JP2004510057A - High strength magnesium alloy and method for producing the same - Google Patents

High strength magnesium alloy and method for producing the same Download PDF

Info

Publication number
JP2004510057A
JP2004510057A JP2002530813A JP2002530813A JP2004510057A JP 2004510057 A JP2004510057 A JP 2004510057A JP 2002530813 A JP2002530813 A JP 2002530813A JP 2002530813 A JP2002530813 A JP 2002530813A JP 2004510057 A JP2004510057 A JP 2004510057A
Authority
JP
Japan
Prior art keywords
alloy
added
magnesium alloy
strength magnesium
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002530813A
Other languages
Japanese (ja)
Other versions
JP3891933B2 (en
Inventor
シン, クワン セオン
パーク, スーン チャン
Original Assignee
シン, クワン セオン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シン, クワン セオン filed Critical シン, クワン セオン
Publication of JP2004510057A publication Critical patent/JP2004510057A/en
Application granted granted Critical
Publication of JP3891933B2 publication Critical patent/JP3891933B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Powder Metallurgy (AREA)
  • Forging (AREA)
  • Continuous Casting (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Extrusion Of Metal (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

The present invention provides high strength magnesium alloys consisting essentially of 3 SIMILAR 10 wt.% Zn, 0.25 SIMILAR 3.0 wt.% Mn, and the balance of Mg and inevitable impurities, the high strength magnesium alloy further containing 1 SIMILAR 6 wt.% Al, 0.1 SIMILAR 4.0 wt.% Si, and 0.1 SIMILAR 2.0 wt.% Ca, in order to provide a high strength magnesium alloy having an improved hardness and strength, and an excellent elongation at an ambient temperature. In addition, the present invention provides a method for preparing the high strength magnesium alloy characterized in that a Zn-Mn mother alloy is added to a magnesium melt by a fluxless melting method, and process conditions for working and heat-treating an obtained cast material.

Description

【0001】
【技術分野】
本発明は、高強度マグネシウム合金及びその製造方法に係るもので、詳しくは、特定合金元素を添加するか、又は特定熱処理を包含した製造条件を変更することで、強度、硬度及び延伸率を包含した機械的性質を改善し、成形性が向上されて高強度及び延伸率を有するマグネシウム合金及びその経済的製造方法に関するものである。
【0002】
【背景技術】
マグネシウム合金中、最も優秀な時効の強化状態を見せる合金は、Mg−Zn系合金であって、該合金は、時効処理後に比較的に優秀な強度及び延性を奏することで、加工及び熔接が容易であるという長所を有している。反面、Zn添加によって鋳造時に微少気孔が生成されるため、ダイキャスティングなどの鋳造工程に適用することが難しいという短所も有している。
【0003】
又、Mg−Zn系合金は、他のマグネシウム合金とは異なって、合金元素添加及び過熱処理などによる組織微細化が容易でないため、強度の改善面に限界を有して、使用の面にも制限される不都合な点を有している。
これを克服するために、Mg−Zn二元系合金にいくつかの合金元素を添加する研究が進行されてあり、その例は次の通りである。
【0004】
1947年J.P.Doan及びG.Anselは、Zrを添加してMg−Zn系合金の結晶粒を微細化することで、合金の強度を改善し得る方案を提示した(J.P.Doan and G.Ansel、Trans、AIME、vol.171(1947)、pp.286−295)。然し、Zrの高い融点のため、マグネシウムの溶湯にZrを添加することが難しかった。
【0005】
又、La、Ce、Ndなどの希土類金属又はThを添加する方法も知られているが、この方法によると、微細気孔を抑制して高温における強度を向上させて熔接性を改善するという長所を有するが、既に常用された他のマグネシウム合金に比べて製造原価が極めて高いという短所がある。
且つ、1987年W.Unsworth及びJ.F.Kingは、Cuを添加してMg−Zn合金の主強化析出相のβ1’を微細化させることで、延性を向上し得ると報告した(W.Unsworth and J.F.King、Magnesium Technology、The Inst.of Metal、1987、pp.25−35)。然し、Zn及びCuの添加は、その添加量によって差はあるが、常温における延伸率を10%以上向上することが難しいという限界を有している。
【0006】
次の表1は、常用鋳造用合金及び加工用合金の特性比較を示す。
【表1】

Figure 2004510057
【0007】
表1から常用鋳造用合金に比べて常用加工用合金が全般的に降伏強度、引張強度及び延伸率が優秀であることが分かる。然し、既存の常用加工用合金の場合にも、高強度及び高延伸率の組合を有する合金を得ることが難しい。即ち、引張強度が300MPaを上回る高強度合金の場合、延伸率が10%以上向上することが難しいという短所を有している。又、強度の面において優秀な性質を示すZn及びZr添加合金の場合、Zrの添加は、製造工程上、多くの制約が伴うと報告されている。
【0008】
又、米国第4,997,662号には、急冷凝固法によって製造されたマグネシウムの特性が示されているが、急冷凝固法により製造された合金の特性を注意深く観察すると、降伏強度、引張強度及び延伸率が増加するが、いままでの研究結果によると、既存の常用合金に比べて極めて高価であるため、適用範囲が限定されている。
【0009】
[発明の詳細な説明]
本発明は、Mg−Zn系合金に既存に添加された合金元素より低廉な合金元素を添加して組織の微細化及び析出挙動を改善して硬度、強度及び延伸率のような機械的性質を向上させて成形性が改善された高強度マグネシウム合金を提供することを目的とする。
【0010】
又、本発明は、高強度マグネシウム合金製造における最適の熱処理条件を導出することで、製造された合金に対する強度対比延伸率が極めて優秀な高強度マグネシウム合金の製造方法及びそのための経済的製造条件を提供することを目的とする。
且つ、本発明は、前記目的を達成するため、3〜10wt.%のZnと、0.25〜3.0wt.%のMnと、不可避な不純物及びMgを有して構成された高強度マグネシウム合金を提供する。
【0011】
前記マグネシウム合金には、追加的に1〜6wt.%のAlを含有する事もできるし、又、追加的に0.1〜4.0wt.%のSi若しくは0.1〜4.0wt.%のSi及び0.1〜2.0wt.%のCaを含有することもできる。又、前記Alの含量は、前記Znの含量以下であることが好ましい。
【0012】
又、前記Znの含量は5.0〜7.0wt.%で、前記Mnの含量は0.75〜2.0wt.%で、前記Siの含量は1.5〜3.0wt.%で、前記Ca含量は0.3〜1.0wt.%であることが好ましい。
即ち、本発明の核心は、Mg−Zn系合金に合金元素としてAlを添加することで、降伏強度を下げて成形性を改善して加工硬化能を向上させて高強度及び延伸率を有する高強度マグネシウム合金を提供することにある。
【0013】
又、本発明は、マグネシウムの溶湯にMnを添加するとき、Zn−Mn母合金を添加する高強度マグネシウム合金の製造方法を提供する。
且つ、前記高強度マグネシウム合金は、マグネシウム溶湯にZn−10〜20wt.%Mn母合金を670〜720℃に添加して、Zn又はZnとAlとを添加して鋳造材を作るか、又はマグネシウム溶湯にZn−10〜20wt.%Mn母合金を670〜720℃に添加してMg−Si母合金を添加し、Zn、Zn及びAl若しくはCaを添加して鋳造材を作る。
【0014】
又、その後、好ましくは、このように作られた鋳造材を、340〜410℃で6〜12時間の間均質化処理してビレットに製造し、該ビレットを150〜400℃で30分〜2時間予熱した後加工することができる。
若しくは、このように加工された加工材を70〜100℃で24〜96時間の間1次時効処理した後、150〜180℃で48時間以上2次時効処理をすることもできる。
【0015】
このとき、前記二重時効処理を施す前に340〜410℃で6〜12時間の間溶体化処理を行うか、又は前記二重時効処理を施す前に3〜7%の
ストレッチングを行うこともできる。
以下、本発明における合金元素の組成範囲が上記したように制限される理由について説明する。
【0016】
亜鉛(Zn):3〜10wt.%
Znは、Mg基地内に最大に固溶される限度が340℃で6.2wt.%であって、3.0wt.%以上添加時には熱処理により針状析出相を形成させて時効の強化状態を示す。一般に、固溶限度を基準にその添加量を決定し、最大の固溶限に近い5.0〜7.0wt.%添加時に時効強化状態を極大化させることができる。即ち、3.0wt.%未満に添加する場合は、一般的な時効温度の固溶未満に該当することで、析出相の生成が微弱であるため、析出強化現象を殆ど期待し得ないし、10.0wt.%以上添加する場合は、結晶粒系に平衡相の析出が助長されて機械的性質の低下を誘発することがある。
従って、本発明におけるZnの添加範囲は、3〜10wt.%、好ましくは、5.0〜7.0wt.%に制限される。
【0017】
マンガン(Mn):0.25〜3.0wt.%
Mnは、Mg基地内に最大に固溶される限度が、Mgの鎔融点の650℃で2.2wt.%程度であって、温度の低下によって固溶限度が急激に低下してMg基地内にα−Mn形態に存在する。一般に、常用のMg合金においては、Mnが0.1wt.%以上添加されて耐食性の向上に寄与すると知られてあり、耐食性以外の目的、例えば、強化を目的に添加する場合は、0.25〜2.0wt.%添加時に合金系によって合金の強度向上に寄与される。特に、本発明は、Mnの添加により加工材の溶体化処理後に時効処理時に二元系Mg−Zn合金の析出相を微細化させることで、強度向上及び延伸率向上の効果を得ることができた。従って、本発明は、合金を強化するためにMnを添加し、最小添加量を0.25wt.%に設定した。一方、Mnの最大の固溶限及び合金の製造工程を考慮する時、多量のMnの添加は、一般の溶解工程としては添加することが困難で、3.0wt.%以上Mnを添加する場合には、大部分が基地内にα−Mn形態に存在されて、合金の特性向上とは全く関係のない剰余の添加量となるため、製造原価側面において好ましくない。結局、本発明におけるMnの添加範囲は、0.25〜3.0wt.%、好ましくは、0.75〜2.0wt.%に制限される。
【0018】
アルミニウム Al :1〜6wt.%
Alは、Mg基地内に最大に固溶される限度が437℃で大略12wt.%程度であって、Mg−Alの二元系合金の場合、熱処理によってMg17Al12析出相を形成すると知られている。本発明においては、このような析出相の形成を目的にAlを添加したことでなく、Mg−Zn−Mn三元系合金におけるMg−Zn関連針状析出相を改良化するために添加した。従って、時効温度などの熱処理区間及び添加される主合金元素のZnの含量を考慮してMg−Al系析出相を形成しない範囲でその添加量を定めた。即ち、時効温度区間におけるMg基地内のAl固溶限度が大略1wt.%を示すため、Al添加下限を1.0wt.%に決定し、このように、本発明で制限したZnの含量におけるAlがZnの含量を超過してMg−Al系析出相が形成されることを抑制するために添加上限を6.0wt.%に限定した。一方、AlがZnに比べてより多く添加される場合、前記Mg−Al系析出相であるMg17Al12相が析出される可能性が極めて大きくなる。このような析出相は、結晶粒系に粗大に析出するか、又は熱処理温度によっては結晶粒系内にも析出するようになるものであって、強度上、極めて脆弱で、材料の破壊時に破壊経路を提供して強度低下を引き起こす。従って、Alの含量は、Znの含量以下であることが好ましい。本発明においては、Alの添加時に加工材の溶体化処理を行うことなく、針状析出相を微細にすることに効果を奏したし、降伏強度が多少低下するが、引張強度及び特に延伸率の顕著な向上を得ることができるし、Al添加量が増加するほど降伏強度は低くなって引張強度は増加する傾向を示した。
【0019】
珪素(Si):0.1〜4.0wt.%
Siは、Mg基地内に固溶限度が殆ど存在しないし、合金元素で添加時にMgSi相を形成する。このような化合物は、加工材の製造過程及び熱処理過程におけるその形状及び大きさを調節することで、分散強化効果を得ることができる。本発明においても、Mg−Zn−Al−Mn四元系合金にSiを添加することで、このような分散強化効果を得ることができた。然し、Si含量が0.1wt.%未満ではSi添加の効果を期待し得なく、Si含量が4.0wt.%を超過する場合には、粗大なMgSiの生成により延伸率が減少する。従って、本発明におけるSiの添加範囲は、0.1〜4.0wt.%、好ましくは、1.5〜3.0wt.%に制限される。
【0020】
カルシウム(Ca):0.1〜2.0wt.%
Si添加合金の場合、Caの付加的な添加により合金の結晶粒の大きさを減少させて、MgSi相の形状を改良することができる。このために本発明においては、Siを添加したMg−Zn−Al−Mn合金にCaを添加した。Ca含量が0.1wt.%未満ではMgSi相の改良効果を期待することができない。又、Mg基地内にCaの最大の固溶限が516℃で1.34wt.%であることを考慮する時、Ca含量が2.0wt.%を超過する場合には、MgSi相の改良効果以外に結晶粒系にMg2Ca析出相の形成による強度低下を誘発する。本発明におけるMg−Zn−Al−Mn合金のMgSi相の大きさを特に效果的に制御し得るCa含量の好ましい範囲は、0.3〜1.0wt.%であった。
その結果、強度及び延伸率の向上効果を得ることができた。従って、本発明におけるCaの添加範囲は、0.1〜2.0wt.%、好ましくは、0.3〜1.0wt.%に制限される。
【0021】
その他、Mg合金の主要不純物は、主に機械的性質の低下よりは合金の耐食性に致命的な悪影響を及ぼすため、制限される。一般に、知らされた不純物としては、Fe、Ni、及びCuなどが挙げられるが、特に、Cuの場合には、汎用のMg−Al系合金の耐食性に悪影響を及ぼすが、本発明に係るMg−Zn系合金には、特別な影響を及ばない。従って、Mg−Zn系合金において、主に制限を受ける不純物としては、Fe及びNiが挙げられるが、一般に、その許容値は、保守的な観点で夫々最大0.005wt.%に制限される。この時、Feの場合には、Mnの添加によってその悪影響を排除させることができるし、Mg合金における含量比Fe/Mn値を0.032以下に下げると、Feの悪影響を最小化させることができる。本発明においては、基本的にMnが添加されるため、前記保守的許容値を遵守すると、耐食性に及ぼすFeの悪影響を效果的に排除することができる。一方、前記Fe、Ni及びCuを包含するその他の不純物の含量は、総量を基準に、一般に、Mg合金において最大0.3wt.%に制限される。
【0022】
このような特定組成と合せて無溶剤溶解法を利用する本発明に係る製造方法の最も重要な特徴中の一つは、自体融点が極めて高くて一般的な合金製造工程温度でマグネシウム溶湯に直接溶解させる方式では添加が不可能なMnをZn−Mn母合金形態に添加することである。即ち、マグネシウム合金の鋳造初期にMnを溶剤(flux)の形態に添加させた。且つ、前記マグネシウムの溶湯は、表面が空気に露出される場合、発火危険があるため、これを抑制するために空気を遮断する役割をする溶剤が使用されるが、このような溶剤材料にMnが含有されていることを利用して拡散により溶湯内にMnを侵入させる方法を採用した。然し、このような方法は、その添加量に制約があって不純物含量の調節が難しくて目的合金の製造が難しかった。一方、マグネシウム合金の溶解において溶湯の表面に保護ガスを塗布する無溶剤溶解法が普遍化された以後には、主にMg−Mn母合金形態にMnの添加が行われた。即ち、マグネシウム溶湯が発火されないように不活性気体雰囲気でマグネシウム溶湯をMnが直接溶解される高温まで昇温してMg−Mn母合金を別途に製造した後、該母合金を利用して無溶剤溶解法により合金製造時に目標とする量のMnを添加する方式である。然し、Mg−Mn母合金を利用する方法は、母合金の製造時に、雰囲気を調節し得る高価の溶解装備が必要であると共に、高温でマグネシウムの蒸気圧が高いため、母合金の製造時に多量のマグネシウム損失を誘発して製造単価の上昇を誘発する。ここで、本発明者達は、研究の結果、無溶剤溶解法を採用する場合、低融点のZn−Mn母合金形態にマグネシウム溶湯に添加することで、Mnを添加し得ることを明らかにした。従って、マグネシウム溶湯の発火可能性及び多量の材料損失を排除し得るし、経済的マグネシウム合金の製造が可能になって、不純物の制御も可能になった。
【0023】
マグネシウムの融点は、約650℃〜670℃の温度で充分にマグネシウム溶湯の流動性を確保し得るという点及びマグネシウム溶湯の温度が720℃を超過する場合、発火危険性が大きくなるという点を考慮し、Zn−Mn母合金が添加されるマグネシウム溶湯の温度範囲は、670〜720℃に制限し、該温度範囲で充分に溶解されるZn−Mn母合金の組成は、Zn−10〜20wt.%Mnに制限し、好ましくは、撹拌が行なわれないようにした。
且つ、Siの添加は、Mg−Si母合金形態に行うが、この場合、母合金の高い融点及びマグネシウム溶湯の表面の発火抑制を考慮して好ましい温度範囲は、700〜720℃に制限することが好ましい。この場合、好ましくは、撹拌を行うべきである。
【0024】
不足分のZnの添加は、Zn単独に若しくはAlと共に行なわれ、この時、選択的にCaも添加することができる。且つ、合金製造温度で蒸気圧が高いZnの損失を低減するために炉冷後に行うことが好ましく、マグネシウム溶湯の流動性を考慮する時、約670℃まで行うことが良い。このときも、撹拌を行うべきである。
【0025】
その後、鋳造材を作るが、この場合、Mg溶湯の発熱を最大限抑制するため、660℃〜670℃まで炉冷した後に鋳造材に作ることが好ましい。
又、このような方法により製造された合金鋳造材を対象に、鋳造時に発生し得る合金元素の偏析及びこれによる加工材の特性不均一を除去するため、均質化処理を遂行することが好ましい。均質化処理温度及び時間は、主合金元素のZnによる各析出相が充分に溶解される条件及び合金自体の熱的安全性を考慮してMg−Zn二元系状態度を参考に340〜410℃で6〜12時間行われる。
【0026】
このような鋳造材をビレットに加工して150〜400℃で30分〜2時間の間予熱した後、押出、圧延、鍛造、スェージング(swaging)及び引抜などの加工を遂行することができる。一般に、マグネシウム合金は、常温で加工性を確保し得ないため、健全な加工材を得るため、高温加工を行うようになり、その加工温度は、70〜100℃で24〜96時間の間1次時効を行なった後、直ちに150〜180℃で48時間以上2次時効処理を行う。このような二重時効は、Mg−Zn系合金における主な析出相のβ1’相のG.P.zone solvus温度以下で1次時効を行なった後、その以上の温度で2次時効を行うことで、強化に寄与する析出相の効果を極大化させるためである。従って、本発明における1次時効温度区間は、公知されたβ1’相のG.P.zone solvus温度より若干低い温度区間の70〜100℃に制限したし、時効時間は、硬度の測定によってG.P.zoneの形成による硬度向上を期待するのに充分な区間に設定した。一方、本発明における2次時効温度区間は、150〜180度に設定したが、150℃未満の温度では、最大硬度に到達するのに多時間が要求されて工程上の問題点を誘発し、180℃を超過する温度では最大硬度には早く到達するが、最大硬度が低下される。
【0027】
又、本発明においては、二重時効処理をする前に、強度に寄与する析出相の効果を極大化するために加工工程中に発生し得る析出相を、固溶体に存在する温度区間の340〜410℃で6〜12時間の間溶体化処理を施すことが一層好ましい。
【0028】
前記温度範囲及び時間は、主合金元素のZnによる各析出相が充分に溶解される条件及び合金自体の熱的安全性を考慮してMg−Zn二元系状態度を参考に設定された。
【0029】
一方、本発明においては、前記二重時効処理を施す前に、ストレッチングを行うことが一層好ましい。このとき、合金を強化するための加工熱処理時のストレッチングの範囲は、熱処理を施す前の合金の引張試験によって変形率を基準に、弾性領域以上から最大強度以下の領域まで制限される。従って、本発明においては、引張実験によりその範囲を3〜7%に制限した。
【0030】
本発明は、強度に対する延伸率が既存の常用加工用合金よりも、向上され、低廉な費用で高強度マグネシウム合金を製造することができる。即ち、表1に示した既存の常用押出用合金と比較する時、最大強度水準のZC71合金と比較して類似の強度水準を維持しながらも2倍以上の延伸率が向上される。又、Thのような放射能元素として取扱が危険で、高価な合金元素及び製造工程上添加の難しいZrのような合金元素を排除した状態で高強度を得ることができる。更に、既存のMg−Mn母合金形態に添加されたMnをZn−Mn母合金形態に添加することで、材料の損失を低減して製造単価を低減することができる。以下、貼付した図面及び実施例に基づいて本発明の内容及び作用効果を一層明確に説明する。
【0031】
【発明の実施の形態】
以下、本発明に係る高強度マグネシウム合金に対し、実施例を参照して説明する。
実施例1〜11
本発明によって次の表2の公称組成を有する合金鋳造材を製造した。合金溶解時にCO+0.5%SFの混合ガスを2L/分の流量に溶湯の表面に塗布させる無溶剤溶解法を使用し、鋼材(steel)坩堝を利用した。Mnは、Zn−15wt.%Mnの母合金形態に700℃で添加した後、撹拌子を利用して5分間溶湯を撹拌し、670℃まで炉冷した後、Zn又はZn及びAlを共に添加して2分間撹拌した。Siを添加する場合、Siは、Mg−10wt.%のSi母合金形態に添加した後、720℃で10分間撹拌した。撹拌後、670℃まで炉冷してZn又はZn及びAl、若しくはCaを添加した後、2分間撹拌した。その後、溶湯を660℃まで炉冷した後、坩堝の全体を常温の水に直接浸す方法により合金鋳造材を製造した。
【表2】
Figure 2004510057
【0032】
このように製造した合金鋳造材の微細組織を制御するために、合金鋳造材を340〜410℃で12時間の間均質化処理した後、ビレットを製造し、320〜360℃で30分間予熱した後、押出装置のコンテナー及び鋳型の温度を320〜360度に設定した後、押出して合金押出材を作った。
【0033】
図1(a)乃至図1(c)は、このように作られたZ6、ZM61及びZAM621合金押出材の表面微細組織を示した写真であって、図1(d)及び1(e)は、このように作られたZAM631+2.5Si及びZAM631+2.5Si+0.4Ca合金押出材の微細組織写真である。図面に示したように、既存のマグネシウム合金のZ6合金の結晶粒度(grain size)は、22μm程度であって、本発明に係るZM61合金及びZAM621合金の結晶粒度は、夫々12μm及び8μm程度であった。又、ZAM631+2.5Si合金及びZAM631+2.5Si+0.4Ca合金の結晶粒度は、夫々12μm及び6μm程度であった。
従って、既存のMg−Zn合金に1wt.%のMnを添加するとき、微細組織上の結晶粒度は、大略1/2程度に減少し、既存のMg−Zn合金に1wt.%のMn及び2wt.%のAlを添加すると、結晶粒度が約1/3減少した。そして、ZAM631+2.5Siに0.4wt.%のCaが添加される場合には、結晶粒の大きさが6μmであって、ZAM621の2/3程度であった。結局、本発明に係る合金の結晶粒度は、Mn及びAlを添加した合金の場合には、2/3程度減少し、ここにSi及びCaを添加した合金の場合には、3/4程度減少することが分かる。
【0034】
図2は、Mg−Zn二元系合金押出材(Z6)の時効処理時の時効硬化状態を示したグラフである。合金押出材Z6を対象として、硬度及び強度を向上するために、単一時効及び二重時効処理を行った。即ち、Z6合金押出材を1次時効するため90℃で48時間の間時効を行なった後、これを再び2次時効するため180℃で384時間まで時間を相異にしながら処理した。このような時効硬化状態を図2に図示したが、図面に示したように、単一時効処理に比べて二重時効処理時に合金の最大硬度(Hardness)が増加され、最大硬度に到達する時間が短縮されることが分かる。
【0035】
図3は、本発明によってMnが添加、又はAl及びMnが添加されたMg−Zn系合金押出材(ZM61、ZAM621)の二重時効処理時の時効硬化状態をMg−Zn2元系合金押出材(Z6)の二重時効処理時の時効硬化状態と比較して示したグラフである。Z6、ZM61及びZAM621合金を対象に、押出状態で1次時効をするため70℃で48時間の間時効を行った後、これを再び2次時効するため150℃で384時間まで時間を相異にして時効処理を行った。これによる時効硬化状態を図3に示したが、図示されたように、Z6合金に2wt%のAl及び1wt%のMnを添加したZAM621合金は、Z6合金に比べて押出状態に35%程度、最大の二重時効状態では20%程度の硬度向上があったことが分かる。然し、Z6合金にMnのみを添加したZM61合金は、押出状態で硬度は高いが、時効進行による硬化がほとんど起こらなかったし、最大硬度はZ6合金に比べて低かった。
【0036】
図4は、本発明によってMnが添加、又はAl及びMnが添加されたMg−Zn系合金押出材(ZM61、ZAM621)を溶体化処理した後、二重時効処理時の時効硬化状態をMg−Zn2元系合金押出材(Z6)と同様な条件で処理した場合の時効硬化状態と比較して示したグラフである。Z6、ZM61及びZAM621合金押出材を対象に、まず380〜410℃の温度を維持しながら、12時間の間溶体化処理を行った後、二重時効処理を行った。これによる時効硬化状態を図4に示したが、図示されたように、Z6合金にMn又はAl及びMnを添加することで、時効硬化過程で全般的に硬度が向上されたし、最大硬度を基準にした合金元素添加によって10%以上の硬度向上を得ることができた。特に、Mnのみを添加したZM61合金の時効硬化状態は、二重時効処理前に溶体化処理を行わない熱処理条件における時効硬化状態と大きい差を示して、時効進行によって顕著に硬度が向上されたし、最大硬度はAl及びMnが同時に添加されたZAM621合金と類似に表れた。
【0037】
図5は、本発明によってAl、Mn及びSiが添加、又はAl、Mn、Si及びCaが添加されたMg−Zn系合金押出材(ZAM631+2.5Si、ZAM631+2.5Si+0.4Ca)の二重時効処理時の時効硬化状態を示したグラフである。押出状態で1次時効するため70℃で48時間の間時効を行った後、これを再び2次時効するため150℃で時間を相異にして時効処理を行った。即ち、図3及び図5に示されたように、ZAM631合金に2.5wt%のSiと0.4wt%のCaとを同時に添加することで、150℃における最大二重時効状態で12%程度の硬度向上と共に、最大硬度に到達する時間が顕著に減ったことが分かる。
【0038】
【表3】
Figure 2004510057
図6は本発明によってMnが添加、又はAl及びMnが添加されたMg−Zn系合金押出材(ZM61、ZAM621)の常温における引張性質をMg−Zn2元系合金押出材(Z6)の常温における引張性質と比較して示したグラフである。図示されたように、Z6合金にMn又はAl及びMnを添加することで、押出状態における降伏強度及び最大引張強度が顕著に増加したことが分かる。又、押出を利用した合金の加工によって、25%以上の優秀な延伸率を得ることができるが、その具体的な結果を前記表3に示した。
【0039】
図7は、本発明によってAl、Mn及びSiが添加、又はAl、Mn、Si及びCaが添加されたMg−Zn系合金押出材(ZAM631+2.5Si、ZAM631+2.5Si+0.4Ca)の常温における引張性質を示したグラフである。図示されたように、ZAM631合金に2.5wt.%のSiと0.4wt.%のCaとを添加することによって、押出状態における最大引張強度が増加したことが分かる。又、押出を利用した合金の加工により、16%以上の延伸率を得ることができた。その具体的な結果を前記表3に示した。
【0040】
【表4】
Figure 2004510057
図8は、本発明によってMnが添加、又はAl及びMnが添加されたMg−Zn系合金押出材(ZM61、ZAM621)の二重時効処理時の常温における引張性質をMg−Zn2元系合金押出材(Z6)の二重時効処理時の常温における引張性質と比較して示したグラフである。Z6、ZM61及びZAM621合金押出材を1次時効するため70℃で48時間の間時効を行った後、これを再び2次時効するため150℃で96時間の間時効を行った後、引張性質を図8に示した。図示されたように、二重時効処理を行わなかった時の引張曲線と比較すると、二重時効によって合金の降伏強度及び最大引張強度が増加されて延伸率は類似していた。そして、二重時効処理後の引張試験結果、表れた合金等の引張性質を前記表4に示した。
【0041】
図9は、本発明によってAl、Mn及びSiが添加、又はAl、Mn、Si及びCaが添加されたMg−Zn系合金押出材(ZAM631+2.5Si、ZAM631+2.5Si+0.4Ca)の二重時効処理時の常温における引張性質を示したグラフである。合金押出材を1次時効するため70℃で48時間の間時効を行った後、これを再び2次時効するため150℃で24時間の間時効を行った後、引張性質を図9に示した。図示されたように、2.5wt.%のSi及び2.5wt.%のSiと0.4wt.%のCaとを添加した押出材(ZAM631+2.5Si、ZAM631+2.5Si+0.4Ca)の場合、二重時効処理してない合金に比べて、顕著に大きい降伏強度と最大引張強度とが増加された効果を得ることができる。その具体的な結果は前記表4に示した。
表4を参照すると、Z6合金にMnを添加した合金(ZM61)の引張性質は、二重時効処理によるZ6合金に比べて多少増加する状態を示している。又、Z6合金にAl及びMnが同時に添加された合金(ZAM621)の場合は、二重時効処理によってZ6合金より強度が優秀で、特に、最大引張強度は顕著に増加した。そして、全ての合金で二重時効処理後にも優秀な延伸率を示した。
【0042】
図10は、本発明によってMnが添加、又はAl及びMnが添加されたMg−Zn系合金押出材(ZM61、ZAM621)を溶体化処理した後、二重時効処理時、常温における引張性質をMg−Zn2元系合金押出材(Z6)と同様な条件で処理した場合の常温における引張性質と比較して示したグラフである。Z6、ZM61及びZAM621合金押出材を380〜410℃で12時間の間溶体化処理した後、1次時効するため70℃で48時間の間時効を行った後、これを再び2次時効するため150℃で96時間の間時効を行った後、引張性質を図10に示した。図示されたように、二重時効処理前に溶体化処理をした場合は、ZM61合金の場合、降伏強度及び最大引張強度が顕著に増加し、延伸率はZ6合金と類似している。又、ZAM621合金の場合、ZM61より降伏強度は減少するが、最大引張強度は類似するし、特に、延伸率は顕著に増加する状態を示した。以下、溶体化処理後に二重時効処理した場合、各合金の常温引張性質を表5に示した。
【表5】
Figure 2004510057
一方、合金押出材を直に二重時効処理した場合と、溶体化処理をした後に二重時効処理した場合を比較してみると、ZM61合金の場合は、二重時効処理前に溶体化処理を行うことで強度が顕著に増加したが、Z6及びZAM621合金の場合は、若干の強度が増加されることが分かる。延伸率は、二重時効処理以前に溶体化処理を行うことで、Z6及びZM61合金では顕著に減少したが、ZAM621合金では類似の水準である。
【0043】
図11は、本発明によってMnが添加、又はAl及びMnが添加されたMg−Zn系合金押出材(ZM61、ZAM621)を5%ストレッチングした後、二重時効処理時、常温における引張性質をMg−Zn2元系合金押出材(Z6)と同様な条件に処理した場合の常温における引張性質と比較して示したグラフである。Z6、ZM61及びZAM621合金押出材を5%ストレッチングした後、1次時効をするため70℃で48時間の間時効を行い、これを再び2次時効をするため150℃で96時間の間時効を行った。
これによる引張性質を図11に示したが、図示されたように、ZAM621合金の場合は、強度水準がストレッチングしてない場合に比べて向上され、延伸率は20%以上を示している。又、二重時効前の押出材のストレッチングにより全般的に合金の強度を向上させることができた。特に、ZAM621合金の場合、合金の強化のために二重時効処理前に溶体化処理を行わず、ただ、ストレッチングのみを行うだけで溶体化処理をしたZM61合金と匹敵する強度水準を示し、延伸率も大いに増加された。以下、合金押出材を5%ストレッチングした後に二重時効処理した場合、各合金の常温引張性質を表6に示した。
【表6】
Figure 2004510057
【0044】
【産業上の利用可能性】
本発明によると、Mg−Zn2元系合金にMnを添加、又はAl及びMnを一緒に添加し、再びこれにSi若しくはSiとCaを夫々添加して結晶粒度の減少された加工材を作り、これを熱処理及び加工熱処理することで常温における硬度及び強度を向上し、延伸率も向上されたマグネシウム合金を提供する。
【図面の簡単な説明】
【図1】1(a)〜(e)は、本発明に係るMg−Zn二元系合金押出材の微細組織写真を示し、図1(a)はMg−Zn 二元系合金押出材(Z6)の微細組織写真で、
1(b)及び図1(C)は、Mnが添加又はAl及びMnが添加されたMg−Zn系合金押出材(ZM61、ZAM621)の微細組織写真で、
1(d)及び図1(e)は、Al、Mn及びSiが添加又はAl、Mn、Si及びCaが添加されたMg−Zn系合金押出材(ZAM631+2.5Si、ZAM631+2.5Si+0.4Ca)の微細組織写真である。
【図2】本発明に係るMg−Zn二元系合金押出材(Z6)の時効処理時の時効硬化状態を示したグラフである。
【図3】本発明に係るMnが添加又はAl及びMnが添加されたMg−Zn系合金押出材(ZM61、ZAM621)の二重時効処理時の時効硬化状態とMg−Zn二元系合金押出材(Z6)の二重時効処理時の時効硬化状態とを比較して示したグラフである。
【図4】本発明に係るMnが添加、又はAl及びMnが添加されたMg−Zn系合金押出材(ZM61、ZAM621)を溶剤化処理した後、二重時効処理時の時効硬化状態とMg−Zn二元系合金押出材(Z6)を同様な条件下で処理した場合の時効硬化状態とを比較して示したグラフである。
【図5】本発明に係るAl、Mn及びSiが添加、又はAl、Mn、Si及びCaが添加されたMg−Zn系合金押出材(ZAM631+2.5Si、ZAM631+2.5Si+0.4Ca)の二重時効処理時の時効硬化状態とを示したグラフである。
【図6】本発明に係るMnが添加、又はAl及びMnが添加されたMg−Zn系合金押出材(ZM61、ZAM621)の常温における引張性質とMg−Zn二元系合金押出材(Z6)の常温における引張性質とを比較して示したグラフである。
【図7】本発明に係るAl、Mn及びSiが添加、又はAl、Mn、Si及びCaが添加されたMg−Zn系合金押出材(ZAM631+2.5Si、ZAM631+2.5Si+0.4Ca)の常温における引張性質とを示したグラフである。
【図8】本発明に係るMnが添加、又はAl及びMnが添加されたMg−Zn系合金押出材(ZM61、ZAM621)の二重時効処理時の常温における引張性質とMg−Zn二元系合金押出材(Z6)の二重時効処理時の常温における引張性質とを比較して示したグラフである。
【図9】本発明に係るAl、Mn及びSiが添加、又はAl、Mn、Si及びCaが添加されたMg−Zn系合金押出材(ZAM631+2.5Si、ZAM631+2.5Si+0.4Ca)の二重時効処理時の常温における引張性質を示したグラフである。
【図10】本発明に係るMnが添加、又はAl及びMnが添加されたMg−Zn系合金押出材(ZM61、ZAM621)を溶体化処理した後、二重時効処理時の常温における引張性質とMg−Zn二元系合金押出材(Z6)を同様な条件に処理した場合の常温における引張性質とを比較して示したグラフである。
【図11】本発明に係るMnが添加、又はAl及びMnが添加されたMg−Zn系合金押出材(ZM61、ZAM621)を5%ストレッチングした後、二重時効処理時の常温における引張性質とMg−Zn二元系合金押出材(Z6)を同様な条件に処理した場合の常温における引張性質とを比較して示したグラフである。[0001]
【Technical field】
The present invention relates to a high-strength magnesium alloy and a method for producing the same, and specifically includes strength, hardness and elongation by adding a specific alloy element or changing production conditions including a specific heat treatment. The present invention relates to a magnesium alloy having improved mechanical properties, improved formability, high strength and elongation, and an economical method for producing the same.
[0002]
[Background Art]
Among the magnesium alloys, the alloy showing the most excellent aging strengthened state is an Mg-Zn-based alloy, which has relatively excellent strength and ductility after aging treatment, so that it is easy to process and weld. It has the advantage of being. On the other hand, since micropores are generated at the time of casting due to the addition of Zn, it has a disadvantage that it is difficult to apply to a casting process such as die casting.
[0003]
Also, unlike other magnesium alloys, Mg-Zn-based alloys have difficulty in refining the structure by adding alloying elements and over-heat treatment, etc. It has limited disadvantages.
In order to overcome this, studies have been made to add some alloying elements to Mg-Zn binary alloys, examples of which are as follows.
[0004]
1947 J.P. P. Doan and G.C. Ansel proposed a method that can improve the strength of an alloy by adding Zr to refine the crystal grains of the Mg—Zn-based alloy (JP Doan & And G. Ansel, Trans, AIM, vol. 171 (1947), pp. 286-295). However, because of the high melting point of Zr, it was difficult to add Zr to the molten magnesium.
[0005]
A method of adding a rare earth metal such as La, Ce, or Nd or Th is also known. However, according to this method, there is an advantage in that fine pores are suppressed, strength at high temperatures is improved, and weldability is improved. However, there is a disadvantage that the manufacturing cost is extremely high as compared with other magnesium alloys which are already commonly used.
And in 1987 W.C. Unworth and J.W. F. King reported that by adding Cu to refine the β1 ′ of the main strengthening precipitation phase of the Mg—Zn alloy, the ductility can be improved (W. Unworth & and JF King, Magnesium and Technology, The). Inst. Of Metal, 1987, pp. 25-35). However, the addition of Zn and Cu has a limit that it is difficult to improve the elongation at room temperature by 10% or more, although there is a difference depending on the amount of addition.
[0006]
Table 1 below shows a comparison of properties between the conventional casting alloy and the working alloy.
[Table 1]
Figure 2004510057
[0007]
From Table 1, it can be seen that the conventional working alloy generally has better yield strength, tensile strength and elongation than the conventional casting alloy. However, it is difficult to obtain an alloy having a combination of a high strength and a high elongation even in the case of an existing working alloy. That is, in the case of a high-strength alloy having a tensile strength exceeding 300 MPa, there is a disadvantage that it is difficult to improve the elongation ratio by 10% or more. In addition, in the case of Zn and Zr-added alloys showing excellent properties in terms of strength, it has been reported that the addition of Zr involves many restrictions in the production process.
[0008]
Also, U.S. Pat. No. 4,997,662 shows the properties of magnesium produced by the rapid solidification method. However, if the properties of the alloy produced by the rapid solidification method are carefully observed, the yield strength and tensile strength However, according to the results of the research so far, the range of application is limited because the alloy is extremely expensive as compared with the existing ordinary alloys.
[0009]
[Detailed description of the invention]
The present invention improves the mechanical properties such as hardness, strength and elongation by improving the microstructure and the precipitation behavior by adding an alloy element which is cheaper than the alloy element which has been already added to the Mg-Zn alloy. It is an object of the present invention to provide a high-strength magnesium alloy having improved formability and improved formability.
[0010]
In addition, the present invention derives the optimal heat treatment conditions in the production of a high-strength magnesium alloy, thereby providing a method for producing a high-strength magnesium alloy having an extremely excellent draw ratio relative to the produced alloy and an economic production condition therefor. The purpose is to provide.
And, in order to achieve the above object, the present invention provides 3 to 10 wt. % Zn and 0.25 to 3.0 wt. % Mn, and a high-strength magnesium alloy comprising unavoidable impurities and Mg.
[0011]
The magnesium alloy additionally has 1 to 6 wt. % Al, or 0.1 to 4.0 wt. % Si or 0.1 to 4.0 wt. % Si and 0.1 to 2.0 wt. % Ca may be contained. Preferably, the content of Al is equal to or less than the content of Zn.
[0012]
The Zn content is 5.0-7.0 wt. %, The content of Mn is 0.75 to 2.0 wt. %, The content of Si is 1.5 to 3.0 wt. %, The Ca content is 0.3-1.0 wt. %.
That is, the core of the present invention is to add Al as an alloy element to an Mg-Zn-based alloy, thereby lowering the yield strength, improving the formability, improving the work hardening ability, and increasing the strength and elongation ratio. It is to provide a high strength magnesium alloy.
[0013]
The present invention also provides a method for producing a high-strength magnesium alloy in which a Zn-Mn mother alloy is added when Mn is added to a molten magnesium.
In addition, the high-strength magnesium alloy contains Zn-10 to 20 wt. % Mn mother alloy at 670-720 ° C and Zn or Zn and Al are added to make a cast material, or Zn-10-20 wt. % Mn mother alloy is added at 670 to 720 ° C., Mg-Si mother alloy is added, and Zn, Zn and Al or Ca are added to form a cast material.
[0014]
Thereafter, preferably, the cast material thus produced is homogenized at 340 to 410 ° C for 6 to 12 hours to produce a billet, and the billet is formed at 150 to 400 ° C for 30 minutes to 2 hours. After preheating for hours, it can be processed.
Alternatively, the work material thus processed may be subjected to a primary aging treatment at 70 to 100 ° C. for 24 to 96 hours, followed by a secondary aging treatment at 150 to 180 ° C. for 48 hours or more.
[0015]
At this time, a solution treatment is performed at 340 to 410 ° C. for 6 to 12 hours before performing the double aging treatment, or 3 to 7% before performing the double aging treatment.
Stretching can also be performed.
Hereinafter, the reason why the composition range of the alloy element in the present invention is limited as described above will be described.
[0016]
Zinc (Zn): 3 to 10 wt. %
Zn has a maximum solid solution in the Mg matrix of up to 6.2 wt. % And 3.0 wt. %, A needle-like precipitation phase is formed by heat treatment to show a strengthened state of aging. Generally, the amount of addition is determined on the basis of the solid solubility limit, and 5.0 to 7.0 wt. %, The aging enhanced state can be maximized. That is, 3.0 wt. %, Less than a solid solution of a general aging temperature, and the formation of a precipitated phase is weak, so that precipitation strengthening phenomena can hardly be expected. %, The precipitation of an equilibrium phase is promoted in the crystal grain system, which may cause a decrease in mechanical properties.
Therefore, the addition range of Zn in the present invention is 3 to 10 wt. %, Preferably from 5.0 to 7.0 wt. %.
[0017]
Manganese (Mn): 0.25 to 3.0 wt. %
Mn has a maximum solid solution in the Mg matrix of 2.2 wt.% At the melting point of 650 ° C. of Mg. %, And the solid solubility limit sharply decreases due to a decrease in the temperature, and exists in the form of α-Mn in the Mg matrix. Generally, in a conventional Mg alloy, Mn is 0.1 wt. % Or more is known to contribute to the improvement of corrosion resistance. When added for purposes other than corrosion resistance, for example, for the purpose of strengthening, 0.25 to 2.0 wt. At the time of addition, the alloy system contributes to the improvement of the strength of the alloy. In particular, the present invention makes it possible to obtain the effect of improving strength and elongation by improving the precipitation phase of the binary Mg-Zn alloy during the aging treatment after the solution treatment of the work material by the addition of Mn. Was. Therefore, in the present invention, Mn is added to strengthen the alloy, and the minimum addition amount is 0.25 wt. %. On the other hand, considering the maximum solid solubility limit of Mn and the manufacturing process of the alloy, it is difficult to add a large amount of Mn as a general melting process, and 3.0 wt. When Mn is added in an amount of at least%, most of the Mn is present in the matrix in the form of α-Mn, and the amount of surplus addition has nothing to do with the improvement in the properties of the alloy. After all, the addition range of Mn in the present invention is from 0.25 to 3.0 wt. %, Preferably 0.75 to 2.0 wt. %.
[0018]
aluminum ( Al ) : 1 to 6 wt. %
Al is limited to approximately 12 wt. %, And in the case of a binary alloy of Mg-Al,17Al12It is known to form a precipitated phase. In the present invention, Al was not added for the purpose of forming such a precipitate phase, but was added for improving the Mg-Zn-related needle-like precipitate phase in the Mg-Zn-Mn ternary alloy. Therefore, the amount of addition is determined in consideration of the heat treatment section such as the aging temperature and the Zn content of the main alloy element to be added in a range that does not form the Mg-Al-based precipitation phase. That is, the Al solid solubility limit in the Mg base in the aging temperature zone is approximately 1 wt. %, The lower limit of Al addition is 1.0 wt. %, And the upper limit of addition is set to 6.0 wt.% In order to suppress the formation of an Mg-Al-based precipitation phase when the content of Zn in the present invention exceeds the content of Zn. %. On the other hand, when Al is added more than Zn, Mg that is the Mg-Al-based precipitation phase17Al12The likelihood of phase precipitation is very high. Such a precipitate phase precipitates coarsely in the crystal grain system, or also precipitates in the crystal grain system depending on the heat treatment temperature, and is extremely fragile in terms of strength. Provides a route to cause a reduction in strength. Therefore, the Al content is preferably equal to or less than the Zn content. In the present invention, without performing the solution treatment of the work material at the time of the addition of Al, it was effective in making the needle-like precipitation phase fine, and the yield strength is slightly reduced, but the tensile strength and especially the elongation ratio The yield strength was lowered and the tensile strength tended to increase as the amount of Al added increased.
[0019]
Silicon (Si): 0.1 to 4.0 wt. %
Si has almost no solid solubility limit in the Mg matrix, and is an alloy element when added.2Form a Si phase. Such a compound can obtain a dispersion strengthening effect by adjusting the shape and size of the processed material during the manufacturing process and the heat treatment process. Also in the present invention, such a dispersion strengthening effect could be obtained by adding Si to the Mg-Zn-Al-Mn quaternary alloy. However, when the Si content is 0.1 wt. %, The effect of the addition of Si cannot be expected, and the Si content is 4.0 wt. %, Coarse Mg2The stretching ratio decreases due to the generation of Si. Therefore, the addition range of Si in the present invention is 0.1 to 4.0 wt. %, Preferably 1.5 to 3.0 wt. %.
[0020]
Calcium (Ca): 0.1 to 2.0 wt. %
In the case of a Si-added alloy, the additional addition of Ca reduces the grain size of the alloy,2The shape of the Si phase can be improved. For this reason, in the present invention, Ca was added to the Mg-Zn-Al-Mn alloy to which Si was added. Ca content is 0.1 wt. %, Mg2The effect of improving the Si phase cannot be expected. The maximum solid solubility limit of Ca in the Mg matrix is 1.34 wt. %, When the Ca content is 2.0 wt. %, The Mg2In addition to the effect of improving the Si phase, a decrease in strength is induced in the crystal grain system due to the formation of a Mg2Ca precipitated phase. Mg of Mg-Zn-Al-Mn alloy in the present invention2The preferred range of the Ca content that can particularly effectively control the size of the Si phase is 0.3 to 1.0 wt. %Met.
As a result, it was possible to obtain the effect of improving the strength and the stretching ratio. Therefore, the addition range of Ca in the present invention is 0.1 to 2.0 wt. %, Preferably 0.3 to 1.0 wt. %.
[0021]
In addition, the main impurities of the Mg alloy are limited because they mainly have a fatal adverse effect on the corrosion resistance of the alloy rather than a decrease in mechanical properties. In general, known impurities include Fe, Ni, and Cu. In particular, in the case of Cu, the impurity adversely affects the corrosion resistance of a general-purpose Mg-Al-based alloy. There is no special effect on the Zn-based alloy. Therefore, in the Mg—Zn-based alloy, the impurities that are mainly restricted include Fe and Ni, but generally, the allowable value is 0.005 wt. %. At this time, in the case of Fe, the adverse effect can be eliminated by adding Mn. If the content ratio Fe / Mn value in the Mg alloy is reduced to 0.032 or less, the adverse effect of Fe can be minimized. it can. In the present invention, since Mn is basically added, if the conservative tolerance is adhered to, the adverse effect of Fe on corrosion resistance can be effectively eliminated. On the other hand, the content of other impurities including Fe, Ni and Cu is generally 0.3 wt. %.
[0022]
One of the most important features of the production method according to the present invention utilizing the solvent-free dissolution method in combination with such a specific composition is that the melting point itself is extremely high and is directly added to the molten magnesium at a general alloy production process temperature. Mn, which cannot be added by the melting method, is added to the Zn-Mn mother alloy form. That is, Mn was added in the form of a solvent (flux) at the beginning of the casting of the magnesium alloy. In addition, when the surface of the molten magnesium is exposed to air, there is a risk of ignition. Therefore, a solvent that plays a role of shutting off air is used to suppress the danger. The method of making Mn infiltrate into the molten metal by diffusion utilizing the fact that is contained. However, in such a method, it is difficult to control an impurity content due to a limitation in the amount of addition, and it is difficult to manufacture a target alloy. On the other hand, since the non-solvent dissolution method of applying a protective gas to the surface of a molten metal in dissolving a magnesium alloy became common, Mn was mainly added in the form of a Mg-Mn mother alloy. That is, the magnesium melt is heated to a high temperature at which Mn is directly dissolved in an inert gas atmosphere so that the magnesium melt is not ignited, and a Mg-Mn master alloy is separately manufactured. In this method, a target amount of Mn is added at the time of alloy production by a melting method. However, the method of using the Mg-Mn master alloy requires expensive melting equipment capable of controlling the atmosphere during the manufacture of the master alloy, and a high vapor pressure of magnesium at a high temperature. Induces magnesium loss and induces an increase in the manufacturing cost. Here, as a result of research, the present inventors have clarified that Mn can be added by adding a low melting point Zn-Mn mother alloy form to a molten magnesium when employing a solventless melting method. . Therefore, the possibility of ignition of the molten magnesium and a large amount of material loss can be eliminated, the production of an economical magnesium alloy becomes possible, and the control of impurities becomes possible.
[0023]
Considering that the melting point of magnesium can sufficiently secure the fluidity of the molten magnesium at a temperature of about 650 ° C. to 670 ° C. and that the danger of ignition increases when the temperature of the molten magnesium exceeds 720 ° C. However, the temperature range of the magnesium melt to which the Zn-Mn master alloy is added is limited to 670 to 720 ° C, and the composition of the Zn-Mn master alloy that is sufficiently melted in the temperature range is Zn-10 to 20 wt. % Mn, preferably without stirring.
In addition, the addition of Si is performed in the form of a Mg-Si master alloy. In this case, the preferable temperature range is limited to 700 to 720 ° C. in consideration of the high melting point of the mother alloy and suppression of ignition of the surface of the molten magnesium. Is preferred. In this case, stirring should preferably be performed.
[0024]
The shortage of Zn is added alone or together with Al. At this time, Ca can also be selectively added. In addition, it is preferable to perform the heating after cooling the furnace in order to reduce the loss of Zn having a high vapor pressure at the alloy production temperature. When the fluidity of the molten magnesium is taken into consideration, the heating is preferably performed to about 670 ° C. Again, stirring should be performed.
[0025]
Thereafter, a cast material is produced. In this case, in order to suppress the heat generation of the molten Mg to the maximum, it is preferable to make the cast material after furnace cooling to 660 ° C to 670 ° C.
In addition, it is preferable to perform a homogenizing process on the alloy cast material manufactured by such a method, in order to remove segregation of alloy elements which may occur at the time of casting and non-uniform properties of the work material due to the segregation. The homogenization treatment temperature and time are 340 to 410 with reference to the Mg-Zn binary state in consideration of the condition that each precipitation phase by the main alloy element Zn is sufficiently dissolved and the thermal safety of the alloy itself. C. for 6-12 hours.
[0026]
After processing such a cast material into a billet and preheating at 150 to 400 ° C. for 30 minutes to 2 hours, processes such as extrusion, rolling, forging, swaging, and drawing can be performed. In general, magnesium alloys cannot maintain workability at room temperature, so high-temperature processing is performed to obtain a sound processing material. The processing temperature is 70 to 100 ° C. for 24 to 96 hours. Immediately after the next aging, a second aging treatment is performed at 150 to 180 ° C. for 48 hours or more. Such double aging is caused by the G.1 of the β1 ′ phase as the main precipitation phase in the Mg—Zn-based alloy. P. This is because the primary aging is performed at a temperature not higher than the zone @ solvus temperature, and then the secondary aging is performed at a temperature higher than the temperature, thereby maximizing the effect of the precipitated phase contributing to strengthening. Accordingly, the primary aging temperature interval in the present invention is determined by the known G.I. P. The temperature was limited to 70 to 100 ° C. in a temperature range slightly lower than the temperature of the zone @ solvus, and the aging time was determined by measuring the hardness. P. The section was set to be sufficient to expect improvement in hardness due to formation of a zone. On the other hand, the secondary aging temperature section in the present invention is set at 150 to 180 degrees. However, at a temperature lower than 150 ° C., many hours are required to reach the maximum hardness, which causes a problem in the process, At temperatures above 180 ° C., the maximum hardness is reached quickly, but the maximum hardness is reduced.
[0027]
Further, in the present invention, before performing the double aging treatment, the precipitation phase that can be generated during the working process in order to maximize the effect of the precipitation phase contributing to strength, the temperature range of 340 to 340 in the solid solution. More preferably, the solution treatment is performed at 410 ° C. for 6 to 12 hours.
[0028]
The temperature range and time were set with reference to the Mg-Zn binary state in consideration of the conditions under which each of the precipitated phases of the main alloy element Zn was sufficiently dissolved and the thermal safety of the alloy itself.
[0029]
On the other hand, in the present invention, it is more preferable to perform stretching before performing the double aging treatment. At this time, the range of the stretching at the time of the thermomechanical treatment for strengthening the alloy is limited from the elastic region to the region having the maximum strength or less based on the deformation rate by the tensile test of the alloy before the heat treatment. Therefore, in the present invention, the range was limited to 3 to 7% by a tensile test.
[0030]
According to the present invention, the elongation ratio with respect to the strength is improved as compared with the existing working alloy, and a high-strength magnesium alloy can be manufactured at low cost. That is, when compared with the existing conventional extrusion alloys shown in Table 1, the elongation is improved by more than twice while maintaining the similar strength level as compared with the ZC71 alloy having the maximum strength level. Also, high strength can be obtained in a state where dangerous alloy elements such as Th which are dangerous to handle and expensive alloy elements and alloy elements such as Zr which are difficult to add in the production process are excluded. Further, by adding Mn added to the existing Mg-Mn mother alloy form to the Zn-Mn mother alloy form, the loss of material can be reduced and the manufacturing cost can be reduced. Hereinafter, the contents, functions and effects of the present invention will be described more clearly based on the attached drawings and examples.
[0031]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the high-strength magnesium alloy according to the present invention will be described with reference to examples.
Examples 1 to 11
According to the present invention, an alloy casting having the nominal composition shown in Table 2 below was manufactured. CO during melting of alloy2+ 0.5% SF6Was applied to the surface of the molten metal at a flow rate of 2 L / min, using a steel crucible. Mn is Zn-15 wt. % Of Mn at 700 ° C., the molten metal was stirred for 5 minutes using a stirrer, cooled to 670 ° C., and Zn or Zn and Al were added together and stirred for 2 minutes. When Si is added, Si is Mg-10 wt. % Si master alloy form and then stirred at 720 ° C. for 10 minutes. After the stirring, the mixture was furnace-cooled to 670 ° C., and Zn or Zn and Al or Ca were added, followed by stirring for 2 minutes. Thereafter, the molten metal was furnace-cooled to 660 ° C., and an alloy casting was produced by directly immersing the entire crucible in normal-temperature water.
[Table 2]
Figure 2004510057
[0032]
In order to control the microstructure of the alloy cast material thus manufactured, the alloy cast material was homogenized at 340 to 410 ° C. for 12 hours, and then a billet was manufactured and preheated at 320 to 360 ° C. for 30 minutes. Thereafter, the temperature of the container and the mold of the extruder was set at 320 to 360 ° C., and extruded to produce an alloy extruded material.
[0033]
FIGS. 1 (a) to 1 (c) are photographs showing the surface microstructure of the extruded Z6, ZM61 and ZAM621 alloys produced as described above, and FIGS. 1 (d) and 1 (e) are photographs. It is a microstructure photograph of the ZAM631 + 2.5Si and ZAM631 + 2.5Si + 0.4Ca alloy extruded material thus produced. As shown in the drawing, the grain size of the existing magnesium alloy Z6 alloy is about 22 μm, and the grain sizes of the ZM61 alloy and ZAM621 alloy according to the present invention are about 12 μm and 8 μm, respectively. Was. The grain sizes of the ZAM631 + 2.5Si alloy and the ZAM631 + 2.5Si + 0.4Ca alloy were about 12 μm and 6 μm, respectively.
Therefore, 1 wt. % Of Mn, the crystal grain size on the microstructure is reduced to about 1/2, and 1 wt. % Mn and 2 wt. % Al reduced the grain size by about 1/3. Then, 0.4 wt. %, The size of the crystal grains was 6 μm, which was about / of that of ZAM621. As a result, the grain size of the alloy according to the present invention is reduced by about 2/3 in the case of the alloy to which Mn and Al are added, and is reduced by about 3/4 in the case of the alloy to which Si and Ca are added. You can see that
[0034]
FIG. 2 is a graph showing the age-hardened state of the Mg—Zn binary alloy extruded material (Z6) during the aging treatment. A single aging treatment and a double aging treatment were performed on the alloy extruded material Z6 in order to improve hardness and strength. That is, after the Z6 alloy extruded material was aged at 90 ° C. for 48 hours for primary aging, it was treated again at 180 ° C. for 384 hours with different times for secondary aging. FIG. 2 shows such an age hardened state. As shown in the drawing, the maximum hardness (Hardness) of the alloy is increased during the double aging treatment compared to the single aging treatment, and the time required to reach the maximum hardness is obtained. Is shortened.
[0035]
FIG. 3 shows an age-hardened state of a Mg-Zn based alloy extruded material (ZM61, ZAM621) to which Mn is added or Al and Mn are added according to the present invention at the time of double aging treatment. It is the graph shown in comparison with the age hardening state at the time of double aging treatment of (Z6). For Z6, ZM61 and ZAM621 alloys, aging was performed at 70 ° C for 48 hours to perform primary aging in the extruded state, and the time was then varied up to 384 hours at 150 ° C to perform secondary aging again. The aging treatment was performed. FIG. 3 shows the age-hardened state due to this. As shown in the figure, the ZAM621 alloy obtained by adding 2 wt% of Al and 1 wt% of Mn to the Z6 alloy has an extruded state of about 35% compared to the Z6 alloy. It can be seen that the hardness was increased by about 20% in the maximum double-aged state. However, the ZM61 alloy in which only Mn was added to the Z6 alloy had a high hardness in an extruded state, but hardly hardened due to the progress of aging, and had a lower maximum hardness than the Z6 alloy.
[0036]
FIG. 4 shows the age hardened state during the double aging treatment after the solution treatment of the Mg-Zn alloy extruded material (ZM61, ZAM621) to which Mn is added or Al and Mn are added according to the present invention. It is the graph shown in comparison with the age hardening state at the time of processing on conditions similar to a Zn binary alloy extruded material (Z6). First, a solution treatment was performed on the Z6, ZM61 and ZAM621 alloy extruded materials for 12 hours while maintaining a temperature of 380 to 410 ° C., and then a double aging treatment was performed. The age hardened state is shown in FIG. 4. As shown in FIG. 4, by adding Mn or Al and Mn to the Z6 alloy, the hardness is generally improved in the age hardening process, and the maximum hardness is increased. A hardness improvement of 10% or more could be obtained by the addition of the reference alloy element. In particular, the age-hardened state of the ZM61 alloy to which only Mn was added showed a large difference from the age-hardened state under the heat treatment conditions in which the solution treatment was not performed before the double aging treatment, and the hardness was significantly improved by the progress of aging. However, the maximum hardness was similar to that of the ZAM621 alloy to which Al and Mn were simultaneously added.
[0037]
FIG. 5 shows a double aging treatment of an extruded Mg—Zn alloy (ZAM631 + 2.5Si, ZAM631 + 2.5Si + 0.4Ca) to which Al, Mn, and Si are added or Al, Mn, Si, and Ca are added according to the present invention. 5 is a graph showing the age hardened state at the time. After aging for 48 hours at 70 ° C. for primary aging in an extruded state, aging treatment was performed again at 150 ° C. for a different time for secondary aging. That is, as shown in FIGS. 3 and 5, by simultaneously adding 2.5 wt% of Si and 0.4 wt% of Ca to the ZAM631 alloy, the maximum double aging state at 150 ° C. is about 12%. It can be seen that the time required to reach the maximum hardness was remarkably reduced along with the improvement in the hardness.
[0038]
[Table 3]
Figure 2004510057
FIG. 6 shows the tensile properties of Mg-Zn based alloy extruded materials (ZM61, ZAM621) to which Mn is added or Al and Mn are added at room temperature according to the present invention at room temperature of Mg-Zn binary alloy extruded materials (Z6). It is the graph shown in comparison with the tensile property. As shown in the figure, it can be seen that the addition of Mn or Al and Mn to the Z6 alloy significantly increased the yield strength and the maximum tensile strength in the extruded state. In addition, an excellent stretch ratio of 25% or more can be obtained by processing an alloy using extrusion. The specific results are shown in Table 3 above.
[0039]
FIG. 7 shows tensile properties at room temperature of Mg-Zn based alloy extruded materials (ZAM631 + 2.5Si, ZAM631 + 2.5Si + 0.4Ca) to which Al, Mn and Si are added or Al, Mn, Si and Ca are added according to the present invention. FIG. As shown in the figure, 2.5 wt. % Si and 0.4 wt. %, The maximum tensile strength in the extruded state was increased. In addition, a working rate of 16% or more could be obtained by processing the alloy using extrusion. The specific results are shown in Table 3 above.
[0040]
[Table 4]
Figure 2004510057
FIG. 8 shows the tensile properties of Mg-Zn based alloy extruded materials (ZM61, ZAM621) to which Mn is added or Al and Mn are added at room temperature during double aging according to the present invention. It is the graph shown in comparison with the tensile property at normal temperature at the time of double aging treatment of material (Z6). Z6, ZM61 and ZAM621 alloy extruded materials were aged at 70 ° C. for 48 hours for primary aging, and again aged for 96 hours at 150 ° C. for secondary aging, and then subjected to tensile properties. Is shown in FIG. As shown in the figure, when compared with the tensile curve when the double aging treatment was not performed, the yield strength and the maximum tensile strength of the alloy were increased by the double aging, and the elongation was similar. Table 4 shows the tensile test results after the double aging treatment and the tensile properties of the alloy and the like that appeared.
[0041]
FIG. 9 shows a double aging treatment of an extruded Mg—Zn alloy (ZAM631 + 2.5Si, ZAM631 + 2.5Si + 0.4Ca) to which Al, Mn, and Si are added or Al, Mn, Si, and Ca are added according to the present invention. 5 is a graph showing tensile properties at room temperature at the time. After aging for 48 hours at 70 ° C. for primary aging of the alloy extruded material, it was aged again for 24 hours at 150 ° C. for secondary aging, and the tensile properties are shown in FIG. Was. As shown, 2.5 wt. % Si and 2.5 wt. % Si and 0.4 wt. % Of the extruded material (ZAM631 + 2.5Si, ZAM631 + 2.5Si + 0.4Ca), the remarkably large yield strength and maximum tensile strength are increased as compared with the alloy without the double aging treatment. Can be obtained. The specific results are shown in Table 4 above.
Referring to Table 4, the tensile property of the alloy (ZM61) obtained by adding Mn to the Z6 alloy shows a state that is slightly increased as compared with the Z6 alloy obtained by the double aging treatment. In the case of the alloy (ZAM621) in which Al and Mn were simultaneously added to the Z6 alloy, the strength was superior to that of the Z6 alloy due to the double aging treatment, and particularly, the maximum tensile strength was significantly increased. All of the alloys exhibited excellent elongation even after the double aging treatment.
[0042]
FIG. 10 shows that after extruding a Mg—Zn based alloy extruded material (ZM61, ZAM621) to which Mn is added or Al and Mn are added according to the present invention, the tensile properties at room temperature during double aging treatment are changed to Mg. -It is the graph shown in comparison with the tensile property at normal temperature at the time of processing on the same conditions as the extruded material of Zn binary alloy (Z6). Z6, ZM61 and ZAM621 alloy extruded materials are solution-treated at 380-410 ° C for 12 hours, then aging at 70 ° C for 48 hours for primary aging, and then secondary aging again. After aging at 150 ° C. for 96 hours, the tensile properties are shown in FIG. As shown, when the solution treatment was performed before the double aging treatment, the yield strength and the maximum tensile strength of the ZM61 alloy were significantly increased, and the elongation was similar to that of the Z6 alloy. In the case of the ZAM621 alloy, the yield strength was lower than that of the ZM61, but the maximum tensile strength was similar, and in particular, the elongation was significantly increased. Table 5 below shows the room-temperature tensile properties of each alloy when the solution was subjected to the double aging treatment after the solution treatment.
[Table 5]
Figure 2004510057
On the other hand, a comparison between the case where the alloy extruded material is directly subjected to the double aging treatment and the case where the alloy extruded material is subjected to the solution aging treatment followed by the double aging treatment show that in the case of the ZM61 alloy, the solution aging treatment is performed before the double aging treatment. It can be seen that the strength was significantly increased by carrying out the above, but in the case of the Z6 and ZAM621 alloys, the strength was slightly increased. The elongation was significantly reduced in the Z6 and ZM61 alloys by performing the solution treatment before the double aging treatment, but was at a similar level in the ZAM621 alloy.
[0043]
FIG. 11 shows the tensile properties at room temperature during the double aging treatment after stretching 5% of an extruded Mg—Zn alloy (ZM61, ZAM621) to which Mn is added or Al and Mn are added according to the present invention. It is the graph shown in comparison with the tensile property in normal temperature at the time of processing on the conditions similar to Mg-Zn binary alloy extruded material (Z6). After stretching Z6, ZM61 and ZAM621 alloy extruded materials by 5%, aging is performed at 70 ° C for 48 hours for primary aging, and then aged for 96 hours at 150 ° C for secondary aging again. Was done.
The tensile properties are shown in FIG. 11, and as shown in the figure, the strength level of the ZAM621 alloy is improved as compared with the case where no stretching is performed, and the elongation is 20% or more. In addition, the strength of the alloy was generally improved by stretching the extruded material before double aging. In particular, in the case of the ZAM621 alloy, a solution level is not performed before the double aging treatment for strengthening the alloy, and the strength level is comparable to that of the ZM61 alloy that has been subjected to the solution treatment only by performing only the stretching, The draw ratio was also greatly increased. In the following, when the alloy extruded material was stretched by 5% and then subjected to the double aging treatment, the room-temperature tensile properties of each alloy are shown in Table 6.
[Table 6]
Figure 2004510057
[0044]
[Industrial applicability]
According to the present invention, Mn is added to a Mg-Zn binary alloy, or Al and Mn are added together, and Si or Si and Ca are again added thereto to produce a work material having a reduced grain size. This is subjected to heat treatment and working heat treatment to provide a magnesium alloy having improved hardness and strength at room temperature and an improved elongation.
[Brief description of the drawings]
1 (a) to 1 (e) show microstructure photographs of a Mg—Zn binary alloy extruded material according to the present invention, and FIG. 1 (a) shows an Mg—Zn binary alloy extruded material ( In the microstructure photograph of Z6),
1 (b) and FIG. 1 (C) are microstructure photographs of an extruded Mg—Zn alloy (ZM61, ZAM621) to which Mn is added or Al and Mn are added.
1 (d) and FIG. 1 (e) show the extruded materials of Mg—Zn alloy (ZAM631 + 2.5Si, ZAM631 + 2.5Si + 0.4Ca) to which Al, Mn and Si are added or Al, Mn, Si and Ca are added. It is a microstructure photograph.
FIG. 2 is a graph showing an age-hardened state during aging treatment of an extruded Mg—Zn alloy (Z6) according to the present invention.
FIG. 3 shows the age-hardened state and the Mg-Zn binary alloy extrusion of a Mg-Zn alloy extruded material (ZM61, ZAM621) to which Mn is added or Al and Mn are added according to the present invention during double aging treatment. It is the graph which compared and showed the age hardening state at the time of double aging treatment of material (Z6).
FIG. 4 shows the age hardened state of Mg-Zn alloy extruded material (ZM61, ZAM621) added with Mn or Al and Mn according to the present invention after double aging treatment and Mg. -It is the graph which compared and showed the age hardening state at the time of processing a Zn binary alloy extruded material (Z6) under the same conditions.
FIG. 5 shows double aging of an extruded Mg—Zn alloy (ZAM631 + 2.5Si, ZAM631 + 2.5Si + 0.4Ca) to which Al, Mn and Si are added or Al, Mn, Si and Ca are added according to the present invention. It is the graph which showed the age hardening state at the time of a process.
FIG. 6 shows tensile properties at room temperature of Mg-Zn based alloy extruded materials (ZM61, ZAM621) to which Mn is added or Al and Mn are added, and Mg-Zn binary alloy extruded material (Z6) according to the present invention. 5 is a graph showing a comparison between the tensile properties at room temperature.
FIG. 7 shows tensile strength of an extruded Mg—Zn alloy (ZAM631 + 2.5Si, ZAM631 + 2.5Si + 0.4Ca) to which Al, Mn, and Si are added or Al, Mn, Si, and Ca are added according to the present invention. 4 is a graph showing properties.
FIG. 8 shows tensile properties at normal temperature and Mg-Zn binary system of a Mg-Zn alloy extruded material (ZM61, ZAM621) to which Mn is added or Al and Mn are added according to the present invention. It is the graph which compared and showed the tensile property at normal temperature at the time of double aging treatment of the alloy extruded material (Z6).
FIG. 9 shows double aging of an extruded Mg—Zn alloy (ZAM631 + 2.5Si, ZAM631 + 2.5Si + 0.4Ca) to which Al, Mn, and Si are added or Al, Mn, Si, and Ca are added according to the present invention. It is the graph which showed the tensile property in normal temperature at the time of a process.
FIG. 10 shows tensile properties at room temperature during double aging treatment after solution treatment of an extruded Mg—Zn alloy (ZM61, ZAM621) to which Mn according to the present invention is added or Al and Mn are added. It is the graph which showed and compared the tensile property at normal temperature when Mg-Zn binary alloy extruded material (Z6) was processed on the same conditions.
FIG. 11: Tensile properties of double-aged Mg-Zn based alloy extruded materials (ZM61, ZAM621) to which Mn is added or Al and Mn are added at room temperature after 5% stretching. 7 is a graph showing a comparison between tensile properties at room temperature when Mg-Zn binary alloy extruded material (Z6) is treated under similar conditions.

Claims (17)

3〜10wt.%のZnと、0.25〜3.0wt.%のMnと、不可避な不純物及びMgと、を包含して構成されることを特徴とする高強度マグネシウム合金。3 to 10 wt. % Zn and 0.25 to 3.0 wt. % Of Mn, and unavoidable impurities and Mg. 1〜6wt.%のAlが追加して含んで構成されることを特徴とする請求項1記載の高強度マグネシウム合金。1 to 6 wt. The high-strength magnesium alloy according to claim 1, further comprising: Al. 0.1〜4.0wt.%のSiが追加して含んで構成されることを特徴とする請求項2記載の高強度マグネシウム合金。0.1-4.0 wt. 3. The high-strength magnesium alloy according to claim 2, wherein the alloy further comprises% Si. 0.1〜2.0wt.%のCaが追加して含んで構成されることを特徴とする請求項3記載の高強度マグネシウム合金。0.1-2.0 wt. The high-strength magnesium alloy according to claim 3, wherein the alloy further comprises% Ca. 前記Alの含有量は、前記Znの含有量以下であることを特徴とする請求項2記載の高強度マグネシウム合金。The high-strength magnesium alloy according to claim 2, wherein the content of Al is equal to or less than the content of Zn. 前記Znの含有量は、5.0〜7.0wt.%であることを特徴とする請求項1〜5中何れか一つに記載の高強度マグネシウム合金。The content of Zn is 5.0 to 7.0 wt. %, And the high-strength magnesium alloy according to claim 1. 前記Mnの含有量は、0.75〜2.0wt.%であることを特徴とする請求項1〜5中何れか一つに記載の高強度マグネシウム合金。The content of Mn is 0.75 to 2.0 wt. %, And the high-strength magnesium alloy according to claim 1. 前記Siの含有量は、1.5〜3.0wt.%であることを特徴とする請求項3または4記載の高強度マグネシウム合金。The content of Si is 1.5 to 3.0 wt. %. 5. The high-strength magnesium alloy according to claim 3, wherein 前記Caの含有量は、0.3〜1.0wt.%であることを特徴とする請求項4記載の高強度マグネシウム合金。The content of Ca is 0.3 to 1.0 wt. %. The high-strength magnesium alloy according to claim 4, wherein マグネシウムの溶湯にMnを添加するとき、Zn−Mn母合金を添加することを特徴とする前述した請求項に係る高強度マグネシウム合金の製造方法。The method for producing a high-strength magnesium alloy according to the above claim, wherein when adding Mn to the molten magnesium, a Zn-Mn mother alloy is added. 前記マグネシウムの溶湯にZn−10〜20wt.%及びMnの母合金を670〜720度の温度下で添加し、Zn又はZn及びAlを添加して鋳造材に作ることを特徴とする請求項10記載の高強度マグネシウム合金の製造方法。In the magnesium melt, Zn-10 to 20 wt. The method for producing a high-strength magnesium alloy according to claim 10, wherein a master alloy of% and Mn is added at a temperature of 670 to 720 ° C, and Zn or Zn and Al are added to produce a cast material. マグネシウムの溶湯にZn−10〜20wt.%及びMnの母合金を670〜720℃の温度下で添加し、Mg−Si母合金を添加することで、Zn又は該ZnとAl若しくはCaが添加されて鋳造材に作ることを特徴とする請求項10記載の高強度マグネシウム合金の製造方法。Zn-10 to 20 wt. % And Mn are added at a temperature of 670 to 720 ° C., and by adding a Mg—Si master alloy, Zn or Zn and Al or Ca are added to form a cast material. A method for producing a high-strength magnesium alloy according to claim 10. 前記Zn又はZn及びAlの添加は、合金製造温度で蒸気圧の高いZnの損失を減らすために、炉中冷却した後に行われることを特徴とする請求項11または12記載の高強度マグネシウム合金の製造方法。The high-strength magnesium alloy according to claim 11 or 12, wherein the addition of Zn or Zn and Al is performed after cooling in a furnace to reduce loss of Zn having a high vapor pressure at an alloy production temperature. Production method. 前記鋳造材を340〜410℃で6〜12時間の間均質化処理してビレットに製造し、該ビレットを150〜400℃で30分〜2時間の間予熱した後、追加加工することを特徴とする請求項11または12記載の高強度マグネシウム合金の製造方法。The casting material is homogenized at 340 to 410 ° C. for 6 to 12 hours to produce a billet, and the billet is preheated at 150 to 400 ° C. for 30 minutes to 2 hours, and further processed. The method for producing a high-strength magnesium alloy according to claim 11 or 12, wherein 前記ビレットの加工材を70〜100℃で24〜96時間の間1次時効処理を行なった後、150〜180℃で48時間以上2次時効処理を行うことを特徴とする請求項14記載の高強度マグネシウム合金の製造方法。The method according to claim 14, wherein after the first aging treatment is performed on the billet material at 70 to 100C for 24 to 96 hours, the second aging treatment is performed at 150 to 180C for 48 hours or more. Manufacturing method of high strength magnesium alloy. 前記2次時効処理前に340〜410℃で6〜12時間の間溶体化処理を行うことを特徴とする請求項15記載の高強度マグネシウム合金の製造方法。The method for producing a high-strength magnesium alloy according to claim 15, wherein a solution treatment is performed at 340 to 410C for 6 to 12 hours before the secondary aging treatment. 前記2次時効処理前に3〜7%のストレッチングを行うことを特徴とする請求項15記載の高強度マグネシウム合金の製造方法。The method for producing a high-strength magnesium alloy according to claim 15, wherein stretching of 3 to 7% is performed before the secondary aging treatment.
JP2002530813A 2000-09-26 2000-09-26 High strength magnesium alloy and method for producing the same Expired - Lifetime JP3891933B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2000/001072 WO2002027053A1 (en) 2000-09-26 2000-09-26 High strength magnesium alloy and its preparation method

Publications (2)

Publication Number Publication Date
JP2004510057A true JP2004510057A (en) 2004-04-02
JP3891933B2 JP3891933B2 (en) 2007-03-14

Family

ID=19198273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002530813A Expired - Lifetime JP3891933B2 (en) 2000-09-26 2000-09-26 High strength magnesium alloy and method for producing the same

Country Status (10)

Country Link
EP (1) EP1339888B1 (en)
JP (1) JP3891933B2 (en)
CN (1) CN100390313C (en)
AT (1) ATE505567T1 (en)
AU (2) AU7688400A (en)
CA (1) CA2423459C (en)
DE (1) DE60045848D1 (en)
IL (1) IL154897A (en)
NO (1) NO20031349L (en)
WO (1) WO2002027053A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008140062A1 (en) 2007-05-09 2008-11-20 National Institute For Materials Science Mg-BASED ALLOY
JP2010121161A (en) * 2008-11-18 2010-06-03 Sankyo Tateyama Aluminium Inc Method for producing magnesium alloy extruded shape material
JP2012197490A (en) * 2011-03-22 2012-10-18 Toyota Industries Corp High thermal conductivity magnesium alloy
KR101264219B1 (en) * 2011-01-05 2013-05-14 주식회사 에너텍 Mg alloy and the manufacturing method of the same
CN104532094A (en) * 2014-12-15 2015-04-22 镁联科技(芜湖)有限公司 Casting magnesium alloy as well as preparation method and application thereof
WO2015147184A1 (en) * 2014-03-28 2015-10-01 古河電気工業株式会社 Magnesium alloy pipe material, method for manufacturing same, stent formed using magnesium alloy pipe material, and method for manufacturing same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002950563A0 (en) * 2002-08-02 2002-09-12 Commonwealth Scientific And Industrial Research Organisation Age-Hardenable, Zinc-Containing Magnesium Alloys
CN1300357C (en) * 2004-09-29 2007-02-14 上海交通大学 Preparation of high-strength creep resistant deforming magnesium alloy
CN100410407C (en) * 2005-10-19 2008-08-13 郑州大学 Mg-Al-Si-Mn-Ca alloy and method for preparing same
CN101985715B (en) * 2010-12-08 2012-07-04 沈阳工业大学 High performance cast magnesium alloy and preparation method thereof
CN103849798B (en) * 2012-11-30 2017-11-07 沈阳工业大学 A kind of cast Mg alloy with high strength and preparation method thereof
CN103436827B (en) * 2013-09-04 2015-09-09 中南大学 A kind of thermal treatment process of large-size high-strength wrought magnesium alloy forging
CN105714168A (en) * 2016-03-25 2016-06-29 中国兵器科学研究院宁波分院 High-yield-strength magnesium alloy and preparation method thereof
CN105937005B (en) * 2016-06-17 2019-12-06 东北大学秦皇岛分校 Ageing strengthening magnesium alloy with uniformly distributed granular quasicrystal and rod-shaped phase and preparation method thereof
CN108728709A (en) * 2017-05-19 2018-11-02 曹丹丹 A kind of preparation method of magnesium alloy
CN111218594A (en) * 2018-11-26 2020-06-02 内蒙金属材料研究所 Magnesium-beryllium rare earth die-casting alloy and preparation method thereof
CN110835702A (en) * 2019-10-29 2020-02-25 天津东义镁制品股份有限公司 Magnesium alloy template profile and preparation method thereof
CN113430403B (en) * 2021-05-17 2022-05-31 中北大学 Method for preparing high-strength and high-toughness rare earth magnesium alloy through pre-aging
CN114107712B (en) * 2021-11-26 2022-12-09 西安交通大学 Medical magnesium-based composite material bar and preparation method thereof
CN114318094A (en) * 2021-12-20 2022-04-12 重庆大学 Mn particle reinforced Mg-Zn composite material and preparation method thereof
CN114703388A (en) * 2022-04-12 2022-07-05 重庆大学 Method for refining Mn-containing Mg-Zn-Al series cast magnesium alloy grains
CN115044813A (en) * 2022-04-29 2022-09-13 北京工业大学 Low-cost high-strength magnesium alloy material and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1886251A (en) * 1930-11-20 1932-11-01 Dow Chemical Co Magnesium-manganese-zinc alloys
GB1149502A (en) * 1965-05-11 1969-04-23 Birmetals Ltd Improved heat-treatment for magnesium-base alloys
NO132492C (en) * 1973-10-01 1975-11-19 Nl Industries Inc
FR2642439B2 (en) 1988-02-26 1993-04-16 Pechiney Electrometallurgie
JPH0718364Y2 (en) * 1989-02-03 1995-05-01 タイガー魔法瓶株式会社 Tableware dryer
US5087304A (en) * 1990-09-21 1992-02-11 Allied-Signal Inc. Hot rolled sheet of rapidly solidified magnesium base alloy
JP3184516B2 (en) * 1990-10-18 2001-07-09 住友金属鉱山株式会社 Magnesium alloy for galvanic anode
JP3204572B2 (en) * 1993-06-30 2001-09-04 株式会社豊田中央研究所 Heat resistant magnesium alloy
JPH07316713A (en) * 1994-05-25 1995-12-05 Kobe Steel Ltd Production of magnesium-base alloy having high strength and high corrosion resistance and casting made of this alloy
JPH09310130A (en) * 1996-05-21 1997-12-02 Sumikou Boshoku Kk Production of magnesium alloy for galvanic anode
JPH10204556A (en) * 1997-01-13 1998-08-04 Mitsui Mining & Smelting Co Ltd Magnesium alloy with high flowability, and its production

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008140062A1 (en) 2007-05-09 2008-11-20 National Institute For Materials Science Mg-BASED ALLOY
JP2010121161A (en) * 2008-11-18 2010-06-03 Sankyo Tateyama Aluminium Inc Method for producing magnesium alloy extruded shape material
KR101264219B1 (en) * 2011-01-05 2013-05-14 주식회사 에너텍 Mg alloy and the manufacturing method of the same
JP2012197490A (en) * 2011-03-22 2012-10-18 Toyota Industries Corp High thermal conductivity magnesium alloy
WO2015147184A1 (en) * 2014-03-28 2015-10-01 古河電気工業株式会社 Magnesium alloy pipe material, method for manufacturing same, stent formed using magnesium alloy pipe material, and method for manufacturing same
JPWO2015147184A1 (en) * 2014-03-28 2017-04-13 古河電気工業株式会社 Magnesium alloy tube material and manufacturing method thereof, and stent using the same and manufacturing method thereof
CN104532094A (en) * 2014-12-15 2015-04-22 镁联科技(芜湖)有限公司 Casting magnesium alloy as well as preparation method and application thereof

Also Published As

Publication number Publication date
AU7688400A (en) 2002-04-08
CN1469937A (en) 2004-01-21
NO20031349L (en) 2003-05-23
JP3891933B2 (en) 2007-03-14
EP1339888A4 (en) 2005-03-16
CA2423459A1 (en) 2002-04-04
CA2423459C (en) 2009-09-15
IL154897A (en) 2009-12-24
WO2002027053A1 (en) 2002-04-04
IL154897A0 (en) 2003-10-31
DE60045848D1 (en) 2011-05-26
EP1339888A1 (en) 2003-09-03
AU2000276884B2 (en) 2005-09-29
EP1339888B1 (en) 2011-04-13
CN100390313C (en) 2008-05-28
ATE505567T1 (en) 2011-04-15
NO20031349D0 (en) 2003-03-25

Similar Documents

Publication Publication Date Title
JP3891933B2 (en) High strength magnesium alloy and method for producing the same
CN110004341B (en) High-strength magnesium alloy containing rare earth and preparation method thereof
JP4415098B2 (en) Method for producing flame retardant magnesium alloy extruded material and extruded material
CN103339276A (en) Aluminum alloy wire for use in bolts, bolt, and manufacturing method of these.
JPH07145441A (en) Superplastic aluminum alloy and its production
AU2000276884A1 (en) High strength magnesium alloy and its preparation method
KR101078308B1 (en) Magnesium alloy panel having high strength and manufacturing method for the same
CN109136681B (en) 6061 aluminum cast bar and casting process thereof
JPH10140304A (en) Heat treating method for magnesium alloy
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
KR20210130455A (en) Wrought magnesium alloys with high mechanical properties and method for preparing the same
JP4433916B2 (en) Magnesium alloy and magnesium alloy member for plastic working
KR101007856B1 (en) High strength and high ductility magnesium alloy
KR100703130B1 (en) Non heat treatable high ductility aluminum cast alloys and manufacturing method thereof
KR100519721B1 (en) High strength magnesium alloy and its preparation method
KR102423774B1 (en) MANUFACTURING METHOD OF EXTRUDED Mg-Bi BASED MAGNESIUM ALLOY HAVING IMPROVED MECHANICAL PROPERTY VIA WARM HOMOGENIZATION HEAT TREATMENT
KR101680041B1 (en) Wrought magnesium alloy having high ductility and high toughness and method for preparing the same
KR101001893B1 (en) Mg-based Alloy Exhibiting High Strength and Large Elongation and Method for Manufacturing thereof
JP2002266044A (en) Magnesium alloy
JP3798676B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
KR20210121541A (en) Wrought magnesium alloys with high mechanical properties and method for preparing the same
JP4121266B2 (en) Method for producing semi-molten billet of aluminum alloy for transportation equipment
JPH06316750A (en) Preparation of magnesium alloy molding
KR100448127B1 (en) Preparation method of Mg alloy for improvement of high temperature strength
JP2002241880A (en) Aluminum alloy extrusion profile material having excellent bending workability and production method therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060224

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3891933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250