JP2005010039A - Visual examination device - Google Patents

Visual examination device Download PDF

Info

Publication number
JP2005010039A
JP2005010039A JP2003175111A JP2003175111A JP2005010039A JP 2005010039 A JP2005010039 A JP 2005010039A JP 2003175111 A JP2003175111 A JP 2003175111A JP 2003175111 A JP2003175111 A JP 2003175111A JP 2005010039 A JP2005010039 A JP 2005010039A
Authority
JP
Japan
Prior art keywords
peripheral surface
outer peripheral
workpiece
end portion
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003175111A
Other languages
Japanese (ja)
Inventor
Ryoji Nogami
良治 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
JTEKT Machine Systems Corp
Original Assignee
Koyo Seiko Co Ltd
Koyo Machine Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd, Koyo Machine Industries Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2003175111A priority Critical patent/JP2005010039A/en
Publication of JP2005010039A publication Critical patent/JP2005010039A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect flaws generated in the end part in the axial center direction of a developed outer peripheral surface, even on the basis of the end part in the axial center direction. <P>SOLUTION: This visual examination device 1 is constituted so as to inspect the appearance of a columnar object W to be inspected and to be fed while rotated around the axis of a feed direction A, and equipped with: an imaging part 2 for imaging the outer peripheral surface of the rotating object W, to obtain the image of a developed outer peripheral surface 20 of the object W; and a processing part 4 for scanning a constant range, based on a predetermined reference position to perform visual inspection processing. In the processing part 4, the proximate line f(yn) in an axial center direction, wherein the local fluctuations of an end part 25a in the axial center direction of the developed outer peripheral surface 20 are relaxed, is set as a reference position. In this constitution, even if there are flaws in the end part in the axial center direction of the object, and even if there are local fluctuations at the position of the end part in the axial center direction of the developed outer peripheral surface, since an approximate line, wherein the local fluctuations are relaxed, is set as the reference position to perform the scanning of the developed outer peripheral surface, the flaws generated in the end part in the axial center direction is surely detected. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、外観検査装置に関するものである。
【0002】
【従来の技術】
外観検査装置としては、円柱状の検査対象物を所定の位置で回転させながら外周面をカメラで撮像し、撮像した画像を処理して検査対象物の傷を検査するものがあり、例えば、特許文献1に記載されている。
【0003】
【特許文献1】
特開2001−335150号公報
【0004】
【発明が解決しようとする課題】
検査対象物を所定の位置において検査する場合、多くの検査対象物を検査する場合、検査に時間がかかる。そこで、本出願人らは、検査対象物を回転させながら搬送して検査時間の短縮を図ることを先の出願(特願2002−51778号)で提案している。
【0005】
回転しながら搬送されている検査対象物の外周面を撮像すると、その画像中の検査対象物の外周面は、展開状の像となり、しかも軸心方向両端部が傾きを持つ。このような画像から検査対象である展開外周面の範囲を決定するには、展開外周面の軸心方向両端部の一方の端部を基準とし、この軸心方向端部から所定の軸心方向幅分を検査対象範囲とすることが考えられる。
【0006】
しかし、一方の軸心方向端部を基準とすると、この一方の軸心方向端部自体に欠陥などがあっても、欠陥した形状をそのまま基準として使うことになり、基準とした一方の軸心方向端部に欠陥があっても、それが検出されることがない。
しかも、一方の軸心方向端部に欠陥があっても、それを基準として、所定の軸心方向幅を検査するため検査対象範囲が乱れ、他方の軸心方向端部に欠陥がなくても欠陥であると判定してしまうおそれがある。つまり、本来の欠陥個所とは異なる位置を欠陥と判定することになって欠陥の原因究明が困難となる。
そこで、本発明は、展開外周面の軸心方向端部を基準としても当該軸心方向端部にある欠陥を検出できるようにすることを目的とする。
【0007】
【課題を解決するための手段】
本発明は、搬送方向の軸心まわりに回転しながら搬送される円柱状の検査対象物の外観検査装置であって、回転している検査対象物の外周面を撮像して、当該検査対象物の展開外周面の画像を得る撮像部と、前記撮像部によって得た画像中の展開外周面を、所定の基準位置を基準とした一定の範囲を走査して外観検査処理を行う処理部と、を備え、前記処理部は、前記展開外周面の軸心方向端部の局所変動が緩和された軸心方向端部の近似線を前記基準位置として設定可能とされていることを特徴とする。
【0008】
本発明によれば、検査対象物の軸心方向端部に欠陥があって、展開外周面の軸心方向端部の位置に局所的変動があっても、その局所的変動が緩和された近似線を基準位置として展開外周面の走査が行われるため、当該軸心方向端部にある欠陥を確実に検出できる。
【0009】
前記近似線は、軸心方向端部に近似する一次直線として算出されるのが好ましい。この場合、近似線を容易に算出することができる。
【0010】
また、前記軸心方向端部と当該軸心方向端部に基づき算出された前記近似線との誤差が、許容値よりも大きい場合には、軸心方向端部の位置が前記基準位置として設定されるのが好ましい。軸心方向端部と近似線との誤差が大きくなってしまう場合には、近似線を用いずに、軸心方向端部の位置をそのまま用いることで、検査範囲が大きく乱れることを防止できる。
【0011】
【発明の実施の形態】
以下、本発明の好ましい実施形態を図面に基づいて説明する。
図1に示すように、外観検査装置1は、搬送されている検査対象物(以下、「ワーク」という)Wを撮像する撮像部2と、撮像部2による撮像範囲におけるワークWへ光を照射する照明部3と、撮像部2からの画像の取り込み処理及び画像処理等を行う処理部4と、を備えている。
【0012】
また、外観検査装置1は、ワークWを撮像部2による撮像範囲へ送る搬送部5と、撮像範囲にあるワークWを回転させる回転部6と、を備えている。ワークWは、搬送部5及び回転部6によって、複数個が軸心方向Xに整列した状態で軸心方向Xと平行な搬送方向Aに送られながら軸心回りに回転する。
【0013】
搬送部5は、回転部6の上流側に位置しており、ワークWを下流側の回転部6側へ送り出すものである。この搬送部5は、ワーク搬送ベルト8と、ワーク押出ローラ9とを具備しており、整列した複数のワークWの下側に配置された搬送ベルト8と、ワークWの上側に配置された押出ローラ9と、でワークWを挟み込むように配置されている。両者8,9の回転によって、軸心方向Xに整列したワークWは、撮像部2による撮像範囲へ向けて搬送方向A側へ送り出され、撮像範囲を通り抜ける。すなわち、この外観検査装置1は、スルーフィード方式となっている。なお、搬送部5は、左右からワークWを挟み込んで回転することによってワークWを送り出すものであってもよく、その具体的構成は限定されない。
【0014】
この搬送部5は、ワークWを止めることなく、ほぼ一定の速度で連続的に送る。したがって、ワークWが撮像部2の撮像範囲に来ても、ワークWは停止せず、常時移動して撮像範囲を通り抜ける。このため、ワークWは撮像範囲を次々に通過して効率よく検査をすることができる。
【0015】
回転部6は、搬送部5から送られてきたワークWを軸心X回りに回転させるものであり、軸心がワークWの軸心方向Xと同方向に向けられた一対のワーク回転ローラ10,10を備えている。一対の回転ローラ10,10は、水平方向に並置されており、同方向に回転駆動される。ワークWは、搬送部5によって一対の回転ローラ10,10上に押し出され、回転ローラ10,10の回転によって所定方向に回転する。また、回転ローラ10,10上に押し出されたワークWは、後方のワークWによって搬送方向Aに押されることで、回転ローラ10,10上を搬送方向Aに移動する。すなわち、ワークWは、回転部6において、軸心回りに回転しながら搬送方向Aに移動する。
なお、本実施形態では、搬送部5と回転部とを別々の機構によって構成したが、ワークWの搬送機能と回転機能とを一体化した単一の機構によって構成してもよい。
【0016】
前記撮像部2は、回転しながら搬送されているワークWを撮像できるように、回転部6の上方に配置されている。この撮像部2は、ラインセンサカメラによって構成されており、撮像時のカメラ走査方向がX方向に一致するように設けられ、ワークWの頂部付近のX方向の線画像を取得する走査を行う。X方向の走査は、繰り返し行われるため、ワークWの回転に伴い、撮像部2はワークWの周方向に異なる位置を走査する。したがって、ワークWが1回転するとワークW外周面を展開した2次元画像が得られる。なお、ワークWが、X方向へ移動することなく回転だけしている場合には、展開外周面は矩形状となるが、回転とともにX方向へ移動している場合、展開外周面はX方向へ傾いたものとなる。
【0017】
外観検査装置1は、撮像部2による撮像タイミング取得するためのタイミング取得部としてワーク間検出部12を備えている。ワーク間検出部12は、撮像部2よりも搬送方向A後方側に配置されており、検出位置13を通過するワーク隙間部を検知するための接触センサや光センサなどで構成される。この検出位置13をワーク隙間部が通過すると、ワーク間検出部12は、処理部4に対してワーク間を検出したことを示す検出信号を出力する。ワーク間を検出することで、ワーク1個分の移動時間ごとのタイミングが得られ、ワークWの移動速度が変化しても、常にワーク1個分移動時間に相当するタイミングが得られる。なお、前記タイミングは、撮像部2によって得られた画像に基づいてワーク間位置を検出することで取得してもよい。
【0018】
図2は、外観検査処理の際に、撮像された画像を示している。撮像の際には、複数のワークWが搬送方向に並んで連続的に搬送され、軸心回りに回転している。撮像で得られた画像は、ワークWのほぼ一回転分の画像である。図2において、白抜きの範囲20はワークWの展開外周面であり、中央の白抜き範囲20の左右両側にある範囲21はワークW間のワーク隙間部である。この画像には、検査対象となるワークWだけでなく、搬送方向の前後に隣接する他のワークWの展開外周面20,20の一部も映っている。
【0019】
画像において、展開外周面20は明るく映っているが、ワーク隙間部21は暗く映っており、この明暗差によって、展開外周面20の軸心方向端部(展開外周面と隙間部21との境界)25aを検出することができる。図2の画像は、ワーク搬送中に撮像したものであるため、軸方向端部25aが傾いている。つまり、図2において右から左に向かう方向が搬送方向であり、上側が時間的に早い位置であり、下側に行くほど搬送方向(左方)に外周面の位置がずれている。このずれの分だけ、軸心方向両端部25a,25bは、傾いており、傾斜端部となっている。なお、図2におけるx,y座標は、図1のX,Y方向と一致している。
【0020】
図3〜図5は、外観検査処理のための走査基準位置を設定するための処理を示している。外観検査処理は、走査基準位置を基準として、画像の一定の範囲を走査することによって行うため、初期処理として走査基準位置を設定する必要がある。走査基準位置は、傾斜端部25aの位置にほぼ一致するが、軸方向端部25a自体の欠陥を検出するため、走査基準位置としては軸方向端部25aの近似線が用いられる。
【0021】
ここで、傾斜端部25aの傾きは、ワークWの搬送速度が変化すると変化する。また、傾斜端部25aの位置は、ワークWが撮像されるタイミングによって、x方向に変動する。傾斜端部25aが変化すると、検査対象である展開外周面20の位置・形状も変化することになる。このように、位置・形状が変化することがある展開外周面20であっても、走査基準位置を傾斜端部25aに基づいて決定し、走査基準位置から一定の範囲を走査することで、展開外周面20の範囲を確実に検査することができる。
【0022】
図3に示すように、走査基準位置を設定するには、まず、走査基準配列arr_x[yn]に傾斜端部25aの位置を格納する(ステップS1)。走査基準配列arr_x[yn]は、1次元配列であり、ynは図2のy座標を示し、配列値arr_x[yn]として、y座標がynのときのx座標が格納される。図4に示すように、傾斜端部25aの座標は、傾斜端部25aに欠損などの欠陥30があれば、欠陥形状をそのまま反映し、傾斜端部25aの位置に欠陥による局所的な変動が生じている。なお、図4及び図5においては、簡略化のためワーク隙間部21が省略されている。
【0023】
続いて、走査基準配列arr_x[yn]に格納された傾斜端部25aの位置に基づいて、傾斜端部25aの欠陥による局所的変動を緩和した近似線(一次直線)f(yn)の算出が行われる(ステップS2)。この近似線f(yn)は、x座標値を示している。近似線f(yn)は、例えば、傾斜端部25aの任意の2点を通る直線として算出される。より具体的には、走査基準配列の最初の値arr_x[0]で示される点と、最後の値arr_x[ymax]で示される点とを通る直線として算出される。
また、最初の値arr_x[0]に代えて、最初から20番目までの値arr_x[0]〜arr_x[19]の最小値、最大値、又は平均値を採用してもよい。さらに、最後の値arr_x[ymax]に代えて、最後から20番目までの値arr_x[ymax−19]〜arr_x[ymax]の最小値、最大値、又は平均値を採用してもよい。このようにすることで、近似線の正確性がより向上する。
【0024】
次に、走査基準配列arr_x[yn]と、近似線f(yn)との比較を行う(ステップS3)。この比較は、yn:0〜ymaxの各点(画素)ごとに行われる。ある値ynについて、走査基準配列値arr_x[yn]と近似線f(yn)との(x方向の)差がe画素以下あれば、カウント数Cが増加する。なお、eの値は、例えば2〜3程度である。
走査基準配列arr_x[yn]と近似線f(yn)とが一致しているほど、カウント数Cは大きくなり、異なればカウント数Cは小さくなる。
【0025】
さらに、カウント数Cに基づき、走査基準配列arr_x[yn]と近似線f(yn)との差がしきい値を超えるか否かの判定を行う(ステップS4)。つまり、走査基準配列arr_x[yn]と近似線f(yn)との差がe画素以内である部分がT[%]以上である場合、両者は、ほぼ一致しており、軸心方向端部25a(走査基準配列値arr_x[yn])は良好な直線性を持っていると判定できる。なお、Tの値は、例えば97〜98程度である。なお、欠陥部分を原因とする走査基準配列arr_x[yn]と近似線f(yn)との不一致は、わずかな範囲にしか生じないため、ステップS3,S4での判定にはほとんど影響しない。
【0026】
軸心方向端部25a(走査基準配列値arr_x[yn])が良好な直線性を持っている場合には、直線によって近似した近似線f(yn)は、軸心方向端部25aに対して、局所変動が緩和された優れた近似性を持っているものと評価でき、直線f(yn)の値が走査基準配列arr_x[yn]に代入される(ステップS5)。
軸心方向端部25aは、搬送速度が変動せず一定していれば、ほぼ直線的になる。したがって、通常のケースでは、ワーク搬送速度は一定であるため、ほとんどの場合、近似線f(yn)が走査基準配列arr_x[yn]に代入される。
【0027】
一方、走査基準配列arr_x[yn]と近似線f(yn)との差がe画素以内である部分がT[%]未満である場合には、近似線f(yn)は、軸心方向端部25aに対する誤差が許容値よりも大きく、軸心方向端部25aへの近似性が低いものと評価できる。この場合、直線f(yn)の走査基準配列arr_x[yn]への代入は行われない。つまり、走査基準配列arr_x[yn]には、軸心方向端部25aの位置が格納されたままになる。このようなケースは、図6に示すように、搬送速度の変動によって軸心方向端部25aが、曲線となっている場合等であり、この場合、直線として算出された近似線f(yn)は、軸心方向端部25aとの近似性が低いため、基準としては用いずに、軸心方向端部25aを基準として用いる。
【0028】
展開外周面20に対する外観検査処理は、走査基準配列arr_x[yn]を基準としてx方向に所定範囲W1(=ワークWの軸心方向長さ)走査することによって行われる。図5に示すように、走査基準配列arr_x[yn]の値が近似線f(yn)の値である場合、軸心方向端部25aにある欠陥30は、その軸心方向端部25aにある欠陥として検出することができる。したがって、欠陥個所を正確に検出することができる。
これに対し、走査基準配列arr_x[yn]の値が軸心方向端部25aの位置を示している場合、当該軸心方向端部25aにある欠陥30を含んだ位置が、走査基準となるため、当該軸心方向端部25aに欠陥30があるとは判定されない。そればかりか、欠陥30の位置から走査範囲W1離れた位置が、他方の軸心方向端部25bの位置と一致しないため、本来欠陥のない他方の軸心方向端部25bに欠陥があると判定される結果を招く。このような問題に対し、本実施形態では、近似線f(yn)を基準に用いているので、欠陥30の位置を正確に検出できる。
【0029】
図6のように、軸心方向端部25aが曲線である場合、近似線f(yn)を基準として用いると、近似線f(yn)は軸心方向端部25aをうまく近似していないため、軸心方向端部25aに欠陥がなくても欠陥があると判定してしまう。このように軸心方向端部25aの直線性が低い場合には、軸心方向端部25a自体を基準として用いて、欠陥がないのに欠陥があるとする誤検出を防止している。前述のように軸心方向端部25a自体を基準として用いると、欠陥の位置が正確にわからないが、欠陥があれば位置の正確性はともかく欠陥を検出できることから、ここでは誤検出防止が優先されている。
【0030】
なお、本発明は、上記実施形態に限定されるものではない。例えば、上記実施形態では、軸心方向端部25aに基づき近似線を決定したが、他方の軸心方向端部25bに基づいてもよい。また、近似線は、直線だけでなく、曲線であってもよく、特に、軸心方向端部が曲線である場合に、局所変動が緩和された曲線の近似線を基準位置とすることで、より正確性が向上する。
また、外観検査処理の際の走査範囲は、基準位置から展開外周面の全範囲であってもよいし、基準位置に基づき展開外周面の一部範囲だけであってもよい。
【0031】
【発明の効果】
本発明によれば、検査対象物の軸心方向端部に欠陥があって、展開外周面の軸心方向端部の位置に局所的変動があっても、その局所的変動が緩和された近似線を基準位置として展開外周面の走査が行われるため、当該軸心方向端部にある欠陥を確実に検出できる。
【図面の簡単な説明】
【図1】外観検査装置の模式図である。
【図2】外観検査時のワーク画像である。
【図3】走査基準配列設定処理のフローチャートである。
【図4】軸心方向端部に欠陥のあるワーク画像である。
【図5】軸心方向端部の近似直線を示す図である。
【図6】軸心方向端部が曲線である場合の近似直線を示す図である。
【符号の説明】
1 外観検査装置
2 撮像部
4 処理部
20 展開外周面
25a 軸心方向端部
f(yn) 近似線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an appearance inspection apparatus.
[0002]
[Prior art]
As an appearance inspection apparatus, there is an apparatus that images a peripheral surface with a camera while rotating a cylindrical inspection object at a predetermined position, processes the captured image, and inspects a scratch on the inspection object. It is described in Document 1.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-335150
[Problems to be solved by the invention]
When inspecting an inspection object at a predetermined position, when inspecting many inspection objects, the inspection takes time. Therefore, the applicants of the present application (Japanese Patent Application No. 2002-51778) have proposed that the inspection object is conveyed while being rotated to shorten the inspection time.
[0005]
When the outer peripheral surface of the inspection object being conveyed while rotating is imaged, the outer peripheral surface of the inspection object in the image becomes a developed image, and both ends in the axial direction have inclinations. In order to determine the range of the developed outer peripheral surface to be inspected from such an image, one end of both axial ends of the developed outer peripheral surface is used as a reference, and a predetermined axial direction from the end in the axial direction. The width can be considered as the inspection target range.
[0006]
However, if one axial center end is used as a reference, even if this one axial end itself has a defect, the defective shape is used as a reference as it is. Even if there is a defect in the direction end, it is not detected.
Moreover, even if there is a defect at one axial end, the inspection target range is disturbed to inspect the predetermined axial width on the basis of the defect, and there is no defect at the other axial end. There is a risk of determining that it is a defect. That is, it becomes difficult to investigate the cause of a defect because a position different from the original defect location is determined as a defect.
Therefore, an object of the present invention is to enable detection of a defect at an end portion in the axial direction even when the end portion in the axial direction of the developed outer peripheral surface is used as a reference.
[0007]
[Means for Solving the Problems]
The present invention is an appearance inspection device for a cylindrical inspection object that is conveyed while rotating around an axis in the conveyance direction, and images the outer peripheral surface of the rotating inspection object, and the inspection object An imaging unit that obtains an image of the developed outer peripheral surface, a processing unit that performs a visual inspection process by scanning a developed outer peripheral surface in the image obtained by the imaging unit with a predetermined range based on a predetermined reference position; The processing unit can set an approximate line of an axial end portion in which local variation of the axial end portion of the development outer peripheral surface is reduced as the reference position.
[0008]
According to the present invention, even if there is a defect in the axial end of the inspection object and there is a local variation in the position of the axial end of the development outer peripheral surface, the approximation in which the local variation is reduced Since the developed outer peripheral surface is scanned using the line as a reference position, it is possible to reliably detect a defect at the axial end.
[0009]
The approximate line is preferably calculated as a linear straight line that approximates the end in the axial direction. In this case, the approximate line can be easily calculated.
[0010]
Further, when an error between the axial end and the approximate line calculated based on the axial end is larger than an allowable value, the position of the axial end is set as the reference position. Preferably it is done. When the error between the axial direction end and the approximate line becomes large, it is possible to prevent the inspection range from being greatly disturbed by using the position of the axial direction end without using the approximate line.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the appearance inspection apparatus 1 irradiates light to the imaging unit 2 that images the inspection object (hereinafter referred to as “work”) W being conveyed, and the workpiece W in the imaging range by the imaging unit 2. And an illuminating unit 3 that performs image capturing from the image capturing unit 2 and a processing unit 4 that performs image processing and the like.
[0012]
In addition, the appearance inspection apparatus 1 includes a transport unit 5 that sends the workpiece W to the imaging range by the imaging unit 2 and a rotating unit 6 that rotates the workpiece W in the imaging range. The workpiece W is rotated about the axis while being conveyed in the conveying direction A parallel to the axial direction X in a state where a plurality of workpieces W are aligned in the axial direction X by the conveying unit 5 and the rotating unit 6.
[0013]
The conveyance unit 5 is located on the upstream side of the rotation unit 6 and sends the workpiece W to the rotation unit 6 side on the downstream side. The transport unit 5 includes a work transport belt 8 and a work extrusion roller 9, and includes a transport belt 8 disposed below the aligned works W and an extrusion disposed above the work W. The roller 9 is disposed so as to sandwich the workpiece W. Due to the rotation of both 8 and 9, the workpiece W aligned in the axial direction X is sent toward the conveyance direction A toward the imaging range by the imaging unit 2 and passes through the imaging range. That is, the appearance inspection apparatus 1 is a through-feed method. In addition, the conveyance part 5 may send out the workpiece | work W by pinching and rotating the workpiece | work W from right and left, and the specific structure is not limited.
[0014]
The transport unit 5 continuously feeds the work W at a substantially constant speed without stopping. Therefore, even if the workpiece W comes into the imaging range of the imaging unit 2, the workpiece W does not stop but always moves and passes through the imaging range. For this reason, the workpiece | work W can pass the imaging range one after another, and can test | inspect efficiently.
[0015]
The rotation unit 6 rotates the workpiece W sent from the conveyance unit 5 around the axis X, and a pair of workpiece rotation rollers 10 whose axis is directed in the same direction as the axis X of the workpiece W. , 10 are provided. The pair of rotating rollers 10 and 10 are juxtaposed in the horizontal direction and are driven to rotate in the same direction. The workpiece W is pushed onto the pair of rotating rollers 10 and 10 by the transport unit 5 and rotates in a predetermined direction by the rotation of the rotating rollers 10 and 10. Further, the workpiece W pushed out onto the rotating rollers 10 and 10 is moved in the conveying direction A by the rear workpiece W, and thus moves on the rotating rollers 10 and 10 in the conveying direction A. That is, the workpiece W moves in the transport direction A while rotating around the axis in the rotating unit 6.
In the present embodiment, the transport unit 5 and the rotating unit are configured by separate mechanisms, but may be configured by a single mechanism in which the transport function and the rotating function of the workpiece W are integrated.
[0016]
The imaging unit 2 is disposed above the rotating unit 6 so that the workpiece W being conveyed while rotating can be imaged. The imaging unit 2 is configured by a line sensor camera, is provided so that the camera scanning direction at the time of imaging coincides with the X direction, and performs scanning to acquire a line image in the X direction near the top of the workpiece W. Since scanning in the X direction is repeated, the imaging unit 2 scans different positions in the circumferential direction of the workpiece W as the workpiece W rotates. Therefore, when the work W rotates once, a two-dimensional image in which the outer peripheral surface of the work W is developed is obtained. When the workpiece W is rotated without moving in the X direction, the deployed outer peripheral surface is rectangular. However, when the workpiece W is moved in the X direction with rotation, the deployed outer peripheral surface is in the X direction. It will be inclined.
[0017]
The appearance inspection apparatus 1 includes an inter-work detection unit 12 as a timing acquisition unit for acquiring an imaging timing by the imaging unit 2. The inter-work detection unit 12 is disposed on the rear side in the transport direction A with respect to the imaging unit 2 and includes a contact sensor, an optical sensor, and the like for detecting a work gap portion passing through the detection position 13. When the workpiece gap portion passes through the detection position 13, the workpiece detection unit 12 outputs a detection signal indicating that the workpiece interval has been detected to the processing unit 4. By detecting the interval between the workpieces, the timing for each movement time for one workpiece can be obtained, and even when the movement speed of the workpiece W changes, the timing corresponding to the movement time for one workpiece is always obtained. Note that the timing may be acquired by detecting the inter-work position based on the image obtained by the imaging unit 2.
[0018]
FIG. 2 shows an image captured during the appearance inspection process. At the time of imaging, a plurality of workpieces W are continuously conveyed side by side in the conveyance direction, and are rotated around the axis. The image obtained by imaging is an image for approximately one rotation of the workpiece W. In FIG. 2, a white range 20 is a developed outer peripheral surface of the workpiece W, and a range 21 on both the left and right sides of the central white range 20 is a workpiece gap portion between the workpieces W. In this image, not only the workpiece W to be inspected but also a part of the developed outer peripheral surfaces 20 and 20 of other workpieces W adjacent to the front and rear in the transport direction are shown.
[0019]
In the image, the developed outer peripheral surface 20 appears bright, but the work gap portion 21 appears darker. Due to the difference in brightness, the axial direction end of the developed outer peripheral surface 20 (the boundary between the developed outer peripheral surface and the gap portion 21). ) 25a can be detected. Since the image in FIG. 2 is taken while the work is being conveyed, the axial end 25a is inclined. That is, in FIG. 2, the direction from right to left is the conveyance direction, the upper side is a position earlier in time, and the position of the outer peripheral surface is shifted in the conveyance direction (leftward) as it goes downward. The axial direction both ends 25a and 25b are inclined by the amount of this deviation, and become inclined end portions. Note that the x and y coordinates in FIG. 2 coincide with the X and Y directions in FIG.
[0020]
3 to 5 show processing for setting a scanning reference position for appearance inspection processing. Since the appearance inspection process is performed by scanning a certain range of the image with the scanning reference position as a reference, it is necessary to set the scanning reference position as an initial process. Although the scanning reference position substantially coincides with the position of the inclined end portion 25a, an approximate line of the axial end portion 25a is used as the scanning reference position in order to detect defects in the axial end portion 25a itself.
[0021]
Here, the inclination of the inclined end portion 25a changes as the conveyance speed of the workpiece W changes. The position of the inclined end portion 25a varies in the x direction depending on the timing at which the workpiece W is imaged. When the inclined end portion 25a changes, the position / shape of the development outer peripheral surface 20 to be inspected also changes. As described above, even on the development outer peripheral surface 20 whose position and shape may change, the scanning reference position is determined based on the inclined end portion 25a, and the development is performed by scanning a certain range from the scanning reference position. The range of the outer peripheral surface 20 can be reliably inspected.
[0022]
As shown in FIG. 3, in order to set the scanning reference position, first, the position of the inclined end portion 25a is stored in the scanning reference array arr_x [yn] (step S1). The scanning reference array arr_x [yn] is a one-dimensional array, yn indicates the y coordinate in FIG. 2, and the x coordinate when the y coordinate is yn is stored as the array value arr_x [yn]. As shown in FIG. 4, the coordinates of the inclined end portion 25a reflect the defect shape as it is if there is a defect 30 such as a defect in the inclined end portion 25a, and local fluctuation due to the defect occurs at the position of the inclined end portion 25a. Has occurred. In FIGS. 4 and 5, the work gap 21 is omitted for simplification.
[0023]
Subsequently, on the basis of the position of the inclined end portion 25a stored in the scanning reference array arr_x [yn], an approximate line (primary line) f (yn) in which local fluctuation due to a defect in the inclined end portion 25a is reduced is calculated. Performed (step S2). The approximate line f (yn) indicates the x coordinate value. For example, the approximate line f (yn) is calculated as a straight line passing through two arbitrary points of the inclined end portion 25a. More specifically, it is calculated as a straight line passing through the point indicated by the first value arr_x [0] and the point indicated by the last value arr_x [ymax] of the scanning reference array.
Further, instead of the first value arr_x [0], the minimum value, the maximum value, or the average value of the first to twentieth values arr_x [0] to arr_x [19] may be employed. Furthermore, instead of the last value arr_x [ymax], a minimum value, a maximum value, or an average value of the last 20th values arr_x [ymax-19] to arr_x [ymax] may be employed. By doing so, the accuracy of the approximate line is further improved.
[0024]
Next, the scanning reference array arr_x [yn] is compared with the approximate line f (yn) (step S3). This comparison is performed for each point (pixel) of yn: 0 to ymax. If a difference (in the x direction) between the scanning reference array value arr_x [yn] and the approximate line f (yn) is equal to or less than e pixels for a certain value yn, the count number C increases. In addition, the value of e is about 2-3, for example.
The more the scanning reference array arr_x [yn] and the approximate line f (yn) match, the larger the count number C, and the smaller the count number C, the smaller.
[0025]
Further, based on the count number C, it is determined whether or not the difference between the scanning reference array arr_x [yn] and the approximate line f (yn) exceeds a threshold value (step S4). That is, when the portion where the difference between the scanning reference array arr_x [yn] and the approximate line f (yn) is within e pixels is equal to or greater than T [%], the two are substantially coincident with each other, and the axial direction end portion It can be determined that 25a (scanning reference array value arr_x [yn]) has good linearity. The value of T is, for example, about 97 to 98. Note that the mismatch between the scanning reference array arr_x [yn] and the approximate line f (yn) caused by the defective portion occurs only in a small range, and therefore hardly affects the determinations in steps S3 and S4.
[0026]
When the axial direction end 25a (scanning reference array value arr_x [yn]) has good linearity, the approximate line f (yn) approximated by a straight line is relative to the axial direction end 25a. Therefore, it can be evaluated that the local fluctuation is relaxed and has excellent closeness, and the value of the straight line f (yn) is substituted into the scanning reference array arr_x [yn] (step S5).
The axial direction end portion 25a is substantially linear if the conveyance speed is constant without fluctuation. Therefore, in the normal case, since the work conveyance speed is constant, in most cases, the approximate line f (yn) is substituted into the scanning reference array arr_x [yn].
[0027]
On the other hand, when the portion where the difference between the scanning reference array arr_x [yn] and the approximate line f (yn) is within e pixels is less than T [%], the approximate line f (yn) is the end in the axial direction. It can be evaluated that the error with respect to the portion 25a is larger than the allowable value and the closeness to the axial direction end portion 25a is low. In this case, the substitution of the straight line f (yn) into the scanning reference array arr_x [yn] is not performed. In other words, the position of the axial end portion 25a remains stored in the scanning reference array arr_x [yn]. Such a case is, for example, a case where the axial end portion 25a is a curved line due to a change in the conveyance speed, as shown in FIG. 6, and in this case, an approximate line f (yn) calculated as a straight line. Since the closeness with the axial direction end portion 25a is low, the axial direction end portion 25a is used as a reference instead of being used as a reference.
[0028]
The appearance inspection processing for the developed outer peripheral surface 20 is performed by scanning a predetermined range W1 (= length in the axial direction of the workpiece W) in the x direction with reference to the scanning reference array arr_x [yn]. As shown in FIG. 5, when the value of the scanning reference array arr_x [yn] is the value of the approximate line f (yn), the defect 30 at the axial end 25a is at the axial end 25a. It can be detected as a defect. Therefore, the defective part can be detected accurately.
On the other hand, when the value of the scanning reference array arr_x [yn] indicates the position of the axial end 25a, the position including the defect 30 at the axial end 25a is the scanning reference. It is not determined that the axial end portion 25a has the defect 30. In addition, since the position away from the scanning range W1 from the position of the defect 30 does not coincide with the position of the other axial end 25b, it is determined that there is a defect in the other axial end 25b that is not originally defective. Will result in. In order to deal with such a problem, in the present embodiment, the approximate line f (yn) is used as a reference, so that the position of the defect 30 can be accurately detected.
[0029]
As shown in FIG. 6, when the axial direction end portion 25a is a curve, the approximate line f (yn) does not approximate the axial direction end portion 25a well if the approximate line f (yn) is used as a reference. Even if there is no defect in the axial direction end portion 25a, it is determined that there is a defect. In this way, when the linearity of the axial end 25a is low, the axial end 25a itself is used as a reference to prevent erroneous detection that there is no defect. If the axial end 25a itself is used as a reference as described above, the position of the defect cannot be accurately determined. However, if there is a defect, the defect can be detected regardless of the accuracy of the position. ing.
[0030]
The present invention is not limited to the above embodiment. For example, in the above embodiment, the approximate line is determined based on the axial end portion 25a, but may be based on the other axial end portion 25b. In addition, the approximate line may be not only a straight line but also a curve, and in particular, when the axial direction end is a curve, by setting the approximate line of the curve in which local variation is relaxed as a reference position, More accuracy is improved.
Further, the scanning range in the appearance inspection process may be the entire range from the reference position to the developed outer peripheral surface, or may be only a partial range of the developed outer peripheral surface based on the reference position.
[0031]
【The invention's effect】
According to the present invention, even if there is a defect in the axial end of the inspection object and there is a local variation in the position of the axial end of the development outer peripheral surface, the approximation in which the local variation is reduced Since the developed outer peripheral surface is scanned using the line as a reference position, it is possible to reliably detect a defect at the axial end.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an appearance inspection apparatus.
FIG. 2 is a work image at the time of appearance inspection.
FIG. 3 is a flowchart of a scanning reference array setting process.
FIG. 4 is a workpiece image having a defect at an axial end.
FIG. 5 is a diagram showing an approximate straight line at an end portion in the axial center direction;
FIG. 6 is a diagram showing an approximate straight line when the end in the axial direction is a curve.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Appearance inspection apparatus 2 Image pick-up part 4 Processing part 20 Deployment outer peripheral surface 25a Axial direction edge part f (yn) Approximate line

Claims (3)

搬送方向の軸心まわりに回転しながら搬送される円柱状の検査対象物の外観検査装置であって、
回転している検査対象物の外周面を撮像して、当該検査対象物の展開外周面の画像を得る撮像部と、
前記撮像部によって得た画像中の展開外周面を、所定の基準位置を基準とした一定の範囲を走査して外観検査処理を行う処理部と、
を備え、
前記処理部は、前記展開外周面の軸心方向端部の局所変動が緩和された軸心方向端部の近似線を前記基準位置として設定可能とされていることを特徴とする外観検査装置。
An appearance inspection device for a cylindrical inspection object conveyed while rotating around an axis in a conveyance direction,
An imaging unit that images the outer peripheral surface of the rotating inspection object and obtains an image of the developed outer peripheral surface of the inspection object;
A processing unit that scans a certain range with reference to a predetermined reference position on the developed outer peripheral surface in the image obtained by the imaging unit, and performs an appearance inspection process;
With
The visual inspection apparatus, wherein the processing unit is capable of setting an approximate line of an end portion in the axial direction in which local variation of the end portion in the axial direction of the developed outer peripheral surface is reduced as the reference position.
前記近似線は、軸心方向端部に近似する一次直線として算出されることを特徴とする請求項1記載の外観検査装置。The appearance inspection apparatus according to claim 1, wherein the approximate line is calculated as a linear straight line that approximates an end portion in an axial direction. 前記軸心方向端部と当該軸心方向端部に基づき算出された前記近似線との誤差が、許容値よりも大きい場合には、軸心方向端部の位置が前記基準位置として設定されることを特徴とする請求項1又は2記載の外観検査装置。When an error between the axial end and the approximate line calculated based on the axial end is larger than an allowable value, the position of the axial end is set as the reference position. The appearance inspection apparatus according to claim 1 or 2, wherein
JP2003175111A 2003-06-19 2003-06-19 Visual examination device Pending JP2005010039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003175111A JP2005010039A (en) 2003-06-19 2003-06-19 Visual examination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003175111A JP2005010039A (en) 2003-06-19 2003-06-19 Visual examination device

Publications (1)

Publication Number Publication Date
JP2005010039A true JP2005010039A (en) 2005-01-13

Family

ID=34098408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003175111A Pending JP2005010039A (en) 2003-06-19 2003-06-19 Visual examination device

Country Status (1)

Country Link
JP (1) JP2005010039A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024431A (en) * 2003-07-03 2005-01-27 Koyo Seiko Co Ltd Visual inspection apparatus
JP2013019792A (en) * 2011-07-12 2013-01-31 Ntn Corp Method and apparatus for inspecting cylindrical member
CN103357595A (en) * 2012-04-09 2013-10-23 大进合紧固件(昆山)有限公司 Automatic screening machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024431A (en) * 2003-07-03 2005-01-27 Koyo Seiko Co Ltd Visual inspection apparatus
JP2013019792A (en) * 2011-07-12 2013-01-31 Ntn Corp Method and apparatus for inspecting cylindrical member
CN103357595A (en) * 2012-04-09 2013-10-23 大进合紧固件(昆山)有限公司 Automatic screening machine
CN103357595B (en) * 2012-04-09 2015-11-18 大进合紧固件(昆山)有限公司 Automatic screening machine

Similar Documents

Publication Publication Date Title
US20070237385A1 (en) Defect inspection apparatus
JP2018017639A (en) Surface defect inspection method and surface defect inspection device
EP3399302A1 (en) Egg surface inspection apparatus
US20200408698A1 (en) Apparatus and method for inspecting a glass sheet
JP2007212283A (en) Visual inspection device and visual inspection method
JP2001255275A (en) Surface defect inspection method and device
JP2008025990A (en) Method and apparatus for detecting surface flaw of steel strip
JP3871944B2 (en) Appearance inspection device
JP2003329601A (en) Apparatus and method for inspecting defect
JP2005010039A (en) Visual examination device
JP4252381B2 (en) Appearance inspection device
CN111426696A (en) Rubber adhesion failure detection device for top-coated rubber sheet
CN110178020A (en) Improved glass checks system
JP2010002232A (en) Inspection method of forged product
JP4023295B2 (en) Surface inspection method and surface inspection apparatus
JP2002303583A (en) Inspection method for container and inspection device for container
JP2005351825A (en) Defect inspection device
JP4549838B2 (en) Glossiness measuring method and apparatus
JP2005010038A (en) Visual examination device
JP2015059854A (en) Defect inspection method and defect inspection device
JP2005010036A (en) Visual examination device
JP2000081396A (en) Method and apparatus for automatically judging quality of side surface of taking-up roll
JP2003329596A (en) Apparatus and method for inspecting defect
WO2011101893A1 (en) Method and device for detecting flaw on surface of flexible object to be tested
JP2015059855A (en) Defect inspection method and defect inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050609

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Effective date: 20071129

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Effective date: 20080507

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080812