JP2004531138A - ターボ復号器のためのバッファアーキテクチャ - Google Patents

ターボ復号器のためのバッファアーキテクチャ Download PDF

Info

Publication number
JP2004531138A
JP2004531138A JP2002590513A JP2002590513A JP2004531138A JP 2004531138 A JP2004531138 A JP 2004531138A JP 2002590513 A JP2002590513 A JP 2002590513A JP 2002590513 A JP2002590513 A JP 2002590513A JP 2004531138 A JP2004531138 A JP 2004531138A
Authority
JP
Japan
Prior art keywords
banks
buffer structure
interleaved
symbols
turbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002590513A
Other languages
English (en)
Other versions
JP3996514B2 (ja
Inventor
シュー、ダ−シャン
ヤオ、イウェン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2004531138A publication Critical patent/JP2004531138A/ja
Application granted granted Critical
Publication of JP3996514B2 publication Critical patent/JP3996514B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/005Iterative decoding, including iteration between signal detection and decoding operation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/2771Internal interleaver for turbo codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2957Turbo codes and decoding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6566Implementations concerning memory access contentions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0055MAP-decoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • H04L1/0068Rate matching by puncturing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/2703Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques the interleaver involving at least two directions
    • H03M13/271Row-column interleaver with permutations, e.g. block interleaving with inter-row, inter-column, intra-row or intra-column permutations
    • H03M13/2714Turbo interleaver for 3rd generation partnership project [3GPP] universal mobile telecommunications systems [UMTS], e.g. as defined in technical specification TS 25.212

Abstract

【課題】ターボデコーダの中間結果(即ち、APPデータ)を記憶するためのバッファ構造。
【解決手段】アクセス処理量を増すために、各アクセスサイクルにおいて2またはそれより多いビットのAPPデータの同時アクセスを維持するバッファ構造が設計される。これはバッファを複数のバンクに分割することにより達成され、各バンクは独立してアクセス可能である。アクセス競合を避けるためにバンクは連続的なビットに係るAPPデータが異なるバンクからアクセスされるような符号インタリービングを使用する2次元アレイの行および列に割当てられる。“リニア”アドレス化を維持するため、バンクは2つの組に配置することができ、これらはアレイの偶数および奇数列に割当てられる。“インタリーブされた”アドレス化を維持するため、バンクはインタリーブされたアレイの隣接する行が異なるグループに割当てられるようにアレイの行のグループに割当てられる
【選択図】図8

Description

【技術分野】
【0001】
本発明はデータ通信に関する。特に、本発明はターボ復号器に関する中間結果を記憶するための新しいそして進歩したバッファ構造に関する。
【背景技術】
【0002】
無線通信システムは音声、データ、およびその他、のような種々の形式の通信を提供するために広く配備されている。これらのシステムは符号分割多元接続(CDMA;code division multiple access)、時分割多元接続(TDMA;time division multiple access)、またはいくつかの他の多元接続技術に基くことが可能である。CDMAシステムは他の形式のシステム以上にシステム容量の増加を含む確実な利点を提供する。
【0003】
CDMAシステムは、(1)“デュアル−モード広帯域スペクトル拡散セルラシステムに関するTIA/EIA−95−B移動局−基地局互換性標準(TIA/EIA-95-B Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System)”(IS−95標準)、(2)“デュアル−モード広帯域スペクトル拡散セルラ移動局に関するTIA/EIA−98−D推奨最低標準(TIA/EIA-98-D Recommended Minimum Standard for Dual-Mode Wideband Spread Spectrum Cellular Mobile Station)”(IS−98標準)、(3)“第3世代共同プロジェクト”(3GPP;3rd Generation Partnership Project)なる名称のコンソーシアムによって提供され、文書番号3GTS25.211、3GTS25.212、3GTS25.213、および3GTS25.214を含む1組の文書によって具体化された標準(W−CDMA標準)、(4)“第3世代共同プロジェクト2”(3GPP2;3rd Generation Partnership Project 2)なる名称のコンソーシアムによって提供され、文書番号C.S0002−A、S0005−A、S0010−A、S0011−A、S0024、およびS0026を含む1組の文書によって具体化された標準(cdma2000標準)、そして(5)いくつかの他の標準のような、1またはそれより多くのCDMA標準を維持するために設計することができる。これらの標準は参照によりここに組込まれる。
【0004】
各標準はアップリンクおよびダウンリンク上の送信に関するデータの処理について特別に定める。例えば、言語情報は特定のデータレートで符号化され、特定されたフレームフォーマットにフォーマットされ、そして特定の処理機構に従って処理される(例えば、エラーの訂正および/または検出のための符号化、インタリーブ、その他の処理)ことが可能である。特定の標準(例えばcdma2000標準)によって確定されたフレームフォーマットおよび処理は、おそらく他の標準(例えばW−CDMA標準)のそれらとは異なるものである。
【0005】
W−CDMA標準は順応性のある動作を維持する。例えば、データはバースト(burst)中をそして1つまたはそれより多くのチャネルを介して送信することができ、データレートはフレームからフレームにおいて変化することが可能とされ、データの処理もまた変化させることができる(例えば、フレームからフレームにおいて、および/または“伝送”チャネルからチャネルにおいて)、等々である。
【0006】
W−CDMA標準は並列連結畳込み符号器(parallel concatenated convolutional encoder)を採用し(しばしばターボエンコーダ(Turbo encoder)として参照される)、これは送信の前に符号セグメント(即ち、データパケット)を符号化するために選択されることが可能である。ターボエンコーダは並列に動作し符号インタリーバ(code interleaver)と組合される2つの構成要素としてのエンコーダを採用する。符号インタリーバは特別に定義されたインタリービング機構(interleaving scheme)に従ってパケット内の情報ビットをシャッフル(shuffle;即ち、インタリーブ)する。1つの符号器は第1シーケンスのパリティビットを生成するためにパケット内の情報ビットを符号化し、他の符号器は第2シーケンスのパリティビットを生成するためにシャッフルされた情報ビットを符号化する。第1および第2シーケンス中の情報ビットおよび全てのまたはいくつかのパリティビットは送信される。
【0007】
相補的な(そしてコンピュータ使用の強化された)ターボ復号化(Turbo decoding)が受信装置において行われる。各ターボ符号化されたパケットのために、受信されたビットはバッファに記憶される。続いて第1符号器に関する情報およびパリティビットがバッファから再生され、そして情報ビットに関する検出値についての秘密の調整を表示する“外来性(extrinsic)”情報を提供するために、第1成分符号(first constituent code)に基き復号化される。続いて第1復号器からの外来性情報を含む中間結果は、送信装置において使用された符号のインタリーブ化に適合するインタリーブされた順序で、記憶装置に記憶される。
【0008】
続いて第2符号器からの中間結果およびパリティビットがそれらのそれぞれの情報源から再生され、そして情報ビットに関する検出値についての信頼性のさらなる調整を表示する外来性情報(extrinsic information)を提供するために第2成分符号(second constituent code)に基き復号化される。続いて第2復号器からの外来性情報を含む中間結果は送信装置において使用された符号のインタリーブ化に対し相補的(complementary)にデ−インタリーブ(de-interleave)された順序で記憶装置に記憶される。中間結果は第1成分復号器の次の反復によって使用される。第1および第2成分復号器による復号化は最終結果をもたらすために多数回反復される。
【発明の開示】
【発明が解決しようとする課題】
【0009】
復号されるべき各情報ビットに関して、記憶装置は前の復号化によりこのビットのために生成された中間結果を再生するためにアクセスされる(もしあれば)。各復号化されたビットに関して生成された中間結果はその後の復号化における使用のためにさらに記憶装置に記憶される。記憶装置はこのように、パケット内のビットが複合される場合に引き続きアクセスされる。効率的なメモリ管理は効率的なターボ復号化の本質である。
【0010】
理解しうるように、ターボ復号器のために中間結果を効率的に記憶するのに使用可能なバッファ構造が非常に望まれている。
【課題を解決するための手段】
【0011】
本発明は一面においてターボ復号器に関する中間結果(例えば、プリオリ確率(APP;a priori probability)データ)を効率的に記憶するのに使用可能なバッファ構造を提供する。ターボ復号化の期間にAPPデータの全体にアクセスすることを強化するため、バッファ装置は各アクセスサイクルにおいて2つまたはそれより多くの情報ビットに関するAPPデータの同時アクセス(即ち、書込みまたは読出し)を維持するように設計される。各ビットに関するAPPデータは情報ビットおよびその外来性情報または組合わせまたはまさにそのビットの外来性情報のいずれをも表示する。強化されたアクセッスはバッファを複数のバンク(bank)に分割することにより行うことができ、各バンクは独立してアクセス可能である。例えば、W−CDMAシステムに使用されるターボ復号器に関しては6個またはそれより多くのバンクを使用し得るであろう。
【0012】
ターボ符号器は第2成分符号器により符号化する前にデータパケット内の情報ビットをシャッフルするために符号インタリービング機構を採用する。符号化機構は典型的に、(1)データパケット(または符号セグメント)内の情報ビットを行(row)ごとに2次元アレイへの書込む、(2)各要素を各行内でシャッフルする、そして(3)行についてシャッフルする、ことを条件とする。ビットはその後アレイから列(column)ごとに読み出される。ターボ復号器に関し、同じインタリービング機構および相補的なデインタリービング機構がAPPデータの記憶化/再生化のために使用される。
【0013】
ターボ復号化に関し、APPデータを“インタリーブされた”アドレス化モード(”interleaved” addressing mode)または“リニア(linear)”アドレス化モードを介してアクセスすることが可能である。インタリーブされたアドレス化モードはデータパケット内の“インタリーブされた”位置におけるAPPデータのアクセスに対応し、そしてリニアアドレス化モードはデータパケット内の“リニア”位置におけるAPPデータのアクセスに対応する。アクセス競合を防止するため、いずれかの(リニアまたはインタリーブされた)アドレス化モードを介してアクセスされる連続するビットに関するAPPデータは異なるバンクからとなるように、バンクはアレイの行および列に割当てられる。
【0014】
リニアアドレス化モードにおいて2つの連続するビットに関するAPPデータに関して2つの異なるバンクがアクセスされることを確実にするために、バンクの一方の組はアレイの偶数番号の列が使用され、そしてバンクの他方の組は奇数番号の列が使用されるように、バンクを配列し割当てることができる。この奇数/偶数割当て機構を用いて連続的なリニアアドレスはバンクの異なる2つの組と組合される。
【0015】
インタリーブされたアドレス化モードにおいて、2つの連続的なビットに関するAPPデータについて2つの異なるバンクがアクセスされることを確実にするために、バンクをアレイの行のグループに割当てることができる。データパケットに関するビットはインタリーブされたアドレス化モードにおいてアレイから列ごとに再生されるので、行は、インタリーブされたアドレス化モードに関する近接する行が異なるグループに割当てられるようなグループに配列することができる。行のグループは典型的に行をシャッフルするのに使用される1つまたはそれより多くの並べ替えパターン(permutation pattern)に従う。行のグループ化はさらに詳細に以下に記載される。
【0016】
本発明に関する種々の構成、具体例、および特徴がさらに詳細に以下に記載される。
本発明に関する特徴、性質、および利点は、全体を通して対応について明らかにする参照符号に合わせて図面と組合わせることにより、以下に述べる詳細な記載からより明らかになるであろう。
【発明を実施するための最良の形態】
【0017】
図1は本発明の種々の構成を実施可能な通信システム100の簡単化したブロック図である。特定の具体例において、通信システム100はW−CDMA標準に適合するCDMAシステムである。送信装置110において、データは、典型的にはブロック内で、データソース112から1つまたはそれより多くのアナログ信号を生成するためにデータをフォーマットし、符号化しそして処理する送信(TX)データプロセッサ114に送信される。アナログ信号は続いて、変調された信号を発生するために、信号を(直角位相)変調し、フィルタし、増幅し、そしてアップコンバートする送信機(TMTR)116に提供される。変調された信号は続いて1つまたはそれより多くのアンテナ118(図1には1個のみが示されている)を介して1つまたはそれより多くの受信装置に送信される。
【0018】
受信装置130において、1つまたはそれより多くのアンテナ132(再度、図1には1個のみが示されている)により送信された信号は受信され、そして受信器(RCVR)134に提供される。受信器134において、受信された信号は増幅され、フィルタされ、ダウンコンバートされ、(直角位相)復調され、そしてサンプルを生成するためにデジタル化される。サンプルは送信されたデータを再生するために続いて受信(RX)データプロセッサ136により処理され復号される。受信装置130における処理および復号化は送信装置110において行われた処理および符号化に対して相補的な方法により行われる。回復されたデータは続いてデータシンク138に提供される。
【0019】
上に記載した信号処理は音声、ビデオ、パケットデータ、信号送信、および他の形式の一方向の通信を維持する。双方向通信システムは2通りのデータ通信を維持する。しかしながら、他の方向に関する信号処理は簡単化のため図1には示されていない。
図2AはW−CDMA標準に従うダウンリンクデータ送信のための送信装置110における信号処理の図である。ダウンリンクは基地局から使用者端末(または使用者装置(UE;user equipment))への送信として示され、そしてアップリンクは使用者端末から基地局への送信として示される。図2Aにおいて示される信号処理は一般に図1の送信データプロセッサ114により実行される。W−CDMAシステムにおける上部信号処理層は複数の伝送チャネルの同時送信を維持し、各伝送チャネルは特定の通信(例えば、音声、ビデオ、データ、その他)に関するデータを搬送することが可能である。各伝送チャネルに関するデータは、セクション210で処理するそれぞれの伝送チャネルへ、伝送ブロックとして指示されるブロックにより提供される。
【0020】
伝送チャネル処理セクション210内において、巡回符号検査(CRC;cyclic redundancy check)ビットをブロック212において計算するために、各伝送ブロックが使用される。CRCビットは伝送ブロックに付与され、そして受信装置において誤り検出のために使用される。続いて複数のCRC符号化ブロックはブロック214において連続的に互いに連結される。連結後のビット総数が符号ブロックの最大サイズより大きい場合、このビットは符号ブロック数(等しいサイズ)に分割される。各符号ブロックは続いてブロック216において特定の符号化機構(例えば、畳込み符号、ターボ符号)を用いて符号化されるか、またはともかく符号化はされない。
【0021】
続いてブロック218において符号ビットについてレートマッチング(rate matching)が行われる。レートマッチングはより高い信号送出層(signaling layer)により割当てられるレートマッチング特性に従って行われる。アップリンクにおいて、ビットは、送信されるべき複数のビットが利用可能なビット数と適合するように、繰返されるかまたはパンクチャ(puncture)される(即ち、削除される)。ブロック220において、ダウンリンクにおいて使用されていないビット位置が不連続の送信(DTX)ビットを用いて満たされる。DTXビットは何時送信を止めるべきかそして実際に送信しないかを指示する。
【0022】
ビットは続いてブロック222において時間多様性(time diversity)を提供するために特定のインタリービング機構に基づきインタリーブされる。W−CDMA標準に従い、インタリーブ化が行われる時間間隔は可能な時間間隔の組(即ち、10msec、20msec、40msec、または80msec)から選択できる。インタリーブ化時間間隔はまた送信時間間隔(TTI;transmission time interval)として参照される。TTIはW−CDMA標準に従う各伝送チャネルに関連する特性であり、通信セションの継続時間を変更しない。ここで使用される場合、“トラヒック”は特定の伝送チャネルに関する1つのTTI内のビットを含む。
【0023】
選択されるTTIが10msecより長い場合、ブロック224においてトラヒックは分割されそして連続的な伝送チャネルラジオフレームにマップ(map)される。各伝送チャネルラジオフレームは(10msec)ラジオフレーム期間を超える送信に対応する。W−CDMA標準に従い、トラヒックは1、2、4、または8ラジオフレーム期間にわたってインタリーブ化することができる。
【0024】
全てのアクティブ伝送チャネル処理セクション210からのラジオフレームは続いてブロック232において連続的に符号化された合成伝送チャネル(CCTrCH;coded composite transport channel)にマルチプレックス化される。送信されるビット数がデータ送信のために使用される物理チャネル上で使用可能なビット数に適合するように、続いてブロック234においてDTXビットをマルチプレックス化されたラジオフレームに挿入することができる。1つよりも多い物理チャネルが使用される場合、ブロック236においてビットは物理チャネル間で分割される。特定の物理チャネルは異なるTTIを有する伝送チャネルを搬送できる。各物理チャネルに関する各ラジオフレーム期間内のビットは、ブロック238において追加の時間差を提供するために続いてインタリーブされる。インタリーブされた物理チャネルラジオフレームは続いてブロック240においてそれらのそれぞれの物理チャネルにマップされる。使用者端末への送信に適切な変調された信号を生成するためのその後の信号処理はこの技術分野において知られておりここでは記載しない。
【0025】
図2BはW−CDMA標準に従うダウンリンクデータ伝送に関する受信装置130における信号処理の図である。図2Bに示される信号処理は図2Aに示されるものに対し相補的であり、そして一般的に図1の受信データプロセッサ136により実行される。最初に、変調された信号が受信され、条件設定され(condition)、デジタル化され、そしてデータ送信のために使用された各物理チャネルに関する記号(symbol)を提供するために処理される。各記号は特有の分解度(例えば、4ビットまたはそれより大)を有しそして送信されたビットに対応する。各物理チャネルに関する各ラジオフレーム期間における記号はブロック252においてデ−インタリーブ(de-interleave)され、そして全ての物理チャネルからデ−インタリーブされた記号はブロック254において連結される。ダウンリンク送信に関し、ブロック256において非−送信ビットが検出されそして除去される。記号は続いてブロック258において種々の伝送チャネルにデマルチプレックス(demultiplex)化される。各伝送チャネルに関するラジオフレームは続いてそれぞれの伝送チャネル処理セクション260に提供される。
【0026】
ブロック262において、伝送チャネルラジオフレームは伝送チャネル処理セクション260内においてトラフィック内に連鎖状に連結される。各トラフィックは1つまたはそれより多くの伝送チャネルラジオフレームを含み、送信装置において使用される特定のTTIに対応する。ブロック264において、各トラフィック内の記号はデ−インタリーブされ、そしてブロック266において、非送信記号は取除かれる。続いて反復された記号を蓄積するために逆レートマッチング(inverse rate matching)が続いて行われ、そしてブロック268において、パンクチャ記号(punctured symbols)のための“don’t cares”を挿入する。トラフィック内における各符号化されたブロックは続いてブロック270において復号される。復号されたブロックは続いてブロック272において、鎖状に連結されそしてそれらの各伝送ブロックに分けられる。各伝送ブロックは続いてブロック274においてCRCビットを用いて誤りについて検査される。
【0027】
図3はW−CDMA標準により定められた並列連鎖状畳込み符号器300(これもまたターボ符号器として参照される。)の図である。ターボ符号器300は図2Aのブロック216におけるチャネル符号化を実行するため使用することができる。ターボ符号器300は一対の成分符号器312aおよび312b、符号インタリーバ314、およびパンクチャ(puncturer)およびマルチプレクサ316を含む。符号インタリーバ314はW−CDMA標準により定められそして下に詳細に記載される特定のインタリービング機構に従い符号セグメント(即ち、パケット)内の情報ビットを受信しそしてインタリーブする。
【0028】
各成分符号器312はリニア順序(linear-order)のまたはインタリーブされた情報ビットのいずれかを受信し、受信した情報ビットを所定の成分符号を用いて符号化し、そして一連のパリティビットを提供する。パンクチャおよびマルチプレクサ316は、符号器312aおよび312bの双方から情報ビットおよびパリティビットを受信し、望みのビット数を得るために、0またはそれより多くのパリティビットをパンクチャ(即ち削除)し、そして非パンクチャ情報およびパリティビットを一連の符号化されたビットにマルチプレックスする。
【0029】
各成分符号器312は3個の直列接続された遅延素子322、4個のモジュロ−2加算器324、およびスイッチ326を含む。最初に、遅延素子322の状態はゼロに設定され、そしてスイッチ326は上の位置にある。続いて、データパケット内の各情報ビットに関し、加算器324aは情報ビットxと加算器324dからの出力ビットとのモジュロ−2加算を実行しそして結果を遅延素子322aに提供する。加算器324bおよび324cは受信しそして加算器324aと遅延素子322aおよび322cからのビットのモジュロ−2加算を実行し、そしてパリティビットyを提供する。加算器324dは遅延素子322bおよび322cからのからのビットのモジュロ−2加算を実行する。
【0030】
データパケット内のN個の情報ビットの全てが符号化された後、スイッチ326は下の位置に移動し、そして3個のゼロ(“0”)尾部ビット(tail bit)が成分符号器312aに提供される。成分符号器312aは続いて3個の尾部ビットを符号化し、そして6個の尾部パリティビットを提供する。
【0031】
N個の情報ビットの各パケットに関し、成分符号器312aはN個のパリティビットyおよび最初の6個の尾部パリティビットを提供し、そして成分符号器312bはN個のパリティビットzおよび最後の6個の尾部パリティビットを提供する。各パケットに関し、パンクチャおよびマルチプレクサ316はN個の情報ビット、符号器312aからのN+6個のパリティビット、符号器312bからのN+6個のパリティビットを受信する。パンクチャおよびマルチプレクサ316は、必要とされる符号化ビット数を提供するために複数のパリティビットをパンクチャすることができ、必要とされる符号化ビットは非パンクチャ情報およびパリティビットを含む。
【0032】
図4はターボ復号器400の設計に関するブロック図である。この設計において、ターボ復号器400は2つの成分復号器(constituent decoder)410aおよび410b、符号インタリーバ412、符号デインタリーバ414、および検出器416を含む。各復号器410は典型的にソフト入力/ソフト出力(SISO;soft-input/soft-output)最大ポステリオリ(MAP;maximum a posteriori)復号器として実行される。しかしながら、ソフト出力ビタビアルゴリズム(SOVA;soft output Viterbi algorithm)を実行するような復号器のような、他の形式の復号器も使用することができる。復号器の設計は一般に送信装置において使用される特定のターボ符号化機構に従う。
【0033】
送信された符号化ビットに対応する受信された(ソフト)ビットは送信装置において実行された(図2Aのブロック222および238)第1および第2のインタリーブ化を元に戻すためにチャネル−デインタリーバ(図4には示されていない)によってデインタリーブされる。復号化されるべき各データパケットに関し、チャネル デインタリーブされたビットは、必要な場合には復号器410aおよび410bに提供される。
【0034】
図4に示される具体例において、合算器(summer)408aは、復号器410aに対してプリオリ確率(APP)を提供するために、LLR(APP)、LLR(x‘)、およびデインタリーバ414からの外来性情報を受信しそして合計する。LLR(APP)は情報ビットの基礎となる推定から導かれるログ−尤度比(LLR;log likelihood ratio)である。データパケット内の各情報ビットがゼロ(“0”)または1(“1”)のいずれかであるに等しいらしいと推定される場合には、LLR(APP)はパケット内の全ての受信されたビットに関しゼロに等しく、そしてLLR(APP)に関するいかなる部分も無視される。デインタリーバ414からの外来性情報は第1復号化反復に関しゼロに設定される。LLR(x‘)は受信された情報ビットx‘のログ−尤度比である。各受信された情報およびパリティビットbのLLRは
LLR(b)=log((P(b=0))/(P(b=1)))
として計算できる。受信されたビットのLLRは、1であるビットの確率に対するゼロであるビットの確率の比の対数である。各受信されたビットに関する確率P(b=0)およびP(b=1)は一般にそのビットに関するソフト値(soft value)に基づく。削除(即ちパンクチャされたビット)に関するLLRはゼロまたは1(即ち、LLR=0)であるビット内において等しい信頼性を示す。
【0035】
復号器410aは合算器408aおよびLLR(y‘)からAPPを受信し、このLLR(y‘)は第1成分符号器から受信されたパリティビット、y‘、のLLRである。LLR(y‘)はパンクチャされた(即ち、送信されない)パリティビットに関する削除、もしあれば、を含む。復号器410aは続いてポステリオリ確率(posteriori probability)を生成するためにAPPおよびLLR(y‘)をMAPアルゴリズムに従い復号する。APPは続いて、受信されたパリティビットy‘により与えられる受信された情報ビットx‘に関する値の信頼性に関係する訂正/調整(corrections/adjustments)を示す外来性情報、e、を提供するために、合算器408bによりポステリオリ確率から減算される。
【0036】
合算器408bからの外来性情報、e、は情報ビットLLRs、LLR(x‘)と合算され、そして中間結果(これは次の復号器に関するAPPである。)は符号インタリーバ412に記憶される。符号インタリーバ412はターボ符号器において用いられたものと同じ符号インタリービング機構を実行する(例えば図3の符号インタリーバ314において用いられたものと同じ機構)。
【0037】
復号器410bはインタリーブされたAPPをインタリーバ412からそしてLLR(z‘)を受信し、これは第2成分符号器から受信されたパリティビットz‘のLLRsである。復号器410bは続いてポステリオリ確率を生成するためにAPPおよびLLR(z‘)をMAPアルゴリズムに従って復号化する。APPは続いて外来性情報、e、を提供するために合算器408dによりポステリオリ確率から減算され、これは受信されたパリティビットz‘により与えられる受信された情報ビット値x‘に関する信頼性に関係するさらなる訂正/調整を示す。外来性情報、e、は復号器410bからの中間結果を含み、これは符号デインタリーバ414に記憶される。デインタリーバ414はインタリーバ412に関して使用されたインタリービング機構と相補的なデインタリービング機構(deinterleaving scheme)を実行する。
【0038】
情報ビットLLRsの復号化は複数回(例えば、6、8、10、あるいはより多くの回数)反復される。情報ビットの検出された値に関し各反復においてより大きな信頼性が得られる。全ての復号化の反復が実行された後、最終的なLLRsが検出器418に提供され、これはこれらのLLRsに基く受信された情報ビットに関するハード−デシジョン値(hard-decision value、例えば“0”および“1”)を提供する。
【0039】
図5は本発明の具体例に従うターボ復号器500のブロック図である。ターボ復号器500は図4に示すターボ復号器400における1つの特別な手段である。この具体例において、ターボ復号器500は入力接続装置506、局所メモリ/コンバイナ508、SISO MAP復号器510、アドレス発生器512aおよび512b、記憶装置520、検出器518、およびエネルギメトリック計算機(energy metric calculator)522を含む。戻って図4を参照すると、2つの成分復号器410aおよび410bが直列に動作し、1つの復号器からの外来性情報が他の復号器の入力として提供される。2つの成分復号器の直列動作のため、一つの(物理的)復号器のみが双方の成分復号器の実行のために使用され得る。
【0040】
入力接続装置506はチャネル デインタリーバ502とMAP復号器510間の接続を行う。あるシステムにおいて、入力接続装置506は、パンクチャ化が送信装置において実行された場合に、符号化されたビットのデ−パンクチャ化(de-puncturing)を提供するように設計することができる。デ−パンクチャ化は各パンクチャされたビットの削除を提供することにより行われ、削除はゼロまたは1であるビットが等しい尤度(equal likelihood)であることを示す。
【0041】
実行された特定の復号化経路に従い(即ち、第1または第2成分符号器に対する復号化)、情報およびパリティビットの固有の配列はチャネル デインタリーバ502からメモリ/コンバイナ508に提供される。前の反復から得られたAPPはさらにAPP記憶装置520からメモリ/コンバイナ508に提供される。具体例において、メモリ/コンバイナ508は、(1)受信された(ソフト)情報ビットに関するLLRを受信し計算するため、(2)ステップ(1)で計算されたLLR(x’)とAPPを生成するための対応する外来性情報とを結合するため、そして(3)受信されたパリティビットに関するLLRを受信し計算するために設計される。
【0042】
具体例において、メモリ/コンバイナ508は一時的に記憶されるスライディングウインドウアーキテクチャ(SWA;sliding window architecture)、例えば情報およびパリティビットに対し4ウインドウの量がある、を用いて実行される。復号器510内で3状態メトリック計算機(three state metric calculator)による情報およびパリティビットに対する3ウインドウが動作している間に、4ウインドウはチャネル デインタリーバ502および記憶装置520からの値を用いて更新される。具体例において、各ウインドウは32のサイズ、即ち各ウインドウは32のx’記号および32のy’(またはz’)記号を保持する、を有する。また他のウインドウ長および/または異なるウインドウ数を使用することができ、このことは本発明の範囲内である。
【0043】
具体例において、復号器510はログ−MAPアルゴリズム(log-MAP algorithm)を実行するSISO復号器として動作する。いかなるMAP基準復号化アルゴリズム(例えば、max ログ−MAPアルゴリズム、またはmax* ログ−MAPアルゴリズム、双方ともこの技術分野で知られている)も使用可能である。具体例において、MAPアルゴリズムを実行するために、復号器510は1つの前方状態メトリック計算機(forward state metric calculator)および2つの後方状態メトリック計算機(backward state metric calculator)を含む。各前方(または後方)メトリック計算機は、(1)前の(または将来の)時間段階における状態の確率そして(2)前の(または将来の)状態と現在の時間における状態との間の経路の確率に基づき、所定の現在の時間段階においてトレリス(trellis)内の各2K−1状態の確率の対数を計算し、ここでKは成分符号器の拘束長(constraint length)である。これら前方および後方状態メトリック(それぞれαおよびβ)は続いて情報ビットに関するポステリオリ確率を計算するために使用される。前方および後方状態メトリック計算およびターボ復号化については、Steven S. Pietrobonによる題名が“ターボMap復号器に関する装置および動作(Implementation and Performance of a Turbo/Map Decoder)” International Journal of Communications, Vol.16,1998,pp.23-46なる文献に極めて詳細に記載されており、これは参照することによりここに組込まれる。
【0044】
スライディングウインドウアーキテクチャおよび1つの前方および2つの後方状態メトリック計算機の使用は、単に計算量を適度に増加させる一方、記憶要求を低減する。単一の後方状態メトリック計算機はパケットの終端からパケットの開始に対し1つの経路で動作することができるが、これは大量の記憶スペースを必要とする。具体例において、特定の復号経路に関し以下の動作シーケンスが実行され、
FWMC(1〜32)
FWMC(33〜64)
FWMC(65〜96) and RWMC A(64〜33)
FWMC(97〜128) and RWMC A(32〜1) and RWMC B(95〜65)
FWMC(129〜160) and RWMC B(64〜33) and RWMC A(129〜97)
FWMC(161〜192) and RWMC A(96〜65) and RWMC B(160〜129)
・・・
ここで、FWMC(1〜32)はビット1から32に関する前方メトリック計算を示し、そしてRWMC(32〜1)はビット32から1に関する逆方向メトリック計算を示す。FWMCからの結果はポステリオリ確率を形成するために下線部のRWMCと結合され、外来性情報を導くためにこれからAPP記号が減算される。外来性情報は次の復号化段階においてAPP記号を形成するために情報ビットLLRsと結合される。
【0045】
復号器510の出力はAPP記憶装置520に記憶される。具体例においてAPP記憶装置520は復号器510からのAPP記号をインタリーブされた順序で(リニア順序とは対立するように、これはさらに使用されるかもしれない。)記憶するために動作する。インタリーブされた順序で中間結果を記憶することはメモリの分割を簡単化することができ、そしてさらにターボ符号器および復号器の双方のために同じインタリービングアドレス発生器の使用を可能にする。具体例において、APP記憶装置520はさらに第1成分復号化からのAPP記号および第2成分復号化からの外来性情報を記憶するために動作する。
【0046】
第1成分復号化に関し、以前の第2成分復号化からの外来性情報がデインタリーブされた順序で記憶装置520から再生され、そして復号化によって生成されたAPP記号がインタリーブされた順序で記憶装置520に記憶される。対応して、第2成分復号化に関し、以前の第1成分復号化からのAPP記号がリニア順序で記憶装置520から再生され、そして復号化によって生成された外来性情報がリニア順序で記憶装置520に記憶される。
【0047】
アドレス発生器512aおよび512bはそれぞれ記憶装置520に関する書込みおよび読み出しアドレスを提供する。マルチプレクサ514aは図5においてAPP記号/外来性情報をリニアなまたはインタリーブされた順序で記憶装置520に書込むことができることを示すために記号的に記載されており、マルチプレクサ514bはAPP記号/外来性情報が記憶装置からリニアなまたはデインタリーブされた順序で再生され得ることを示すために記号的に記載されている。
【0048】
検出器518は最後の復号化の反復の後にAPP記号を受信し、そして受信された情報ビットに関するハードディシジョン(hard decision)を提供する。エネルギメトリック計算機522は情報ビット(またはそれらのLLRs)に関するエネルギメトリックを提供する。エネルギメトリックは検出された情報ビット内の信頼性の他方の指示として使用することができる。
【0049】
図4および図5に示されるターボ復号器の設計に関し、記憶装置は第1成分復号器からのAPPデータおよび第2成分復号器からの外来性情報を記憶する。APPデータおよび外来性情報は成分復号器からの中間結果の2つの異なる形式である。ここで使用されているように、中間結果は1つの成分復号器から後続する復号器に通過したいずれかの情報を含むことができ、そしていずれかの形式をとることができる。一般的には、いずれかの成分復号器からの記憶されるべき中間結果の特定の形式はターボ復号器の特定の設計に対応する。
【0050】
符号インタリービングはターボ符号器および復号器に関し重要なそして不可欠の部分である。ターボ符号器において符号インタリービングに関するいずれかの機構が選択された場合には、第1成分復号化からのAPP記号を記憶し/再生するために同じ機構が使用され、そして第2成分復号化に関する外来性情報を記憶し/再生するために相補的機構が使用される。
【0051】
WCDMA標準はターボ符号器に関する特定のインタリービング機構について確定する。このインタリービング機構は、(1)“符号セグメント”内の情報ビットを行ごとにRxCアレイに書込む、(2)セグメントを各行内(intra-row)で再配列する(即ち、行内の置換)、そして(3)行を置換える(即ち、行間(inter-row)の置換)、の3段階に分けることができる。その後、ビットはアレイから列ごとに読み出され、RxCアレイの上部最左部から開始する。これらの3段階は以下により詳しく記載され、そしてその後インタリービング機構を良く理解するために1つの例が提供される。
【0052】
第1段階において、各符号セグメントン内のビットがRxCアレイに書込まれる。W−CDMA標準は40〜5114ビットで変化する種々のサイズの符号セグメントを支持する。最初に以下のように、符号セグメントのサイズ、K、に基き、アレイ内の行の数、R、が決定される。
【0053】
R=5、 40≦K≦159の場合
R=10、 160≦K≦200または481≦K≦530の場合、または
R=20、 他の全てのKについて
次に以下のように、RおよびKに基き、アレイ内の列の数、C、が決定される。
【0054】
C=53、481≦K≦530の場合、さもなければ、
(p+1)・R≧Kのように基本数p(prime number p)を選択し、続いて
R・C≧KのようにC=min{p−1、p、p+1}を選択する、
所定のKに関し一度RおよびCが決定されると、符号セグメント内のビットが行ごとにRxCアレイに書込まれる。K≦R・Cなので、アレイの底部に空のセルが存在するかも知れない(即ち、1つまたはそれより多い行、またはそれらの一部、はいかなるビットも含まないかも知れない。)。
【0055】
第2段階において、各行内の要素はその行に関して特に確定される行並べ替えシーケンス(row permutation sequence)に基き並べ替えられる(即ちシャッフルされる。)。行内の並べ替えは連続する段階で実行することができる。第1工程において、長さpの基本のシーケンスc(i)が生成される。第1段階において決定される各可能な基本数pに関し、W−CDMA標準によって確定されそして表1に示されている該基本数pに関連する原始根(primitive root)、g、が存在する。続いて基本のシーケンスc(i)が
c(i)=[g・c(i−1)]モジュロ(p)、 i=1、2、...、(p−1)
式(1)
ここでc(0)=1
によって導かれる。
【0056】
【表1】
Figure 2004531138
第2段階の第2工程において、一連のRの基本数、q、が形成される。この基本数のシーケンスは以下の基準,
g.c.d.{q,p−1}=1;
>6;そして 式(2)
>qj−1
ここでg.c.d.は最大公約数(greatest common divider)であり、g=1である、
が満足されるように選択される。
【0057】
基本数のシーケンスqは本質的に増加する最小の基本数のシーケンスであり、これは(p−1)の要素である基本数を含まない。この基本数のシーケンスq内のR要素はそれぞれアレイのR行と関連する。シーケンスq内のR要素の各々は、以下に詳しく記載されるように、関連する行に関し後に行内の並べ替えのシーケンスを計算するために使用される。
【0058】
基本数のシーケンスq内の0〜R−1におけるインデックスの要素はそれぞれ行0〜R−1に関連し、そして後に行内の並べ替えの後、行間の並べ替えシーケンスPxを用いて並べ替えられるので、基本数のシーケンスq内の要素もまた同じ行間並べ替えシーケンスPxを使用して並べ替えられる。シーケンスPxは以下に詳しく記載するように符号セグメントに関し4つの可能なシーケンス、P、P、P、およびPから選択される。並べ替えられる基本数のシーケンスpは、
Px(j)=q、 j=0、1...R−1 式(3)
として決定される。
【0059】
第2段階の第3工程において、各行に関する行内並べ替えシーケンスc(i)は以下のように決定される。
(i)=c([i・p]モジュロ(p−1))、 i=0、1、...(p−2)
式(4)
ここでc(p−1)=0、jは行間並べ替え後の行のインデックスであり、c(x)は行内並べ替えに関する基本シーケンスでありそして上記式(1)で計算され、そしてc(i)はi・th行の並べ替え後のi・thの出力の入力ビット位置である。各行に関する行内並べ替えシーケンスc(i)は、このように基本シーケンスc(x)およびその行に関連して並べ替えられる基本数のシーケンス内の基本数にpに基く。各行の要素は、並べ替えられる行内のi・thのセルの位置が元の行のc(i)thのセル位置内に記憶される要素と共に記憶されるように、並べ替えられる。
【0060】
上で記載したように、Cはp−1、p、またはp+1と等しくすることができる。このように、行内並べ替えシーケンスc(i)は以下のように使用される。
【0061】
C=p−1の場合、 i=0、1、2、...(p−2)に関しc(i)−1を使用する。
代わりにC=pの場合、 i=0、1、2、...(p−2)に関しc(i)を、およびc(p−1)=0を使用する。
代わりにC=p+1の場合、 i=0、1、2、...(p−2)に関しc(i)、c(p−1)=0、c(p)=pを使用する。そして、
R・C=Kの場合、続いてcR−1(p)をcR−1(0)と交換する。
【0062】
第3段階において、アレイ内のR行は行間並べ替えシーケンスPxに基き並べ替えられ、これはW−CDMA標準により確定される以下の4つの可能なシーケンスP、P、P、およびP
={19、9、14、4、0、2、5、7、12、18、10、8、13、17、3、1、16、6、15、11}
={19、9、14、1、0、2、5、7、12、18、16、13、17、、15、3、1、6、11、8、10}
={9、8、7、6、5、4、3、2、1、0}
={4、3、2、1、0}
の中から選択される。
【0063】
特に符号セグメントに関して使用するための行間並べ替えシーケンスは以下に基き選択される。
Kが、[201、480]、[531、2280]、[2481、3160]、または[3211、5114]ビットに属する場合、Pが選択され、
Kが、[2281、2480]、または[3161、3210]に属する場合、Pが選択され、
Kが、[160、200]、または[481、530]に属する場合(即ち、K=10)、Pが選択され、
Kが[40、155]に属する場合Pが選択される(即ち、R=5の場合はいつもPを使用する。)。
行間並べ替えは、元のアレイのj・th行が並べ替えられたアレイのPXj行の位置に移動するように形成される。
【0064】
行間並べ替えの後、ビットは上部から底部に(即ち、0行からR−1行に)列ごとに読み出される。上で記載したように、K≦R・Cなので、アレイ中のいくつかのセルは有効なデータを含まないことも有り得、これらのセルはデータが読み出されるときに飛ばされる。
【0065】
明確にするために、上で記載したインタリービング機構に関する事例が以下に提供される。この事例において、K=379であり結果としてR=20が選択される。基本数pが続いてp=19として決定され、そして列Cの数がC=19として決定される。この基本数pに関し、関連する原始根g=2。.
式(1)を用いて、基本シーケンスc(i)は、
c(i)={1、2、4、8、16、13、7、14、9、18、17、15、11、3、6、12、5、10}
として決定される。
【0066】
基本数シーケンスqは式の組(2)から、
={1、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79}
として決定される。
このK=379に関し、行間並べ替えシーケンスPが選択される。並べ替えられた基本数シーケンスpが基本数シーケンスqから等式(PpAj=q)に基き以下を提供するために生成される。
【0067】
={17、61、19、59、13、23、71、29、43、7、41、79、31、47、11、73、67、53、37、1}
各行に関する行内並べ替えシーケンスc(i)がpおよび基本シーケンスc(i)に基き続いて決定される。第1の行(j=0)に関し、行に関する基本数はp=10であり、そして行内並べ替えシーケンスc(i)は、
(i)=c(ipモジュロ(p−1))
=c(i−17モジュロ18)
={1、10、5、12、6、3、11、15、17、18、9、14、7、13、16、8、4、2.0}
として決定される。
【0068】
他の行に関する並べ替えシーケンスc(i)は同様の方法により決定することができる。
ターボ復号化はコンピュータ使用の集約的な工程である。各ターボ復号化された符号セグメントに関し、送信され符号化されたビットは受信されそして一時的な記憶装置(例えば、図5のチャネル デインタリーバ508)に記憶される。符号化されたビットは続いて(連続的に)一時的な記憶装置から再生され、そして復号される。復号されるべき各ビットに関し、APP記憶装置はこのビットに関し前の復号化により生成された(もし、あれば)APPデータ(即ち、APP記号/外来性情報)を再生するためにアクセスされる。各復号化されたビットに関し生成されたAPPデータは、後の復号化による使用のために、さらにAPP記憶装置に戻して記憶される。このようにAPP記憶装置は、符号セグメント内のビットが復号される場合に、引き続いてアクセスされる。効率の良いメモリ管理は効率の良いターボ復号化のための本質である。
【0069】
本発明の概念に対応し、APP記憶装置520は複数のバンクに分割されそして実行される。具体例において、バンクはAPPデータの二重の一時的な記憶を避けるような方法で割当てられそして動作する。具体例において、各バンクは他のバンクから分離しそして独立にアクセスすることができる。このことは各バンクがそれ自身のアドレスの組およびデータラインを有するように準備することにより可能となる。
【0070】
特別の具体例において、復号器510はクロック周期につき1つの情報ビットを復号することが可能なように設計される。各ビットに関する復号化プロセスの期間にAPPデータに関するメモリアクセス(即ち、書込みおよび読み出し)を待たなければならないことを避けるために、APP記憶装置は、復号化されるべき現在のビットに関するAPPデータを記憶し、そして復号化されるべき将来のビットに関するAPPデータを提供することが、平均的に可能なように設計される。アクセスの競合を避けるために、記憶装置は書込みおよび読み出し動作が同じアクセスサイクルに同じバンクにおいて同時に行われないように分割される(複数ポートメモリが使用される場合に、このことが可能とはいえ)。具体例において、メモリ分割を容易にするために、バンクはさられに複数ビットに関するAPPデータを単一のアクセスサイクルにおいて複数バンクに書込むことができるように、そして複数ビットに関するAPPデータを他のアクセスサイクルにおいて(例えば、交互に)複数のバンクから再生できるように設計される。
【0071】
特にW−CDMAのために応用可能な、特定の具体例において、例え異なる数のバンクが使用可能であっても、記憶装置は6個のバンクに分割される。バンクはバンク0a、バンク0b、バンク1a、バンク1b、バンク2a、そしてバンク2bとして名前が付けられる。各バンクはアクセスの競合を避けるためにR・Cアレイのそれぞれの行のグループおよび列の組に割当てられる。各バンクは割当てられた行のグループおよび列の組が交差するこれらの位置を占有するビットに関するAPPデータを記憶するために使用される。上で記載したように、APPデータはインタリーブされた順序で記憶装置520内に書込まれ、そして第1成分復号器のためにインタリーブされた順序(同様に“インタリーブされた”アドレス化モードとして参照される。)で記憶装置から読み出される。APPデータは第2成分復号器のためにリニア順序(同様に“リニア”アドレス化モードとして参照される。)で記憶装置に書込まれ記憶装置から読み出される。2つの異なるバンクが2つの近接するアドレスに関してリニアアドレス化モード(linear addressing mode)でアクセスされることを確実にするために、バンクはバンクの一方の組が偶数番号の列(例えば、これは最下位ビット(LSB;least significant bit)がゼロ(“0”)を有するアドレスに関連する。)に割り当てられ、そしてバンクの他方の組が奇数番号の列(例えば、これはLSBに関して1(“1”)を有するアドレスに関連する。)に割当てられるように配列しそして割当てることができる。この偶数/奇数の割当て機構において、連続的アドレス(LSBが“0”および“1”)は2つの異なるバンクの組に組合される。
【0072】
インタリーブされたアドレス化モードに関し、他のバンク割当て機構が実行される。上で記載したように、W−CDMA標準により確定される符号インタリービングはR・Cアレイからビットを列ごとに読み出すために発呼する。このことはインタリーブされたアドレス化モードの期間に近接するアドレスがアクセスされた場合、結果としてアレイの異なる行をアクセスする。インタリーブされたアドレス化モードにおいて2つの近接するアドレスに関し2つの異なるバンクがアクセスされることを確実にするために、インタリーブされたアドレス化モードに関する“近接する”行は異なるグループに割当てられるように、行は3またはそれより多くのグループに配置することができる。近接する行はインタリーブされたアドレス化モードにおいて列ごとの書込み/読み出しの間にアクセスすることのできる連続的な行である。
【0073】
この行のグループ化はR・Cアレイ内の各行に関する近接する行の最初の決定により達成することができる。上で記載した行間の並べ替えに関して使用されるP、P、およびPシーケンスに関し、インタリーブされたアドレス化モードの期間において列により書込み/読み出しする場合、近接する行がアクセスされるかもしれないので、これら3つのシーケンス(これは行番号に対応する)内の近接するエントリは異なるグループに割当てられる。同様に、K≦R・Cの故に、アレイの下部の方の行のいくつかは空になるかもしれず、かかる場合空の行の後の次の行がアクセスされる。W−CDMA標準により支持される全ての可能なR、C、およびKの組合わせに関し、行17は部分的に飛ばすことができ、そしてPシーケンスが使用される場合は行18および19は完全に飛ばすことができ、Pが使用される場合は行18および19は飛ばすことができ、Pが使用される場合は行9は飛ばすことができる、ことが決定された。
【0074】
表2はインタリーブされたアドレス化モードにおいてアクセス競合を避けることを可能にするため、行のグループ化に続く“排除(exclusion)”規則を記載する。第1および第3列は行番号(表2における連続した順序)を記載する。第1および第3列において確認される各行に関し、この行を含むグループから排除されるべき行が第2および第4列にそれぞれ記載されている。例えば、行1、2、4、8、および9は行0を含むグループから排除されるべきであり、行0、2、3、6、および16は行1を含むグループから排除されるべきである、等々。
【0075】
【表2】
Figure 2004531138
表3は表2に記載の排除規則が観察できるような行の可能なグループ化について記載する。さらに他のグループ化も可能であり、本発明の範囲内である。
【0076】
【表3】
Figure 2004531138
図6は表3に示された行グループに基く6つのバンクに対するR・Cアレイ内の行および列の割当ての図である。この特有の割当て機構において、表3のグループ0、1、および2内の行はそれぞれバンク0ν、バンク1ν、およびバンク2νに割当てられ、ここでνはaまたはbのいずれかである。そして上に記載のように、バンクuaおよびバンクubはそれぞれ偶数および奇数番号の列に割当てられ、ここでuは0、1、または2である。各バンクに関し、各割当てられた行はこのようにC/2の要素を含む。
【0077】
リニアアドレス化モードにおいて、同じまたは異なるグループからの2つのバンクが同時にアクセスされることが可能である(即ち、バンクuaおよびバンクub、またはバンクuaおよびバンクubをアクセスすることができ、ここで、uおよびuはそれぞれいずれかのグループからとすることができる。)。そしてインタリーブされたアドレス化モードにおいて、異なるグループからの2つのバンクが同時にアクセスされることが可能である(即ち、バンクuaおよびバンクua、またはバンクuaおよびバンクubをアクセスすることができる。)。
【0078】
具体例において、バンク0a、バンク1a、およびバンク2aは偶数行の偶数列および奇数行の奇数列に関して使用され、そしてバンク0b、バンク1b、およびバンク2bは偶数行の奇数列および奇数行の偶数列に関して使用される。この割当て機構はリニアアドレス化モードにおいて列の番号が奇数の場合に同じバンクのアクセスを避けるために使用することができる。例えば、5つの列がある場合に、4列の1行および0列の3行に関して同時にデータを引き出す(fetch)ことが望まれる。双方はバンクua内に位置し、提供される1行および2行は一緒にグループ化される。上記割当て機構はアクセス競合の発生を防止する。
【0079】
表3に記載の行のグループ化は、インタリーブされたアドレス化モードにおいて、行間並べ替えのためにP、P、またはPシーケンスが使用された場合における、アクセス競合の発生を防止する。Pシーケンスに関し、表4はシーケンス中の5行に関する削除について記載し、そして表5はPに関する行の可能なグループ化について記載する。
【0080】
【表4】
Figure 2004531138
【0081】
【表5】
Figure 2004531138
表3に示されるグループ化は表4に示されるようなPシーケンスの行0および3に関し排除規則に違反することに注目することができる。このように、インタリーブされたアドレス化モードにおける4つのシーケンスP、P、P、およびPの全てについて、アクセス競合の発生を防止するために、行の図3に示されるものとは相違するグループ化を生成することができる。代わりに、表3に示される行グループ化はP、P、またはPが選択された場合にはいつでも使用することができ、そして表5に示される行グループ化はPが選択された場合にはいつでも使用することができる。
【0082】
図7はターボ復号器に関する中間結果(例えばAPPデータ)を記録するためのバッファ構造(例えば、APP記憶装置520に関する)を確定する工程700の具体例のフロー図を示す。最初に、バッファにより維持されるべきアドレス化モードがステップ712において確認される。ターボ復号化に関し、APPデータはインタリーブされたアドレス化モードおよびリニアアドレス化モードを介してアクセスすることができる。各成分の復号化はデータパケット内の情報ビットに対応するAPP記号を提供する。インタリーブされたアドレス化モードにおいて、APP記号はパケット内のインタリーブされた位置(即ち、そこに書込まれ、そしてそこから再生される)においてアクセスされる。そしてリニアアドレス化モードにおいて、APP記号はパケット内のリニア位置(linear location)においてアクセスされる。
【0083】
ステップ714において、行のNグループが確定され、ここでN≧2である。各グループは、ターボ符号化に関するデータパケット内のインタリーブ情報ビットに使用される、R・Cアレイの1またはそれより多くの行を含む。行は、インタリーブされたアドレス化モードの期間にアクセスされるべき2つの連続的なアドレスが2つのグループからなるように、各グループ内に包含するように選択される。上の事例に関し、3つのグループが確定され、各グループはアレイ内におけるそれぞれの集合を含む。グループは、ターボ符号化に関連する符号インタリービング機構により確定される可能な行間並べ替えシーケンスに基き確定される。
【0084】
ステップ716において、列のN組が確定されここでN≧2である。各組はR・Cアレイの1またはそれより多くの列を含む。列は、リニアアドレス化モードの期間にアクセスされるべき2つの連続的なアドレスが2つの組からなるように、各組内に包含するように選択される。上の事例に関し、2つの組が確定され、第1の組は偶数番号の列を含み、そして第2の組は奇数番号の列を含む。
【0085】
バッファは続いてステップ718においてN・Nバンクに分割される。各バンクは続いてステップ720においてN・Nの行のグループと列の組との接合点の組合わせのそれぞれ1つに割当てられる。上の事例に関しては、6つのバンクが確定されそして上に記載のように3つのグループの行と2つの組の列に係る6つの接合点の組合わせに割当てられる。
【0086】
図8はAPP記憶装置を提供するために使用することの可能なバッファアーキテクチャ800の具体例のブロック図である。バッファアーキテクチャ800は、APP記憶装置を提供するためのメモリ装置820、各アクセスサイクルに関して必要なアドレスを発生するためのアドレス発生器822、およびバンクからの出力データを選択するためのマルチプレクサ824を含む。
【0087】
図8に示す具体例において、メモリ装置820は6つのバンクに分割され、各バンクはメモリ装置の各セクションに割当てられる。具体例において、各バンクはアドレスラインの組を受信し、これはバンクが個々にそして独立にアクセスされることを可能にする。例え簡単化のために図8には示されていなくとも、各バンクは一般にバンクを個々に選択することを可能にするそれぞれの“チップ選択(chip select)”ラインと共に提供される。
【0088】
各書込み周期において2つの記号を2つのバンクに書込むために、各バンクは2組のデータライン上で2つの記号を受信するように形成され、記号1つを選択し(例えば図8には示されていないマルチプレクサを介して)、そしてアドレス発生器822によって指示される場合には、選択された記号をバンクのアドレスラインによって示された位置に記憶する。アドレス発生器822は記憶される2つの記号に関し2つのアドレスを提供し、そしてこれらのアドレは2つのバンクにそれらのアドレスラインを介して提供される。
【0089】
各読み出し周期において2つのバンクから2つの記号を再生するために、マルチプレクサ824は6つのバンク全てから出力記号を受信し、アドレス発生器822からの制御信号により指示された場合に受信された記号の2つを選択し、そして選択された記号を提供する。例え図8においては示されていなくとも、マルチプレクサ824は2つの6×1マルチプレクサを用いて実行することができ、そして各6×1マルチプレクサは出力記号の1つを提供するように動作することができる。さらに、アドレス発生器822は再生される2つの記号に関し2つのアドレスを提供し、そしてこれらのアドレスは2つのバンクにそれらのアドレスラインを介して提供される。
【0090】
明瞭にするために、W−CDMA標準により規定される特定の符号インタリービング機構に関する複数のバンクを使用するAPP記憶装置の実施について記載した。各W−CDMA標準は、W−CDMA標準を含む他のCDMA標準の機構とは異なる符号インタリービング機構を確定することができる。例えば、cdma2000標準はインタリービング機構を確定し、それによって行はビット−反転規則(bit-reversal rule)に従い、例えば行1(“00001”)は行16(“10000”)と交換され、行3(“00011”)は行24(“110000”)と交換される、等々、並べ替えられる。これらの異なる符号インタリービング機構に関し、バンクに関連する行のグループは、W−CDMA標準により確定されるインタリービング機構に関し上に記載のものとは同様に異なる。
【0091】
さらに明瞭化のために、本発明の種々の概念に関し特にW−CDMAシステムにおけるダウンリンクターボ符号に関し記載した。これらの技術は同様にW−CDMAシステムにおけるアップリンクターボ符号に関して使用することができる(特にこれらはW−CDMA標準により同一であるべきものと特定されるものである故に)。
【0092】
ターボインタリーバに従い、APP記憶装置は6個よりも少ないバンクを用いて実施することができる。上で述べたように、一定の行は特定の行を有する同じグループに存在することができないという制限は6個のバンクの使用を導く。これらの制限は“ブロック(block)”インタリーバ構造と、そしてR・Cアレイの最も基本的な3つの行は部分的に満たされないことが可能であるという事実、から生ずる。もしRが最も基本的な行のみが部分的に満たされないように選択可能な場合は、排除制限のいくつかは消滅し、そしてAPP記憶は4個のバンクのみを用いて実施することが可能である。APP記憶装置はさらに6個のバンクよりも多くを用いて実施し得る。例えば、記憶装置は、アレイの各行に関し1つのバンクを、または1つまたはそれより多くの行の各グループに関し1つのバンクを用いて実施し得る。一般に、より多くのバンクはより多くの記号の同時アクセス(即ち、書込みおよび/または読み出し)を可能にすることができる。しかしながら、バンクの数に対応してハードウエアの複雑性が一般に増加する。より多くのバンクの同時アクセスを維持するためにはより多くのデータおよびアドレスラインそしてマルチプレクサが同様に必要とされる。
【0093】
複数バンクを使用するAPP記憶装置の実施は非常に多くの利点を提供する。複数ビットに関するAPPデータが各クロック周期において記録され/再生されるので、第1に、より速い復号化時間が達成可能である。APP記憶装置のアクセスはこのようにターボ復号化に関して隘路とはならないであろう。第2に、APP記憶装置の実施をするために、より遅いメモリ設計および/またはプロセスを使用可能である。並列アクセス能力と組合された複数バンク設計は、並列でないより速いメモリ設計と同じ処理量を提供するためにより遅いメモリの割当てを可能にする。
【0094】
APP記憶装置は種々のメモリ構造を用いて実施することができる。例えば、記憶装置の各バンクは1つまたはそれより多くの記憶装置、複数ポート記憶装置、複数のメモリバンクを含むかまたは複数のメモリバンクに分割された記憶装置、または他の構造を用いて実施することができる。さらに記憶装置は、例えばランダムアクセスメモリ(RAM)、ダイナミックRAM(DRAM)、フラッシュメモリ、およびその他のような、種々のメモリ技術を用いて実施することができる。記憶装置に関し種々の構造および手段が可能であり、本発明の範囲内のものである。
【0095】
アドレス発生はソフトウエア、ハードウエア、またはこれらの組合わせにより実施することができる。ハードウエアの実施に関し、アドレス発生は(1)個別の装置として実施でき、(2)制御器または記憶装置と共に集積化でき、(3)他の処理要素を含むASIC内に、または何らかの他の設計を介して実施できる。アドレス発生器はバンクの記述情報を記憶するのに使用されるデータ構造を含むことができる。データ構造はさらにバンクの動作を管理するために使用される情報を記憶することができる。望ましい具体例に関する先の記載はこの技術分野のいずれの熟練者に対しても本発明を形成しまたは使用することを可能にするために提供される。これらの具体例に対する種々の変更はこの技術分野の熟練者にとって明らかに容易であろうし、そしてここで規定される一般的な原理は発明の能力を用いることなく他の具体例にも適用可能である。このように、本発明はここに示された具体例に限定されることを意図するものではなく、ここに記載された原理および新規な特徴からなる最も広い範囲が容認されるものである。
【図面の簡単な説明】
【0096】
【図1】図1は本発明の種々の構成を実施可能な通信システムの簡単化したブロック図である。
【図2A】図2AはW−CDMA標準に従うダウンリンクデータ送信のための送信装置における信号処理の図である。
【図2B】図2BはW−CDMA標準に従うダウンリンクデータ送信のための受信装置における信号処理の図である。
【図3】図3はW−CDMA標準により確定されるターボ符号器の図である。
【図4】図4はターボ復号器の構造のブロック図である。
【図5】図5は本発明の具体例に従うターボ復号器のブロック図である。
【図6】図6はR−Cアレイにおける行および列の特定の行のグループ化に基く6個のバンクへの割当ての図である。
【図7】図7はターボ復号器に関して中間結果を記憶するためのバッファ構造の確定のための処理の具体例のフロー図である。
【図8】図8は図5に示されるAPP記憶装置を実施するために使用し得るバッファアーキテクチャの具体例のブロック図である。
【符号の説明】
【0097】
100…通信システム、 110…送信装置、 112…データソース、 114…データプロセッサ、 116…送信機、 118…アンテナ、 130…受信装置、 132…アンテナ、 134…受信器、 136…受信データプロセッサ、 138…データシンク、 210…伝送チャネル処理セクション、 260…伝送チャネル処理セクション、 300…ターボ符号器、 312…成分符号器、 314…符号インタリーバ、 316…マルチプレクサ、 322…遅延素子、 324…加算器、 326…スイッチ、 400…ターボ復号器、 408…合算器、 410…復号器、 412…インタリーバ、 414…デインタリーバ、 416…検出器、 418…検出器、 500…ターボ復号器、 502…デインタリーバ、 506…入力接続装置、 508…コンバイナ、 510…復号器、 512…アドレス発生器、 514…マルチプレクサ、 518…検出器、 520…APP記憶装置、 522…エネルギメトリック計算機、 800…バッファアーキテクチャ、 820…メモリ装置、 822…アドレス発生器、 824…マルチプレクサ、

Claims (23)

  1. ターボ復号器における中間結果を記憶するためのバッファ構造であって、
    中間結果を表現する記号を記憶するために形成された複数のバンクを含み、ここで各バンクは、対応するターボ符号器に関するパケット内のインタリーブ情報ビットについて使用される2次元アレイの1つまたはそれより多い行の複数のグループの1つと組み合わされ、そしてバッファ構造の各アクセスサイクルにおいて、行は、2つまたはそれより多くの記号が2つまたはそれより多くのバンクから同時にアクセス可能なように、各グループに含まれるように選択されるバッファ構造。
  2. 複数のバンクは第1および第2の組へ配置され、バンクの第1の組は2次元アレイの偶数列と組み合わされ、バンクの第2の組は2次元アレイの奇数列と組み合わされる請求項1に記載のバッファ構造。
  3. 複数のバンクは記号をインタリーブされた順序で記憶するために形成される請求項1に記載のバッファ構造。
  4. 複数のバンクは特定のアクセスサイクルにおいてインタリーブされたアドレス化モードまたはリニアアドレス化モードを介してアクセス可能である請求項1に記載のバッファ構造。
  5. インタリーブされたアドレス化モードはパケット内のインタリーブされた位置における記号のアクセスに対応し、リニアアドレス化モードはパケット内のリニア位置における記号のアクセスに対応する請求項4に記載のバッファ構造。
  6. インタリーブされたアドレス化モードの期間にアクセスされる2つまたはそれより多くの連続的アドレスが2つまたはそれより多いグループからのものであるように、行は各グループ内に含まれるように選択される請求項4に記載のバッファ構造。
  7. 記号はターボ符号器の第1成分符号の復号化の期間にインタリーブされた順序で複数のバンクに提供されそしてそこから再生される請求項1に記載のバッファ構造。
  8. 記号はターボ符号器の第2成分符号の復号化の期間にリニア順序で複数のバンクに提供されそしてそこから再生される請求項1に記載のバッファ構造。
  9. 記号はターボ符号器の第1成分符号の復号化の期間にリニア順序で複数のバンクに提供されそしてそこから再生され、そして記号はターボ符号器の第2成分符号の復号化の期間にインタリーブされた順序で複数のバンクに提供されそしてそこから再生されるる請求項1に記載のバッファ構造。
  10. 複数のバンクは各アクセスサイクルにおいて2つまたはそれより多くの記号を記憶または提供するために形成される請求項1に記載のバッファ構造。
  11. 書込みまたは読み出しのいずれにおいてもいずれか特定のアクセスサイクルにおいて1つの形式のアクセス動作のみが実行されるように複数のバンクは動作する請求項1に記載のバッファ構造。
  12. ターボ符号器に関連する符号インタリービング機構のために使用される1つまたはそれより多くの可能な行間並べ替えシーケンスに少なくとも部分的に基いて、行はグループ化される請求項1に記載のバッファ構造。
  13. 少なくとも4個のバンクを含む請求項1に記載のバッファ構造。
  14. 6個のバンクを含む請求項1に記載のバッファ構造。
  15. 複数のバンクと動作するように接続され、そしてターボ復号器により復号されるべき複数の情報ビットに関するプリオリ確率(APP)データを記憶するように形成される局所メモリをさらに含む請求項1に記載のバッファ構造。
  16. APPデータは復号されるべき情報ビットに関するログ尤度比(LLR)により形成され、そして情報ビットに関する外来性情報に対応する請求項15に記載のバッファ構造。
  17. 複数のバンクに接続されそして複数のバンクにアクセスするためのアドレスを提供するように動作するアドレス発生器をさらに含む請求項1に記載のバッファ構造。
  18. W−CDMA標準により確定されるターボ符号器に関する符号化インタリービング機構に基く記号を記憶するように形成される請求項1に記載のバッファ構造。
  19. ターボ復号器であって、
    特定の成分符号に対応して符号化されたビットを受信しそして復号するように形成された成分復号器と、そして
    成分復号器に接続され、そしてターボ復号器に関する中間結果を表現する記号を記憶するように形成されたバッファとを含み、
    ここでバッファは複数のバンクを含み、ここで各バンクは対応するターボ符号器に関するパケット内の情報ビットをインタリーブするのに使用される2次元アレイの1つまたはそれより多い行の複数のグループの1つと組合されており、ここで行は、バッファの各アクセスサイクルにおいて2つまたはそれより多くの記号が2つまたはそれより多くのバンクから同時にアクセス可能なように、各グループに含まれるように選択されるターボ復号器。
  20. ここで複数のバンクは第1および第2の組に配置されており、そしてバンクの第1の組は2次元アレイ内の偶数列に関連し、バンクの第2の組は2次元アレイ内の奇数列に関連する請求項19記載のターボ復号器。
  21. バッファおよび成分復号器と動作するように接続されており、そして成分復号器により復号される複数の情報ビットに関するプリオリ確率(APP)データを記憶するように形成されている局所メモリ装置をさらに含む請求項19記載のターボ復号器。
  22. ターボ復号器に関して中間データを記憶するために使用されるバッファ構造を確定する方法であって、この方法は、
    バッファ構造によって維持される複数のアドレス化モードを確認し、ここで複数の維持されるアドレス化モードはインタリーブされたアドレス化モードおよびリニアアドレス化モードを含み、ここでインタリーブされたアドレス化モードは復号されるべきパケット内のインタリーブされた位置における記号のアクセスに対応し、そしてリニアアドレス化モードはパケット内のリニア位置における記号のアクセスに対応し、
    行における2つまたはそれより多い(N)グループを確定し、ここで各グループは対応するターボ符号器に関するパケット内の情報ビットをインタリーブするために使用される2次元アレイにおける1つまたはそれより多くの行を含み、そして行は、インタリーブされたアドレス化モードの期間にアクセスされる2つまたはそれより多くの連続するアドレスが2つまたはそれより多いグループからのものであるように、各グループに含まれるように選択され、
    2つまたはそれより多い(N)列の組を確定し、ここで各組は2次元アレイにおける1つまたはそれより多くの列を含み、そして列は、リニアアドレス化モードの期間にアクセスされるべき2つまたはそれより多くの連続するアドレスが2つまたはそれより多い組からのものであるように、各組内に含まれるように選択され、
    バッファ構造を複数(N・N)のバンクに分割し、そして
    行のグループと列の組のN・N接続組合わせの各々を複数のバンクのそれぞれ1つに割り当てる方法。
  23. 行は、ターボ符号器に関連する符号インタリービング機構に使用される、1つまたはそれより多くの可能な行間並べ替えシーケンスに少なくとも部分的に基づいてグループ化される請求項22の方法。
JP2002590513A 2001-05-11 2002-05-09 ターボ復号器のためのバッファアーキテクチャ Expired - Fee Related JP3996514B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/854,278 US6392572B1 (en) 2001-05-11 2001-05-11 Buffer architecture for a turbo decoder
PCT/US2002/015006 WO2002093755A1 (en) 2001-05-11 2002-05-09 Buffer architecture for a turbo decoder

Publications (2)

Publication Number Publication Date
JP2004531138A true JP2004531138A (ja) 2004-10-07
JP3996514B2 JP3996514B2 (ja) 2007-10-24

Family

ID=25318231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002590513A Expired - Fee Related JP3996514B2 (ja) 2001-05-11 2002-05-09 ターボ復号器のためのバッファアーキテクチャ

Country Status (8)

Country Link
US (1) US6392572B1 (ja)
EP (1) EP1388213A1 (ja)
JP (1) JP3996514B2 (ja)
KR (1) KR100963718B1 (ja)
CN (2) CN100426680C (ja)
BR (1) BR0209559A (ja)
TW (1) TW543303B (ja)
WO (1) WO2002093755A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082923A1 (ja) * 2005-02-03 2006-08-10 Matsushita Electric Industrial Co., Ltd. 並列インターリーバ、並列デインターリーバ及びインターリーブ方法
JP2008135813A (ja) * 2006-11-27 2008-06-12 Fujitsu Ltd ターボ復号器及びターボ復号方法
JP2010508790A (ja) * 2006-11-01 2010-03-18 クゥアルコム・インコーポレイテッド 高データレートのためのターボインターリーバ
JP2010092459A (ja) * 2008-07-17 2010-04-22 Marvell World Trade Ltd 固体メモリデバイスにおけるデータ復帰
JP2011515994A (ja) * 2008-03-28 2011-05-19 クゥアルコム・インコーポレイテッド マルチバンクllrバッファを含むデインターリーブ機構

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT1114528E (pt) 1999-07-08 2006-08-31 Samsung Electronics Co Ltd Equipamento e metodo destinado a controlar um desmultiplexador e um multiplexador utilizados na adptacao de taxas de transmissao num sistema de comunicacoes moveis
US6734962B2 (en) * 2000-10-13 2004-05-11 Chemimage Corporation Near infrared chemical imaging microscope
US6693566B2 (en) * 1999-12-03 2004-02-17 Broadcom Corporation Interspersed training for turbo coded modulation
JP2001352254A (ja) * 2000-06-08 2001-12-21 Sony Corp 復号装置及び復号方法
AU768016B2 (en) * 2000-07-05 2003-11-27 Lg Electronics Inc. Method of configuring transmission in mobile communication system
US7178089B1 (en) * 2000-08-23 2007-02-13 Telefonaktiebolaget Lm Ericsson (Publ) Two stage date packet processing scheme
US6604220B1 (en) * 2000-09-28 2003-08-05 Western Digital Technologies, Inc. Disk drive comprising a multiple-input sequence detector selectively biased by bits of a decoded ECC codedword
US7187708B1 (en) * 2000-10-03 2007-03-06 Qualcomm Inc. Data buffer structure for physical and transport channels in a CDMA system
KR100628201B1 (ko) * 2000-10-16 2006-09-26 엘지전자 주식회사 터보 디코딩 방법
US6662331B1 (en) * 2000-10-27 2003-12-09 Qualcomm Inc. Space-efficient turbo decoder
US7333419B2 (en) * 2000-11-30 2008-02-19 Sasken Communication Technologies, Inc. Method to improve performance and reduce complexity of turbo decoder
US6987543B1 (en) * 2000-11-30 2006-01-17 Lsi Logic Corporation System to efficiently transmit two HDTV channels over satellite using turbo coded 8PSK modulation for DSS compliant receivers
EP1261161A4 (en) * 2001-01-31 2007-11-21 Mitsubishi Electric Corp ERROR-CORRECTING AGGREGATION METHOD AND MEDIATION DEVICE TO WHICH THIS METHOD OF COMPUTING IS APPLIED
WO2002079758A1 (en) * 2001-03-29 2002-10-10 Circadiant Systems, Inc. Error function analysis of optical components with uncertainty ranges
US6973611B2 (en) * 2001-04-17 2005-12-06 Texas Instruments Incorporated Interleaved coder and method
US6392572B1 (en) * 2001-05-11 2002-05-21 Qualcomm Incorporated Buffer architecture for a turbo decoder
US7085969B2 (en) * 2001-08-27 2006-08-01 Industrial Technology Research Institute Encoding and decoding apparatus and method
US6961921B2 (en) * 2001-09-06 2005-11-01 Interdigital Technology Corporation Pipeline architecture for maximum a posteriori (MAP) decoders
US6701482B2 (en) * 2001-09-20 2004-03-02 Qualcomm Incorporated Method and apparatus for coding bits of data in parallel
US7586993B2 (en) * 2001-12-06 2009-09-08 Texas Instruments Incorporated Interleaver memory selectably receiving PN or counter chain read address
KR100762612B1 (ko) * 2001-12-07 2007-10-01 삼성전자주식회사 터보 복호화 장치에서 인터리버와 디인터리버간 메모리공유 장치 및 방법
JP2003203435A (ja) * 2002-01-09 2003-07-18 Fujitsu Ltd データ再生装置
US6981203B2 (en) * 2002-04-29 2005-12-27 Bae Systems Information And Electronic Systems Integration Inc. Method and apparatus for random shuffled turbo multiuser detector
US7092464B2 (en) * 2002-01-23 2006-08-15 Bae Systems Information And Electronic Systems Integration Inc. Multiuser detection with targeted error correction coding
CN1650651A (zh) * 2002-05-01 2005-08-03 美商内数位科技公司 无线通讯系统中使用共亨频道的点对多点服务
TWI366412B (en) 2002-05-01 2012-06-11 Interdigital Tech Corp Method for receiving and transferring service data, base station for transferring service data and wireless transmit/receive unit for receiving service data
US6788240B2 (en) * 2002-05-15 2004-09-07 Justin Reyneri Single-chip massively parallel analog-to-digital conversion
US7111226B1 (en) * 2002-05-31 2006-09-19 Broadcom Corporation Communication decoder employing single trellis to support multiple code rates and/or multiple modulations
US7209527B2 (en) * 2002-07-08 2007-04-24 Agere Systems Inc. Turbo decoder employing max and max* map decoding
US7433429B2 (en) * 2002-07-19 2008-10-07 Intel Corporation De-interleaver method and system
AU2002342666A1 (en) 2002-09-09 2004-04-30 Telefonaktiebolaget Lm Ericsson (Publ) Speed and memory optimised interleaving
EP1547253A1 (en) * 2002-09-25 2005-06-29 Koninklijke Philips Electronics N.V. Circuit for recursively calculating data
US6907010B2 (en) * 2002-10-11 2005-06-14 Interdigital Technology Corporation Dynamic radio link adaptation for interference in cellular systems
CN1723631B (zh) * 2003-01-07 2015-06-03 三星电子株式会社 控制混合自动重复请求移动通信系统中的输出缓冲器的设备和方法
US7139862B2 (en) * 2003-02-24 2006-11-21 Nokia Corporation Interleaving method and apparatus with parallel access in linear and interleaved order
US7352723B2 (en) * 2003-04-25 2008-04-01 Lucent Technologies Inc. Method of forming a coded composite transport channel for downlink transmissions
US7269783B2 (en) * 2003-04-30 2007-09-11 Lucent Technologies Inc. Method and apparatus for dedicated hardware and software split implementation of rate matching and de-matching
US7613985B2 (en) * 2003-10-24 2009-11-03 Ikanos Communications, Inc. Hierarchical trellis coded modulation
US8407433B2 (en) * 2007-06-25 2013-03-26 Sonics, Inc. Interconnect implementing internal controls
US20050180332A1 (en) * 2004-02-13 2005-08-18 Broadcom Corporation Low latency interleaving and deinterleaving
US9001921B1 (en) * 2004-02-18 2015-04-07 Marvell International Ltd. Circuits, architectures, methods, algorithms, software, and systems for improving the reliability of data communications having time-dependent fluctuations
US7702968B2 (en) * 2004-02-27 2010-04-20 Qualcomm Incorporated Efficient multi-symbol deinterleaver
WO2005099099A1 (en) * 2004-03-05 2005-10-20 Thomson Licensing Address generation apparatus for turbo interleaver and deinterleaver in w-cdma systems
JP4765260B2 (ja) * 2004-03-31 2011-09-07 日本電気株式会社 データ処理装置およびその処理方法ならびにプログラムおよび携帯電話装置
EP1733477B1 (en) * 2004-04-09 2013-06-19 Agere Systems Inc. Sub-block interleaving and de-interleaving for multidimensional product block codes
KR20070029744A (ko) 2004-05-18 2007-03-14 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 터보 디코더 입력 재배치
US9246728B2 (en) 2004-07-29 2016-01-26 Qualcomm Incorporated System and method for frequency diversity
US20080317142A1 (en) * 2005-07-29 2008-12-25 Qualcomm Incorporated System and method for frequency diversity
CN101091346B (zh) * 2004-07-29 2014-07-09 高通股份有限公司 用于分集交织的系统和方法
US20070081484A1 (en) * 2004-07-29 2007-04-12 Wang Michael M Methods and apparatus for transmitting a frame structure in a wireless communication system
US8391410B2 (en) * 2004-07-29 2013-03-05 Qualcomm Incorporated Methods and apparatus for configuring a pilot symbol in a wireless communication system
WO2006044227A1 (en) 2004-10-12 2006-04-27 Aware, Inc. Resource sharing in a telecommunications environment
KR20080048988A (ko) * 2005-04-15 2008-06-03 트렐리스웨어 테크놀러지스, 인코포레이티드 무-충돌 불규칙-반복-누산 코드
US9391751B2 (en) * 2005-07-29 2016-07-12 Qualcomm Incorporated System and method for frequency diversity
US9042212B2 (en) * 2005-07-29 2015-05-26 Qualcomm Incorporated Method and apparatus for communicating network identifiers in a communication system
US7793190B1 (en) 2005-08-10 2010-09-07 Trellisware Technologies, Inc. Reduced clash GRA interleavers
EP1811711A1 (en) * 2006-01-23 2007-07-25 Motorola, Inc., A Corporation of the State of Delaware; Apparatus and methods for handling a message difference prior to decoding based on apriori knowledge of modified codeword transmission
EP1811674A1 (en) * 2006-01-23 2007-07-25 Motorola, Inc. Apparatus and methods for jointly decoding messages based on apriori knowledge of modified codeword transmission
US8271848B2 (en) * 2006-04-06 2012-09-18 Alcatel Lucent Method of decoding code blocks and system for concatenating code blocks
WO2007143277A2 (en) 2006-04-12 2007-12-13 Aware, Inc. Packet retransmission and memory sharing
AU2006204634B2 (en) * 2006-08-31 2009-10-29 Canon Kabushiki Kaisha Runlength encoding of leading ones and zeros
US7783936B1 (en) 2006-09-28 2010-08-24 L-3 Communications, Corp. Memory arbitration technique for turbo decoding
US7831894B2 (en) * 2006-10-10 2010-11-09 Broadcom Corporation Address generation for contention-free memory mappings of turbo codes with ARP (almost regular permutation) interleaves
US8065587B2 (en) * 2006-10-10 2011-11-22 Broadcom Corporation Reduced complexity ARP (almost regular permutation) interleaves providing flexible granularity and parallelism adaptable to any possible turbo code block size
US7882416B2 (en) * 2006-10-10 2011-02-01 Broadcom Corporation General and algebraic-constructed contention-free memory mapping for parallel turbo decoding with algebraic interleave ARP (almost regular permutation) of all possible sizes
US7827473B2 (en) * 2006-10-10 2010-11-02 Broadcom Corporation Turbo decoder employing ARP (almost regular permutation) interleave and arbitrary number of decoding processors
JP4728203B2 (ja) * 2006-11-06 2011-07-20 富士通セミコンダクター株式会社 半導体回路のレイアウト方法、プログラム、設計支援システム
EP1942578A1 (en) * 2006-11-29 2008-07-09 Broadcom Corporation Address generation for contention-free memory mappings of turbo codes with ARP (almost regular permutation) interleaves
US20080133997A1 (en) * 2006-12-01 2008-06-05 Broadcom Corporation, A California Corporation Turbo decoder employing ARP (almost regular permutation) interleave and inverse thereof as de-interleave
US9686044B2 (en) * 2007-03-27 2017-06-20 Qualcomm Incorporated Rate matching with multiple code block sizes
US8189581B2 (en) 2007-06-20 2012-05-29 Motorola Mobility, Inc. Method, signal and apparatus for managing the transmission and receipt of broadcast channel information
US20080316995A1 (en) * 2007-06-20 2008-12-25 Motorola, Inc. Broadcast channel signal and apparatus for managing the transmission and receipt of broadcast channel information
US7899051B2 (en) 2007-12-31 2011-03-01 Motorola Mobility, Inc. Broadcast channel signal, apparatus and method for transmitting and decoding broadcast channel information
US7839310B2 (en) * 2009-02-19 2010-11-23 Nokia Corporation Extended turbo interleavers for parallel turbo decoding
US8640004B2 (en) 2009-04-24 2014-01-28 Nokia Corporation Data rearrangement for decoder
US8811452B2 (en) * 2009-12-08 2014-08-19 Samsung Electronics Co., Ltd. Method and apparatus for parallel processing turbo decoder
US20120030544A1 (en) * 2010-07-27 2012-02-02 Fisher-Jeffes Timothy Perrin Accessing Memory for Data Decoding
US8719658B2 (en) * 2010-09-09 2014-05-06 Qualcomm Incorporated Accessing memory during parallel turbo decoding
US9015551B2 (en) * 2012-04-19 2015-04-21 Mediatek Inc. Decoding apparatus with de-interleaving efforts distributed to different decoding phases and related decoding method thereof
US9256531B2 (en) 2012-06-19 2016-02-09 Samsung Electronics Co., Ltd. Memory system and SoC including linear addresss remapping logic
US9128888B2 (en) * 2012-08-30 2015-09-08 Intel Deutschland Gmbh Method and apparatus for turbo decoder memory collision resolution
CN103812510A (zh) * 2012-11-15 2014-05-21 中兴通讯股份有限公司 译码方法及装置
US9124403B2 (en) * 2013-04-30 2015-09-01 Qualcomm Incorporated Puncturing scheme based decoder optimizations
US9413665B2 (en) * 2014-08-20 2016-08-09 Netronome Systems, Inc. CPP bus transaction value having a PAM/LAM selection code field
KR101558172B1 (ko) * 2014-10-14 2015-10-08 숭실대학교산학협력단 오류 분산을 위한 인터리빙 방법 및 장치, 이를 수행하기 위한 기록매체
US9824058B2 (en) * 2014-11-14 2017-11-21 Cavium, Inc. Bypass FIFO for multiple virtual channels
US9467252B2 (en) 2014-11-26 2016-10-11 Freescale Semiconductor, Inc. Turbo decoders with extrinsic addressing and associated methods
CN106788466A (zh) * 2016-12-13 2017-05-31 中国电子科技集团公司第二十研究所 用于小型化通信系统的Turbo码编译码芯片
CN109495207B (zh) * 2017-09-11 2021-08-10 上海诺基亚贝尔股份有限公司 用于在无线通信系统中交织数据的方法和设备
CN116318552B (zh) * 2023-03-15 2023-09-22 归芯科技(深圳)有限公司 Turbo码的交织或解交织方法及其器件、通信芯片和装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA947317B (en) * 1993-09-24 1995-05-10 Qualcomm Inc Multirate serial viterbi decoder for code division multiple access system applications
US6381728B1 (en) * 1998-08-14 2002-04-30 Qualcomm Incorporated Partitioned interleaver memory for map decoder
US6223319B1 (en) * 1998-08-20 2001-04-24 General Electric Company Turbo code decoder with controlled probability estimate feedback
JP3746426B2 (ja) * 1999-02-26 2006-02-15 富士通株式会社 ターボ復号装置
CN1124691C (zh) * 1999-09-13 2003-10-15 华为技术有限公司 一种串/并行级联卷积码译码器及其译码实现方法
CN1133276C (zh) * 1999-11-12 2003-12-31 深圳市中兴通讯股份有限公司 一种高速并行级联码的译码方法及译码器
US6307901B1 (en) * 2000-04-24 2001-10-23 Motorola, Inc. Turbo decoder with decision feedback equalization
US6392572B1 (en) * 2001-05-11 2002-05-21 Qualcomm Incorporated Buffer architecture for a turbo decoder

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082923A1 (ja) * 2005-02-03 2006-08-10 Matsushita Electric Industrial Co., Ltd. 並列インターリーバ、並列デインターリーバ及びインターリーブ方法
JP4848359B2 (ja) * 2005-02-03 2011-12-28 パナソニック株式会社 並列インターリーバ、並列デインターリーバ及びインターリーブ方法
JP2010508790A (ja) * 2006-11-01 2010-03-18 クゥアルコム・インコーポレイテッド 高データレートのためのターボインターリーバ
US8583983B2 (en) 2006-11-01 2013-11-12 Qualcomm Incorporated Turbo interleaver for high data rates
JP2008135813A (ja) * 2006-11-27 2008-06-12 Fujitsu Ltd ターボ復号器及びターボ復号方法
JP2011515994A (ja) * 2008-03-28 2011-05-19 クゥアルコム・インコーポレイテッド マルチバンクllrバッファを含むデインターリーブ機構
JP2013128301A (ja) * 2008-03-28 2013-06-27 Qualcomm Inc マルチバンクllrバッファを含むデインターリーブ機構
US8572332B2 (en) 2008-03-28 2013-10-29 Qualcomm Incorporated De-interleaving mechanism involving a multi-banked LLR buffer
JP2013255244A (ja) * 2008-03-28 2013-12-19 Qualcomm Inc マルチバンクllrバッファを含むデインターリーブ機構
JP2010092459A (ja) * 2008-07-17 2010-04-22 Marvell World Trade Ltd 固体メモリデバイスにおけるデータ復帰
US8458536B2 (en) 2008-07-17 2013-06-04 Marvell World Trade Ltd. Data recovery in solid state memory devices
US9032263B2 (en) 2008-07-17 2015-05-12 Marvell World Trade Ltd. Data recovery in solid state memory devices

Also Published As

Publication number Publication date
CN100426680C (zh) 2008-10-15
KR20040034607A (ko) 2004-04-28
US6392572B1 (en) 2002-05-21
EP1388213A1 (en) 2004-02-11
CN1529943A (zh) 2004-09-15
JP3996514B2 (ja) 2007-10-24
TW543303B (en) 2003-07-21
CN101394189A (zh) 2009-03-25
CN101394189B (zh) 2012-10-10
BR0209559A (pt) 2004-06-15
WO2002093755A1 (en) 2002-11-21
KR100963718B1 (ko) 2010-06-14

Similar Documents

Publication Publication Date Title
JP3996514B2 (ja) ターボ復号器のためのバッファアーキテクチャ
US6845482B2 (en) Interleaver for turbo decoder
US6744744B1 (en) Rate matching and channel interleaving for a communications system
KR100860245B1 (ko) 코드 분할 다중 접속 시스템에서 역 레이트 매칭을수행하는 방법 및 장치
US8543884B2 (en) Communications channel parallel interleaver and de-interleaver
Nimbalker et al. ARP and QPP interleavers for LTE turbo coding
US6754290B1 (en) Highly parallel map decoder
CA2266283C (en) Data interleaver and method of interleaving data
KR100955305B1 (ko) 큐피피 인터리브를 갖는 병렬 터보 디코딩을 위한 공식적플렉서블 충돌 방지 메모리 억세싱
US6859906B2 (en) System and method employing a modular decoder for decoding turbo and turbo-like codes in a communications network
EP1786109A1 (en) Block encoding and decoding method and apparatus, with controllable decoding latency
US10270473B2 (en) Turbo decoders with stored column indexes for interleaver address generation and out-of-bounds detection and associated methods
JP3896841B2 (ja) インターリーブ処理方法及びインターリーブ処理装置
KR100645730B1 (ko) 매직 매트릭스를 이용한 인터리빙 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3996514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees