually increases along the conveyance direction of the inspection object WK.
 例えば、検査対象物WKの曲面KMの中央付近では、検査対象物WKの表面の正面から照明光LGが入射しており、入射角αはほぼ90度である。しかし、曲面KMの端部では、非常に急峻な角度で照明光LGが入射し、入射角αは0度または180度に近い。 For example, in the vicinity of the center of the curved surface KM of the inspection object WK, the illumination light LG is incident from the front of the surface of the inspection object WK, and the incident angle α is approximately 90 degrees. However, at the end of the curved surface KM, the illumination light LG is incident at a very steep angle, and the incident angle α is close to 0 degree or 180 degrees.
 つまり、検査対象物WKの曲面KMに対する照明光LGの入射角αは、ほぼ0~180度の広い範囲となる。 That is, the incident angle α of the illumination light LG with respect to the curved surface KM of the inspection object WK is in a wide range of approximately 0 to 180 degrees.
 これに対し、仮に、検査対象物WKが平面のままの状態であった場合には、曲面KMに対応する範囲に対して0~180度の範囲の入射角αとするには、照明部12を検査対象物WKの表面に極接近させなければならない。その場合には、検査対象物WKの表面に応じて照明部12からの距離が大きく変化するので、照明光LGの光量が大きくバラついて不均一となってしまう。 On the other hand, if the inspection object WK is still in a flat state, the illuminating unit 12 is used to set the incident angle α in the range of 0 to 180 degrees with respect to the range corresponding to the curved surface KM. Must be in close proximity to the surface of the inspection object WK. In that case, since the distance from the illumination unit 12 varies greatly according to the surface of the inspection object WK, the amount of illumination light LG varies greatly and becomes non-uniform.
 さて、図4(A)~(C)に示すように、検査対象物WKの表面にV字形に切れ込んだ傷KAがあるとする。 Now, as shown in FIGS. 4A to 4C, it is assumed that there is a scratch KA cut into a V shape on the surface of the inspection object WK.
 図4(A)には、比較的浅い傷KAが示されている。図4(A)において、傷KAによって正反射した光は、光路aを通り、撮像部13に入射する。この光路aは、傷KAの位置および形状に依存する。 FIG. 4A shows a relatively shallow scratch KA. In FIG. 4A, the light regularly reflected by the scratch KA passes through the optical path a and enters the imaging unit 13. This optical path a depends on the position and shape of the scratch KA.
 図4(B)には、図4(A)に示す傷KAと同じ位置に、比較的深い傷KBが示されている。図4(B)において、傷KBによって正反射した光は、光路aを通ることなく、光路bを通り、したがって撮像部13には入射しない。 FIG. 4 (B) shows a relatively deep scratch KB at the same position as the scratch KA shown in FIG. 4 (A). In FIG. 4B, the light regularly reflected by the scratch KB passes through the optical path b without passing through the optical path a, and therefore does not enter the imaging unit 13.
 図4(C)には、図4(B)に示す傷KBがさらに搬送方向に移動した状態が示されている。図4(C)において、傷KBによって正反射した光は、光路b’を通り、撮像部13に入射する。したがって、図4(C)に示す位置において、撮像部13は傷KBの正反射を捉えることができる。 FIG. 4 (C) shows a state where the scratch KB shown in FIG. 4 (B) has further moved in the transport direction. In FIG. 4C, the light specularly reflected by the scratch KB passes through the optical path b ′ and enters the imaging unit 13. Therefore, at the position shown in FIG. 4C, the imaging unit 13 can capture the regular reflection of the scratch KB.
 すなわち、傷KAまたは傷KBによる正反射光は、曲面KM上のいずれかの位置において、撮像部13によって捉えることができる。つまり、検査対象物WKを曲面KMに沿って搬送することにより、様々な形状の傷を曲面KM上のいずれかの位置で検出することができる。 That is, the specularly reflected light from the scratch KA or the scratch KB can be captured by the imaging unit 13 at any position on the curved surface KM. That is, by transporting the inspection object WK along the curved surface KM, various shapes of scratches can be detected at any position on the curved surface KM.
 このように、検査対象物WKを曲面KMに変形した状態で搬送することによって、照明部12による照明光LGの傷Kに対する照射角度(入射角α)が広い範囲で変化し、様々な形状の傷に対する正反射光を撮像部13によって捉えることができる。 In this way, by transporting the inspection object WK in a deformed state to the curved surface KM, the irradiation angle (incident angle α) of the illumination light LG with respect to the scratch K by the illumination unit 12 changes in a wide range, and various shapes are obtained. The regular reflection light with respect to the scratch can be captured by the imaging unit 13.
 したがって、検査対象物WKの表面の傷について、その傷の形状が様々に異なるものであっても、傷の検査を漏れなく、容易に行うことができる。 Therefore, even if the scratches on the surface of the inspection object WK have different shapes, the scratches can be easily inspected without omission.
 次に、撮像部13から得られた画像から傷であることをどのようにして判断するかについて説明する。 Next, how to determine that the image is a flaw from the image obtained from the imaging unit 13 will be described.
 図5において、撮像部13によって撮像された3枚の画像G1,G2,G3が示されている。各画像Gは、検査対象物WKについて、それぞれのタイミングにおいて曲面KMに対応する部分の画像である。 In FIG. 5, three images G1, G2, and G3 captured by the imaging unit 13 are shown. Each image G is an image of a portion corresponding to the curved surface KM at each timing with respect to the inspection object WK.
 これらのうち、画像G1は、ある特定の時刻t1に撮像された画像である。画像G2は、時刻t1よりも時間間隔Δtだけ遅れた時刻t2で撮像された画像である。画像G3は、時刻t2よりもさらに時間間隔Δtだけ遅れた時刻t3で撮像された画像である。このようにして、順次、画像G4,5,6…が撮像される。 Among these, the image G1 is an image captured at a specific time t1. The image G2 is an image captured at time t2 that is delayed by a time interval Δt from time t1. The image G3 is an image captured at a time t3 that is further delayed by a time interval Δt than the time t2. In this way, images G4, 5, 6.
 画像G1には、検査対象物WKの傷Kに対応した傷画像KG1が写っている。傷画像KG1は、検査対象物WKの傷Kの正反射によるものである。同様に、画像G2,G3には、検査対象物WKの傷Kの正反射による傷画像KG2,3が写っている。 In the image G1, a scratch image KG1 corresponding to the scratch K of the inspection object WK is shown. The wound image KG1 is a result of regular reflection of the wound K on the inspection object WK. Similarly, in the images G2 and G3, flaw images KG2 and 3 due to regular reflection of the flaw K of the inspection object WK are shown.
 検査対象物WKの傷Kは、検査対象物WK上において同一の位置にあるので、これらの画像G1~3を検査対象物WKの座標系に合わせて重ねることにより合成する。つまり、これらの画像G1~3を、検査対象物WKの表面の位置に合わせて重ねることにより、輝度画像GTが得られる。 Since the scratch K of the inspection target WK is at the same position on the inspection target WK, these images G1 to G3 are combined by overlapping them in accordance with the coordinate system of the inspection target WK. That is, the luminance image GT is obtained by superimposing these images G1 to G3 in accordance with the position of the surface of the inspection object WK.
 輝度画像GTにおいて、3枚の画像G1,G2,G3は、時間間隔Δtに対応する距離Sxだけ、順次X方向にずれて配置されている。 In the luminance image GT, the three images G1, G2, and G3 are sequentially shifted in the X direction by a distance Sx corresponding to the time interval Δt.
 ここで、距離Sxは、各画像Gのシフト量であり、画像G上の画素数で表すことができる。つまり、シフト量(画素数)Sxは、検査対象物WKの搬送速度V、画像Gにおける搬送方向X1に沿った1画素のサイズΔxを用いて、次の(1)式で表すことができる。 Here, the distance Sx is the shift amount of each image G and can be represented by the number of pixels on the image G. That is, the shift amount (number of pixels) Sx can be expressed by the following equation (1) using the conveyance speed V of the inspection object WK and the size Δx of one pixel along the conveyance direction X1 in the image G.
  Sx=V・Δt/Δx ……(1)
 搬送速度Vに代えて主ローラ21の角速度θを用いると、(1)式は次の(2)式で表される。
Sx = V · Δt / Δx (1)
When the angular velocity θ of the main roller 21 is used instead of the conveying speed V, the equation (1) is expressed by the following equation (2).
  Sx=π・θ・Δt/Δx ……(2)
 なお、輝度画像GTにおいて、画像Gを順次ずらせる方向Xは、検査対象物WKの搬送方向X1と逆の方向である。また、輝度画像GTにおいて、右上端が座標の原点(0,0)であり、原点(0,0)から下方へY方向、原点(0,0)から左方へX方向となる。
Sx = π · θ · Δt / Δx (2)
In the luminance image GT, the direction X in which the images G are sequentially shifted is the direction opposite to the conveyance direction X1 of the inspection target WK. Further, in the luminance image GT, the upper right end is the coordinate origin (0, 0), which is the Y direction downward from the origin (0, 0) and the X direction from the origin (0, 0) to the left.
 輝度画像GTにおいて、傷画像KG1,2,3は、同じ座標位置(x,y)、つまり同じ画素の位置で重なる。そこで、輝度画像GTにおいて、各画素の輝度値(濃度値)DRを次のようにして決定する。
(1) その画素に対応する全ての画像の輝度値DRのうちの最大値(DRmax)とする
(2) その画素に対応する全ての画像の輝度値DRの変動の度合いを示す値とする。例えば、その画素に対応する全ての画像の輝度値DRのうちの最大値DRmaxと最小値DRminとの比(DRmax/DRmin)とする。
In the luminance image GT, the flaw images KG1, 2, 3 overlap at the same coordinate position (x, y), that is, the same pixel position. Therefore, in the luminance image GT, the luminance value (density value) DR of each pixel is determined as follows.
(1) The maximum value (DRmax) among the luminance values DR of all the images corresponding to the pixel. (2) A value indicating the degree of variation in the luminance values DR of all the images corresponding to the pixel. For example, the ratio (DRmax / DRmin) between the maximum value DRmax and the minimum value DRmin among the luminance values DR of all the images corresponding to the pixel is used.
 上の(1)にしたがって各画素の輝度値DRを決定した輝度画像GTが、図6(A)に示す輝度画像GTAである。上の(2)にしたがって各画素の輝度値DRを決定した輝度画像GTが、図6(B)に示す輝度画像GTBである。 The luminance image GT in which the luminance value DR of each pixel is determined according to (1) above is the luminance image GTA shown in FIG. The luminance image GT in which the luminance value DR of each pixel is determined according to (2) above is the luminance image GTB shown in FIG.
 このように、各画素の輝度値DRを異なる方法で決定した2つの輝度画像GTA,GTBを生成する。 Thus, two luminance images GTA and GTB in which the luminance value DR of each pixel is determined by different methods are generated.
 したがって、図6(A)において、各画素位置(x,y)の輝度値DRは、その画素に対応する全ての画像の輝度値DRのうちの最大値(DRmax)である。図6(B)において、各画素位置(x,y)の輝度値DRは、その画素に対応する全ての画像の輝度値DRのうちの最大値DRmaxと最小値DRminとの比(DRmax/DRmin)である。 Therefore, in FIG. 6A, the luminance value DR at each pixel position (x, y) is the maximum value (DRmax) among the luminance values DR of all the images corresponding to the pixel. In FIG. 6B, the luminance value DR at each pixel position (x, y) is the ratio (DRmax / DRmin) between the maximum value DRmax and the minimum value DRmin among the luminance values DR of all the images corresponding to the pixel. ).
 そして、これら2つの輝度画像GTA,GTBについて、各画素の輝度値DRをチェックする。チェックの方法は、輝度画像GTAについて、輝度値DRが第1輝度しきい値TK1よりも高く、かつ、輝度画像GTBについて、輝度値DRが変動しきい値TH1よりも高いときに、その画素を傷の候補部分として抽出する。 Then, the luminance value DR of each pixel is checked for these two luminance images GTA and GTB. The method of checking is that when the luminance value DR is higher than the first luminance threshold value TK1 for the luminance image GTA and the luminance value DR is higher than the variation threshold value TH1 for the luminance image GTB, the pixel is determined. Extract as a candidate part of a wound.
 なお、第1輝度しきい値TK1として、乱反射による輝度よりも大きく、正反射による輝度よりも小さい値を設定しておく。変動しきい値TH1として、適当な倍数の値、例えば「1.5」「2」「3」などを設定しておく。 Note that a value larger than the luminance due to irregular reflection and smaller than the luminance due to regular reflection is set as the first luminance threshold value TK1. An appropriate multiple value, for example, “1.5”, “2”, “3” or the like is set as the fluctuation threshold TH1.
 また、曲面KMにおける位置によって正反射光の強度が変化するので、これらのしきい値を位置毎にキャリブレーションし、位置に応じて最適化しておいてもよい。 In addition, since the intensity of the specularly reflected light changes depending on the position on the curved surface KM, these threshold values may be calibrated for each position and optimized according to the position.
 輝度画像GTAについて、輝度値DRが第1輝度しきい値TK1よりも高いということは、それが正反射光によるものであるとみなせるということである。また、輝度画像GTBについて、輝度値DRが変動しきい値TH1よりも高いということは、検査対象物WKの搬送位置に応じて正反射光があったとみなせるということである。このようにして傷の候補部分(傷候補画素)が抽出される。 For the luminance image GTA, the fact that the luminance value DR is higher than the first luminance threshold value TK1 means that it can be considered to be due to regular reflection light. Further, regarding the luminance image GTB, the fact that the luminance value DR is higher than the fluctuation threshold value TH1 means that it can be considered that there is specularly reflected light according to the transport position of the inspection object WK. In this way, a scratch candidate portion (scratch candidate pixel) is extracted.
 図7(A)には、検査対象物WKを示す画像GWにおいて、傷候補画素またはそれが連続したものが、傷候補画像KKGとして示されている。 FIG. 7 (A) shows a scratch candidate pixel or a continuous pixel in the image GW showing the inspection object WK as a scratch candidate image KKG.
 図7(B)に示すように、傷候補画像KKGの長さL1および太さL2を計測する。計測した傷候補画像KKGの長さL1および太さL2が、所定の長さLL1以上であり、かつ所定の太さLL2以上である場合に、それを傷Kとして検出する。 7B, the length L1 and the thickness L2 of the scratch candidate image KKG are measured. When the measured length L1 and thickness L2 of the scratch candidate image KKG are not less than the predetermined length LL1 and not less than the predetermined thickness LL2, they are detected as scratches K.
 次に、制御部14の解析部32の構成の例を説明する。 Next, an example of the configuration of the analysis unit 32 of the control unit 14 will be described.
 図8において、解析部32は、画像入力部321、画像合成部322、傷候補抽出部323、しきい値記憶部324、判定部325、およびしきい値記憶部326などが設けられる。 8, the analysis unit 32 includes an image input unit 321, an image composition unit 322, a scratch candidate extraction unit 323, a threshold storage unit 324, a determination unit 325, a threshold storage unit 326, and the like.
 画像入力部321は、撮像部13から、画像Gを取り込んで一時的に記憶する。つまり、撮像部13による撮像は、所定の時間間隔Δtで連続して行われるが、基準となる時刻、例えば検査対象物WKの基準位置通過時からの経過時間とともに、撮像した画像Gを取り込む。 The image input unit 321 takes in the image G from the imaging unit 13 and temporarily stores it. That is, the imaging by the imaging unit 13 is continuously performed at a predetermined time interval Δt, but the captured image G is captured together with a reference time, for example, an elapsed time from when the inspection target WK passes the reference position.
 このとき、取り込んだ各画像Gは、円筒形状を引き延ばして平面にしたものに相当する画像に変換する。この画像Gの1画素に対応する検査対象物WKの表面領域の大きさ(Δx,Δy)を予め求めておく。 At this time, each captured image G is converted into an image corresponding to a flattened cylindrical shape. The size (Δx, Δy) of the surface area of the inspection object WK corresponding to one pixel of the image G is obtained in advance.
 画像Gの1画素のサイズ(Δx,Δy)は、例えば、検査対象物WKに代えてサイズの分かった格子状のチャートを撮像することによって求めてもよい。 The size (Δx, Δy) of one pixel of the image G may be obtained, for example, by imaging a grid chart having a known size instead of the inspection object WK.
 また、画像入力部321のメモリの記憶容量には限界があるので、予め定められた最新のN枚分のみの画像Gを保存する。取り込まれる画像GがN枚を越える場合は、その時点で最も古い画像Gから順に破棄すればよい。 Also, since the storage capacity of the memory of the image input unit 321 is limited, only the latest N predetermined images G are stored. When the number of captured images G exceeds N, the oldest image G at that time may be discarded in order.
 画像合成部322は、取り込んだ画像Gを合成し、輝度画像GTA,GTBを生成する。 The image composition unit 322 synthesizes the captured image G to generate luminance images GTA and GTB.
 すなわち、検査対象物WKの搬送速度Vおよび時間間隔Δtは一定であるので、シフト量Sxも一定である。N枚の画像Gについて、シフト量SxずつX方向(水平方向)にずらして重ね合わせを行い、それぞれ1つにつながった2つの輝度画像GTA,GTBを生成する。 That is, since the conveyance speed V and the time interval Δt of the inspection object WK are constant, the shift amount Sx is also constant. The N images G are overlapped by shifting in the X direction (horizontal direction) by the shift amount Sx, and two luminance images GTA and GTB connected to each other are generated.
 傷候補抽出部323は、傷候補画素を抽出する。すなわち、2つの輝度画像GTA,GTBにおいて、各画素の輝度値DRを、しきい値記憶部324に記憶された第1輝度しきい値TK1および変動しきい値TH1と比較し、いずれもが各しきい値よりも大きい画素を傷候補画素として抽出する。 The scratch candidate extraction unit 323 extracts scratch candidate pixels. That is, in the two luminance images GTA and GTB, the luminance value DR of each pixel is compared with the first luminance threshold value TK1 and the variation threshold value TH1 stored in the threshold value storage unit 324, and both are Pixels larger than the threshold are extracted as scratch candidate pixels.
 判定部325は、傷候補画素またはそれが連続した傷候補画像KKGについて、しきい値記憶部326に記憶されたしきい値である長さLL1、太さLL2と比較し、いずれもがしきい値より大きい場合に、それを傷Kであると判定する。 The determination unit 325 compares the scratch candidate pixel or the scratch candidate image KKG in which the scratch candidate pixel is continuous with the length LL1 and the thickness LL2, which are threshold values stored in the threshold storage unit 326, and the threshold is used. If it is greater than the value, it is determined to be a scratch K.
 傷Kであると判定された場合には、その検査対象物WKは傷Kがあって不良品である旨の表示または警報を出力する。また、必要に応じて、その傷Kの画像を図示しない表示装置の表示面に表示する。また、傷Kの画像を検査対象物WKにおける位置情報とともに記録部34において記録する。 If it is determined that it is a scratch K, the inspection object WK outputs a display or an alarm indicating that the inspection target WK is defective due to the scratch K. Further, if necessary, an image of the scratch K is displayed on a display surface of a display device (not shown). Further, the image of the wound K is recorded in the recording unit 34 together with the position information on the inspection object WK.
 例えば、検出された傷Kについて、その重心位置(x,y)を検査対象物WKにおける座標に変換し、検査対象物WKにおける傷Kの位置を特定する。そして、特定された傷Kの位置を、その傷Kの局所画像および撮像時間とともに、記録部34のメモリに記録する。その際に、傷Kの局所画像は、関連する画像の撮像時間のうち最も早いものを記録すればよい。 For example, the position of the center of gravity (x, y) of the detected wound K is converted into coordinates on the inspection object WK, and the position of the damage K on the inspection object WK is specified. Then, the position of the specified wound K is recorded in the memory of the recording unit 34 together with the local image and imaging time of the wound K. At that time, the local image of the wound K may be recorded as the earliest image capturing time of the related image.
 なお、検査対象物WKにおける座標(X,Y)は、検査対象物WKの検査開始時の最初に撮像された画像の始点を原点(0,0)とし、検査対象物WKの搬送方向とは逆の方向をX、それに直交する方向をYとすればよい(図7参照)。 Note that the coordinates (X, Y) on the inspection target WK have the origin (0, 0) as the starting point of the first image captured at the start of the inspection of the inspection target WK, and the conveyance direction of the inspection target WK. The opposite direction may be X, and the direction orthogonal thereto may be Y (see FIG. 7).
 なお、検査対象物WKの検査開始時の最初に撮像された画像の中心に対応する位置を原点としてもよい。 Note that a position corresponding to the center of the first image captured at the start of inspection of the inspection object WK may be set as the origin.
 また、検査開始からk番目に撮影された画像の座標(x,y)から、検査対象物WKにおける座標(X,Y)への変換は、次のようにして行うことができる。 Also, conversion from the coordinates (x, y) of the kth image taken from the start of the inspection to the coordinates (X, Y) on the inspection object WK can be performed as follows.
  X=(k・Sx+x)・Δx
  Y=y・Δy
 次に、検査装置1による検査対象物WKの傷Kの検査手順を、図9に示すフローチャートを参照して説明する。
X = (k · Sx + x) · Δx
Y = y · Δy
Next, the inspection procedure for the scratch K on the inspection object WK by the inspection apparatus 1 will be described with reference to the flowchart shown in FIG.
 図9において、撮像部13から複数の画像Gを取り込む(#11)。複数の画像Gを、検査対象物WKの座標系に対応付けて、2つの輝度画像GTA,GTBを生成する(#12)。輝度画像GTA,GTBに基づいて、傷Kを検出する(#13)。その際に、例えば、まず傷候補画素または傷候補画像を抽出し、それがしきい値よりも大きい場合に傷Kであると判定してもよい。 In FIG. 9, a plurality of images G are captured from the imaging unit 13 (# 11). The plurality of images G are associated with the coordinate system of the inspection object WK to generate two luminance images GTA and GTB (# 12). Based on the luminance images GTA and GTB, the scratch K is detected (# 13). At that time, for example, a scratch candidate pixel or a scratch candidate image may be first extracted, and if it is larger than a threshold value, it may be determined that it is a scratch K.
 検出された傷Kについて、その局所画像および座標位置などを表示し、メモリに記録する(#14)。 The local image and the coordinate position of the detected scratch K are displayed and recorded in the memory (# 14).
 これらの処理を、全ての検査対象物WKについての検査が終わるまで繰り返す(#15)。 These processes are repeated until all the inspection objects WK have been inspected (# 15).
 このように、本実施形態の検査装置1によると、シート状の検査対象物WKの表面の傷Kについて、その傷Kの形状のバリエーションが大きい場合であっても、その傷の検査を簡単な構成によってインラインで漏れなく容易に行うことができる。 As described above, according to the inspection apparatus 1 of the present embodiment, the surface of the sheet-like inspection object WK can be easily inspected even if the surface of the surface K has a large variation in the shape of the surface. Depending on the configuration, it can be easily performed in-line without leakage.
 しかも、検査対象物WKを曲面KMに曲げることによって、平面のままである場合と比較して照明のムラを低減することができ、傷の検出を安定して行える。 Moreover, by bending the inspection object WK into the curved surface KM, it is possible to reduce illumination unevenness as compared with the case where the inspection object WK remains flat, and to stably detect scratches.
 また、主ローラ21によって検査対象物WKを搬送しながら曲面KMを形成するので、検査対象物WKに対し時系列で様々な角度で照明を行って検査することができる。 Further, since the curved surface KM is formed while the inspection object WK is conveyed by the main roller 21, the inspection object WK can be inspected by illuminating at various angles in time series.
 また、検査対象物WKを搬送しつつ、部分的に重複して撮像を行って複数の画像Gを得るので、検査対象物WKの移動量に基づいて各部をトラッキングし、2重検出を防止することができる。また、複数の画像Gに基づいてその変化から傷Kを検出するので、傷の検出がよりロバストに行える。
〔変形例〕
 次に、検査装置1の変形例および補足事項について説明する。
In addition, since the plurality of images G are obtained by partially overlapping and imaging while conveying the inspection object WK, each part is tracked based on the amount of movement of the inspection object WK to prevent double detection. be able to. Further, since the scratch K is detected from the change based on the plurality of images G, the detection of the scratch can be performed more robustly.
[Modification]
Next, modifications and supplementary items of the inspection apparatus 1 will be described.
 上に述べた検査装置1において、複数の画像Gから輝度画像GTを生成する処理に際して、検査対象物WKの傷Kのない通常部分からの正反射光の多い部分については、画像Gのうちのそのような部分(領域)を処理対象外としてもよい。 In the inspection apparatus 1 described above, in the process of generating the luminance image GT from the plurality of images G, the portion of the image G that has a large amount of regular reflection light from the normal portion without the scratch K of the inspection target WK. Such a portion (area) may be excluded from processing.
 その理由は、処理対象外とした場合であっても、他の部分(領域)において傷Kによる正反射光が捉えられればそれで十分であるからである。また、処理対象外の領域において正反射光があったとしても、その傷Kは比較的浅い傷である場合が多く、つまり窪みが浅い場合が多く、検査対象物WKの品質としては余り問題とならない可能性が高いからである。 The reason is that even if the target is not treated, it is sufficient if the specularly reflected light from the scratch K is captured in the other part (area). Further, even if there is specular reflection light in a region not to be processed, the scratches K are often relatively shallow scratches, that is, the depressions are often shallow, and the quality of the inspection target WK is a problem. This is because there is a high possibility that it will not be.
 なお、検査対象物WKの傷Kのない通常部分からの正反射光が多い領域について、それを処理対象外とするのでなく、その領域を別の処理方法によって傷Kの検出に利用し、上に述べた方法と組み合わせてもよい。 It should be noted that an area where there is a lot of specularly reflected light from the normal part without the scratch K of the inspection object WK is not excluded from the processing target, but the area is used for detection of the scratch K by another processing method. It may be combined with the method described in.
 例えば、図10に示すように、得られた画像Gについて、通常部分からの正反射光の多い領域ER1を処理対象外とする。または、そのような領域ER1について、正反射光がない部分を検出し、それを傷またはその候補部分であるとする。その場合に、例えば、領域ER1に含まれる各画素の輝度値DRを、図8における第2輝度しきい値TK2と比較し、輝度値DRが第2輝度しきい値TK2よりも低いときに、その部分を傷であるとしまたは傷の候補部分として抽出すればよい。 For example, as shown in FIG. 10, for the obtained image G, an area ER <b> 1 with much regular reflection light from the normal part is excluded from the processing target. Alternatively, for such a region ER1, a portion without specular reflection light is detected, and it is assumed that it is a scratch or a candidate portion thereof. In that case, for example, when the luminance value DR of each pixel included in the region ER1 is compared with the second luminance threshold value TK2 in FIG. 8, and the luminance value DR is lower than the second luminance threshold value TK2, What is necessary is just to extract the part as a flaw or a candidate part of a flaw.
 この場合には、正反射が必ず生じる部分を領域ER1としておけばよい。また、この場合の第2輝度しきい値TK2として、乱反射による輝度よりも大きく、正反射による輝度よりも小さい値を設定しておけばよい。 In this case, a portion where regular reflection always occurs may be set as the region ER1. In this case, the second luminance threshold value TK2 may be set to a value larger than the luminance due to irregular reflection and smaller than the luminance due to regular reflection.
 なお、照明部12を線光源としかつ検査対象物WKの幅寸法よりも長い線光源としておくと、検査対象物WKの傷Kのない通常部分からの正反射光の多い領域ER1が図10に示すように検査対象物WKの全部の幅にわたる矩形状または線状となる。この場合には、領域ER1以外の部分にある傷Kによる正反射の検出も容易である。 When the illumination unit 12 is a line light source and a line light source longer than the width dimension of the inspection object WK, the region ER1 having a large amount of regular reflection light from the normal part without the scratch K of the inspection object WK is shown in FIG. As shown, the inspection object WK has a rectangular or linear shape over the entire width. In this case, it is easy to detect regular reflection due to the scratch K in a portion other than the region ER1.
 また、照明部12を点光源とした場合には、検査対象物WKの傷Kのない通常部分からの正反射光の多い領域ER1は検査対象物WK上の極めて限られた部分となる。 In addition, when the illumination unit 12 is a point light source, the region ER1 having a large amount of regular reflection light from the normal portion where there is no damage K on the inspection target WK is an extremely limited portion on the inspection target WK.
 また、傷Kが、V字状であって、検査対象物WKの搬送方向(つまりX1方向)に一直線状に延びている場合には、その検出が難しい。その理由は、搬送方向に一直線状に延びた傷Kは、検査対象物WKの搬送によってもその正反射光を撮像部13で捉えることが難しい場合があるからである。 Also, when the scratch K is V-shaped and extends in a straight line in the conveyance direction (that is, the X1 direction) of the inspection object WK, it is difficult to detect the damage. The reason is that it may be difficult for the imaging unit 13 to capture the regular reflected light of the scratches K extending in a straight line in the transport direction even when the inspection object WK is transported.
 その場合には、例えば次のようにすればよい。
(1) 照明部12として、複数の点光源をY方向(曲面KMの軸と平行な方向)に線状に配列し、それらの点光源を素早く順次点灯するように制御する。点光源の順次点灯によって、傷Kによる正反射光の向きが種々変化し、撮像部13によって正反射光を捉え易くなる。
(2) 上に述べた検査装置1で検査を行った後、その検査対象物WKに対して、曲面KMの軸を回転させた別の曲面KMを形成して同様な検査を行う。
In that case, for example, the following may be performed.
(1) As the illuminating unit 12, a plurality of point light sources are arranged in a line in the Y direction (direction parallel to the axis of the curved surface KM), and the point light sources are controlled so as to light up quickly and sequentially. By sequentially turning on the point light source, the direction of specularly reflected light due to the scratch K changes variously, and the specularly reflected light is easily captured by the imaging unit 13.
(2) After performing the inspection with the inspection apparatus 1 described above, another curved surface KM obtained by rotating the axis of the curved surface KM is formed on the inspection object WK, and the similar inspection is performed.
 次に、この(2)の方法について説明する。 Next, the method (2) will be described.
 図11は2つの曲面を描くように検査対象物WKを搬送して検査を行う検査装置1Bの例を示す図である。 FIG. 11 is a diagram illustrating an example of an inspection apparatus 1B that performs inspection by conveying the inspection object WK so as to draw two curved surfaces.
 図11において、検査装置1Bには、2つの検査装置1BA,1BBが設けられる。 In FIG. 11, the inspection apparatus 1B is provided with two inspection apparatuses 1BA and 1BB.
 一方の検査装置1BAは、上に述べた検査装置1とほぼ同じである。つまり、主ローラ21および補助ローラ22a,22bによって、検査対象物WKを搬送方向X1に搬送し、搬送方向X1と直角な方向Yに沿った軸を持つ円筒面である曲面KM1を形成する。曲面KM1に対して、その軸方向に延びる線光源である照明部12BAにより照明を行い、撮像部13BAでその画像Gを撮像する。 One inspection device 1BA is substantially the same as the inspection device 1 described above. That is, the main roller 21 and the auxiliary rollers 22a and 22b transport the inspection target WK in the transport direction X1, and form a curved surface KM1 that is a cylindrical surface having an axis along the direction Y perpendicular to the transport direction X1. The curved surface KM1 is illuminated by the illumination unit 12BA, which is a line light source extending in the axial direction, and the image G is captured by the imaging unit 13BA.
 他方の検査装置1BBにおいて、主ローラ21Bおよび補助ローラ22Ba,22Bbは、搬送方向X1に対して傾斜した軸を持つ。これにより、搬送方向X1に対して傾斜した軸を持つ円筒面である曲面KM2を形成する。曲面KM2に対して、その軸方向に延びる線光源である照明部12BBにより照明を行い、撮像部13BBでその画像Gを撮像する。 In the other inspection apparatus 1BB, the main roller 21B and the auxiliary rollers 22Ba, 22Bb have axes inclined with respect to the transport direction X1. Thus, a curved surface KM2 that is a cylindrical surface having an axis inclined with respect to the transport direction X1 is formed. The curved surface KM2 is illuminated by the illumination unit 12BB which is a line light source extending in the axial direction, and the image G is captured by the imaging unit 13BB.
 なお、この場合に、主ローラ21Bおよび補助ローラ22Ba,22Bbは、検査対象物WKに対して曲面KM2を描くよう形状を保持するのが主な目的であるので、それらの表面は互いに滑って相対移動が可能なようにしておけばよい。 In this case, since the main purpose of the main roller 21B and the auxiliary rollers 22Ba and 22Bb is to maintain the shape so as to draw the curved surface KM2 with respect to the inspection object WK, their surfaces slide relative to each other. It should be possible to move.
 また、この場合に、検査対象物WKを同じ方向X1に搬送するのでなく、主ローラ21Bによって検査対象物WKの搬送方向を変更してもよい。例えば、図11における搬送方向X1に対して、検査対象物WKを紙面の奥方向に直角に曲げてもよい。また、図11における搬送方向X1に対して、検査対象物WKを図の上方向に向くよう直角に曲げてもよい。 In this case, instead of transporting the inspection object WK in the same direction X1, the conveyance direction of the inspection object WK may be changed by the main roller 21B. For example, the inspection target WK may be bent at a right angle to the depth direction of the paper with respect to the transport direction X1 in FIG. Further, the inspection object WK may be bent at a right angle so as to face the upward direction in the drawing with respect to the transport direction X1 in FIG.
 これら2つの検査装置1BA,1BBにより検出された傷Kの論理和を、検査対象物WKの傷Kであるとする。 Suppose that the logical sum of the scratches K detected by these two inspection devices 1BA and 1BB is the scratch K of the inspection object WK.
 このように、検査対象物WKを搬送方向について捻じった状態で搬送することにより、曲面KMの軸の方向が変化するので、一直線状に延びる傷Kについても確実に検出することが可能となる。 Thus, since the direction of the axis of the curved surface KM changes by conveying the inspection object WK in a state of being twisted in the conveyance direction, it is possible to reliably detect the scratch K that extends in a straight line. .
 なお、上に述べたいずれの形態においても、検査対象物WKを凸の曲面KMを形成するように曲げるので、検査対象物WKの表面による反射光は曲げない場合に比べて余計に広がってしまう。これを補うため、ハーフミラー24の先にカメラを複数台上下に並べて撮像部13を構成してもよい。 In any of the forms described above, since the inspection object WK is bent so as to form a convex curved surface KM, the reflected light from the surface of the inspection object WK spreads more than in the case where it is not bent. . In order to compensate for this, the imaging unit 13 may be configured by arranging a plurality of cameras vertically above the half mirror 24.
 上に述べた実施形態においては、2つの輝度画像GTA,GTBについて、各画素の輝度値DRが第1輝度しきい値TK1よりも高くかつ変動しきい値TH1よりも高いときに傷の候補部分として抽出した。しかし、1つの輝度画像GTAまたは輝度画像GTBのみを生成し、生成した1つの輝度画像GTAまたは輝度画像GTBのみを用いて傷の候補部分を抽出してもよい。 In the embodiment described above, for the two luminance images GTA and GTB, when the luminance value DR of each pixel is higher than the first luminance threshold value TK1 and higher than the variation threshold value TH1, a candidate portion of a scratch Extracted as. However, only one luminance image GTA or luminance image GTB may be generated, and a scratch candidate portion may be extracted using only the generated one luminance image GTA or luminance image GTB.
 上に述べた実施形態では、曲面KMが円筒面の一部である場合について説明したが、円筒面以外の曲面、例えば断面が楕円形、放物線形などであってもよい。 In the embodiment described above, the case where the curved surface KM is a part of a cylindrical surface has been described, but a curved surface other than the cylindrical surface, for example, the cross section may be elliptical, parabolic, or the like.
 その他、搬送部11、照明部12、撮像部13、制御部14、解析部32、または検査装置1の各部または全体の構成、構造、回路、形状、個数、配置などは、本発明の主旨に沿って適宜変更することができる。 In addition, the transport unit 11, the illumination unit 12, the imaging unit 13, the control unit 14, the analysis unit 32, or the configuration, the structure, the circuit, the shape, the number, the arrangement, and the like of each unit or the entire inspection apparatus 1 are the gist of the present invention. Can be changed accordingly.

Claims (13)

  1.  可撓性を有する検査対象物の表面の傷を検査する方法であって、
     検査対象物の表面が曲面を描くように当該検査対象物を変形させながら搬送するステップと、
     前記曲面の凸となった側から前記検査対象物の表面を照明するステップと、
     照明された検査対象物の表面を、撮像手段を用いて所定の時間間隔で撮像するステップと、
     前記撮像手段により得られた画像を解析手段により解析して検査対象物の表面の傷を検出するステップと、
     を有することを特徴とする可撓性を有する検査対象物の表面の傷を検査する方法。
    A method for inspecting scratches on the surface of an inspection object having flexibility,
    Transporting the inspection object while deforming it so that the surface of the inspection object draws a curved surface;
    Illuminating the surface of the inspection object from the convex side of the curved surface;
    Imaging the illuminated surface of the inspection object at predetermined time intervals using imaging means;
    Analyzing the image obtained by the imaging means by analyzing means to detect a scratch on the surface of the inspection object;
    A method for inspecting a scratch on the surface of an inspection object having flexibility.
  2.  前記撮像手段は、検査対象物の表面の同じ部分が複数回に渡って撮像されるように、前記時間間隔が設定されており、
     前記解析手段は、検査対象物の表面の同じ部分について得られた複数の画像の輝度値の状態に基づいて、検査対象物の表面の傷を検出する、
     請求項1記載の可撓性を有する検査対象物の表面の傷を検査する方法。
    The time interval is set so that the same part of the surface of the inspection object is imaged multiple times, the imaging means,
    The analysis means detects a scratch on the surface of the inspection object based on the state of the brightness value of the plurality of images obtained for the same portion of the surface of the inspection object.
    A method for inspecting a scratch on a surface of a flexible inspection object according to claim 1.
  3.  可撓性を有する検査対象物の表面の傷を検査する装置であって、
     検査対象物の表面が曲面を描くように当該検査対象物を変形させながら搬送する搬送手段と、
     前記曲面の凸となった側から前記検査対象物の表面を照明する照明手段と、
     照明された検査対象物の表面を所定の時間間隔で撮像する撮像手段と、
     前記撮像手段により得られた画像を解析して検査対象物の表面の傷を検出する解析手段と、
     を有することを特徴とする可撓性を有する検査対象物の表面の傷を検査する装置。
    An apparatus for inspecting scratches on the surface of an inspection object having flexibility,
    Transport means for transporting the inspection object while deforming it so that the surface of the inspection object draws a curved surface;
    Illuminating means for illuminating the surface of the inspection object from the convex side of the curved surface;
    Imaging means for imaging the surface of the illuminated inspection object at predetermined time intervals;
    Analyzing means for analyzing the image obtained by the imaging means and detecting a scratch on the surface of the inspection object;
    A device for inspecting scratches on the surface of an inspection object having flexibility.
  4.  前記撮像手段は、検査対象物の表面の同じ部分が複数回に渡って撮像されるように、前記時間間隔が設定されており、
     前記解析手段は、検査対象物の表面の同じ部分について得られた複数の画像の輝度値の状態に基づいて、検査対象物の表面の傷を検出する、
     請求項3記載の可撓性を有する検査対象物の表面の傷を検査する装置。
    The time interval is set so that the same part of the surface of the inspection object is imaged multiple times, the imaging means,
    The analysis means detects a scratch on the surface of the inspection object based on the state of the brightness value of the plurality of images obtained for the same portion of the surface of the inspection object.
    The apparatus which test | inspects the damage | wound of the surface of the flexible test | inspection target object of Claim 3.
  5.  前記解析手段は、検査対象物の表面が鏡面である場合に、正常な表面による正反射のない画像について、検査対象物の表面の同じ部分について得られた複数の画像の各輝度値のいずれかが第1輝度しきい値よりも高いときに、その部分を傷であるとしまたは傷の候補部分として抽出する、
     請求項4記載の可撓性を有する検査対象物の表面の傷を検査する装置。
    When the surface of the object to be inspected is a mirror surface, the analyzing means is any one of the luminance values of a plurality of images obtained for the same part of the surface of the object to be inspected with respect to an image without normal reflection by a normal surface. When is higher than the first luminance threshold, the part is extracted as a flaw or a candidate part of a flaw,
    The apparatus which test | inspects the damage | wound of the surface of the inspection object which has flexibility of Claim 4.
  6.  前記解析手段は、検査対象物の表面が鏡面である場合に、正常な表面により正反射となった画像について、検査対象物の表面の同じ部分について得られた複数の画像の各輝度値のいずれかが第2輝度しきい値よりも低いときに、その部分を傷であるとしまたは傷の候補部分として抽出する、
     請求項5記載の可撓性を有する検査対象物の表面の傷を検査する装置。
    When the surface of the object to be inspected is a mirror surface, the analyzing unit is configured to determine which of the luminance values of the plurality of images obtained for the same part of the surface of the object to be inspected is an image that is regularly reflected by a normal surface When is lower than the second luminance threshold, the portion is extracted as a scratch or a candidate portion of a scratch,
    The apparatus which test | inspects the damage | wound of the surface of the inspection object which has flexibility of Claim 5.
  7.  前記解析手段は、検査対象物の表面の同じ部分について得られた複数の画像の輝度値の変動の度合いを算出する手段を有し、算出された輝度値の変動の度合いが変動しきい値よりも高いときに、その部分を傷であるとしまたは傷の候補部分として抽出する、
     請求項5または6記載の可撓性を有する検査対象物の表面の傷を検査する装置。
    The analysis means includes means for calculating the degree of fluctuation of the luminance value of a plurality of images obtained for the same portion of the surface of the inspection object, and the degree of fluctuation of the calculated luminance value is based on a fluctuation threshold value. If it is too high, that part is considered as a wound or a candidate part of a wound,
    The apparatus which test | inspects the damage | wound of the surface of the inspection target object which has flexibility of Claim 5 or 6.
  8.  前記解析手段は、抽出した傷の候補部分が所定の長さと所定の太さを有する場合に、それを傷として検出する、
     請求項5ないし7のいずれかに記載の可撓性を有する検査対象物の表面の傷を検査する装置。
    The analysis means detects the scratch as a scratch when the extracted candidate portion of the scratch has a predetermined length and a predetermined thickness.
    The apparatus which test | inspects the damage | wound of the surface of the test | inspection object which has flexibility in any one of Claim 5 thru | or 7.
  9.  前記解析手段によって検出された傷について、検査対象物における位置情報に関連付けて記録する記録手段を有する、
     請求項5ないし8のいずれかに記載の可撓性を有する検査対象物の表面の傷を検査する装置。
    Recording means for recording the wound detected by the analysis means in association with positional information on the inspection object;
    The apparatus which test | inspects the damage | wound of the surface of the test | inspection object which has flexibility in any one of Claim 5 thru | or 8.
  10.  前記搬送手段は、前記曲面が検査対象物の搬送方向に垂直な軸を持つ円筒面の一部となるように、検査対象物を搬送する、
     請求項3ないし9のいずれかに記載の可撓性を有する検査対象物の表面の傷を検査する装置。
    The transport means transports the inspection object so that the curved surface becomes a part of a cylindrical surface having an axis perpendicular to the transport direction of the inspection object.
    The apparatus which test | inspects the damage | wound of the surface of the inspection object which has flexibility in any one of Claim 3 thru | or 9.
  11.  前記照明手段は、前記円筒面の軸と平行な方向に配列された複数の点光源を含み、
     前記複数の点光源が順次点灯するように制御されている、
     請求項10記載の可撓性を有する検査対象物の表面の傷を検査する装置。
    The illumination means includes a plurality of point light sources arranged in a direction parallel to the axis of the cylindrical surface,
    The plurality of point light sources are controlled to be turned on sequentially.
    The apparatus which test | inspects the damage | wound of the surface of the inspection target object which has the flexibility of Claim 10.
  12.  前記搬送手段は、前記曲面が検査対象物の搬送方向に対して傾斜した軸を持つ円筒面の一部となるように、検査対象物を搬送する、
     請求項3ないし9のいずれかに記載の可撓性を有する検査対象物の表面の傷を検査する装置。
    The conveying means conveys the inspection object so that the curved surface becomes a part of a cylindrical surface having an axis inclined with respect to the conveying direction of the inspection object;
    The apparatus which test | inspects the damage | wound of the surface of the inspection target object which has flexibility in any one of Claim 3 thru | or 9.
  13.  前記搬送手段は、1つの曲面が検査対象物の搬送方向に垂直な軸を持つ円筒面の一部となるよう、他の1つの曲面が検査対象物の搬送方向に対して傾斜した軸を持つ円筒面の一部となるよう、2つの曲面を描くように検査対象物を搬送する、
     請求項3ないし9のいずれかに記載の可撓性を有する検査対象物の表面の傷を検査する装置。
    The conveying means has an axis whose other curved surface is inclined with respect to the conveyance direction of the inspection object so that one curved surface becomes a part of a cylindrical surface having an axis perpendicular to the conveyance direction of the inspection object. Convey the inspection object so as to draw two curved surfaces to become a part of the cylindrical surface,
    The apparatus which test | inspects the damage | wound of the surface of the inspection target object which has flexibility in any one of Claim 3 thru | or 9.
PCT/JP2010/000987 2010-02-17 2010-02-17 Method and device for detecting flaw on surface of flexible object to be tested WO2011101893A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/000987 WO2011101893A1 (en) 2010-02-17 2010-02-17 Method and device for detecting flaw on surface of flexible object to be tested

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/000987 WO2011101893A1 (en) 2010-02-17 2010-02-17 Method and device for detecting flaw on surface of flexible object to be tested

Publications (1)

Publication Number Publication Date
WO2011101893A1 true WO2011101893A1 (en) 2011-08-25

Family

ID=44482519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000987 WO2011101893A1 (en) 2010-02-17 2010-02-17 Method and device for detecting flaw on surface of flexible object to be tested

Country Status (1)

Country Link
WO (1) WO2011101893A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014215217A (en) * 2013-04-26 2014-11-17 住友金属鉱山株式会社 Object inspection device and object inspection method
EP4220135A4 (en) * 2020-09-25 2024-03-06 Konica Minolta, Inc. Optical characteristics measuring device, and optical characteristics measuring method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113465A (en) * 1995-10-18 1997-05-02 Nippon Steel Corp Detection apparatus for surface fault for galvanized steel plate
JP2000055820A (en) * 1998-08-11 2000-02-25 Fujitsu Ltd Optical recognition method and device of product
JP2002292820A (en) * 2001-01-29 2002-10-09 Fuji Photo Film Co Ltd Inspection device of lithographic printing plate and method for inspecting lithographic printing plate
JP2003222597A (en) * 2002-01-31 2003-08-08 Kokusai Gijutsu Kaihatsu Co Ltd Copper foil surface inspection device and copper foil surface inspection method
JP2004144565A (en) * 2002-10-23 2004-05-20 Toppan Printing Co Ltd Apparatus and method for detecting defects in hologram
JP2005003646A (en) * 2003-06-16 2005-01-06 Inspeck Kk Pattern inspection device
JP2008298703A (en) * 2007-06-04 2008-12-11 Toyohashi Univ Of Technology Device for automatic inspection of surface defect and inspection method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113465A (en) * 1995-10-18 1997-05-02 Nippon Steel Corp Detection apparatus for surface fault for galvanized steel plate
JP2000055820A (en) * 1998-08-11 2000-02-25 Fujitsu Ltd Optical recognition method and device of product
JP2002292820A (en) * 2001-01-29 2002-10-09 Fuji Photo Film Co Ltd Inspection device of lithographic printing plate and method for inspecting lithographic printing plate
JP2003222597A (en) * 2002-01-31 2003-08-08 Kokusai Gijutsu Kaihatsu Co Ltd Copper foil surface inspection device and copper foil surface inspection method
JP2004144565A (en) * 2002-10-23 2004-05-20 Toppan Printing Co Ltd Apparatus and method for detecting defects in hologram
JP2005003646A (en) * 2003-06-16 2005-01-06 Inspeck Kk Pattern inspection device
JP2008298703A (en) * 2007-06-04 2008-12-11 Toyohashi Univ Of Technology Device for automatic inspection of surface defect and inspection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014215217A (en) * 2013-04-26 2014-11-17 住友金属鉱山株式会社 Object inspection device and object inspection method
EP4220135A4 (en) * 2020-09-25 2024-03-06 Konica Minolta, Inc. Optical characteristics measuring device, and optical characteristics measuring method

Similar Documents

Publication Publication Date Title
CN102132148B (en) Defect inspecting system, and defect inspecting method
JP4511978B2 (en) Surface flaw inspection device
TWI626438B (en) Inspection apparatus and article manufacturing method
JP4739044B2 (en) Appearance inspection device
JP2010025652A (en) Surface flaw inspection device
JP6772084B2 (en) Surface defect inspection equipment and surface defect inspection method
JP5954284B2 (en) Surface defect inspection apparatus and surface defect inspection method
JP2013195169A (en) Method and apparatus for inspecting surface defect of cylindrical-body or columnar-body material
KR20160022044A (en) Inspection device for optical film
JP2017146174A (en) Egg surface inspection device
JP2008275424A (en) Surface inspection device
JP4932595B2 (en) Surface flaw inspection device
JP2012251983A (en) Wrap film wrinkle inspection method and device
JP5732605B2 (en) Appearance inspection device
WO2012153718A1 (en) Method for testing end face of glass sheet and device for testing end face of glass sheet
WO2011101893A1 (en) Method and device for detecting flaw on surface of flexible object to be tested
JP3870140B2 (en) Driving transmission belt inspection method
JP2009288050A (en) Imaging device and inspection device
JP7448808B2 (en) Surface inspection device and surface inspection method
JP5948974B2 (en) Surface defect inspection equipment
JP4794383B2 (en) Rubber hose appearance inspection device
JP5359919B2 (en) Method and apparatus for inspecting surface condition of inspection object having flexibility
JPH08304295A (en) Method and apparatus for detecting surface defect
JP6937647B2 (en) Optical display panel damage inspection method
JP2016125817A (en) Inspection system, and inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP