JPH02194307A - Curvature shape measuring instrument for plate-like body - Google Patents

Curvature shape measuring instrument for plate-like body

Info

Publication number
JPH02194307A
JPH02194307A JP1361489A JP1361489A JPH02194307A JP H02194307 A JPH02194307 A JP H02194307A JP 1361489 A JP1361489 A JP 1361489A JP 1361489 A JP1361489 A JP 1361489A JP H02194307 A JPH02194307 A JP H02194307A
Authority
JP
Japan
Prior art keywords
steel plate
plate
curvature
image
shaped object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1361489A
Other languages
Japanese (ja)
Inventor
Shinya Nishijima
真也 西島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1361489A priority Critical patent/JPH02194307A/en
Publication of JPH02194307A publication Critical patent/JPH02194307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To improve the quality of a rolled product by obtaining linear images at three positions which are at intervals in the moving direction of the plate-like body simultaneously and finding the curvature shape from position information extracted from the linear images. CONSTITUTION:When a steel plate 10 which is being rolled is carried by a table roller 24, a steel plate front end detector 12 detects whether or not the front end part of the steel plate 10 enters the visual field 15 of a video camera 16. When the front end part of the steel plate 10 is detected, the detection signal of the detector 12 is inputted to a camera controller 18. Then, the controller 18 uses the detection signal as a trigger signal and inputs the video information of the camera at the front end detection time point to an image processing part 20 for edge detection as a still image. Consequently, the processing part 20 obtains a still image of the flank of the steel plate 10. Then an arithmetic processing part 22 finds the curvature of the steel plate 10 from a specific expression based upon the coordinates of three points on the surface of the steel plate in the still image inputted from the processing part 20.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、板状物体の反り形状測定装置に係り、特に、
圧延中に鋼板の反り曲率を測定し、圧延機の制御に該反
り曲率を反映する際や、該圧延機下流側に位置する設備
に鋼板が接触するか否かを前記反り曲率により判定して
、設備保護を図る際に用いるのに好適な、板状物体の反
り形状測定装置に関する。
The present invention relates to a warpage shape measuring device for a plate-shaped object, and particularly,
The warpage curvature of the steel plate is measured during rolling, and the warpage curvature is used to reflect the warpage curvature in the control of the rolling mill, or to determine whether or not the steel plate comes into contact with equipment located downstream of the rolling mill. , relates to an apparatus for measuring the warp shape of a plate-shaped object, which is suitable for use in protecting equipment.

【従来の技術】[Conventional technology]

圧延ラインにおいては、鋼板先端部に反りか生じる場合
があるが、圧延機制御や後流側の設備保護の観点からこ
の反りの曲率や反り量等の反り形状を測定する必要が生
じる。 従来、鋼板の反り形状を測定する装置には、画像処理を
利用したものがあり、この装置においては、鋼板側面方
向から鋼板先端部を撮像し、撮像された2次元面@(2
次元映@)をそのまま全画素について処理した後に前記
鋼板のエツジ座標を抽出し、多数のエツジ座標群から、
反り形状の特徴量の1つである反り曲率を求めるように
していた。
In a rolling line, warping may occur at the tip of a steel plate, and it is necessary to measure the shape of the warp, such as the curvature of the warp and the amount of warp, from the viewpoint of rolling mill control and downstream equipment protection. Conventionally, there is a device that uses image processing to measure the warped shape of a steel plate. In this device, the tip of the steel plate is imaged from the side direction of the steel plate, and the imaged two-dimensional surface @ (2
After processing the dimensional image (@) as it is for all pixels, extract the edge coordinates of the steel plate, and from a large number of edge coordinate groups,
The warp curvature, which is one of the characteristic quantities of the warp shape, was determined.

【発明が解決しようとする課題) 従って、前記形状測定装置においては、大量のデータ処
理を必要とすると共に、画像処理プロセスに時間を要す
るため、映像信号が入力されてから反り曲率を出力する
までに多くの時間を要していた。特に、2次元画像から
エツジ座標を抽出後回帰式を用いて曲率を求める測定装
置においては、典型的な例では、数秒から数十秒を要し
ていた。 又、画像処理をソフトロジックで実施する場合には、映
像情報伝送に更に時間を要していた。 よって、従来の反り形状測定装置においては、該装置を
オンラインで使用できるプロセスはかなり限定されてお
り、圧延機設備において、鋼板等の板状物体の反り形状
に応じた制御を行なうことができない場合や、設備保護
を十分には図ることができない場合が生じるという問題
点があった。 このような問題点に対して、1次元イメージセンサを利
用して板状物体の側面方向からの1次元の映像情報を入
手し、該映像情報から反り形状を測定することが考えら
れる。この1次元イメージセンサを用いれば、2次元イ
メージセンサに比較してその取扱うデータ数が格段に少
ないことから、処理時間を大幅に短縮化できる。しかし
ながら、該イメージセンサを1台用いた場合には、鋼板
の移動に応じた時間軸合せの精度に十分なものを期待し
得す、又、前記イメージセンサを3台用いる場合にはイ
メージセンサ間の撮像タイミングの同期を取るのが困難
な場合があっな。従って、従来は、1次元イメージセン
サを用いたとしても測定精度が確実には上がらなかった
。 なお、鋼板の端部を撮はし、画gtcm報を得る点で本
発明と共通する提案が特開昭59−85903公報で示
されている。この公報中においては、電子シャッターな
どにより板材端部の2次元の静止画像を得る技術が示さ
れているが、その目的が本発明と異なり鋼板の端部のク
ロップ形状を得るものであり、又、2台の2次元カメラ
を利用し、それらにより得られた画像を合成する点で構
成も異なったものである。 本発明は、前記従来の問題点を解消するべくなされたも
ので、画像処理プロセスの処理内容を単純化し、且つ、
処理データを少なくして処理時間を短縮し、測定精度を
維持しつつ反り形状の測定を高速化できる板状物体の反
り形状測定装置を提供することを課題とする。 【課題を達成するための手段】 本発明は、移動中の板状物体を側面方向から撮像して得
られた映像情報に基づき、該板状物体の先端部反り形状
を測定するための装置において、前記板状物体の移動方
向に間隔を有した3箇所における1次元映像を同時に入
手するための手段と、入手された1次元映像から、前記
板状物体の上表面若しくは下表面の3箇所の位置情報を
抽出するための手段と、抽出された位置情報に基づき、
前記反り形状を求めるための手段とを備えたことにより
、前記課題を達成したものである。
[Problems to be Solved by the Invention] Therefore, in the shape measuring device, a large amount of data processing is required, and the image processing process takes time. It took a lot of time. Particularly, in a measuring device that extracts edge coordinates from a two-dimensional image and then uses a regression equation to determine the curvature, it typically takes several seconds to several tens of seconds. Furthermore, when image processing is performed using soft logic, it takes more time to transmit video information. Therefore, with conventional warp shape measuring devices, the processes in which they can be used online are quite limited, and in cases where it is not possible to perform control according to the warp shape of a plate-shaped object such as a steel plate in rolling mill equipment. There have been problems in that there are cases where it is not possible to sufficiently protect the equipment. To solve these problems, it is conceivable to obtain one-dimensional image information from the side surface of the plate-shaped object using a one-dimensional image sensor, and measure the warped shape from the image information. If this one-dimensional image sensor is used, the amount of data to be handled is much smaller than that of a two-dimensional image sensor, so the processing time can be significantly shortened. However, when one image sensor is used, it can be expected that the accuracy of time axis alignment according to the movement of the steel plate will be sufficient, and when three image sensors are used, there will be a gap between the image sensors. Sometimes it is difficult to synchronize the imaging timing. Therefore, in the past, even if a one-dimensional image sensor was used, measurement accuracy could not be reliably improved. Note that Japanese Patent Application Laid-Open No. 59-85903 discloses a proposal that is common to the present invention in that it photographs the edge of a steel plate and obtains image GTCM information. This publication discloses a technique for obtaining a two-dimensional still image of the edge of a steel plate using an electronic shutter, etc., but its purpose is different from that of the present invention; its purpose is to obtain a cropped shape of the edge of a steel plate; The structure is also different in that two two-dimensional cameras are used and the images obtained by them are combined. The present invention has been made to solve the above-mentioned conventional problems, and simplifies the processing contents of the image processing process, and
It is an object of the present invention to provide a warpage shape measuring device for a plate-shaped object that can reduce processing data, shorten processing time, and speed up the measurement of warp shapes while maintaining measurement accuracy. [Means for Achieving the Object] The present invention provides an apparatus for measuring the warped shape of the tip of a moving plate-like object based on image information obtained by imaging the moving plate-like object from the side direction. , means for simultaneously obtaining one-dimensional images at three locations spaced apart in the moving direction of the plate-shaped object, and means for simultaneously obtaining one-dimensional images at three locations on the upper surface or lower surface of the plate-shaped object from the obtained one-dimensional images; Based on the means for extracting location information and the extracted location information,
The above object has been achieved by providing a means for determining the warped shape.

【!@明の作用及び効果】[! @Actions and effects of Ming]

本発明においては、板状物体の反り形状測定装置におい
て、まず、板状物体の移動方向に間隔を有した3箇所に
おける1次元映像を同時に入手する。1次元映像を同時
に入手することについては、例えば高速シャッター付き
のビデオカメラを使用して板状物体を側面方向がら撮像
し、それにより得られた後出第2図に示すような2次元
静止画像から、板状物体の進行方向に間隔を有した3本
の走査線上の映像を1次元映像として取出すことにより
、1次元映像間の同時性を確保して入手することができ
る。 次いで、入手された1次元映像から前記板状物体の上表
面若しくは下表面の3箇所の位置情報を抽出し、抽出さ
れた位置情報に基づき反り形状例えば後出第3図に示す
曲率を求める。これにより、処理の対象が反り形状の導
出に必要な3箇の1次元映像に限定できる。即ち、画像
処理プロセスを必要最少限の機能内容に限定して高速処
理を可能とする。 従って、従来の2次元画像全体を処理して反り形状を測
定したときに比べて、処理内容が単純化し、取扱データ
が大幅に低減する即ち、発明者の調査によれば、従来は
処理に数秒がら数十秒の時間を要していたのに対して、
本発明の採用により1/30秒以下で全ての処理が終了
するようになつな。 よって、従来は反り形状の測定が重要であるにも拘らず
その処理時間の遅いことから適応できなかった、リアル
タイム測定にも匹敵する高速処理が必要となる厚板圧延
などのプロセスにおいても、本発明により、反り形状測
定装置を用いて高速且つ精度良く反り形状を反映した圧
延制御を行なうことができる。即ち、本発明は、反り形
状測定装置の適用可能範囲を拡大させ、圧延製品の高品
質化を確実に進めることができる。。 なお、前記3箇の1次元映像を同時に入手する際に、補
助光を使い分けれは、板状物体側面方向映像の抽出を容
易化できると共に、画像処理の際に、二値化量値を固定
することができるため、各処理時間の短縮化を更に図る
ことができる。
In the present invention, in the apparatus for measuring the warp shape of a plate-shaped object, first, one-dimensional images at three locations spaced apart in the moving direction of the plate-shaped object are obtained simultaneously. To obtain one-dimensional images at the same time, for example, a video camera with a high-speed shutter is used to image a plate-like object from the side, and the resulting two-dimensional still image as shown in Figure 2 below is obtained. By extracting the images on three scanning lines spaced apart in the traveling direction of the plate-shaped object as one-dimensional images, it is possible to obtain the one-dimensional images while ensuring the simultaneity between them. Next, positional information on three locations on the upper surface or lower surface of the plate-shaped object is extracted from the obtained one-dimensional image, and the warped shape, for example, the curvature shown in FIG. 3 below, is determined based on the extracted positional information. As a result, the objects of processing can be limited to the three one-dimensional images necessary for deriving the warped shape. That is, the image processing process is limited to the minimum necessary functional content to enable high-speed processing. Therefore, compared to the conventional method of processing the entire two-dimensional image and measuring the warped shape, the processing content is simplified and the amount of data to be handled is significantly reduced. However, while it took several tens of seconds,
By adopting the present invention, all processing can be completed in 1/30 seconds or less. Therefore, this technology can be applied to processes such as plate rolling, which require high-speed processing comparable to real-time measurement, which previously could not be applied due to the slow processing time despite the importance of measuring warped shapes. According to the invention, it is possible to perform rolling control that reflects the warp shape at high speed and with high precision using the warp shape measuring device. That is, the present invention can expand the applicable range of the warp shape measuring device and reliably improve the quality of rolled products. . Note that when obtaining the three one-dimensional images at the same time, using different fill lights can facilitate the extraction of side-view images of the plate-like object, and also fix the binarization amount value during image processing. Therefore, each processing time can be further shortened.

【実施例】【Example】

以下、図面を参照して本発明の実施例を詳細に説明する
。 まず第1実施例について説明する。 この第1実施例は、第1図に示すような、圧延ラインを
矢印F方向に移動中の鋼板10の先端部に生じている反
りの曲率を、該鋼板10の側面方向からの映像情報に基
づき求めるようにした装置である。 この実施例装置には、鋼板10の先端部位置を検出する
ための、例えば熱鋼検出器(HMD)からなる鋼板先端
検出器12と、第1図中将号15で示す画角の視野を有
し、且つ、静止映像を出力可能な高速シャッター付ビデ
オカメラ16と、前記鋼板先端検出器12の検出信号に
基づきビデオカメラ16の撮影を制御するカメラコント
ローラ18と、前記ビデオカメラ16で撮像された画像
を処理して鋼板10の上表面のエツジを検出するエツジ
検出用画像処理部20と、検出されたエツジデータから
反りの特徴量(実施例では反り曲率)を求めるための演
算処理部22とが備えられる。 前記ビデオカメラは、鋼板10を側面方向から撮影可能
であり、且つ、その走査線が鋼板移動方向と直交するよ
うに設けられている。 なお、第1図において、符号24は鋼板10を搬送する
ためのテーブルローラである。 以下、第1実施例の作用を説明する。 圧延中の鋼板10が、第1図のように、テーブルローラ
24により搬送されている際には、該鋼板10の先端部
がビデオカメラ16の視野15内に入るか否かを、鋼板
先端検出器12が検出する。 前記鋼板10の先端部が検出されると、前記鋼板先端検
出器12から検出信号かカメラコントローラ18に入力
される。該カメラコントローラ18は、前記検出信号を
トリガ信号として、前記先端部検出時点におけるビデオ
カメラ16の映像情報を静止映像としてエツジ検出用画
像処理部20に入力する。これにより、画像処理部20
は、鋼板10の側面の静止画像を得る。 ここで、測定対象物としての圧延中の鋼板10を考えた
場合、鋼板10自体の発光により第2図に示すように、
鋼板10及び鋼板10からの光を反射する部分が浮き出
た映像が得られる。第2図においては、符号Aが鋼板1
0の映像であり、符号B及びCが鋼板10からの光を反
射したテープルローラ24の映像である。 通常の測定環境においては、背景が十分に暗いのに対し
て、鋼板10は十分に明るい。又、撮影タイミングを鋼
板先端検出器12からの検出信号に応じたものとしてい
るため、ビデオカメラ16と該鋼板先端検出器12の位
置関係から、静止映像上の鋼材先端位置は、常に、はぼ
定位置にくることになる。従って、毎回得られる先端部
の静止映像から毎回安定して鋼板の反り曲率を求めるこ
とができる。反り曲率は次のようにして求める。 即ち、鋼板10の反り曲率を求めるため、当該反りを円
弧としてその曲率を求める。一般に、円弧の曲率ρを求
めるためには、第3図に示すように、円弧上に存在する
3点の座標Xi 、 X2 、X3が分かればよい。こ
の場合、曲率ρはxi 、x2、X3の算術式(1)で
表わされる。 ρ=f  (Xi 、 X2 、 X3 )・・・(1
)なお、第3図において、Rは曲率半径、0は円弧の中
心である。 従って、第2図のように入力された静止映像中の鋼板上
表面の3点の座標(第2図において×1、×2、×3で
示す)が分かれば、(1)式を用いて鋼板10の曲率を
求めることができる。 実施例においては、この3点の座標×1、×2、×3を
短時間で求めるために、まず、前記ビデオカメラ】6の
特定の走査線を3本(第2図において、1.12.13
)を選び、この走査線11.12、i3上の1次元映像
信号に対して二値化の画像処理を施す。 次いで、二値化映像信号から、鋼材10のエツジ座標(
×1、×2、×3)を求める。この求められた座標(×
1、×2、×3)を(1)式に代入して鋼板10の曲率
ρを求める。 なお、前記のようにビデオカメラ16は、鋼材10の先
端部がほぼ定位置にきたタイミングで撮影することが可
能であるため、選ばれた特定の走査線11〜13上に必
す鋼材10が入るタイミングで撮影することが可能であ
る。従って、静止画像中に3@の座標(Xi、×2、×
3)が存在することが保証される。よって、ライン上を
次々に搬送されてくる鋼板10の先端部の反り曲率を常
に精度良く測定することかできる。 又、圧延鋼板においては背景と鋼板の映像上の明度差が
実用上十分なほど大きいため、閾値レベルを固定した状
態で映像信号を二値化することが可能であることから、
エツジ座標の抽出か短時間化できる。なお、前記明度差
か十分でない場合は、補助光を照射して明度差を確保す
る。 次に、本発明の第2実施例を説明する。この第2実施例
においては、前記第1実施例の2次元のビデオカメラ1
6に替えて、第4図に示すように、3台の1次元のビデ
オカメラ26A〜26Cを、視野が14A〜1.4 C
となるように設けたものである。なお、その他の構成は
前記第1実施例と同様であり、同様の部分に同一の番号
を付して、その説明は略す。 これらビデオカメラ26A〜26Cの撮影は前記鋼板先
端検出器12が鋼板10の先端部を検出したときをトリ
ガとして同時に撮影する。撮影された1次元の映像信号
をエツジ検出用画像処理部20に入力し、前記実施例と
同様に画像処理を行ない1,111i10の表面座標(
Xl、×2、×3)を求める。次いで、前出(1)式に
該座標(×1、×2、×3)を代入して曲率ρを算出す
る。 この第2実施例においては1次元のビデオカメラを用い
ているため、走査線11〜13間の時間ずれが生じるこ
とが考えられるが、高速シャッター付ビデオカメラを使
用すればこのような時間ずれは生ずることはなく精度良
く、板状物体の反り形状を測定することができる。 なお、第1、第2前記実施例においては、板状物体とし
て鋼板を例示し、その曲率を反り形状の特徴量としてい
たが、板状物体及び反り形状の特徴量はこれに限定され
るものではなく、他の板状物体或いは反り形状の特徴量
にも本発明を適用することができる0例えば該特徴量と
して、反り量を測定することができる。
Embodiments of the present invention will be described in detail below with reference to the drawings. First, a first example will be explained. In this first embodiment, as shown in FIG. 1, the curvature of a warp occurring at the tip of a steel plate 10 moving in the direction of arrow F on a rolling line is calculated using image information from the side of the steel plate 10. This is the device that was determined based on this. This embodiment device includes a steel plate tip detector 12 consisting of, for example, a hot steel detector (HMD) for detecting the tip position of the steel plate 10, and a field of view having an angle of view 15 shown in FIG. a video camera 16 with a high-speed shutter that can output a still image; a camera controller 18 that controls the shooting of the video camera 16 based on the detection signal of the steel plate tip detector 12; an edge detection image processing section 20 that processes the image obtained to detect edges on the upper surface of the steel plate 10; and an arithmetic processing section 22 that calculates a characteristic amount of warpage (in the embodiment, warp curvature) from the detected edge data. will be provided. The video camera is capable of photographing the steel plate 10 from the side, and is provided so that its scanning line is perpendicular to the direction of movement of the steel plate. In addition, in FIG. 1, the reference numeral 24 is a table roller for conveying the steel plate 10. The operation of the first embodiment will be explained below. When the steel plate 10 being rolled is being conveyed by the table rollers 24 as shown in FIG. device 12 detects. When the tip of the steel plate 10 is detected, a detection signal is input from the steel plate tip detector 12 to the camera controller 18. The camera controller 18 uses the detection signal as a trigger signal and inputs the image information of the video camera 16 at the time of detecting the tip as a still image to the edge detection image processing section 20. As a result, the image processing section 20
obtains a still image of the side surface of the steel plate 10. Here, when considering the steel plate 10 being rolled as the object to be measured, as shown in FIG. 2, due to the light emission of the steel plate 10 itself,
An image is obtained in which the steel plate 10 and the portions that reflect light from the steel plate 10 stand out. In Fig. 2, symbol A is the steel plate 1.
0, and symbols B and C are images of the table roller 24 reflecting the light from the steel plate 10. In a normal measurement environment, the background is sufficiently dark, whereas the steel plate 10 is sufficiently bright. Furthermore, since the shooting timing is based on the detection signal from the steel plate tip detector 12, the position of the steel tip on the still image is always vague due to the positional relationship between the video camera 16 and the steel plate tip detector 12. It will come into place. Therefore, the warp curvature of the steel plate can be stably determined every time from the still image of the tip obtained every time. The warp curvature is determined as follows. That is, in order to find the warp curvature of the steel plate 10, the warp is taken as a circular arc and its curvature is found. Generally, in order to find the curvature ρ of a circular arc, it is sufficient to know the coordinates Xi, X2, and X3 of three points on the circular arc, as shown in FIG. In this case, the curvature ρ is expressed by the arithmetic expression (1) of xi, x2, and X3. ρ=f (Xi, X2, X3)...(1
) In FIG. 3, R is the radius of curvature, and 0 is the center of the arc. Therefore, if you know the coordinates of the three points on the top surface of the steel plate in the input still image as shown in Figure 2 (indicated by ×1, ×2, ×3 in Figure 2), then using equation (1), The curvature of the steel plate 10 can be determined. In the embodiment, in order to obtain the coordinates x1, x2, x3 of these three points in a short time, first, three specific scanning lines of the video camera]6 (1.12 .13
), and performs binarization image processing on the one-dimensional video signals on the scanning lines 11, 12 and i3. Next, the edge coordinates of the steel material 10 (
x1, x2, x3). This obtained coordinate (×
1, ×2, ×3) into equation (1) to find the curvature ρ of the steel plate 10. Note that, as described above, since the video camera 16 can take a picture at the timing when the tip of the steel material 10 is almost at the fixed position, the necessary steel material 10 can be seen on the selected specific scanning lines 11 to 13. You can take pictures when you enter. Therefore, the coordinates of 3@ (Xi, ×2, ×
3) is guaranteed to exist. Therefore, it is possible to always accurately measure the warp curvature of the tip of the steel plate 10 that is being conveyed one after another on the line. Furthermore, in the case of rolled steel plates, the difference in brightness in the image between the background and the steel plate is large enough for practical use, so it is possible to binarize the video signal with the threshold level fixed.
Extracting edge coordinates can be done in a shorter time. Note that if the brightness difference is not sufficient, auxiliary light is irradiated to ensure the brightness difference. Next, a second embodiment of the present invention will be described. In this second embodiment, the two-dimensional video camera 1 of the first embodiment is
6, three one-dimensional video cameras 26A to 26C are installed, as shown in FIG.
It was set up so that The rest of the structure is the same as that of the first embodiment, and the same numbers are given to the same parts, and the explanation thereof will be omitted. These video cameras 26A to 26C simultaneously take pictures using the time when the steel plate tip detector 12 detects the tip of the steel plate 10 as a trigger. The photographed one-dimensional video signal is input to the edge detection image processing section 20, and image processing is performed in the same manner as in the above embodiment to obtain surface coordinates (1,111i10).
Xl, x2, x3). Next, the coordinates (x1, x2, x3) are substituted into equation (1) above to calculate the curvature ρ. In this second embodiment, since a one-dimensional video camera is used, there may be a time lag between scanning lines 11 to 13, but if a video camera with a high-speed shutter is used, such a time lag can be avoided. The warped shape of the plate-shaped object can be measured with high precision without any occurrence of warping. In addition, in the first and second embodiments, a steel plate was used as an example of the plate-shaped object, and its curvature was used as the feature quantity of the warped shape, but the feature quantity of the plate-shaped object and the warped shape is limited to this. For example, the amount of warpage can be measured as the feature amount.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第1実施例に係る反り形状測定装置
の全体的な構成を示す、一部配置図を含むブロック線図
、 第2図は、前記実施例の作用を説明するための、撮影さ
れた静止映像及び該映像中の座標の例を示す平面図、 第3図は、同じく、曲率の求め方を示す線図、第4図は
、本発明の第2実施例の全体的な構成を示す、一部配置
図を含むブロック線図である。 0・・・鋼板(板状物体)、 2・・・鋼板先端検出器、 5・・・ビデオカメラの視野、 4A〜14C・・・1次元ビデオカメラの視野、6・・
・2次元ビデオカメラ、 8・・・カメラコントローラ、 0・・・エツジ検出用画像処理部、 2・・・演算処理部、 6A、26B、26C・・・1次元のビデオカメラ。
FIG. 1 is a block diagram including a partial layout showing the overall configuration of a warp shape measuring device according to a first embodiment of the present invention, and FIG. 2 is a block diagram for explaining the operation of the embodiment. FIG. 3 is a diagram showing how to calculate the curvature, and FIG. 4 is an overall diagram of the second embodiment of the present invention. FIG. 2 is a block diagram including a partial layout diagram showing a typical configuration. 0... Steel plate (plate-shaped object), 2... Steel plate tip detector, 5... Field of view of video camera, 4A to 14C... Field of view of one-dimensional video camera, 6...
- Two-dimensional video camera, 8... Camera controller, 0... Image processing section for edge detection, 2... Arithmetic processing section, 6A, 26B, 26C... One-dimensional video camera.

Claims (1)

【特許請求の範囲】[Claims] (1)移動中の板状物体を側面方向から撮像して得られ
た映像情報に基づき、該板状物体の先端部反り形状を測
定するための装置において、 前記板状物体の移動方向に間隔を有した3箇所における
の1次元映像を同時に入手するための手段と、 入手された1次元映像から、前記板状物体の上表面若し
くは下表面の3箇所の位置情報を抽出するための手段と
、 抽出された位置情報に基づき、前記反り形状を求めるた
めの手段とを備えたことを特徴とする板状物体の反り形
状測定装置。
(1) In an apparatus for measuring the warped shape of the tip of a moving plate-shaped object based on image information obtained by imaging the plate-shaped object from the side, the apparatus includes: an interval in the moving direction of the plate-shaped object; means for simultaneously obtaining one-dimensional images at three locations having a 1-dimensional image; and means for extracting positional information on three locations on the upper surface or lower surface of the plate-shaped object from the obtained one-dimensional images; A device for measuring a warped shape of a plate-shaped object, comprising: means for determining the warped shape based on the extracted position information.
JP1361489A 1989-01-23 1989-01-23 Curvature shape measuring instrument for plate-like body Pending JPH02194307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1361489A JPH02194307A (en) 1989-01-23 1989-01-23 Curvature shape measuring instrument for plate-like body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1361489A JPH02194307A (en) 1989-01-23 1989-01-23 Curvature shape measuring instrument for plate-like body

Publications (1)

Publication Number Publication Date
JPH02194307A true JPH02194307A (en) 1990-07-31

Family

ID=11838106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1361489A Pending JPH02194307A (en) 1989-01-23 1989-01-23 Curvature shape measuring instrument for plate-like body

Country Status (1)

Country Link
JP (1) JPH02194307A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040044017A (en) * 2002-11-20 2004-05-27 주식회사 포스코 apparatus for detection of bottom-up
KR100530462B1 (en) * 1999-12-08 2005-11-23 주식회사 포스코 Device and its method for on-line measurement of bar warp using CCD camera in roughing mill
KR100573566B1 (en) * 2001-12-22 2006-04-25 재단법인 포항산업과학연구원 Device and method for C-curve at steel strip
KR100916519B1 (en) * 2002-11-14 2009-09-08 주식회사 포스코 A apparatus for measuring curve of cold steel sheet
JP2009250723A (en) * 2008-04-03 2009-10-29 Nippon Steel Corp System and method for detecting warp of steel plate
JP2017127059A (en) * 2016-01-12 2017-07-20 トヨタ自動車株式会社 Method for detecting warpage of laminated steel sheet for motor
JP2017215187A (en) * 2016-05-31 2017-12-07 トヨタ車体株式会社 Warpage measurement method of workpiece and warpage measurement method
JP2018105687A (en) * 2016-12-26 2018-07-05 トヨタ車体株式会社 Work-piece warpage measuring device and warpage measuring method
CN109341591A (en) * 2018-11-12 2019-02-15 杭州思看科技有限公司 A kind of edge detection method and system based on handheld three-dimensional scanner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100530462B1 (en) * 1999-12-08 2005-11-23 주식회사 포스코 Device and its method for on-line measurement of bar warp using CCD camera in roughing mill
KR100573566B1 (en) * 2001-12-22 2006-04-25 재단법인 포항산업과학연구원 Device and method for C-curve at steel strip
KR100916519B1 (en) * 2002-11-14 2009-09-08 주식회사 포스코 A apparatus for measuring curve of cold steel sheet
KR20040044017A (en) * 2002-11-20 2004-05-27 주식회사 포스코 apparatus for detection of bottom-up
JP2009250723A (en) * 2008-04-03 2009-10-29 Nippon Steel Corp System and method for detecting warp of steel plate
JP2017127059A (en) * 2016-01-12 2017-07-20 トヨタ自動車株式会社 Method for detecting warpage of laminated steel sheet for motor
JP2017215187A (en) * 2016-05-31 2017-12-07 トヨタ車体株式会社 Warpage measurement method of workpiece and warpage measurement method
JP2018105687A (en) * 2016-12-26 2018-07-05 トヨタ車体株式会社 Work-piece warpage measuring device and warpage measuring method
CN109341591A (en) * 2018-11-12 2019-02-15 杭州思看科技有限公司 A kind of edge detection method and system based on handheld three-dimensional scanner

Similar Documents

Publication Publication Date Title
US5325443A (en) Vision system for inspecting a part having a substantially flat reflective surface
US4678920A (en) Machine vision method and apparatus
JPH0736001B2 (en) Bottle defect inspection method
JPH02194307A (en) Curvature shape measuring instrument for plate-like body
EP0483362B1 (en) System for measuring length of sheet
JPH11248641A (en) Device and method for inspecting surface defect
JPH08313454A (en) Image processing equipment
KR100415796B1 (en) Method of determining a scanning interval in surface inspection
JP3219565B2 (en) Defect depth position detection apparatus and method
JPH1010054A (en) Inspection device for surface defect
JP2015059854A (en) Defect inspection method and defect inspection device
EP1676238B1 (en) A method for measuring dimensions by means of a digital camera
JPH08285550A (en) Instrument for measuring-steel plate displacement
JP2004325338A (en) Device and method for inspecting printed circuit board
JP2733958B2 (en) Long sheet defect inspection equipment
JP2001280939A (en) Method of evaluating abnormal condition of object surface
JP3990773B2 (en) Image input method and apparatus
JPH0792106A (en) Surface defect inspection system
JPH01320419A (en) Method for measuring bent shape in lengthwise direction of hot-rolled material
JPH05231842A (en) Shape pattern inspection method and device
JP2758550B2 (en) Appearance inspection device
JPH04160304A (en) Detecting apparatus of warp in widthwise direction of plate
JPH0618228A (en) Apparatus for measuring cut length of product
JPH0238952A (en) Surface defect inspection device
JPH0599623A (en) Displacement measuring apparatus