JP2004517598A - 無停電電源装置 - Google Patents

無停電電源装置 Download PDF

Info

Publication number
JP2004517598A
JP2004517598A JP2002560254A JP2002560254A JP2004517598A JP 2004517598 A JP2004517598 A JP 2004517598A JP 2002560254 A JP2002560254 A JP 2002560254A JP 2002560254 A JP2002560254 A JP 2002560254A JP 2004517598 A JP2004517598 A JP 2004517598A
Authority
JP
Japan
Prior art keywords
converter
power supply
current
coil
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002560254A
Other languages
English (en)
Other versions
JP3821230B2 (ja
Inventor
ニールセン、ヘニング、ロアール
リンゲ、レネ
Original Assignee
アメリカン パワー コンバージョン デンマーク エイピーエス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アメリカン パワー コンバージョン デンマーク エイピーエス filed Critical アメリカン パワー コンバージョン デンマーク エイピーエス
Publication of JP2004517598A publication Critical patent/JP2004517598A/ja
Application granted granted Critical
Publication of JP3821230B2 publication Critical patent/JP3821230B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Stroboscope Apparatuses (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本発明は結合AC−DC/DC変換器に関するものである。変換器(100,300,700,740,780,800,840,880)は少なくとも1つの相を持つAC電源(103,303,703,803)と選択的に結合し、また少なくとも1つのDC電源(101,102,301,701,702,801)と選択的に結合する。変換器(100,300,700,740,780,800,840,880)は一度に少なくとも1つの電源から電力を受ける。変換器(100,300,700,740,780,800,840,880)は、電源を切り替えるとき個々の電源と変換器(100,300,700,740,780,800,840,880)とを接続または切断する制御可能な接触手段を含むことによりパルス信号を生成する。変換器(100,300,700,740,780,800,840,880)は少なくとも1つのDC出力(125,126,325,725,726,825)と接続する少なくとも1個のコイル(112,113,312)を含む。変換器(100,300,700,740,780,800,840,880)が従来の技術より優れている点は、パルス信号を複数の期間に分割して或る期間中は接触手段により電源の切替えを行うことである。複数の期間は少なくとも1つの第1の電源と少なくとも1つの第2の電源から交替に開始する。第1の電源からの電流パルスは第2の電源からの電流パルスに従って調節する。変換器は少なくとも1つのDC出力(125,126,325,725,726,825)の電圧を調節する手段を含む。これにより、1つのAC電源と1つまたは複数のDC電源(101,102,103,303,701,702,703,801,803)から給電することのできる柔軟な変換器(100,300,700,740,780,800,840,880)が得られる。第1の電源と第2の電源との切替えは停電なしに行うことができる。過負荷状態では、2つ以上の電源から電流を引き出すことができる。

Description

【0001】
本発明は一般に結合AC−DC/DC変換器(以下、変換器と呼ぶ)に関するものである。変換器は少なくとも1つの相を持つAC電源に接続し、また少なくとも1つのDC電源に接続する。変換器は一度に少なくとも1つの電源から電力の供給を受け、また変換器は制御可能な切替え手段を含む。切替え手段は電源を切り替えることにより個々の電源と変換器とを接続または切断し、これによりパルス信号を生成する。変換器は、少なくとも1つのDC出力に接続する少なくとも1個のコイルを含む。
【0002】
特許出願番号第WO 0033451号は、変換器ユニットの入力の1つまたは複数のDC電圧レベルを変換器ユニットの出力の1つのDC電圧に変換する変換器ユニットを教示している。この変換器ユニットは個々のDC入力電圧レベルを接続または切断して振動信号を形成する制御可能な切替え手段を含み、またこの変換器ユニットは振動信号を低域濾波して変換器ユニットの出力にDC電圧を形成する濾波手段を含む。
【0003】
しかし不便なことに、この変換器ユニットはAC電源に接続することができない。また、この変換器ユニットは電力損失なしに電源をゆるやかに切り替えることができない。これついては次に示す方法の説明を参照していただきたい。また、この変換器ユニットは過負荷状態の場合に適応的な切替えを行うことができない。
【0004】
米国特許番号第5,751,564号は、異なる電圧レベルを持つ2つ以上の異なる電源に接続することが可能な、かつ一次電源が低下しまたは完全に停止した場合でも停電なしに電力を供給することが可能な切替え電源システムを開示している。その出力電圧は従来の切替え電源の場合より安定しており、内部損も小さい。このため、従来のUPSシステムに比べてバックアップ供給時間を長くすることができる。最後に、切替え電源をAC電源に直接接続することができるので、例えばノートブック・コンピュータに用いる場合、AC電源に接続するときにAC/DCアダプタを用いる必要がない。
しかし、この回路はAC電源とDC電源を無停電で切り替えることができない。
【0005】
本発明の目的は、例えば1つまたは複数の相を持つAC電源と1つまたは複数のDC電源とを結合した1つまたは複数の電源から電力を受ける変換器を提供することである。第1の電源から第2の電源への切替えを停電なしにゆるやかに行い、また過負荷状態では1つまたは複数の電源に依存することができる。
【0006】
これは次のようにして実現することができる。すなわち、パルス信号を複数の期間に分割して或る期間中は切替え手段により電源を切り替え、期間は少なくとも1つの第1の電源からおよび少なくとも1つの第2の電源から交替に開始し、また第1の電源からの電流パルスは第2の電源からの電流パルスに依存して調節し、また変換器は少なくとも1つのDC出力の電圧を調節する手段を含む。
【0007】
これにより、1つのAC電源と1つまたは複数のDC電源から電力を受けることのできる柔軟な変換器が得られる。第1の電源から第2の電源への切替えを電力損なしに行い、また過負荷状態では2つ以上の電源に依存することができる。ディーゼル発電器からの電流網の形のAC電源と電池の形のDC電源を用いる場合、一般的な過負荷状態において、この変換器の利点は、補助的なエネルギーをDC電源から供給することによりAC電源からの電流を一定の高い値に保持することができることである。これにより、AC電源内では小型のケーブルとヒューズを用いることが可能であり、ヒューズが過負荷により飛ぶことはない。
【0008】
「電源」という用語は、ここでは共通の基準点を介して接続する1つまたは複数の相を持つAC電源か、または共通の基準点を介して直列に接続して正および負の供給電圧を生成する1つまたは2つのDC電源を指す。
この変換器の特徴は、AC電源が単相AC電源であることと、少なくとも1つのDC電源を備えることである。
これにより、単相AC電源と1つ(または複数)のDC電源を急に切り替える場合に停電が起こるのを防ぐ単相システム用の変換器が得られる。
この変換器の特徴は、AC電源が多相AC電源であることと、少なくとも1つのDC電源を備えることである。
これにより、多相AC電源と1つ(または複数)のDC電源とを急に切り替える場合に停電が起こるのを防ぐ多相システム用の変換器が得られる。
【0009】
この変換器の特徴は、コイルを通る電流を測定する電流検出器からの信号に基づいて、制御回路が、コイルの第1の端子とDC電源とをそれぞれ接続および切断する手段と、コイルの第2の端子と共通の基準点とをそれぞれ接続および切断する手段とを有することである。コイルの第2の端子が共通の基準点に接続していないときは、コイルを通る電流は変換器のDC出力に流れる。変換器は、AC電源とコイルの第1の端子(すなわち、DC電源に接続することもできるコイルの端子)とをそれぞれ接続および切断する手段を備える。
【0010】
これにより、最小限の数の構成要素を有すると共に、電源をゆるやかに切り替えることが可能な変換器が得られる。ここで、第1の電源はAC電源であり、第2の電源はDC電源である。変換器は、電源を急に切り替えるときに停電が起こるのを防ぐ。
【0011】
この変換器の特徴は、少なくとも1つの変換器を用いて、共通の基準点に対して正のDC出力を形成し、また少なくとも1つの変換器を用いて、共通の基準点に対して負のDC出力を形成することである。
これにより、正の(選択的に、一層正の)DC出力電圧と、負の(選択的に、一層負の)DC出力電圧を出力し、しかも電源を急に切り替えるときに停電が起こるのを防ぐことのできる変換器が得られる。
【0012】
この変換器の特徴は、共通の基準点に対して正の出力電圧を形成するのに用いる変換器と負の出力電圧を形成するのに用いる変換器とがAC電源を共用することである。
これにより、必要なAC電源の数を最小限にする変換器が得られる。利用可能なAC電源が少ないところでも変換器を用いることができるので、これは大きな利点である。
【0013】
この変換器の特徴は、コイルの第1の端子とDC電源とをそれぞれ接続および切断する手段が制御可能なスイッチであることである。制御可能なスイッチは1つ置きの半周期の少なくとも一部の間接続するよう調節することができる。
これにより、DC電源から給電を行う時間を調節することできる。これは、多数の変換器を同じ電池に並列に結合できるという利点に関連する。この場合、各変換器に他の変換器とは異なる時間を割り当て、その間は各変換器はDC電源だけからエネルギーを得る。複数の変換器を同じDC電源に並列に結合できるということは、最小限のDC電源を用いて給電できることも意味する。
【0014】
この変換器の特徴は、コイルの第2の端子と共通の基準点とをそれぞれ接続および切断する手段が制御可能なスイッチであることである。制御可能なスイッチは1つ置きの半周期の少なくとも一部の間接続するよう調節することができる。また制御可能なスイッチは一般にバースト・シリーズ(burst series)で接続する。
これによりコイルの電圧を調節することできる。一方ではDC電源からのエネルギーの消費をゆるやかに切り替えることができるし、他方では変換器の名目出力電圧をフィールド内で調整することができる。変換器の名目出力電圧をフィールド内で調整することができるということは、複数の異なる出力電圧が必要なときに同じ変換器設計を用いることができることを意味する。これにより、異なる変換器の数を減らすことができる。
【0015】
この変換器の特徴は、電界効果トランジスタ、バイポーラ・トランジスタ、絶縁ゲート・バイポーラ・トランジスタ(IGBT)、ゲート・ターンオフ・サイリスタ(GTO)、注入強化ゲート・トランジスタ(IEGT)の中の少なくとも1つのタイプで構成する半導体を制御可能なスイッチとして用いることである。
これにより、給電と構築と空間の要件を考慮に入れて半導体技術を選択することができる。
【0016】
この変換器の特徴は、過負荷の状態において、AC電源からの電流を一定の最大値に制限し、補助的なエネルギーをDC電源から供給することである。
これにより、AC電源の負荷がゆるやかになり、変換器はAC電源を過負荷にすることがない。
【0017】
図1は正および負の出力電圧を持つ単相結合AC−DC/DC変換器100を示す。電池101の正の端子はサイリスタ106のアノードに接続する。電池101の負の端子は共通の基準点104に接続する。サイリスタ106のカソードはダイオード119のカソードに接続する。サイリスタ106のゲートは制御回路108の出力に接続する。サイリスタ106のカソードはコイル112に接続する。電流センサ114はサイリスタ106とコイル112との接続点を囲う。電流センサ114は制御回路108の入力に接続する。コイル112は更にトランジスタ110のコレクタに接続する。トランジスタ110のコレクタはダイオード121のアノードに接続する。トランジスタ110のエミッタは共通の基準点104に接続する。制御回路108の出力はトランジスタ110のベースに接続する。ダイオード121のカソードはコンデンサ123とDC出力125とに接続する。コンデンサ123は更に共通の基準点104に接続する。DC出力125は制御回路108に接続する。
【0018】
電池102の負の端子はサイリスタ107のカソードに接続する。電池102の正の端子は共通の基準点104に接続する。サイリスタ107のアノードはダイオード120のアノードに接続する。サイリスタ107のゲートは制御回路109の出力に接続する。サイリスタ107のアノードはコイル113に接続する。電流センサ115はサイリスタ107とコイル113との接続点を囲う。電流センサ115は制御回路109の入力に接続する。コイル113は更にトランジスタ111のエミッタに接続する。トランジスタ111のエミッタはダイオード122のカソードに接続する。トランジスタ111のコレクタは共通の基準点104に接続する。制御回路109の出力はトランジスタ111のベースに接続する。ダイオード122のアノードはコンデンサ124とDC出力126とに接続する。コンデンサは更に共通の基準点104に接続する。DC出力126は制御回路109に接続する。
【0019】
ダイオード119のアノードはノード118に接続する。ダイオード120のカソードはノード118に接続する。ノード118はスイッチ127に接続する。スイッチ127は更に単相AC電源103と同期回路105の入力とに接続する。単相AC電源103は更に共通の基準点104に接続する。同期回路105の第1の出力は制御回路108の入力に接続し、同期回路105の第2の出力は制御回路109の入力に接続し、同期回路105の第3の出力はスイッチ127の制御入力に接続する。
【0020】
同期回路105の役目は、スイッチ127を介してAC電源102を変換器100に接続するために、有効な電圧のAC電源103が存在するときを登録することである。同期回路105の他の目的は、AC電力に対して既知の位相を持つ同期制御信号を制御回路108,109に与えることによりAC電力に同期させることである。単相AC電源103の正の半周期では、電流は単相AC電源103から接点127を通り、更にダイオード119を通り、更にコイル112を通って流れる。トランジスタ110が遮断されている場合は、電流はコイル112から更にダイオード121を通ってDC出力125に流れる。トランジスタ110が導通している場合は、電流はコイル112から共通の基準点104に流れる。この期間は、サイリスタ106は切断されている。
【0021】
単相AC電源103の負の半周期では制御回路108がサイリスタ106を導通させるので、電流は電池101からサイリスタ106を通り、更にコイル112を通って流れる。トランジスタ110が遮断されている場合は電流はコイル112からDC出力125に流れ、トランジスタ110が導通している場合は電流はコイル112から共通の基準点104に流れる。制御回路108は可変デューティ・サイクルのパルスにより、通常、単相AC電源103の周波数よりかなり高い周波数でトランジスタ110を制御する。
【0022】
コイル112とトランジスタ110とダイオード121から成る補助回路はブースト変換器を構成する。トランジスタ110が導通している間はコイル112内の電流が増加する。トランジスタが遮断されている間は、電流はダイオード121を通ってDC出力125に流れると同時に減少し始め、コイル112の上の電圧は逆極性になる。トランジスタ110のデューティ・サイクルを調節することにより、コイル112内の電流を、したがってDC出力125の電圧も、調節することができる。トランジスタ110の正しいデューティ・サイクルは、DC出力125からの帰還結合を介して測定する出力電圧に基づいて制御回路108が決定する。コンデンサ123はDC出力125の電圧を或るDC電圧に平滑する。単相AC電源103の負の半周期では、電流は単相AC電源103にスイッチ127から、更にダイオード120から、また更にコイル113から流れる。トランジスタ111が遮断されている場合は、電流はコイル113にダイオード122から、更にDC出力126から流れ、ダイオード111が導通している場合は、電流はコイル113に共通の基準点104から流れる。この期間は、サイリスタ107は遮断されている。
【0023】
単相AC電源103の正の半周期では制御回路109がサイリスタ107を導通させるので、電池102への電流がサイリスタ107から、更にコイル113から流れる。トランジスタ111が遮断されている場合は、電流はコイル113にダイオード122から、更にDC出力から流れ、トランジスタ111が導通している場合は、電流はコイル113に共通の基準点104から流れる。制御回路109は可変デューティ・サイクルのパルスにより、通常、単相AC電源103の周波数よりかなり高い周波数でトランジスタ111を制御する。
【0024】
コイル113とトランジスタ111とダイオード122から成る補助回路はブースト変換器を構成する。トランジスタ111が導通している間はコイル113内の電流が増加する。トランジスタ111が遮断されている間は、電流はダイオード122から、更にDC出力126から流れると同時に減少し始め、コイル113の上の電圧は逆極性になる。トランジスタ111のデューティ・サイクルを調節することにより、コイル113内の電流を、したがってDC出力126の電圧も、調節することができる。トランジスタ111の正しいデューティ・サイクルは、DC出力126からの帰還結合を介して測定する出力電圧に基づいて制御回路109が決定する。コンデンサ124はDC出力の電圧を或るDC電圧に平滑する。
【0025】
調節器は2つの独立な調節装置から成る。1つは制御回路108内の正の出力電圧用であり、他の1つは制御回路109内の負の出力電圧用である。各調節装置の目的は、一定の出力電圧を保持すると共に、電流がAC電源から供給されてもDC電源から供給されても、所定のはっきり定義された曲線形を持つ電流を吸収することである。これを実際に行う方法は、2つの制御回路108、109毎に2つの調節器ループを用いることである。1つは電流の曲線形を維持するため、他方は一定の出力電圧を保つためのものである。電流の曲線形を決定する調節器ループは、通常、2つの調節器ループの中の速い方である。これは、2個のトランジスタ110または111の一方へのパルス幅変調信号をその出力に出す。
【0026】
トランジスタ110、111が導通する度にコイル112,113内の電流は増加する。トランジスタ110、111が遮断される度に電流は減少し、その場合コイル112,113の上の電圧は逆極性になる。実際にはこの電流制御は、周波数を一定に保つかまたは変化させる種々の原理に従って、または電流の瞬時値または数パルスにわたって平均した平均値に従って行われる。これらの種々の原理は従来の技術に属するものであって、どの原理も、供給される信号の振幅と曲線形に最適に従うように変換器100のコイル112,113内の電流を制御することができる。これを行うには、電流の測定値と望ましい電圧に対応する信号とを比較して、パルス/ブレーキ(pulse/break)比を絶えず適応させる。
【0027】
コイル112,113内の電流は常に増加または減少するが、数パルスにわたって平均したときに望ましい曲線形に対応するように、絶えずパルス/ブレーキ比で調節する。ここで用いる「パルス」という用語はトランジスタ110,111の制御パルスを指し、通常、その周波数は電流網の周波数に比べて高い。調節器ループは、関係する変換器100が所定の時刻に引き出したい電流に対応する曲線形と振幅を持つ信号を受ける。以後この曲線形を電流基準と呼ぶ。この電流基準の曲線形は変換器100の動作モードに依存する。
【0028】
電流をAC電源103だけから引き出すのが望ましい場合は、曲線形は正弦波のそれぞれ正および負の半周期であって、網から引き出す全電流量は正弦波になる。これは図1の期間236の曲線231に見られる曲線形である。電流を電池101,102だけから引き出すことが望ましい場合は、変換器100の2つの両半分の基準はDC信号だけである。なぜなら、この場合は電池101,102から一定のDC電流を引き出すことが望ましいからである。電流を両方の電源から引き出すことが望ましい場合は、電流基準は図2の期間235の曲線231に対応する形を有する。この曲線形の一部は正弦半波から、一部は長方形または台形のパルスから成る。
【0029】
ここに述べた電流基準は電子回路の電圧または電流の曲線形として生成してもよいし、例えばマイクロプロセッサまたはディジタル信号処理プロセッサ(DSP)により生成するディジタル的に計算した曲線形でもよい。上に説明したどの動作形式で実行するかを知るため検出器回路105を設けて、AC電源103が存在しかつ許容できる電圧の質を有するかどうか判定する。これに該当すればAC運転を選択する。AC電源103が存在しないか、または電流または周波数が何らかの理由で許容できないと判定された場合は、電池運転に切り替える。AC電圧が回復しかつ許容できる質のものになれば、図2の線で示すランプイン・コース(ramp−in course)が行われる。検出器回路105は両方の変換器が共用することができる。
【0030】
望ましい曲線形を生成するのに同期ユニット105も用いる。これもAC信号を受け、このAC信号に同期する。これにより、位相情報を2個の制御/調節器ユニット109,109に与え、AC信号上で時間的にゼロに対する1の推移を(例えば0度と360度の間の度数として)知らせる。かかる位相情報は、後で上述の曲線形の時間的なコースを決定するのに用いる。運転モードと同期に関する前記信号の他に、上記の電流基準の振幅も絶えず適応させることが可能でなければならない。信号の振幅を変えることにより、AC電源103またはDC電源101,102から引き出す電流の量が変わり、したがって変換器100に供給する電力量が変わる。
【0031】
この電力供給は、変換器100の出力から引き出す電力と損失に起因する電力とを加えた必要電力量を正確にカバーするように絶えず適応させなければならない。必要以上に電力を供給した場合はコンデンサ123と124の電圧が増加し続けることを意味し、またこれに対応して、供給電力が少なすぎる場合は電圧が減少する。したがって正しい出力電圧を維持するため、各制御/調節器回路108,190内に調節器ループを設け、125と126の電圧を測定して適当な基準値と比較する。望ましい値から出力電圧がずれた場合は、上に述べた電流基準信号の振幅を上方または下方に調節する。
【0032】
AC電源103から引き出すことが許される電流の特定の最大値は常に1つだけである。ランプイン・コース中は、所定の時間(例えば10秒)以内にゼロから所定の最大値までこの最大値を直線的に増加させる。この最大許容値以上の電流または電力を供給したい場合は、最大可能値を持つ半波形の正弦信号を形成する一方で、残りの必要電力を電池からの電流パルスで補う。2つのパルスの配分は、全体で必要な供給電力をカバーするように絶えず計算する。これに対応して、AC電流パルスのこの制限を用いて、過負荷中の電流網またはディーゼル発電器からの電流を制限する。またこの場合は、必要な全電力量を供給するために必要な電池からの補充量を計算する。
【0033】
ノード118で分離し、代わりにAC電源103とスイッチ127とを整流器ブリッジの交流入力に接続し、整流器ブリッジの正の出力をダイオード119のアノードに接続し、整流器ブリッジの負の出力をダイオード120のカソードに接続した場合は、両半周期にAC電源103から変換器100の正半分と負半分に給電することもできる。これにより、電池101,102の電力消費を減らすことができる。
【0034】
図2は、正および負の出力電圧を持つ単相結合AC−DC/DC変換器100のランプイン・コースの曲線を示す。第1の曲線231はコイル112を通る電流を示す。第2の曲線232はコイル113を通る電流を示す。第3の曲線233は単相AC電源103の全電流を示す。第1の曲線231と第2の曲線232と第3の曲線233において、第1の期間234は電池101,102だけからの給電を示し、第2の期間235は電池101,102と単相AC電源103から給電するランプイン・コースを示す。電池101,102からの電流は単相AC電源103からの電流が増加するに従って減少する。また第3の期間236は単相AC電源103だけからの給電を示す。
【0035】
期間234では、電池101,102だけが結合AC−DC/DC変換器100に給電する。期間235ではランプイン・コースが起こり、給電は電池101,102からだけでなく単相AC電源103からも行われる。電池101,102からのパルス電流の強さは単相AC電源103からのパルス電流が増加するに従って減少する。期間236では、単相AC電源103だけが結合AC−DC/DC変換器100に給電する。
【0036】
図3は正の出力電圧を持つ単相結合AC−DC/DC変換器300を示す。電池301の正の端子はサイリスタ306のアノードに接続する。電池301の負の端子はサイリスタ306のアノードに接続する。電池301の負の端子は共通の基準点304に接続する。サイリスタ306のカソードはダイオード319のカソードに接続する。サイリスタ306のゲートは制御回路308の出力に接続する。サイリスタ306のカソードはコイル312に接続する。電流センサ314はサイリスタ306とコイル312との接続点を囲う。電流センサ314は制御回路308の入力に接続する。コイル312は更にトランジスタ310のコレクタに接続する。トランジスタ310のコレクタはダイオード321のアノードに接続する。トランジスタ310のエミッタは共通の基準点304に接続する。
【0037】
制御回路308の出力はトランジスタ310のベースに接続する。ダイオード321のカソードはコンデンサ323とDC出力325とに接続する。コンデンサ323は更に共通基準点304に接続する。DC出力325は制御回路308に接続する。ダイオード319のアノードは更にスイッチ327に接続する。スイッチ327は更に単相AC電源303と同期回路305の入力とに接続する。単相AC電源303は更に共通基準点304に接続する。同期回路305の第1の出力は制御回路308の入力に接続し、同期回路305の第2の出力はスイッチ327の制御入力に接続する。
【0038】
図3に係る、正の出力電圧を持つ単相結合AC−DC/DC変換器300の機能性の表示は、図1に係る、正および負の出力電圧を持つ単相結合AC−DC/DC変換器100の正半分の機能性の表示に従う。正および負の出力電圧を持つ単相結合AC−DC/DC変換器100と同様に、AC電源303とスイッチ327とを代わりに整流器ブリッジの交流入力に結合し、整流器ブリッジの正の出力をダイオード319のアノードに接続し、整流器ブリッジの負の出力を基準点304に接続してもよい。これにより両半周期にAC電源303から変換器300に給電することができる。これにより、電池301の電力消費を減らすことができる。
【0039】
図4は、正および負の出力電圧を持つ3相結合AC−DC/DC変換器700,740,780のランプイン・コースの曲線を示す。第1の曲線431は或る相(相1)における変換器の正半分のコイルを通る電流を示す。第2の曲線432は同じ相(相1)における変換器の負半分のコイルを通る電流を示す。第3の曲線433は同じ相(相1)におけるAC電源703の全電流量を示す。第4の曲線437は3相全部(相1、相2、相3)における電池701から変換器の正半分への全電流量を示す。第5の曲線438は3相全部(相1、相2、相3)における変換器の負半分から電池702への全電流量を示す。第1の曲線431と、第2の曲線432と、第3の曲線433と、第4の曲線437と、第5の曲線438において、第1の期間434は電池701,702だけからの給電を示し、第2の期間435は電池701,702とAC電源703から給電するランプイン・コースを示す。電池701,702からの電流はAC電源703からの電流が増加するに従って減少する。また第3の期間436はAC電源703だけからの給電を示す。
【0040】
図4に係る、正および負の出力電圧を持つ3相結合AC−DC/DC変換器700,740,780のランプイン・コースの機能性の表示は、図2に係る、正および負の出力電圧を持つ単相結合AC−DC/DC変換器100のランプイン・コースの機能性の表示に従う。電池701,702は3相全部(相1、相2、相3)の変換器700,740,780が共用する(同じものである)。電池701,702は、図1に係る、正および負の出力電圧を持つ単相結合AC−DC/DC変換器100にそれぞれが対応する、他の点では独立の3つの回路700,740,780に給電する。これは、電池701は各回路700,740,780内の3個のサイリスタに接続し、電池702は同じ3つの各回路内の3個のサイリスタに接続することを意味する。3つの回路700,740,780はそれぞれの相を用い、共通の基準点704は3相が共用する。
【0041】
図5は、正および負の出力電圧を持つ単相結合AC−DC/DC変換器100の過負荷コースの曲線を示す。第1の曲線539は許容上限電流しきい値に対する電流負荷を百分率で示す。第2の曲線531はコイル112を通る電流を示す。第3の曲線532はコイル113を通る電流を示す。第4の曲線533は単相AC電源103の全電流量を示す。第1の曲線539と、第2の曲線531と、第3の曲線532と、第4の曲線533において、第1および第3の期間536は単相AC電源103だけからの給電による通常の動作を示し、第2の期間540は電池101,102と単相AC電源103の両方からの給電による過負荷コースを示す。電池101,102からの電流の振幅は、単相AC電源103からの電流を一定にかつ或る許容電流しきい値内に保つ場合の振幅である。
【0042】
2つの期間536では通常の動作を行う。この場合、単相AC電源103だけが結合AC−DC/DC変換器100に給電する。期間540では過負荷コースが起こり、電池101,102と単相AC電源103の両方から給電する。電池101,102からのパルス電流の振幅は過負荷において完全に補償するように調整する。これにより、単相AC電源103からの電流を一定にかつ或る許容しきい値以内に保つ。
【0043】
図6は、正および負の出力電圧を持つ3相結合AC−DC/DC変換器700,740,780の過負荷コースの曲線を示す。第1の曲線639は許容上限電流しきい値に対する3相全部の過負荷を百分率で示す。第2の曲線631は或る相(相1)において変換器の正半分内のコイルを通る電流を示す。第3の曲線632は同じ相(相1)において変換器の負半分内のコイルを通る電流を示す。第4の曲線633は同じ相(相1)においてAC電源703の全電流量を示す。第5の曲線637は変換器の正半分の電池701から3相全部(相1、相2、相3)への全電流量を示す。第6の曲線638は変換器の負半分内の3相全部(相1、相2、相3)から電池702への全電流量を示す。第1の曲線639と、第2の曲線631と、第3の曲線632と、第4の曲線633において、第1および第3の期間636はAC電源703だけからの給電による通常の動作を示し、第2の期間640は電池701,702とAC電源703の両方からの給電による過負荷コースを示す。電池701,702からの電流の振幅は、AC電源703からの電流を一定にかつ所定の許容電流しきい値内に保つ場合の振幅である。
【0044】
図6に係る、正および負の出力電圧を持つ3相結合AC−DC/DC変換器700,740,780の過負荷コースの機能性の表示は、図5に係る、正および負の出力電圧を持つ単相結合AC−DC/DC変換器100の過負荷コースの機能性の表示に従う。電池701,702は3相全部(相1、相2、相3)の変換器700,740,780が共用する(同じものである)。電池701,702は、図1に係る、正および負の出力電圧を持つ単相結合AC−DC/DC変換器100にそれぞれが対応する、他の点では独立の3つの回路700,740,780に給電する。これは、電池701は各回路700,740,780内の3個のサイリスタに接続し、電池702は同じ3つの各回路内の3個のサイリスタに接続することを意味する。3つの回路700,740,780はそれぞれの相を用い、共通の基準点704は3相が共用する。
【0045】
図7は、共用DC電源701,702を持つ3つの変換器700,740,780で構築する、正および負の出力電圧を持つ3相結合AC−DC/DC変換器を示す。電池701の正の端子は、図1のサイリスタ106に対応する、3つの各変換器700,740,780内のサイリスタのアノードに接続する。電池701の負の端子は共通の基準点704に接続する。電池702の負の端子は、図1のサイリスタ107に対応する、3つの各変換器700,740,780内のサイリスタのカソードに接続する。電池702の正の端子は共通の基準点704に接続する。図1のスイッチ127に対応する、3つの各変換器700,740,780内のスイッチは、AC電源703の各相に接続する。AC電源703は更に共通の基準点704に接続する。3つの変換器700,740,780の正の出力は全て出力725に接続する。3つの変換器700,740,780の負の出力は全て出力726に接続する。3つの変換器700,740,780の基準は基準点704に接続する。
【0046】
図7に係る、共用DC電源701,702を持つ3つの変換器700,740,780で構築する正および負の出力電圧を持つ3相結合AC−DC/DC変換器の機能性の表示は、図1に係る、正および負の出力電圧を持つ単相結合AC−DC/DC変換器100の機能性の表示に従う。
【0047】
図8は、共用DC電源801を持つ3つの変換器800,840,880で構築する、正の出力電圧を持つ3相結合AC−DC/DC変換器を示す。電池801の正の端子は図3のサイリスタ306に対応する、3つの各変換器800,840,880内のサイリスタのアノードに接続する。電池801の負の端子は共通の基準点804に接続する。図3のスイッチ327に対応する、3つの各変換器800,840,880内のスイッチは、AC電源803の各相に接続する。AC電源803は更に共通の基準点804に接続する。3つの変換器800,840,880の負の出力は全て出力825に接続する。3つの変換器800,840,880の基準は全て基準点804に接続する。
【0048】
図8に係る、共通DC電源801を持つ3相変換器800,840,880で構築する、正および負の出力電圧を持つ3相結合AC−DC/DC変換器の機能性の表示は、図1に係る、正および負の出力電圧を持つ単相結合AC−DC/DC変換器100の正半分の機能性の表示に従う。
【0049】
変換器(100,300,700,740,780,800,840,880)の特徴は、例えば少なくとも1つのDC出力(125,126,325,725,726,825)に所定の負荷(一般に全負荷)がかかるとき、DC電源(101,102,301,701,702,801)からAC電源(103,303,703,803)(一般にディーゼル発電機)への切替えを適応的に行い、他方でAC電源(103,303,703,803)の周波数と電圧の安定を考慮に入れることである。電源のかかる適応的な切替えによりDC電源からAC電源にゆるやかに切り替え、切替え中は両方の電源から給電する。電源の適応的な切替えは、複数の連続的な期間に両方の電源から給電することを選択的に含む。最後に、電源を適応的に切り替えるということは、完全にまたは部分的に再び元のDC電源に切り替えることが可能であることを意味する。これによりAC電源との結合をより緩やかに行い、変換器と負荷とをAC電源を急に強制的に結合しない。これにより、過負荷のためにAC電源の周波数や電圧などが変動するのを防ぐ。AC電源がディーゼル発電機の場合は、急に強制的に負荷に結合するのを避けることが大切である。なぜなら、過負荷になるとロータ電流が生じてディーゼル発電機の周波数と電圧が不安定になるからである。最悪の場合は、不安定のために自己振動が起こり、その結果停電することがある。
【0050】
変換器(100,300,700,740,780,800,840,880)の特徴は、AC電源(103,303,703,803)(一般にディーゼル発電機)から給電するときの動的な負荷変化を補償し、少なくとも1つのDC出力(125,126,325,725,726,825)からの電流を適応的に増加させることである。動的な負荷変化を適応的に補償するときは、DC電源(101,102,301,701,702,801)から補助的なエネルギーを得て、AC電源(103,303,703,803)の周波数と電圧の安定性を適切に考慮して行う。動的な負荷変化をこのように適応的に補償するときは、DC電源から補助的に給電を行い、給電は(或る時間)両方の電源から行う。選択的であるが、両方の電源からの給電を複数の連続した期間行うことがある。これにより、より緩やかに負荷がAC電源にかかり、変換器はAC電源と負荷とを急に強制的に結合しない。これにより、過負荷のためにAC電源の周波数や電圧などが変動するのを防ぐ。AC電源がディーゼル発電機の場合は、急に強制的に負荷と結合するのを避けることが大切である。なぜなら、過負荷になるとロータ電流が生じ、このためディーゼル発電機の周波数と電圧が不安定になり、最悪の場合は不安定のために自己振動が起こり、その結果停電することがあるからである。
【図面の簡単な説明】
本発明について、添付の図面を参照して詳細に説明する。
【図1】
正および負の出力電圧を持つ単相結合AC−DC/DC変換器を示す。
【図2】
正および負の出力電圧を持つ単相結合AC−DC/DC変換器のランプイン・コースの曲線を示す。
【図3】
正の出力電圧を持つ単相結合AC−DC/DC変換器を示す。
【図4】
正および負の出力電圧を持つ3相結合AC−DC/DC変換器のランプイン・コースの曲線を示す。
【図5】
正および負の出力電圧を持つ単相結合AC−DC/DC変換器の過負荷コースの曲線を示す。
【図6】
正および負の出力電圧を持つ3相結合AC−DC/DC変換器の過負荷コースの曲線を示す。
【図7】
共用のDC電源を持つ3つの変換器で構成する、正および負の出力電圧を持つ3相結合AC−DC/DC変換器を示す。
【図8】
共用のDC電源を持つ3つの変換器で構成する、正の出力電圧を持つ3相結合AC−DC/DC変換器を示す。

Claims (10)

  1. 少なくとも1つの相を持つAC電源(103,303,703,803)と選択的に結合しまた少なくとも1つのDC電源(101,102,301,701,702,801)と選択的に結合する変換器(100,300,700,740,780,800,840,880)であって、前記変換器(100,300,700,740,780,800,840,880)は一度に少なくとも1つの電源から電力を受け、前記変換器(100,300,700,740,780,800,840,880)は電源を切り替えるとき個々の電源と前記変換器(100,300,700,740,780,800,840,880)とを接続または切断する制御可能な接触手段を含むことによりパルス信号を生成し、前記変換器(100,300,700,740,780,800,840,880)は少なくとも1つのDC出力(125,126,325,725,726,825)と接続する少なくとも1個のコイル(112,113,312)を含み、その特徴は、前記パルス信号を複数の期間に分割して或る期間中は前記接触手段により電源の切替えを行い、前記期間は少なくとも1つの第1の電源と少なくとも1つの第2の電源から交替に開始し、前記第1の電源からの電流パルスは前記第2の電源からの電流パルスに従って調節し、前記変換器は少なくとも1つのDC出力(125,126,325,725,726,825)の電圧を調節する手段を含むことである、変換器(100,300,700,740,780,800,840,880)。
  2. 前記AC電源(103,303)は単相AC電源であることと、少なくとも1つのDC電源(101,102,310)を設けることとを特徴とする、請求項1記載の変換器(100,300)。
  3. 前記AC電源(703,803)は多相AC電源であることと、少なくとも1つのDC電源(701,702,801)を設けることとを特徴とする、請求項1記載の変換器(700,740,780,800,840,880)。
  4. コイル(112,113,312)を通る電流を測定する電流検出器(114,115,314)からの信号に基づいて、制御回路(108,109,308)が前記コイル(112,113,312)の第2の端子とDC電源(101,102,301,701,702,801)とをそれぞれ接続および切断する手段と前記コイル(112,113,312)の第2の端子と共通の基準点(104,304,704,804)とをそれぞれ接続および切断する手段とを有することと、前記コイル(112,113,312)の第2の端子が共通の基準点(104,304,704,804)に接続していないときは前記コイル(112,113,312)を通る電流は前記変換器(100,300,700,740,780,800,840,880)のDC出力(125,126,325,725,726,825)に流れることと、前記変換器(100,300,700,740,780,800,840,880)はAC電源(103,303,703,803)と前記コイル(112,113,312)の第1の端子とをそれぞれ接続および切断する手段とを有することとを特徴とする、請求項1−3の少なくとも1つに記載の変換器(100,300,700,740,780,800,840,880)。
  5. 少なくとも1つの変換器(300)を用いて、共通の基準点(104,704)に対して正のDC出力(125,725)を形成しまた少なくとも1つの変換器を用いて共通の基準点(104,704)に対して負のDC出力(126,726)を形成することを特徴とする、請求項1−4の少なくとも1つに記載の変換器(100,700,740,780)。
  6. 共通の基準点(104,704)に対して正の出力電圧を形成するのに用いる変換器(300)と負の出力電圧を形成するのに用いる変換器とが前記AC電源(103,703)をそれぞれ共用することを特徴とする、請求項5記載の変換器(100,700,740,780)。
  7. コイル(112,113,312)の第1の端子とDC電源(101,102,301,701,702,801)とをそれぞれ接続および切断する手段は制御可能なスイッチ(106,107,306)であることと、前記制御可能なスイッチ(106,107,306)は1つ置きの半周期の少なくとも一部の間接続するよう調節することができることを特徴とする、請求項4−6の少なくとも1つに記載の変換器(100,300,700,740,780,800,840,880)。
  8. コイル(112,113,312)の第2の端子と共通の基準点(104,304,704,804)とをそれぞれ接続および切断する手段は制御可能なスイッチ(110,111,310)であることと、前記制御可能なスイッチ(110,111,310)は1つ置きの半周期の少なくとも一部の間接続するよう調節することができることと、前記制御可能なスイッチ(110,111,310)は一般にバースト・シリーズで接続することとを特徴とする、請求項4−7の少なくとも1つに記載の変換器(100,300,700,740,780,800,840,880)。
  9. 電界効果トランジスタ、バイポーラ・トランジスタ、絶縁ゲート・バイポーラ・トランジスタ(IGBT)、ゲート・ターンオフ・サイリスタ(GTO)、注入強化ゲート・トランジスタ(IEGT)の中の少なくとも1つのタイプで構成する半導体を制御可能なスイッチ(106,107,110,111,306,310)として用いることを特徴とする、請求項4−8の少なくとも1つに記載の変換器(100,300,700,740,780,800,840,880)。
  10. 過負荷状態において、前記AC電源(103,303,703,803)からの電流を一定の最大値に制限し、補助的なエネルギーを前記DC電源(101,102,301,701,702,801)から供給することを特徴とする、請求項1−9の少なくとも1つに記載の変換器(100,300,700,740,780,800,840,880)。
JP2002560254A 2001-01-26 2002-01-22 結合ac−dc/変換器 Expired - Lifetime JP3821230B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK200100140A DK174494B1 (da) 2001-01-26 2001-01-26 Kombineret AC-DC til DC konverter
PCT/DK2002/000041 WO2002060032A1 (en) 2001-01-26 2002-01-22 Uninterruptible power supply

Publications (2)

Publication Number Publication Date
JP2004517598A true JP2004517598A (ja) 2004-06-10
JP3821230B2 JP3821230B2 (ja) 2006-09-13

Family

ID=8160105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002560254A Expired - Lifetime JP3821230B2 (ja) 2001-01-26 2002-01-22 結合ac−dc/変換器

Country Status (9)

Country Link
US (1) US7012825B2 (ja)
EP (1) EP1402612B1 (ja)
JP (1) JP3821230B2 (ja)
CN (1) CN100380775C (ja)
AT (1) ATE349796T1 (ja)
DE (1) DE60217111T2 (ja)
DK (1) DK174494B1 (ja)
NO (1) NO324758B1 (ja)
WO (1) WO2002060032A1 (ja)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7106607B2 (en) * 2002-01-22 2006-09-12 American Power Conversion Denmark Aps Combined AC-DC to DC converter
US7432615B2 (en) * 2004-01-29 2008-10-07 American Power Conversion Corporation Uninterruptable power supply system and method
US7939968B2 (en) 2004-08-31 2011-05-10 American Power Conversion Corporation Method and apparatus for providing uninterruptible power
US7737580B2 (en) * 2004-08-31 2010-06-15 American Power Conversion Corporation Method and apparatus for providing uninterruptible power
US7274112B2 (en) * 2004-08-31 2007-09-25 American Power Conversion Corporation Method and apparatus for providing uninterruptible power
US7456518B2 (en) 2004-08-31 2008-11-25 American Power Conversion Corporation Method and apparatus for providing uninterruptible power
US7402921B2 (en) * 2005-04-21 2008-07-22 American Power Conversion Corporation Method and apparatus for providing uninterruptible power
US7352083B2 (en) 2005-09-16 2008-04-01 American Power Conversion Corporation Apparatus for and method of UPS operation
US7456524B2 (en) * 2006-03-31 2008-11-25 American Power Conversion Corporation Apparatus for and methods of polyphase power conversion
US8322155B2 (en) 2006-08-15 2012-12-04 American Power Conversion Corporation Method and apparatus for cooling
US8327656B2 (en) 2006-08-15 2012-12-11 American Power Conversion Corporation Method and apparatus for cooling
US9568206B2 (en) 2006-08-15 2017-02-14 Schneider Electric It Corporation Method and apparatus for cooling
US7705489B2 (en) * 2006-09-08 2010-04-27 American Power Conversion Corporation Method and apparatus for providing uninterruptible power
US7652393B2 (en) * 2006-09-14 2010-01-26 American Power Conversion Corporation Apparatus and method for employing a DC source with an uninterruptible power supply
US7681404B2 (en) 2006-12-18 2010-03-23 American Power Conversion Corporation Modular ice storage for uninterruptible chilled water
US7550872B2 (en) * 2006-12-19 2009-06-23 General Electric Company Current sensor apparatus and method for uninterruptible power supply
US8425287B2 (en) 2007-01-23 2013-04-23 Schneider Electric It Corporation In-row air containment and cooling system and method
US7688048B2 (en) * 2007-02-21 2010-03-30 American Power Conversion Corporation 3-phase high power UPS
CA2686564C (en) 2007-05-15 2018-04-17 American Power Conversion Corporation Methods and systems for managing facility power and cooling
US7969124B2 (en) * 2007-06-01 2011-06-28 Advantest Corporation Power supply apparatus, test apparatus, and electronic device
US8116105B2 (en) 2008-02-07 2012-02-14 American Power Conversion Corporation Systems and methods for uninterruptible power supply control
US7881079B2 (en) 2008-03-24 2011-02-01 American Power Conversion Corporation UPS frequency converter and line conditioner
DE102008002525A1 (de) * 2008-06-19 2009-12-24 Robert Bosch Gmbh Gleichspannungswandler
US9519517B2 (en) 2009-02-13 2016-12-13 Schneider Electtic It Corporation Data center control
TWI381619B (zh) * 2009-04-01 2013-01-01 Delta Electronics Inc 單相與三相雙重升降壓功率因數校正電路及其控制方法
US8355890B2 (en) * 2009-05-08 2013-01-15 American Power Conversion Corporation System and method for predicting maximum cooler and rack capacities in a data center
US8385091B2 (en) * 2009-08-20 2013-02-26 Electric IT Corporation 3-phase high-power UPS
WO2011020149A1 (en) * 2009-08-21 2011-02-24 Renergyx Pty Limited Electrical energy distribution system with ride-through capability
TW201203823A (en) * 2010-07-09 2012-01-16 Chung Shan Inst Of Science A power converter with two input power sources
US8698354B2 (en) 2010-11-05 2014-04-15 Schneider Electric It Corporation System and method for bidirectional DC-AC power conversion
US8853887B2 (en) 2010-11-12 2014-10-07 Schneider Electric It Corporation Static bypass switch with built in transfer switch capabilities
US8878389B2 (en) 2011-01-11 2014-11-04 Schneider Electric It Corporation Method and apparatus for providing uninterruptible power
US8803361B2 (en) 2011-01-19 2014-08-12 Schneider Electric It Corporation Apparatus and method for providing uninterruptible power
US9024476B2 (en) * 2011-07-28 2015-05-05 Schneider Electric It Corporation Single-battery power topologies for online UPS systems
US8884464B2 (en) 2011-08-29 2014-11-11 Schneider Electric It Corporation Twin boost converter with integrated charger for UPS system
CN104137660B (zh) 2011-12-22 2017-11-24 施耐德电气It公司 用于在电子系统中预测温度值的系统和方法
CN104137105B (zh) 2011-12-22 2017-07-11 施耐德电气It公司 关于瞬时事件对数据中心中的温度的影响分析
US9800051B2 (en) * 2015-09-03 2017-10-24 Ensync, Inc. Method and apparatus for controlling energy flow between dissimilar energy storage devices
TWI575837B (zh) * 2015-12-29 2017-03-21 律源興業股份有限公司 切換式電源供應器及使用其之電源供應設備
RU191699U1 (ru) * 2019-02-04 2019-08-16 федеральное государственное бюджетное образовательное учреждение высшего образования "Ставропольский государственный аграрный университет" Устройство резервного электропитания

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4564767A (en) * 1983-11-07 1986-01-14 Tii Industries, Inc. Uninterruptible switching power supply system
JPH0813171B2 (ja) * 1987-06-26 1996-02-07 株式会社ユタカ電機製作所 安定化電源装置
US4782241A (en) * 1987-08-11 1988-11-01 Liebert Corporation Uninterruptible power supply apparatus and power path transfer method
FR2713030B1 (fr) * 1993-11-24 1996-01-12 Merlin Gerin Alimentation sans coupure à neutre traversant, comportant un hacheur-élévateur double.
US5751564A (en) * 1994-08-10 1998-05-12 Dien; Ghing-Hsin Dual/multiple voltage level input switching power supply
JP3288281B2 (ja) * 1997-09-17 2002-06-04 株式会社三社電機製作所 直流電源装置
US6122181A (en) * 1998-05-21 2000-09-19 Exide Electronics Corporation Systems and methods for producing standby uninterruptible power for AC loads using rectified AC and battery
AT406625B (de) * 1998-11-12 2000-07-25 Fronius Schweissmasch Spannungsumschaltvorrichtung
DK174329B1 (da) 1998-12-01 2002-12-09 Bjarne Jensen Konverteringsenhed og fremgangsmåde til konvertering

Also Published As

Publication number Publication date
US7012825B2 (en) 2006-03-14
ATE349796T1 (de) 2007-01-15
EP1402612B1 (en) 2006-12-27
EP1402612A1 (en) 2004-03-31
DK174494B1 (da) 2003-04-22
NO324758B1 (no) 2007-12-10
CN100380775C (zh) 2008-04-09
NO20033307L (no) 2003-09-15
JP3821230B2 (ja) 2006-09-13
DE60217111D1 (de) 2007-02-08
WO2002060032A1 (en) 2002-08-01
US20040084967A1 (en) 2004-05-06
NO20033307D0 (no) 2003-07-22
DK200100140A (da) 2002-07-27
CN1496600A (zh) 2004-05-12
DE60217111T2 (de) 2007-08-16

Similar Documents

Publication Publication Date Title
JP3821230B2 (ja) 結合ac−dc/変換器
US7106607B2 (en) Combined AC-DC to DC converter
KR102121543B1 (ko) 균형 회로, 충전 대기 기기 및 충전 제어방법
JP2680494B2 (ja) 単相交流電力変換装置
RU2529017C2 (ru) Трехфазный источник бесперебойного питания большой мощности
US6577106B2 (en) Multi-functional AC/DC converter
CN104040821A (zh) 线路平衡ups
JP2011511608A (ja) 高電圧インバータ
JP2011511608A5 (ja)
US5731692A (en) System and method for limiting overshoot in a voltage and current control circuit
JP7152567B2 (ja) デュアルモード制御を有する電力変換装置
JP3082849B2 (ja) 無停電電源装置
JP2568271B2 (ja) 直流無停電電源装置
JP2002199620A (ja) 無停電電源装置
JPH09252581A (ja) 無停電電源装置の運転方法
JPH07108092B2 (ja) 交流電源装置
JP2002125317A (ja) 系統安定化装置
JP2956372B2 (ja) 無停電電源装置
KR102235963B1 (ko) 입력 및 출력 변압기가 없는 절연형 무정전전원장치
Pevere et al. Active Ripple Energy Storage Circuit with Extended Hold-Up Time Capability and Minimum Capacitance for High Power Dense Rectifiers
JPS605779A (ja) インバ−タ装置の制御電源回路
WO2024065280A1 (zh) 多电平变换电路、功率变换器和电力系统
JP2004096831A (ja) 常時商用給電式無停電電源装置
JP3279712B2 (ja) 無停電電源装置
JPH02285941A (ja) 無停電電源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3821230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term