JP2004505212A - マイクロ加工された流体装置およびその製造方法 - Google Patents

マイクロ加工された流体装置およびその製造方法 Download PDF

Info

Publication number
JP2004505212A
JP2004505212A JP2001586745A JP2001586745A JP2004505212A JP 2004505212 A JP2004505212 A JP 2004505212A JP 2001586745 A JP2001586745 A JP 2001586745A JP 2001586745 A JP2001586745 A JP 2001586745A JP 2004505212 A JP2004505212 A JP 2004505212A
Authority
JP
Japan
Prior art keywords
wafer
closure
layer
duct
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001586745A
Other languages
English (en)
Other versions
JP2004505212A5 (ja
JP4776139B2 (ja
Inventor
ヴァン リンテル、 ハラルド ティー.
メレファー、 ディディエ
ガンパー、 ステファン
Original Assignee
ウエストンブリッジ インターナショナル リミティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウエストンブリッジ インターナショナル リミティド filed Critical ウエストンブリッジ インターナショナル リミティド
Publication of JP2004505212A publication Critical patent/JP2004505212A/ja
Publication of JP2004505212A5 publication Critical patent/JP2004505212A5/ja
Application granted granted Critical
Publication of JP4776139B2 publication Critical patent/JP4776139B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Measuring Volume Flow (AREA)
  • Micromachines (AREA)
  • External Artificial Organs (AREA)
  • Measuring Fluid Pressure (AREA)
  • Check Valves (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

本願発明の流体流装置(100)は、クロージャウェハ(20)により覆われたスタック(30)を含み、前記スタック(30)は、支持ウェハ(36)と、絶縁材料層(34)と、シリコン層(32)と、を含む。クロージャウェハ(20)および/または前記シリコン層(32)は、前記クロージャウェハ(20)と前記シリコン層(32)の間にキャビティ(38)を画成するように加工され、前記支持ウェハ(36)は、その内部を真直に通る少なくとも1つのダクト(102)を有する。前記絶縁材料層(34)は、材料を全く有さない少なくとも1つのゾーン(35)を有し、ゾーン(35)は、キャビティ(38)と協働して前記シリコン層(32)に移動部材(40)を画成するように、前記ダクト(102)と少なくとも位置合わせされて配置される。移動部材は、前記キャビティ(38)内の液体の圧力下で前記支持ウェハ(36)に向って可逆的に、前記移動部材(40)と前記支持ウェハ(36)とが接触するまで移動するのに適している。
【選択図】図1

Description

【0001】
本願発明は、流体流装置およびその製造方法に関する。本願発明は、また、液体入口を制御するための、例えばノンリターン逆止弁を形成するための部材、または、液圧を検知するための部材を構成する特定の形態の流体流装置に関する。
【0002】
本願発明は、また、流体流装置を構成するマイクロポンプに関し、限定的ではないが、特に、制御された量の液状薬を規則的に配送するための医療用マイクロポンプを形成するマイクロポンプに関する。
【0003】
このような流体流装置、特に、このようなマイクロポンプの製造は、シリコン、または、マイクロ加工可能な他の任意の材料をマイクロ加工するための技術に基づいており、特に、化学エッチング、レーザ切除、マイクロ複製などを伴うフォトリソグラフィ技術を用いて行われる。
【0004】
上記の特定の用途のために、また他の場合にも、マイクロポンプが自吸式(セルフ・プライミング)であることを可能にする入口制御部材を提供することが必要である。マイクロポンプは、ポンプチャンバの容積を変える(ポンプチャンバの容積を交互に増減させる)ことにより駆動され、これは、例えば、圧電アクチュエータから駆動を伝達することにより行われる。
【0005】
このようなマイクロポンプが、出願番号0453532号の下で公開された欧州特許出願に記載されている。しかし、このようなマイクロポンプはこのポンプ自体による自吸をもたらさない。なぜなら、このマイクロポンプは死容積(デッドボリューム)が大きく、これらの死容積が、マイクロポンプにより得られる圧縮比を低減させるからである。
【0006】
このような点を改善するために、新規のマイクロポンプ、例えば、出願番号WO99/09321号の下で公開された国際特許出願に記載されているようなマイクロポンプが開発された。死容積、特に、入口弁の弁座の下流の死容積を最小化するために、このポンプには、中間ウェハ(または中間プレート)の全厚みを構成するように厚い入口弁が設けられ、前記弁の弁座は、移動ダイヤフラム(または膜)と反対の側に配置されている。しかし、このようなマイクロポンプは構造が複雑であり、製造が困難であり、やはり大きい死容積を有する。
【0007】
本願発明の目的は、流体流装置、例えば、液体入口を制御する部材もしくは液圧を検知する部材またはマイクロポンプであって、単純化された方法で製造されることができ、かつ、死容積を最小にすることにより動作が確実に行われるように構成された流体流装置を提供することにある。
【0008】
このために、本願発明は、クロージャウェハ(またはクロージャプレート)により覆われたスタックを含み、前記スタックが、支持ウェハ(または支持プレート)と、前記支持ウェハの少なくとも一部を覆う絶縁材料の層と、前記絶縁材料層を覆いかつ前記クロージャウェハにより覆われた単結晶シリコンまたは多結晶シリコンの層とを含む流体流装置を提供する。前記クロージャウェハおよび/または前記シリコン層は、前記クロージャウェハと前記シリコン層の間に、液体が充填されるキャビティを画成するように加工され、前記支持ウェハは、支持ウェハ内を真直に通る少なくとも1つのダクトを有し、前記絶縁材料層は、材料を全く有さない少なくとも1つのゾーンを有し、このゾーンは、前記キャビティと協働して前記シリコン層内に移動部材を画成するように、前記ダクトと少なくとも位置合わせされて配置され、移動部材は、前記支持ウェハに向って可逆的に移動することにより、前記キャビティ内の液体の圧力に反応する。第1のタイプの流体流装置において、前記移動部材は、前記移動部材と前記支持ウェハとが接触するまで前記支持ウェハに向って可逆的に移動する。
【0009】
好ましい特徴に従えば、
前記支持ウェハは、シリコン、石英またはサファイアからつくられ、50マイクロメータ(μm)〜1ミリメータ(mm)の範囲の、好ましくは、300μm〜500μmの範囲の厚さを有し;
前記絶縁材料層は、100ナノメータ(nm)〜2μmの範囲の、好ましくは0.5μm〜1μmの範囲の厚さを有し;
前記クロージャウェハは、ガラスまたはシリコンから、好ましくは単結晶シリコンからつくられ、
前記シリコン層は、単結晶シリコンまたは多結晶シリコンからつくられ、1μm〜100μmの範囲、好ましくは10μm〜50μmの範囲の厚さを有する。
【0010】
別の態様において、本願発明は、先に記載したタイプの流体流装置を製造する方法を提供する。この方法は、
支持ウェハと、前記支持ウェハの少なくとも一部を覆う、好ましくは酸化シリコンからつくられた絶縁材料の層と、前記絶縁材料の層を覆いかつ自由面を有する単結晶シリコンまたは多結晶シリコンの層と、を含むスタックを設けるステップと、
フォトリソグラフィおよび化学エッチングを用いて、前記キャビティを前記クロージャウェハから、および/または前記シリコン層の自由面から加工するステップと、
フォトリソグラフィおよび化学エッチングを用いて、前記支持ウェハ内を真直に通る少なくとも1つのダクトを加工するステップと、
前記絶縁材料の層を、少なくとも前記ダクトを介して、前記シリコン層の或るゾーンが前記絶縁材料層から自由にされるように化学的にエッチングし、それにより前記移動部材を形成するステップと、
少なくとも1つのクロージャウェハを設けるステップと、
物理化学的方法を用いて、好ましくはウェハボンディングにより、前記クロージャウェハを、加工されていないシリコン層の前記面に、耐漏洩性を有するように連結させるステップと、を含むことを特徴とする。
【0011】
したがって、本願発明において、酸化シリコンの層に覆われたシリコン支持ウェハを含み、酸化シリコン層自体はシリコンの層に覆われているスタックを用いることが好ましい。このスタックは市場で入手可能であり、慣用的に、シリコン・オン・インシュレータ(SOI)と称されている。
【0012】
このタイプのスタックを用いることにより、一定でかつ厳密に制御された厚さを有し、かつ簡単な製造方法を実現する流体流装置を得ることが可能になる。
【0013】
詳細には、この製造方法は、WO98/14704号の下で公開された国際特許出願に記載されている方法よりもかなり簡単に実行される。
【0014】
流体流装置の種々の部分は、スタックの両側からの、すなわち、前記スタックを構成するウェハの両面からの選択的な化学エッチングによりつくられる。絶縁材料の層(SOIスタック内に酸化シリコンからつくられる)が、支持ウェハまたはシリコン層のマイクロ加工中のエッチングに対する止め部またはバリアを形成する。
【0015】
また、加工されたシリコン層内につくられたキャビティを特に閉鎖するように働くクロージャウェハは、それ自体が、好ましくはガラスまたは単結晶シリコンからつくられる。
【0016】
クロージャウェハがガラスからつくられる場合、クロージャウェハはシリコン層に、本質的に知られた方法で、陽極接合の技術を用いて固定される。
【0017】
クロージャウェハがシリコンからつくられる場合、クロージャウェハはシリコン層に、知られた直接Si(珪素)−Si接合(ダイレクトSi−Siボンディング)技術を用いて固定される。
【0018】
本願発明の流体流装置の第1の態様において、ノンリターン逆止弁を形成する液体入口制御部材が提供される。この部材は、クロージャウェハに覆われたスタックを含み、前記スタックは、好ましくはシリコンからつくられた支持ウェハと、好ましくは酸化シリコンからつくられた、前記支持ウェハの少なくとも一部を覆う絶縁材料の層と、前記絶縁材料層を覆いかつ前記クロージャウェハにより覆われた、単結晶シリコンまたは多結晶シリコンの層と、を含む。前記クロージャウェハおよび/または前記シリコン層は、前記クロージャウェハと前記シリコン層の間にキャビティを画成するように加工され、前記キャビティは、液体が充填されるように設計され、かつ、シリコン層の厚さ全体にわたって加工された少なくとも1つのギャップ(またはクリアランスホール)に存在する。前記支持ウェハは、その内部を真直に通りかつ前記キャビティに少なくとも面して(対向して)配置された少なくとも1つの液体入口ダクトを有する。前記絶縁材料層は、材料を全く有さない少なくとも1つのゾーンを有し、このゾーンは、前記キャビティと協働して前記シリコン層内に移動部材を画成し、それにより前記弁のためのフラップを形成するように、前記ダクトおよび前記ギャップに少なくとも位置合わせされて延在する。前記移動部材を取り囲む前記シリコン層の或る部分が、前記液体入口ダクトと前記キャビティの間に液圧の差が生じたときに前記移動部材が前記支持ウェハに向って可逆的に移動することを可能にする弾性を有する。
【0019】
このタイプの流体流装置において、前段落にて定義された液体入口制御部材の前記液体入口ダクトは、前記ギャップの付近に、しかし前記ギャップに面さずに配置される。前記移動部材は、弁の閉鎖位置と弁の開放位置の間を移動する。弁の閉鎖位置においては、移動部材が前記支持ウェハと耐漏洩性の接触をし、これが、少なくとも前記ダクトを取り囲む前記弁の弁座を形成し、前記液体入口ダクトとキャビティとの間を液体が流れることが防止される。弁の開放位置においては、移動部材が前記支持ウェハと、前記ダクト周囲にて耐漏洩性の接触をしておらず、移動部材が、液体が前記液体入口ダクトから前記ギャップに向って流れることを可能にする。
【0020】
本願発明の流体流装置の第2の態様において、液圧検知部材が提供される。この液圧検知部材は、クロージャウェハを覆うスタックを含み、前記スタックは、好ましくはシリコンからつくられた支持ウェハと、前記支持ウェハの少なくとも一部を覆う、好ましくは酸化シリコンからつくられた絶縁材料の層と、前記絶縁材料の層を覆いかつ前記クロージャウェハにより覆われた単結晶シリコンまたは多結晶のシリコンの層と、を含む。前記クロージャウェハおよび/または前記シリコン層は、前記クロージャウェハと前記シリコン層の間に液体を充填するためのキャビティを画成するように加工されている。前記支持ウェハは、支持ウェハ内を真直に通りかつ前記キャビティに面して(対向して)配置された少なくとも1つのダクトを有する。前記絶縁材料層は、材料を全く有さない少なくとも1つのゾーンを有し、このゾーンは、前記キャビティと協働して前記シリコン層内に移動部材を画成するように、前記ダクトと少なくとも位置合わせして配置される。前記シリコン支持ウェハは移動部材に面する(対向する)部分を有して、前記移動部材は前記ダクトにより支持ウェハの残りの部分から分離された島状部を形成し、前記移動部材は、その弾性および前記キャビティ内の液体の圧力により、支持ウェハに向って可逆的に移動することができる。
【0021】
第1のタイプの流体流装置において、前段落において定義された液圧検知部材の移動部材は、開放位置から閉鎖位置に移動することができ、この閉鎖位置にて、移動部材は、移動部材に面して配置された前記部分と物理的接触をし、前記部分は、前記ダクトにより支持ウェハの残りの部分から分離され且つシリコンウェハのベアリング部を形成する島状部を形成し、前記物理的接触は電気的に検知可能である。
【0022】
本願発明の流体流装置の第3の態様において、マイクロポンプが提供される。このマイクロポンプは、クロージャウェハに覆われたスタック含み、前記スタックは、好ましくはシリコンからつくられた支持ウェハと、前記支持ウェハの少なくとも一部を覆う、好ましくは酸化シリコンからつくられた絶縁材料の層と、前記絶縁材料の層を覆いかつ前記クロージャウェハにより覆われた単結晶シリコンまたは多結晶シリコンの層と、を含む。前記クロージャウェハおよび/または前記シリコン層は、前記クロージャウェハと前記シリコン層の間にキャビティを画成するように加工され、このキャビティは液体が充填されるためのものであり、かつポンプチャンバを含む。前記支持ウェハは、支持ウェハ内を真直に通りかつ前記キャビティに面して(対向して)配置された少なくとも第1ダクトを含み、前記絶縁材料の層は、材料を全く有さない少なくとも1つの第1ゾーンを有し、第1ゾーンは、前記キャビティと協働して前記シリコン層内に第1の移動部材を画成するように、前記第1ダクトと少なくとも位置合わせして配置される。第1移動部材は、前記ポンプチャンバ内の液圧の下で前記支持ウェハに向って可逆的に移動するのに適しており、前記第1移動部材は液体入口制御部材のフラップの一部を形成する。前記マイクロポンプは、さらに、ポンプダイヤフラムに取り付けられてポンプチャンバの容積を周期的に変化させる制御手段を含むポンプ部と、液体出口制御部材と、を含む。
【0023】
第1のタイプの流体流装置において、前段落において定義された液体入口制御部材の前記第1の移動部材は、前記ポンプチャンバ内の液圧下で前記支持ウェハに対して耐漏洩性の接触をするのに適しており、前記第1移動部材は前記液体入口制御部材のフラップを構成する。
【0024】
好ましい方法において、前記マイクロポンプは、さらに、前記絶縁材料の層の材料を全く有さない第2のゾーンを有する。第2のゾーンは、前記キャビティと協働して第2の移動部材を前記シリコン層内に画成し、第2移動部材は前記ポンプチャンバ内の液圧下で前記支持ウェハに向って移動するのに適しており、前記第2移動部材は液体出口制御部材のフラップを構成する。
【0025】
このように、本願発明は、種々のタイプの流体流装置に関し、これらの流体流装置は、本願発明の本質的特性に従って、SOIタイプのスタックからつくられる。すなわち、このスタックは、好ましくはシリコンからつくられた支持ウェハを含み、支持ウェハは、好ましくは酸化シリコンからつくられた絶縁材料層により覆われ、絶縁材料層自体はシリコン層により覆われている。
【0026】
したがって、2つのガラスのウェハの間に中間ウェハを形成するためにシリコンウェハの厚さ全体にわたってマシニングを行うことが必要な先行技術の流体流装置およびマイクロポンプとは異なり、本願発明のプロセスは、スタックを用い、このスタックにおいては、3つの構成要素(支持ウェハ、絶縁材料層、およびシリコン層)の最初の厚さが、第1に、流体流装置の種々の部分が良好に制御された厚さであることを保証するように働き、第2に、先行技術と比較して死容積がかなり大幅に低減されるように働く。
【0027】
本願発明の技術の主要な利点は、製造方法が、先行技術の方法と比べて単純化されていることにある。
【0028】
本願発明は、例として示された本願発明の種々の実施形態に関する以下の説明を読むことにより、より良好に理解され、また、本願発明の2次的特性および利点が明らかになるであろう。
【0029】
当然のことながら、説明および図面は、単に、非限定的な例として与えられる。
【0030】
参照される添付図面の簡単な説明を後に記載する。
【0031】
図面全体を通して、同一の要素が複数の図に示されている場合には、常に同一の参照番号が付されている。
【0032】
さらに、説明を明瞭にするために、図面において種々の要素の厚さを非常に拡大して示してあるため、図が厳密に等比率の縮尺ではないことを理解されたい。
【0033】
本願発明の流体流装置の第1の態様において、流体流装置は、液体入口制御部材を形成し、その一実施形態が図1に示されている。一方向弁(ワンウェイ弁)すなわち逆止弁(ノンリターン弁)を構成するための、この液体入口制御部材100は、スタック30の上部に配置されたガラスクロージャウェハ20を含み、スタック30は、前記制御部材100の種々の機能的部分を形成するために、クロージャウェハ20の配置の前に加工されている。
【0034】
スタック30は、酸化シリコン層34の上に配置されたシリコン層32を含み、酸化シリコン層34はシリコン支持ウェハ36の上に配置されている。
【0035】
このタイプのスタックは、一般に、シリコン・オン・インシュレータ(SOI)スタックと称されており、半導体電子産業において用いられるのに好適なウェハまたはプレートの形態で市場で入手可能である。スタック30におけるこれらの3つの要素の役割により、3つの要素の厚さが決定され、それらの厚さはそれぞれかなり異なる。すなわち、
硬質のベースとして働くシリコン支持ウェハ36は、好ましくは、50μm〜1000μmの範囲の厚さを有し、300μm〜500μmの範囲が有利であり;
酸化シリコン層34は、シリコン支持ウェハ36とシリコン層32の間の一定の間隔を維持しつつ、シリコン支持ウェハ36をシリコン層32に連結するように働き、かつ、所定のゾーンにおいて容易に除去される。したがって、酸化シリコン層34の厚さは非常に薄く維持されるべきであり、その厚さは、好ましくは0.1μm〜2μmの範囲にわたり、0.5μm〜1μmの範囲が有利であり;
シリコン層32は、その厚さ全体にわたって加工されて液体通路を形成するように、または、その厚さの一部のみ(約半分)が加工されて、ガラスクロージャウェハ20と協働してキャビティを、また或る場合には移動部材を画成するように設計される。単結晶または多結晶のシリコンからつくられ得るこのシリコン層32は、好ましくは1μm〜100μmの範囲であり、10μm〜50μmの範囲が有利である最初の厚さを有する。
【0036】
スタック30は、入口制御部材100の種々の機能的要素、特にキャビティ38および移動部材40を得るために、慣用のフォトリソグラフィおよび化学エッチング技術により加工される。この加工は、ガラスクロージャウェハ20を前記スタック30に連結する前に行われる。ガラスクロージャウェハ20とシリコン層32の自由面との連結は、知られた方法で、耐漏洩性の連結を構成する固着をもたらすように働くウェハボンディング(クロージャウェハがガラスからつくられている場合には陽極接合)により行われる。
【0037】
液体入口ダクト102が、シリコン支持ウェハ内を、ウェハの厚み全体にわたり第1端部102aから第2端部102bまで真直に通っている。第2端部102bは、酸化シリコン層34の円形ゾーン35に隣接している。円形ゾーン35は材料を全く有さず、液体入口ダクト102を十分に超えて延在している。
【0038】
シリコン層32は、シリコン支持ウェハ36から遠い側にて、シリコン層32の厚さの一部にわたり、キャビティ38を形成するように加工されている。さらに、シリコン層32の厚さ全体が除去されている部分に対応するギャップ104(またはクリアランスホール)が、キャビティ38、および、酸化シリコンを有さないゾーン35と位置合わせして配置されている。ギャップ104は、酸化シリコン層34に面した液体入口ダクト102の第2端部102bの付近にあるが、端部102bに直接には面して(対向して)いない。
【0039】
キャビティ38は、少なくとも前記ゾーン35および液体入口ダクト102に面して延在している。
【0040】
このようにして、図1Aおよび1Bにおいてより明確に見られるように、シリコン層32に部材40が形成され、前記部材40は、ガラスクロージャウェハ20とも酸化シリコン層34とも連結されておらず、また、前記部材40はシリコン層32の残りの部分から、ギャップ104により分離されている。
【0041】
第1の変型例において、図1Aに示された液体入口制御部材100はオープンリングの形態のギャップ104を有し、これにより、移動部材は、図1Aの左側に位置するアーム41によりシリコン層32の残りの部分に連結される。
【0042】
第2の変型例において、図1Bに示された液体入口制御部材100は、中心にて約120度の角度を画定する3つの角度セクタの形態のギャップ104を有し、これにより、移動部材は、シリコン層32の残りの部分に、上記の角度セクタの2つの間に各々が配置された3本のアーム41により連結されている。
【0043】
部材40が、スタック30の主要面に対して垂直な方向に、すなわち、図1における上方に、図1Aおよび1Bの紙面に対して直交する方向に移動可能であることが理解されよう。しかし、第2変型例において、3つの点が移動部材40をシリコン層32に取り付けているため、移動部材40の移動は第1変型例よりもなめらかに動かない(柔軟でない)ことが理解されるであろう。
【0044】
この部材40の厚さは非常に薄い(50μm未満、好ましくは約10μm)ため、部材40は、スタック30またはガラスクロージャウェハ20の主要面を横断して延伸する方向に、すなわち、図1に双頭矢印により示されているように上下に弾性的に移動可能である。
【0045】
図1において、入口弁を形成する部材100は、その静止位置、すなわち、部分的に開放された位置にて示されている。液体が入口ダクト102を介して到着すると、移動部材40は液体の圧力により持ち上げられる。次いで、入口ダクト102内の液圧がキャビティ38内の液圧よりも高くなり、これにより弁の位置は開放位置となり、液体がゾーン35内に侵入し、ギャップ104を通過してキャビティ38に到達することを可能にする。
【0046】
この部材100は、より複雑な流体流組立体に挿入されることができ、この装置において、部材100は上流の液体入口要素を構成する。キャビティ38内にある液体が、液体入口ダクト102内の液体の圧力よりも高い圧力で存在し得て、これが部材100の閉鎖を可能にすることが理解されるであろう。閉鎖は、移動部材が下方に移動して、シリコン支持ウェハ36の、シリコン層に面した面に対する耐漏洩性の接触を、ダクト102の第2端部102bの周囲全体にてもたらすことにより行われる。
【0047】
キャビティ38の位置にて薄くされたシリコン層32(図1Aにおける単一のアーム41、または、図1Bにおける3本のアーム)が相対的弾性を有するため、キャビティ38内の液体の圧力がダクト102内の液体の圧力以下になったときに、部材40が、図1に示されたその初期位置、すなわち、部材100が部分的に閉じている位置に戻ることが可能である。キャビティ38内の液体の圧力がダクト102内の液体の圧力よりも高くなったとき、移動部材40は十分に降下して、シリコン支持ウェハ36に対する耐漏洩性の接触をもたらし、このとき液体入口制御部材100は閉鎖される。
【0048】
この部材100が入口弁を形成することが理解されるであろう。この弁において、弁本体(弁胴)は、移動部材40の、シリコン支持ウェハ36に面する面により構成され、弁座は、シリコン支持ウェハ36の面の、ダクト102の第2端部102bを取り囲むシリコン層32に面する領域により構成される。
【0049】
図2,2A,2Bに示した第2の実施形態においては、移動部材40がその静止位置にあるときに液体入口制御部材100’をその閉鎖位置に配置するプレストレス(予備応力)を設定することも可能である。
【0050】
この目的のために、移動部材40の独立部分106がアーム41の中程に配置され、シリコン層32の最初の厚さと等しい厚さである。この部分106は要素110に面して配置されている。要素110は、スタックに面するクロージャウェハ20の面20a上に、または、前記部分106の自由面上に配置されている。
【0051】
要素110は、好ましくは、クロージャウェハ20の上記の面20a上に堆積されたチタン層から得られる。この要素110は、独立部分106を押し下げて、移動部材40をその閉鎖位置に移動させる。この閉鎖位置は移動部材40の静止位置に対応する。しかし、移動部材40が開放されることを可能にするように移動部材40の弾性は十分に維持される。
【0052】
このように、部分106および前記要素110は、前記移動部材40を、部材40の静止位置にあるときに前記閉鎖位置に配置するベアリング手段を形成する。
【0053】
図3および3Aは、本願発明の第1の態様を構成する液体入口制御部材の第3の実施形態に関する。この実施形態において、液体入口制御部材100”は、液体入口制御部材の第1実施形態および第2実施形態と比較して、さらに第2のグラスウェハ20’を含む。
【0054】
この液体入口制御部材100において、上側のクロージャウェハ20は、第1のガラスのクロージャウェハ20であり、第2のガラスウェハ20’が第2のクロージャウェハを形成し、第2クロージャウェハは、支持ウェハ36の、前記第1ガラスクロージャウェハ20と反対側の面に固定されている。
【0055】
この第2のガラスのクロージャウェハ20’には、スルーダクト102”aが設けられている。
【0056】
弁本体、および、第2クロージャウェハ20’とシリコン支持ウェハ36の間の弁座を移動させるために、移動部361が支持ウェハ36の厚さにわたって形成されている。移動部361は、前記移動部材40の前記キャビティ38および前記ダクト102”aに面し、かつキャビティ38およびダクト102”aと位置合わせされている。この移動部361は、前記ギャップ104の付近に配置されているが、前記ギャップ104に面していない。
【0057】
物質を有さない環状の容積102”が、支持ウェハ36の厚さ全体にわたって加工され、容積102”は、絶縁材料の層34において材料を全く有さないゾ前記ーン35に面し、それにより、前記移動部361は支持ウェハ36の残りの部分から分離され、前記ギャップ104と連通する支持ウェハ36の液体入口ダクト102”が形成されている。
【0058】
絶縁材料層34は、環状のゾーン35により囲まれた連結ゾーン321を有し、連結ゾーン321は前記移動部361を前記移動部材40に堅固に連結し、それにより移動部361を移動部材40の上下移動に従わせる。
【0059】
耐付着性材料(好ましくはチタン)からつくられた環状の弁要素370が、ガラスからつくられた第2クロージャウェハ20’の面上に、前記移動部361と面して配置されている。
【0060】
この弁要素370により、前記移動部材40が支持ウェハ36に可能な限り近づいたとき(この状態は図示せず)、移動部361の、第2クロージャウェハ20’に面する面と、弁要素370の、支持ウェハ36に面する面とは、耐漏洩性の接触をもたらし、これにより、液体入口制御部材100”を閉鎖位置に配置させ、液体が第2クロージャウェハ20’のダクト102”aから支持ウェハ36の前記液体入口ダクト102”に流入することを防止する。
【0061】
反対に、弁本体(図3および3Aに示された例における移動部分361)と弁座(図3および3Aに示された例における弁要素370)が接触していない場合、液体入口制御部材100”は開放位置にあり、液体が第2クロージャウェハ20’のダクト102”aから支持ウェハ36の前記液体入口ダクト102”に流入し、そこからギャップ104に向って流れ、次いでキャビティ38に到達することを可能にする。これが図3に示されている状態である。
【0062】
図3Aを参照すると、図3の液体入口制御部材100”の、クロージャウェハ20を取り除いた後の平面図が見られ、この図が図1Bと非常に類似していることが分かる。なぜなら、移動部材40が同様に3本のアーム41によりシリコン層32の残りの部分に連結されているからである。したがって、ギャップ104は、図1Bと同様に、中心にて約120度の角度を各々が画定する3つの角度セクタから形成され、この場合、これらのセクタは環状である。
【0063】
図4および4Aは、本願発明の第2の態様を構成する、液体入口制御部材の第4の実施形態に関する。この実施形態において、図3および3Aに示した第3の実施形態と同様に、液体入口制御部材100”’は、液体入口制御部材の第1および第2の実施形態と比較して、さらに第2のガラスウェハ20’を含む。
【0064】
この第2のガラスクロージャウェハ20’は、支持ウェハ36の、前記第1ガラスクロージャウェハ20と反対側の面に固定された第2のガラスクロージャウェハを形成し、この第2のクロージャウェハ20’には、その内部を真直に貫通するダクト102”aが設けられている。
【0065】
図3および3Aに示した液体入口制御部材の第3の実施形態と同様に、そしてまた、弁本体と、第2のクロージャウェハ20’とシリコン支持ウェハとの間の弁座を、ずれが生じるようにセット(オフセット)するために、移動部361が液体入口制御部材100”’の支持ウェハ36の厚さ全体にわたって、前記キャビティ38および前記移動部材40と面し、かつ位置合わせしてつくられる。
【0066】
この前記移動部361は環状であり(図4および図4Aを参照のこと)、最初に、材料を全く有さない第1の環状容積102”’aにより画成される。環状容積102”’aは、支持ウェハ36の厚さ全体にわたって加工され、絶縁材料層34において材料を全く有さないゾーン35および前記キャビティ38に面している。こうして、第1の環状容積102”’aは前記移動部361を支持ウェハ36の残りの部分から分離する。
【0067】
この環状の移動部361も、材料を有さない第2の円柱状容積102”’により、実質的に同様に画成される。第2円柱状容積102”’は、支持ウェハ36の厚さ全体にわたって移動部361の位置(中央)にて加工される。材料を有さないこの第2の容積102”’は、ギャップ104と連通している前記液体入口ダクト102”’を形成し、ギャップ104は前記液体入口ダクト102”’と面し、かつ位置合わせされて配置されている。
【0068】
図3および3Aに示した液体入口制御部材100”の第3の実施形態とまた同様に、この第4の実施形態である液体入口制御部材100”’の絶縁材料層34は、ゾーン35により囲まれた連結ゾーン321を有し、連結ゾーン321は、前記移動部361を、前記液体入口ダクト102”’およびギャップ104の周囲の前記移動部材40に、堅固に連結する。この場合、連結ゾーン321とゾーン35は環状でかつ同心である。
【0069】
この液体入口制御部材100”’は、さらに、耐付着性材料(好ましくはチタン)からつくられた環状の弁要素370を含む。弁要素370は、第2のガラスクロージャウェハ20’の、前記移動部361に面した面上に配置されている。
【0070】
この環状の弁要素370は、支持ウェハ36の前記液体入口ダクト102”’を取り囲むが、クロージャウェハ20’のダクト102”aは取り囲まない。ダクト102”aは、支持ウェハ36における材料を有さない第1環状容積102”’a内に開放されている。
【0071】
この弁要素370により、前記移動部材40が支持ウェハ36に可能な限り近づいたとき(この状態は図示せず)、移動部361の、第2クロージャウェハ20’に面する面と、弁要素370の、支持ウェハ36に面する面とが耐漏洩性の接触をもたらし、これにより、液体入口制御部材をその閉鎖位置に配置させる。液体入口制御部材100”’のこの閉鎖位置において、第2クロージャウェハ20’のダクト102”aから第1環状容積102”’に到達した液体は、支持ウェハ36の前記液体入口ダクト102”’に侵入することができない。液体は、支持ウェハ36の第1環状容積102”’a内に留められたままである。
【0072】
反対に、弁本体(図4および4Aに示された例における移動部361)と弁座(図4および4Aに示された例における弁要素370)とが接触していない場合、液体入口制御部材100”’は開放位置にあり(図4および4Aを参照のこと)、液体が、第2クロージャウェハ20’のダクト102”aから支持ウェハ36の第1環状容積102”’aに流れ、次いで、移動部361と弁要素370の間を、支持ウェハ36の液体入口ダクト102”’に向って流れ、そしてギャップ104に向かい、次いでキャビティ38に到達することを可能にする。
【0073】
液体入口制御部材の第3および第4の実施形態(100”および100”’)における弁要素370は、前記移動部361の、第2ガラスクロージャウェハ20’に面した面上に、同様に良好に配置されることもでき、および/または、他の耐付着性材料、例えば、金、酸化シリコン、または窒化シリコンから同様に良好につくられることもできる。
【0074】
このように、図3および3Aならびに図4および4Aにそれぞれ示された液体入口制御部材の第3および第4の実施形態は、第2のタイプの流体流装置に属する。このタイプの装置において、第2ガラスクロージャウェハ20’が必要とされ、前記第2ガラスクロージャウェハ20’とスタック30の支持ウェハ36の移動部361との間に弁座をオフセット(ずれを生じるように配置)される。
【0075】
液体入口制御部材100”および100”’の動作は、第1実施形態および第2実施形態を構成する液体入口制御部材100および100’(それぞれ図1,1A,1Bおよび図2,2A,2Bに示す)の動作と同じである。
【0076】
液体入口制御部材の第1および第2実施形態の液体入口制御部材100および100’(それぞれ図1,1A,1Bおよび図2,2A,2Bに示す)を製造する方法と比較して、液体入口制御部材100”および100”’を製造するためには、環状の弁要素370(耐付着性材料からつくられる)がその上に堆積される第2クロージャウェハ20’を設け、次いで、第2クロージャウェハ20’をシリコンウェハ36に連結することで足りる。これらの2つのステップは、製造方法の最後に、すなわち、スタック30が処理された(詳細には、加工により、および/または構造化により)後に行われるべきである。
【0077】
液体入口制御部材100’または100”’に弁要素370が存在することにより、移動部材40に予備応力を加えることが可能となる。なぜなら、弁要素370の厚みの存在が、移動部材40をキャビティ38内に、弁要素の厚みに対応する距離だけ上方にオフセットする(ずらす)(図3および4を参照)からである。
【0078】
スタック30の処理に用いられることができるマイクロマシニング技術により、支持ウェハ36の液体入口ダクト102”または102”’の容積を非常に正確に制御して、前記ダクトにより呈される死容積を最小限にすることが可能である。
【0079】
上記の液体入口制御部材100”または100”’は、図7および8を参照しつつ以下に記載するように、マイクロポンプ内に一体化されて入口弁を構成することができる。
【0080】
図5は、本願発明の流体流装置の第2の態様を示し、これは、液圧を検知するための部材400に相当する。この部材は、先に記載した液体入口制御部材100を組み込むこともできる、より複雑な流体流装置の一部を形成するのに適している。
【0081】
この液圧検知部材400は、スタック30上に配置されたガラスクロージャウェハ20を含み、スタック30は、前記液圧検知部材400の種々の機能的部分を形成するように、ウェハの配置前に加工されている。
【0082】
このスタック30は、酸化シリコン層34の上に配置されたシリコン層32を含み、酸化シリコン層34自体はシリコン支持ウェハ36の上に配置されている。
【0083】
このタイプのスタックは、一般に、シリコン・オン・インシュレータスタック(SOI)と称されており、特に半導体電子産業において用いられる種類のウェハまたはプレートの形態で市場で入手可能である。先に記載した液体入口制御部材100と同様に、スタック30これらの3つの要素の役割により、3つの要素の厚みはそれぞれかなり異なる。すなわち、
硬質のベースとして作用するシリコン支持ウェハ36は、好ましくは、50μm〜1000μmの範囲の厚みを有し、300μm〜500μmの範囲が有利である。
【0084】
酸化シリコン層34は、シリコン支持ウェハ36とシリコン層32の間の一定の間隔を維持しつつ、シリコン支持ウェハ36をシリコン層32に連結するためのものであり、しかし所定のゾーンにおいては容易に除去される。したがって、酸化シリコン層34の厚さは非常に薄く維持されなければならず、好ましくは0.1μm〜2μmの範囲であり、0.5μm〜1μmの範囲が有利である。
【0085】
シリコン層32は、ガラスクロージャウェハ20と協働し、それによりキャビティおよび移動部材を画成するために、層の厚さの一部のみ(約半分)が加工されるように設計される。このシリコン層32は、単結晶または多結晶のシリコンからつくられることができ、好ましくは1μm〜100μmの範囲の、より有利には10μm〜50μmの範囲の最初の厚さを有する。
【0086】
スタック30は、前記液圧検知部材400の種々の機能的要素、特にキャビティ38および移動部材40を得るように、慣用のフォトリソグラフィ技術および化学エッチング技術により加工される。これは、ガラスクロージャウェハ20と前記スタック30とを連結する前に行われる。クロージャウェハ20とシリコン層32の自由面とのこのような連結は、慣用的な方法で、ウェハボンディング(クロージャウェハがガラスからつくられている場合には陽極接合)により行われ、その後、を耐漏洩性連結の形態の固着が得られる。
【0087】
この液圧検知部材400は、流体がその内部を流れるキャビティ38を有する。この流れの方向は、図5に2つの水平方向矢印で示されている。この液体の圧力の下で、移動部材40は、鉛直方向に、シリコン支持ウェハ36に近づき、またはシリコン支持ウェハ36から遠ざかって(鉛直方向の双頭矢印)、前記シリコン支持ウェハ36と接触するまで移動することができる。
【0088】
例として、液体は、キャビティ38内を、図5の左側に位置する入口402から、図5の右側に位置する出口404へ流れる。
【0089】
酸化シリコン層34のゾーン35に対応して材料を除去するために、一連の円形セクションダクト412を、シリコン支持ウェハ36の厚さ全体にわたり、前記ゾーン35および移動部材40に面して形成する。
【0090】
図5Aおよび5Bに見ることができるように、これらのダクト412は互いに均等な間隔を有して、酸化シリコンが層34から除去されるゾーン35全体に面して配置される。
【0091】
円柱状の壁部、好ましくは環状壁部の形態の断面を有する別のダクト412’がシリコン支持ウェハ36の厚さ全体にわたって形成され、一連のダクト412を取り囲んでいる。このダクト412’は、シリコン支持ウェハ36の残りの部分を、ダクト412により穿孔されたシリンダの形態のベアリング部414から分離するように働く。ベアリング部414は、移動部材40に面して位置し、かつ電気的連結部に連結されている。
【0092】
ベアリング部414をスタック30に固定させておくために、酸化シリコン層34の一部416が、ダクト412’の近傍のベアリング部414の端部上に元のまま(無傷のまま)残される。この部分416が、ベアリング部414を、移動部材40を取り囲むシリコン層32に連結させ、これにより連結手段を構成する。
【0093】
図5Aに示された変型例において、ダクト412’および部分416は環状で円柱状の壁部の形態であり、ダクト412は円形のゾーンにわたって規則的に分布されている。
【0094】
図5Bに示された変型例において、ダクト412は長方形のゾーンにわたって規則的に分布されている。部分416は、上記長方形の2つの対向する側部に沿って配置された2つの半円形の部分により構成されて、2つの「ラグ(耳状部)」を形成している。図5Bにおいて、ダクト412’は上記長方形のゾーンおよび2つの部分416を取り囲み、前記ダクト412’は2つの「ラグ」を有する、長方形断面のシリンダの壁部の形態であり、四つ葉のクローバーまたはギリシア十字のような形状である。
【0095】
この圧力検知部材400は、キャビティ38内の液圧が所定の閾値を超えると、移動部材40がその静止位置、すなわち開放位置(図5に示した位置)から、動作位置、すなわち、移動部材40がシリコン支持ウェハ36のベアリング部414と接触する閉鎖位置へと移動するように形成されている。
【0096】
かかる状況において、シリコン層32(移動部材40の位置にある)とウェハ36(ベアリング部414の位置にある)とが接触すると(シリコン層32およびウェハ36は、共にドープシリコンからつくられており、ドープシリコンは、容量性回路において集積された導電体として働く半導体を形成する)、シリコン層32と支持ウェハ36のベアリング部414とにそれぞれ連結された電気連結部間のキャパシタンス(電気容量、静電容量)が突然増大する。キャパシタンスのこのような突然の増大を検知することにより、キャビティ38内が予め決められた液圧レベルに到達したかどうかを決定することが可能である。
【0097】
他の変型例も考えられる。詳細には、2つのベアリング部を形成する2つの電極を設け、前記電極は互いに分離され、また、ウェハ36の残りの部分から分離されている。
【0098】
この液圧検知部材400は、容量式に動作する液圧センサを形成する。しかし、他のタイプのセンサを、部材400を用いて創成することもできる。例えば、トンネル効果センサ;ショットキー接触センサ;誘電検知器;光学的検知器(例えば、移動部材40の曲げを観察するレーザダイオードを用いる);または歪みゲージがつくられる。
【0099】
かかる液圧検知部材400は、流体流組立体において非常に有用である。なぜなら、キャビティ38内が予め決められた液圧レベルに達したときを、移動部材40とベアリング部414との接触を引き起こす圧力レベルの関数として検知することを可能にするからである。
【0100】
当然、この液圧検知部材400は、キャビティ内の圧力を、材料が存在しないダクト412および412’ならびにゾーン35における外部圧力と比較するディファレンシャルセンサである。
【0101】
図6は、本願発明の第2の態様を構成する液圧検知部材の第2の実施形態を示す。この実施形態において、液圧検知部材400”’は、図5,5Aおよび5Bに示した液圧検知部材の第1の実施形態と異なり、さらに、第2のガラスウェハ20’を含む。
【0102】
したがって、この液圧検知部材400”’において、上側のクロージャウェハ20は第1のガラスのクロージャウェハ20であり、第2のガラスウェハ20’は、支持ウェハ36の、前記第1ガラスクロージャウェハ20と反対側の面に固定された第2のクロージャウェハを形成する。
【0103】
支持ウェハ36には、その内部を真直に通るダクト422が設けられている。
【0104】
圧力の閾値を検知させる電気接触ゾーンを、電気接触ゾーンがガラスからつくられた第2のクロージャウェハ20’に向って移動されるようにオフセットするために、液圧検知部材の第2実施形態400”’において、支持ウェハ36の残りの部分から分離された島状部を形成する部分が移動部461を構成する。
【0105】
ダクト422は、移動部461を支持ウェハ36の残りの部分から分離するように環状であり、絶縁材料層34は、ゾーン35により囲まれた、前記移動部461を前記移動部材40に一体的に連結する連結ゾーン321を有する。
【0106】
圧力検知器の機能を実行するために、この液圧検知部材400”’は、さらに、前記移動部461の、第2ガラスクロージャウェハ20’に面した面上に配置された第1の導体要素463と、第2ガラスクロージャウェハ20’の、前記移動部461に面した面上に配置された第2の導体要素465とを含む。当然、前記第1導体要素463、第2導体要素465は、前記移動部材40と、移動部材40に固定された前記移動部461とが第2クロージャウェハ20’に近づいたときに電気的接触をするのに適している。
【0107】
この電気接触の代替物として、他の検知方法を用いることができる。すなわち、測定は、容量的、誘導的、光学的に、または、移動部材40上に配置された歪みゲージにより行われることができる。これらの他の方法において、前記第1導体要素463および/または第2導体要素465の存在および/または位置は、用いられる検知技術に適合される必要がある。
【0108】
図5,5Aおよび5Bに関して記載した圧力検知器400と同様に、液圧検知部材400”’は、ポンプチャンバ内部の液圧の増大によって移動部材40の変形が大きくなることにより、外圧に対して決められた圧力閾値を識別することを可能にする。
【0109】
このように、図6に示された圧力検知器の第2実施形態は、第2のタイプの流体流装置に属する。このタイプの流体流装置においては、第2のガラスウェハ20’が必要であり、これにより、前記第2ガラスウェハ20’とスタック30の移動ウェハ36の移動部461の間で電気的接触部をオフセットすることができる。
【0110】
上記の圧力検知器および制御部材400および400”’は、以下に図7および8を参照しつつ説明される種類のマイクロポンプ内に、入口弁として一体化されることができる。
【0111】
圧力検知制御部材の第1実施形態400(図5,5A,5B)を製造する方法と比較して、圧力検知制御部材400”’を製造するためには、導電性の材料からつくられた第2の導体要素465がその上に堆積される第2のクロージャウェハ20’を設け、その第2クロージャウェハ20’をシリコン支持ウェハ36に連結すればよい。これらの2つのステップは、製造プロセスの最後に、すなわち、スタック30が処理された(詳細には、マシニングにより、および/またはストラクチャリング(構造化)により)後に、そして、移動部461の、移動部材40と反対側の面に、導電性材料からつくられた第1の導体要素463を設けた後に行われる。当然のことながら、第1導電要素463と第2導電要素465を検知システムの回路に連結しなければならない。
【0112】
用語「ダクト」が、圧力検知器の2つの実施形態400および400”’におけるチャネルまたは容積412,412’および422に用いられることを理解されたい。しかしながら、これらのチャネルは、この流体流部材の動作中においても、流体がこれらのチャネル内を流れるように設計されてはいない。
【0113】
図1〜6を参照しつつ以上に説明した本願発明の流体流装置の第1および第2の態様は、流体流装置における液体の通過に関して異なる機能を提供し、また、それらの構造は、非常に簡単に実行される製造方法を用いて提供されるのに適した、類似の簡単な構造である。
【0114】
さらに、上記の種々の部材100,100”,100”’,400および400”’を製造するこの方法は互いに非常に類似しており、したがって、これらの種々の流体流部材100,100”,100”’,400および400”’は、単一の流体流組立体内に容易に配置されることができる。
【0115】
かかる一体化の例を、図7〜15を参照しつつ以下に記載する。部材100,100”,100”’,400および400”’の製造方法の共通のステップは、本明細書の初めに流体流装置の製造方法を説明した際に述べられている。この方法は、各特定の部材100,100”,100”’,400および400”’をつくるために、以下に説明するように適合される。
【0116】
図1に示した液体入口制御部材100の製造方法は、以下のステップを含む。すなわち、
a)スタック30を設けるステップであって、好ましくはシリコンからつくられた支持ウェハ36と、支持ウェハ36の少なくとも一部を覆う酸化シリコン層34と、(単結晶または多結晶の)シリコンの層32であって、酸化シリコン層34の層を覆い、かつ自由面を、前記酸化シリコン層34を覆う面と反対の側に有するシリコン層32と、を含むスタック30を設けるステップと;
b)キャビティ38を、フォトリソグラフィおよび化学エッチングによりシリコン層32の前記自由面から機械加工(マシニング)するステップと;
c)ギャップ104を、フォトリソグラフィおよび化学エッチングによりシリコン層32の前記自由面から機械加工するステップであって、酸化シリコン層34に達するまでシリコン層32の厚さ全体にわたって機械加工するステップと、
d)スタック30の他方の側から、支持ウェハ36内を真直に貫通する液体入口ダクト102を、フォトリソグラフィおよび化学エッチングにより機械加工するステップと;
e)材料を有さないゾーン35を酸化シリコン層34に創成するように、酸化シリコン層34を、ダクト102およびギャップ104を介して化学的にエッチングするステップであって、これにより、シリコン層32の、前記ゾーン35に面したゾーンから酸化シリコン層34が取り除かれ、これにより移動部材40を形成し、移動部材40がアーム41によりシリコン層32との連結を維持するステップと;
f)クロージャウェハ20を設けるステップと;
g)物理化学的方法を用いて、クロージャウェハ20を、シリコン層32のマシニングを施されていない面に、耐漏洩性を有するように、好ましくはウェハボンディング技術により連結させるステップと、である。
【0117】
クロージャウェハ20がガラスからつくられている場合、上記のウェハボンディング技術は陽極接合技術となる。クロージャウェハがシリコンからつくられている場合、ダイレクトボンディング(直接接合)によりシリコン層32との耐漏洩性の連結が形成されることが可能である。
【0118】
このように、スタック30のマイクロマシニング工程がスタック30の面の各々に関して独立に実行されることが理解されるであろう。したがって、ステップb)およびc)のグループとステップd)およびe)のグループとは、上記のように一方を他方の前に、または一方を他方の後に実行することができる。
【0119】
図5に示された、本願発明の第2の態様を示す液圧検知部材400は、以下のステップを含む方法を用いてつくられる。すなわち、
a)好ましくはシリコンからつくられた支持ウェハ36と、支持ウェハ36の少なくとも一部を覆う酸化シリコン層34と、(単結晶または多結晶の)シリコンの層32であって、層34を覆い、かつ自由面を、酸化シリコン層34を覆う面と反対の側に有するシリコン層32と、を含むスタック30を設けるステップと;
b)キャビティ38を、シリコン層32の前記自由面からフォトリソグラフィおよび化学エッチングを用いて加工するステップと;
c)スタック30の他方の側から、支持ウェハ36内を真直に貫通するダクト412および412’を機械加工するステップと;
d)材料を有さないゾーン35を酸化シリコン層34に創成するように、酸化シリコン層34にダクト412および412’を介して化学エッチングを施し、かつ移動部材40を酸化シリコン層34から開放するように酸化シリコンを部分416に残すステップと、
e)クロージャウェハ20を設けるステップと;
f)物理化学的方法を用いて、クロージャウェハ20を、シリコン層32のマシニングを施されていない面に、耐漏洩性を有するように、好ましくはウェハボンディング技術を用いて連結させるステップと、である。
【0120】
液体入口制御部材100,100”,100”’の1つに関しても、あるいは、液圧検知部材400,400”’の1つに関しても、シリコン層32とクロージャウェハ20の間に位置するキャビティ38のマシニングを、層32およびウェハ20を加工することにより、またはウェハ20のみを加工することにより、同様に良好に行うことができることが理解されよう。
【0121】
ここで図7〜9を参照する。図7〜9は、液体入口制御部材100、ポンプ部502、液圧検知部材400および液体出口制御部材200を統合した流体流組立体を形成するマイクロポンプ500を示す。
【0122】
好ましくは、マイクロポンプには、ガラスクロージャウェハ20およびスタック30だけでなく、追加のクロージャウェハ20’が、支持ウェハ36の、クロージャウェハ20を有する面と反対側の面、すなわち、図7および8の下部に接着されて設けられる。
【0123】
したがって、クロージャウェハ20が第1のガラスクロージャウェハを構成し、追加のクロージャウェハ20’が、支持ウェハ36の、第1のガラスクロージャウェハ20を有する面と反対の側の面に固定された第2のガラスクロージャウェハを構成することが理解されるであろう。
【0124】
以下にさらに詳細に説明するように、ガラスクロージャウェハ20は、マイクロポンプの液体充填空間を、耐漏洩性を有して閉鎖するように働くだけでなく、ポンプダイヤフラム506の上り行程(アップストローク)における接触部としても働く。ポンプダイヤフラムとガラスクロージャウェハ20の間の付着または吸盤作用を防止するために、耐付着材料からつくられた要素510が、クロージャウェハ20の、スタックに面した面20a上に配置されている。
【0125】
これらの要素510は、好ましくは、クロージャウェハ20の上記面20aに配置されたチタン層に由来する。これらの要素510は、これらの要素間を液体が流れることを可能にし、かつポンプダイヤフラム506がクロージャウェハ20に付着することを防止する、互いに離れた突出部を形成する。
【0126】
これらの要素510をシリコン層32上に、すなわち、特にダイヤフラム506の自由面上にも同様に良好に配置し得ることを理解されたい。
【0127】
クロージャウェハ20’もまた接触要素として働く。この場合は、ダイヤフラム506のダウンストロークに関して、ウェハ20’と移動ポンプ部514とが接触することによる。これらの2つの接触部(ウェハ20と20’)を組合せることは、ポンプダイヤフラム506の鉛直方向のストローク幅の制御を可能にし、かつ、汲み上げられる容量が正確なことを保証する。
【0128】
部分514が自由に移動できるようにしておくことを保証するために、耐付着層520が、追加のクロージャウェハ20’上に、スタック30に面して設けられる(図7および8を参照のこと)。この層520は、リングの形態であり、追加のクロージャウェハ20’内を通る開口部522の縁部に配置される。
【0129】
層520は、好ましくはチタンからつくられる。これにより、スタック30が追加のクロージャウェハ20’に接着されても、移動ポンプ部514が追加のクロージャウェハ20’に付着することが防止される。
【0130】
当然、層520は、移動ポンプ部514の、スタック30と反対側の面上に同様に良好に堆積され得る。
【0131】
要素110,510、および520に関し、チタンの代わりに他の幾つかの耐付着材料、例えば金、酸化シリコンまたは窒化シリコンを有利に用いることができる。
【0132】
マイクロポンプ500の上流部に液体入口制御部材100が見られる。液体入口ダクト102が液体入口ダクト102’により延長されて追加のクロージャウェハ20’内を通り、マイクロポンプ500により配送されるべき液体が到達する入口を有する。
【0133】
この液体入口制御部材100は、酸化シリコン層34の材料を有さないゾーン35、キャビティ38、および、移動部材40を画成するギャップ104を含む。液体入口制御部材100は、図7および8に、その静止位置にて示されている。
【0134】
マイクロポンプ500は、液体入口制御部材100と液圧検知部材400の間に、ポンプチャンバ504を備えたポンプ部502を含む。ポンプチャンバ504はキャビティ38の延長上に位置し、かつ、ガラスクロージャウェハ20とシリコン層32の間に画成されている。シリコン層32の、ガラスクロージャウェハ20に面した面は加工されている。
【0135】
ディスク状のポンプダイヤフラム506が、シリコン層32内に、第1にポンプチャンバ504に面し、第2に、支持ウェハ36内に加工された、材料を有さない環状容積508に面して位置している。材料を有さない前記環状容積508は、材料を有さないゾーン535によりシリコン層34内に延長されている。
【0136】
この容積508は、シリコン支持ウェハ36の残りの部分を、円形の断面を有する中実のシリンダの形態の移動ポンプ部514から分離するように働く。移動ポンプ部514はポンプダイヤフラム506に面して配置され、ポンプダイヤフラム506に、酸化シリコン層34の、無傷のまま残された部分516により連結されている。
【0137】
容積508は支持ウェハ36の残りの部分から分離されているため、有利なことに、移動ポンプ部514内に、少なくとも1つの液圧検知部材を、例えば、図5,5Aおよび5Bの液圧検知部材と類似の方法で動作する1以上の液圧検知器の形で統合することが可能である。
【0138】
このような変型例が図16Aに示されている。図16Aは、8個の液圧検知器400’が嵌め込まれたポンプ部502’を示す。8個の液圧検知部材400’は、移動ポンプ部514’内に角度を成して規則的に分布され、8個の一連の(8組の)ダクト512’により真直に穿孔されている。これらの8組のダクト512’は、酸化シリコン層34の、無傷のまま残された部分516’により互いに独立し、検知器400’の各々におけるそれぞれのゾーンにおいては、部分516’が、対応する複数組のダクト512’を相互に連結する。
【0139】
当然、少なくとも2つの液圧検知器400’が嵌めこまれたポンプ部502’を設けることもできる。検知器の各々が液圧検知部材を形成し、移動ポンプ部514’内に規則的に角度をなして間隔をあけて配置され、検知部材は、少なくとも2組のダクト512’により真直に穿孔される。
【0140】
ポンプ部の別の変型例が、図16Bに、参照番号502”にて示されている。この場合、図16Aにおける8組のダクト512’は他のダクト512’と共にあり、これにより、これらのダクトの全てが、単一の環状液圧検知器400”を形成する環状ゾーンに及んでいる。この別の変型例において、酸化シリコン層34の、無傷のまま残される部分は、実質的に移動ポンプ部514’の縁部に位置する第1の環状部516”aと、本質的に移動ポンプ部514’の中央に位置する第2の部分516”bと、に限定される。
【0141】
また、移動ポンプ部514’は、好ましくはその中央にて、制御ロッド(図示せず)を受けるのに適した通路540により真直に穿孔されている。制御ロッドはダイヤフラム506に固定された一端を有し、開口部522から突出してハンドルを形成する他端を有する。このハンドルは、必要なときにユーザがダイヤフラム506を、前記ロッドを用いて引いてクロージャウェハ20から遠ざけることを可能にする。このような一連の動作は、ポンプチャンバ504における高度の吸引を連続して展開するために、あるいはまた、マイクロポンプの動作を加速するために行われることができる。移動ポンプ部514において、通路540およびロッドの存在が液圧検知部材の存在と独立であることを理解されたい。
【0142】
また、ポンプダイヤフラム506に面して配置され、一般にアクチュエータと称されるマイクロポンプ制御手段をマイクロポンプ内に直接に統合することができることを理解されたい。これは、マイクロポンプ制御手段を、ガラスウェハ20’の、スタックと反対側の面に固定し、かつ移動ポンプ部514に固定することにより行われる。あるいは、マイクロポンプ制御手段はマイクロポンプの外部にあり、ポンプダイヤフラム506に対して間接的に連結されることもできる。
【0143】
これらの制御手段は、詳細には、圧電により、電磁気により、または空気圧により動作するタイプの制御手段であり得る。
【0144】
図7および8に示されたマイクロポンプ500は、ポンプ部502の下流に、図5,5A,5Bを参照しつつ説明した液圧検知器400を含み、通路412は、追加のガラスクロージャウェハ20’を貫通するダクト413’を介して外圧に連通している。さらに、液圧検知部材400の他の構成要素、詳細には、酸化シリコン層34の、材料を有さないゾーン35と、液体入口402と液体出口404の間に移動部材40を画成するキャビティ38と、が見られる。
【0145】
図7および8において、液圧検知部材400は、その静止位置、すなわち、移動部材40がベアリング部414と接触していない開放位置にて示されている。ベアリング部414およびシリコン層32との電気的連結は示されてないことを理解されたい。
【0146】
このように、液圧検知器が、マイクロポンプが適切に動作することを保証するように働くことが理解されるであろう。これは、ポンプダイヤフラム506の撓みにより生じるポンプの各ストロークにおける液圧の一時的な増大を検知することにより行われる(ダイヤフラム506が、図7および8における上側へ移動すると圧力が増大し、下側に移動にすると圧力が減少する)。圧力の増加が生じていないのでポンプが動作していないと検知すること、または、異常に長時間にわたって高圧状態が続くことから下流に障害物があると検知することが可能である。
【0147】
マイクロポンプ500のさらに下流部分に、図17に拡大して示されている液体出口制御部材200がある。
【0148】
この液体出口制御部材200は、液体を、液体出口ダクト204を介して配送させるノンリターン逆止弁を形成する。出口ダクト204はシリコン支持ウェハ36内を通り、液体出口ダクト204’により延長されて、追加のガラスクロージャウェハ20’内を通っている。
【0149】
この液体出口制御部材200の他の構成要素は、酸化シリコン層34における材料を有さないゾーン35と、キャビティ38により画成される移動部材40と、である。前記移動部材40は、弁本体を形成する環状部分206を有し、環状部分206の第2の端部が、クロージャウェハ20上に配置された耐付着性の層210と接触する。環状部分206はオリフィス208により穿孔されている。図7および8において、出口制御部材200は閉鎖位置にて示されている。
【0150】
図17に拡大図で示された液体出口制御部材200、および、図18に示された、部材200の変型例300は、図1の部材100と同じ要素を用いてつくられる。
【0151】
図17に見られるように、液体出口制御部材200は、キャビティ38内の液体入口202、および、シリコン支持スタック36の厚さ全体にわたって加工された、キャビティ38に面した液体出口ダクト204を有する。
【0152】
酸化シリコン層34内の、材料を有さないゾーン35は、液体出口ダクト204と少なくとも位置合わせして配置され、前記ダクト204の全周囲を僅かに超えて延在する。
【0153】
シリコン層32を加工することによりキャビティ38をつくるときに、移動部材40は部分206を有して形成される。部分206は、実質的にシリコン層32の最初の厚さの全体にわたって延在し、閉じた輪郭、好ましくは環状の輪郭を有する。この部分206は、絶縁材料層34のゾーン35に面した第1の端部206aから、クロージャウェハ20の、スタック30に面した面20a付近の第2の端部206bまで延在する。
【0154】
この部分206は、好ましくは、環状の円柱状スリーブであり、ゾーン35およびダクト204に位置合わせして配置されたオリフィス208を取り囲む。オリフィス208はゾーン35およびダクト204と流体連通している。
【0155】
この液体出口制御部材200において、移動部材40は、実質的に液体出口ダクト204の断面全体を横切って延在する。
【0156】
弁座は、好ましくはチタンからつくられた耐付着性要素210により構成され、ガラスクロージャウェハ20の、移動部材40に面する面20a上に配置される。この耐付着性要素210は部分206と形状が類似であり、したがって、好ましくは環状である。耐付着性要素210を、部分206の第2端部206b上に配置することもでき、また、他の幾つかの耐付着性材料、例えば、金、酸化シリコン、または窒化シリコンから同様に良好につくることもできる。
【0157】
弁本体は、環状の部分206の第2端部206bにより構成され、部分206の第1端部206aはシリコン支持ウェハ36に面し、かつ液体出口ダクト204に隣接している。
【0158】
弁の接触領域を最小にするためには、環状の部分206の第2端部206bの厚さは小さく、オリフィス208はこの高さにおいてより大きくなっている。
【0159】
図17において、液体出口制御部材200は、閉鎖位置に対応する静止位置にて示されており、入口202を通って到達した液体は、オリフィス208への侵入を、部分206により防止される。このとき、部分206の第2端部206bは前記耐付着性要素210と耐漏洩性の接触をしている。
【0160】
液体入口202における十分な液圧は、出口ダクト204内の液圧が液体入口の圧力よりも小さければ移動部材に力を加えて、移動部材40をシリコン支持ウェハ36に向って移動させることにより弁を開く(相対的配置は図示せず)ことを可能にする。この開放位置において、液体は、前記耐付着性要素210およびクロージャウェハ20から遠ざけられた部分206の第2端部206b上を通過することができ、それにより、液体出口ダクト204と直接に流体連通しているオリフィス208内に侵入する。
【0161】
前記耐付着性要素210が、部分206の第2端部206bにより形成された弁本体が弁座(前記耐付着性要素210の、スタック30に面する面)に付着するのを防止することを可能にすることもまた理解されよう。
【0162】
さらに、前記耐付着性要素210が、移動部材40の初期弾性移動により液体出口制御部材200内にプレテンションをもたらすことを可能にし、それにより弁がその静止位置にて、予め決められた閾値を超えない液圧で閉じたまま維持されることが理解されよう。
【0163】
また、弾性の戻り現象によって、入口202における液圧が出口ダクト204における液圧以下である場合には、制御部材200が、図17に示したその閉鎖位置に戻り、部分206の第2端部206bと前記耐付着性要素210の間の耐漏洩性の接触が、液体入口202からオリフィス208へのその後のいかなる液体の流入をも防止する。
【0164】
図18は、液体出口制御部材300に対応する変型例を示す。この例において、液体入口302がキャビティ38内につくられているが、液体出口ダクト304はガラスクロージャウェハ20内を真直に通っている。
【0165】
この液体出口制御部材300の移動部材40は、形状が図17の移動部材40と非常に類似しており、部分206と類似の環状部分306を有するが、オリフィス208のようなオリフィスを有さない。
【0166】
この場合も、環状部分306が、環状部分306の、クロージャウェハに面した第2端部306bと、スタック30に面した耐付着性要素310との耐漏洩性の接触をもたらす(図18に示した閉鎖位置において)ことにより弁本体として働く。
【0167】
この場合、図18に双頭矢印により示されているように移動部材40が鉛直方向に移動することを可能にするために、酸化シリコン層34の、材料を有さないゾーン35が移動部材40の全てに面して延在している。
【0168】
さらに、酸化シリコンをゾーン35から除去するための酸化シリコン層34へのアクセスが、シリコン支持スタック36の自由面から、シリコン支持スタック36を真直に通る通路312によりもたらされる。この通路312は、必然にではないが、好ましくは、図18に示されているように円柱の形状を有し、断面が円形である。
【0169】
マイクロポンプ500は、多くの用途に、特に、液状薬を連続的に配送するための医療用ポンプとして用いられることができる。
【0170】
このようなポンプは寸法が非常に小さいため、「移植可能な(埋め込み型、はめ込み型)」タイプのポンプであり得る。すなわち、このポンプは患者の皮膚下に配置され得る。あるいは、このポンプは、外付けタイプであってもよく、患者の血液循環系に、ポンプの入口制御部材100により、皮膚を通る入口ポートを介して連結され得る。
【0171】
図10〜15は、マイクロポンプ500の製造における種々のステップを示し、特に、部材100,200,400およびポンプ部502を製造するステップを含む。これらのステップは同時に実行される。
【0172】
これらの種々の製造ステップにおいて、ウェハまたはウェハの或るゾーンの厚さを変えるための加工に用いる用語「マシニング」と、或るゾーンにおいては層の材料を保存し、他のゾーンからは、その層の材料を全て除去する意味の加工に用いられる用語「構造化(ストラクチャリング)」と、は区別される。
【0173】
マイクロポンプ500を製造する方法は、以下のステップを含む。すなわち、
a)スタック30を設けるステップであって、好ましくはシリコンからつくられた支持ウェハ36と、好ましくは酸化シリコンからつくられた、支持ウェハ36の少なくとも一部を覆う絶縁材料層34と、(単結晶または多結晶の)シリコンの層32であって、絶縁材料層34を覆い、かつ自由面を、絶縁材料層34を覆う面と反対の側に有するシリコン層32と、を含むスタック30を設けるステップと;
b)フォトリソグラフィおよび化学エッチングにより、支持ウェハ36の自由面から、入口制御部材100の液体入口ダクト102と、環状容積508と、圧力検知器400のダクト412および412’と、液体出口制御部材200の液体出口ダクトと、を加工するステップであって、これらのダクトまたは環状容積が、支持ウェハ36を真直に貫通する(図11)ように加工するステップと;
c)フォトリソグラフィおよび化学エッチング(フッ化水素酸またはBHF−バッファードフッ酸)により、スタック30の他方の側、すなわちシリコン層32の自由面から、入口制御部材100のギャップ104およびキャビティ38と、ポンプチャンバ504と、圧力検知器400のキャビティ38と、キャビティ38と、液体出口制御部材200のオリフィス308と、を加工するステップ(図9〜14)と;
d)酸化シリコン層34に化学エッチングを施すステップであって、入口制御部材100の液体入口ダクト102を介し、環状容積508を介し、圧力検知器400のダクト412および412’を介し、および、液体出口制御部材200の液体出口ダクト204を介して、それぞれ、酸化シリコン層34の材料を有さないゾーン35、535、35および35を形成し、それにより、移動部材40と、ダイヤフラム506と、移動部材40と、移動部材40と、をそれぞれ酸化シリコン層34から解放することを可能にするステップ(図15)と;
e)第1クロージャウェハ20を設けるステップと;
f)耐付着性材料、好ましくはチタンの層を、物理化学的方法により、前記スタック30に連結されるべき第1クロージャウェハ20の面20a上に堆積させるステップと;
g)耐付着性材料の層を、前記要素510および前記耐付着層210を形成するように構造化するステップと;
h)第2のクロージャウェハ20’を設けるステップと;
i)耐付着性材料、好ましくはチタンの層を、物理化学的方法により、前記スタック30に連結されるべき第2クロージャウェハ20’の面上に堆積させるステップと;
j)耐付着性材料の層を、前記リング状の層520を形成するように構造化するステップと;
k)物理化学的方法により第1クロージャウェハ20を、シリコン層32の加工されていない面に、耐漏洩性を有するように、好ましくはウェハボンディングにより連結させるステップと、
l)物理化学的方法により第2クロージャウェハ20’を、支持ウェハ36の加工されていない面に、耐漏洩性を有するように、好ましくはウェハボンディングにより連結させるステップと、である。
【0174】
このようにして得られるマイクロポンプ500が非常に簡単な方法で製造され、また、この方法により、マイクロポンプ500の構成部品の全てに関し、それらが最初の同一のスタック30からつくられる故に非常に均一な厚さ特性を有し、それにより、特に汲み上げの死容積が非常に小さくなることが保証されることが理解されよう。
【0175】
この製造方法によりもたらされる単純化の例として、先行技術のマイクロポンプをつくるためには、約12個のフォトリソグラフィマスクを用いて異なる層の全てをつくり、かつ加工することが必要であるが、本願発明の上記の方法を用いれば約5個のマスクで足りる。
【図面の簡単な説明】
【図1】
図1は、本願発明の流体流装置の第1の態様を構成し、かつ第1態様の第1の実施形態を実施する液体入口制御部材の断面図であり、
図1Aおよび図1Bは、図1の液体入口制御部材の2つの変型例の平面図であり、スタックを覆うクロージャウェハは省かれている。
【図2】
図2,図2Aおよび図2Bは、図1,1Aおよび1Bと類似の図であり、本願発明の流体流装置の第1の態様の第2の実施形態を示す。
【図3】
図3および図3Aは、図1および1Aと類似の図であり、本願発明の流体流装置の第1の態様の第3の実施形態を示す。
【図4】
図4および図4Aは、図1および1Aと類似の図であり、本願発明の流体流装置の第1の態様の第4の実施形態を示す。
【図5】
図5は、本願発明の流体流装置の第2の態様を構成する液体圧力検知器の断面図であり、
図5Aおよび5Bは、図5の液体圧力検知器の2つの変型例の平面図であり、スタックを覆うクロージャウェハおよびシリコン層は省かれている。
【図6】
図6は、図5と類似の図であり、本願発明の流体流装置の第2の態様の第2の実施形態を示す。
【図7】
図7は、本願発明の流体流装置の第3の態様を構成するマイクロポンプの、部分的に斜視図で示された長手方向の断面図である。
【図8】
図8は、図7のマイクロポンプの長手方向の概略断面図である。
【図9】
図9は、図7および図8のマイクロポンプの平面図であり、スタックを覆うクロージャウェハは省かれている。
【図10】
図10は、図7および図8のポンプの製造ステップの1つを示す。
【図11】
図11は、図7および図8のポンプの製造ステップの1つを示す。
【図12】
図12は、図7および図8のポンプの製造ステップの1つを示す。
【図13】
図13は、図7および図8のポンプの製造ステップの1つを示す。
【図14】
図14は、図7および図8のポンプの製造ステップの1つを示す。
【図15】
図15は、図7および図8のポンプの製造ステップの1つを示す。
【図16】
図16Aは、図7〜9のポンプ部の、複数の液圧検知器を形成する変型例の平面図であり、スタックを覆うクロージャウェハおよびシリコン層は省かれており、
図16Bは、図16Aと類似の図であり、図7〜9のポンプ部の、角度を成す形状の液圧検知器を形成する別の変型例を示す。
【図17】
図17は、図7および8のマイクロポンプの液体出口制御部材の拡大図である。
【図18】
図18は、図17の液体出口制御部材の変型例を示す。

Claims (38)

  1. 流体流装置(100;400;500)であって、クロージャウェハ(20)により覆われたスタック(30)を含み、前記スタック(30)が、支持ウェハ(36)と、前記支持ウェハ(36)の少なくとも一部を覆う絶縁材料の層(34)と、前記絶縁材料の層(34)を覆いかつ前記クロージャウェハ(20)により覆われた、単結晶シリコンまたは多結晶シリコンの層(32)と、を含み、
    前記クロージャウェハ(20)および/または前記シリコン層(32)が、液体が充填されるキャビティ(38)を前記クロージャウェハ(20)と前記シリコン層(32)の間に画成するように加工されており、
    前記支持ウェハ(36)が、支持ウェハ内を真直に通る少なくとも1つのダクト(102;412,412’)を有し、
    前記絶縁材料の層(34)が酸化シリコンからつくられ、材料を全く有さない少なくとも1つのゾーン(35)を有し、ゾーン(35)は、前記キャビティ(38)と協働して前記シリコン層(32)内に移動部材(40)を画成するように、前記ダクト(102;412,412’)と少なくとも位置合わせされて配置され、移動部材(40)が、前記支持ウェハ(36)に向って可逆的に移動することにより前記キャビティ(38)内の液体の圧力に反応する流体流装置。
  2. 前記移動部材(40)が、移動部材(40)と前記支持ウェハ(36)とが接触するまで前記支持ウェハ(36)に向って可逆的に移動することを特徴とする請求項1に記載の装置。
  3. 前記クロージャウェハ(20)がガラスからつくられていることを特徴とする請求項1または2に記載の装置。
  4. 前記支持ウェハ(36)がシリコン、石英またはサファイアからつくられていることを特徴とする請求項1〜3のいずれか一項に記載の装置。
  5. 前記支持ウェハ(36)が50μm〜1mmの範囲の厚さを有することを特徴とする請求項1〜4のいずれか一項に記載の装置。
  6. 前記支持ウェハ(36)が300μm〜500μmの範囲の厚さを有することを特徴とする請求項5に記載の装置。
  7. 前記絶縁材料の層(34)が100nm〜2μmの範囲の厚さを有することを特徴とする請求項1〜6のいずれか一項に記載の装置。
  8. 前記絶縁材料の層(34)が0.5μm〜1μmの範囲の厚さを有することを特徴とする請求項7に記載の装置。
  9. 前記シリコン層(32)が1μm〜100μmの範囲の厚さを有することを特徴とする請求項1〜8のいずれか一項に記載の装置。
  10. 前記シリコン層(32)が10μm〜50μmの範囲の厚さを有することを特徴とする請求項9に記載の装置。
  11. 請求項1〜10のいずれか一項に記載の流体流装置を製造する方法において、
    支持ウェハ(36)と、前記支持ウェハ(36)の少なくとも一部を覆う絶縁材料の層(34)と、前記絶縁材料の層(34)の層を覆いかつ自由面を有する単結晶シリコンまたは多結晶シリコンの層(32)と、を含むスタック(30)を設けるステップと、
    フォトリソグラフィおよび化学エッチングを用いて、前記キャビティ(38)を前記クロージャウェハ(20)から、および/または前記シリコン層(32)の自由面から加工するステップと、
    フォトリソグラフィおよび化学エッチングを用いて、前記支持ウェハ(35)内を真直に通る少なくとも1つのダクト(102;412,412’)を加工するステップと、
    前記絶縁材料の層(34)を、少なくとも前記ダクト(102;412,412’)を介して、前記シリコン層(32)の或るゾーンが前記絶縁材料層(34)から解放されるように化学的にエッチングし、それにより前記移動部材(40)を形成するステップと、
    少なくとも1つのクロージャウェハ(20)を設けるステップと、
    物理化学的方法を用いて、好ましくはウェハボンディングにより、前記クロージャウェハ(20)を、シリコン層(32)の加工されていない前記面に、耐漏洩性を有するように連結させるステップと、を含むことを特徴とする方法。
  12. ノンリターン逆止弁を形成する液体入口制御部材(100;100’;100”;100”’)であって、クロージャウェハ(20)に覆われたスタック(30)を含み、前記スタック(30)が、支持ウェハ(36)と、前記支持ウェハ(36)の少なくとも一部を覆う絶縁材料の層(34)と、前記絶縁材料層(34)を覆いかつ前記クロージャウェハ(20)により覆われた、単結晶シリコンまたは多結晶シリコンの層(32)と、を含み、
    前記クロージャウェハ(20)および/または前記シリコン層(32)が、前記クロージャウェハ(20)と前記シリコン層(32)の間にキャビティ(38)を画成するように加工され、前記キャビティ(38)は、液体が充填されるように設計され、かつ、シリコン層(32)の厚さ全体にわたって加工された少なくとも1つのギャップ(104;104;104)を有し、
    前記支持ウェハ(36)が、その内部を真直に通りかつ前記キャビティ(38)に少なくとも面して配置された少なくとも1つの液体入口ダクト(102)を有し、
    前記絶縁材料層(34)が、材料を全く有さない少なくとも1つのゾーン(35)を有し、ゾーン(35)は、前記キャビティ(38)と協働して前記シリコン層(32)内に移動部材(40)を画成し、それにより前記弁のためのフラップを形成するように、前記ダクト(102)および前記ギャップ(104;104;104)に少なくとも位置合わせされて延在し、前記移動部材(40)を取り囲む前記シリコン層(32)の或る部分が、前記液体入口ダクト(102)と前記キャビティ(38)の間に液圧の差が生じたときに前記移動部材(40)が前記支持ウェハ(36)に向って可逆的に移動することを可能にする弾性を有する液体入口制御部材。
  13. 前記液体入口ダクト(102)がギャップ(104)の付近に配置され、しかしギャップ(104)に面しておらず、前記移動部材(40)が、弁の閉鎖位置であって、移動部材(40)が前記支持ウェハ(36)と耐漏洩性の接触をし、これが、少なくとも前記ダクト(102)を取り囲む前記弁の弁座を形成し、前記液体入口ダクト(102)とキャビティ(38)との間を液体が流れることが防止される閉鎖位置と、弁の開放位置であって、移動部材(40)が前記支持ウェハ(36)と、前記ダクト(102)周囲にて耐漏洩性の接触をしておらず、移動部材(40)が、液体が前記液体入口ダクト(102)から前記ギャップ(104)に向って流れることを可能にする開放位置と、の間を移動することを特徴とする請求項12に記載の液体入口制御部材(100;100’)。
  14. さらに、前記クロージャウェハ(20)と前記移動部材(40)の間にベアリング手段(106,110)を含み、前記ベアリング手段(106,110)が、その静止位置あるときに前記移動部材(40)を前記閉鎖位置に配置することを特徴とする請求項13に記載の液体入口制御部材(100’)。
  15. 前記クロージャウェハ(20)が第1のクロージャウェハ(20)であり、さらに第2のクロージャウェハ(20’)が含まれ、第2クロージャウェハ(20’)は、前記支持ウェハ(36)の前記第1クロージャウェハ(20)と反対側の面に固定され、かつ、内部を真直に通るダクト(102”a)が設けられており、移動部(361)が前記支持ウェハ(36)内に、前記キャビティ(38)、前記移動部材(40)および前記ダクト(102”a)に面しかつキャビティ内に延在してつくられ、前記移動部(361)はギャップ(104)の付近に配置され、しかしギャップ(104)に面しておらず、材料を有さない環状の容積(102”)が、支持ウェハ(36)の厚さ全体にわたって、絶縁材料層(34)において材料を全く有さない前記ゾーン(35)に面して加工され、それにより、前記移動部(361)を支持ウェハ(36)の残りの部分から分離し、ギャップ(104)と連結する前記液体入口ダクト(102”)を形成し、前記絶縁材料層(34)は、前記移動部(361)を前記移動部材(40)に堅固に連結する連結ゾーン(321)を有し、さらに、耐付着性材料からつくられた環状の弁要素(370)を含み、前記弁要素(370)は、第2クロージャウェハ(20’)の、前記移動部(361)に面した面に配置されて、前記移動部材(40)が支持ウェハ(36)に可能な限り近づいたときに、前記移動部(361)の第2クロージャウェハ(20’)に面した面と、弁要素(370)の支持ウェハ(36)に面した面とが耐漏洩性の接触をし、それにより液体入口制御部材(100”)をその閉鎖位置に移動させるか、あるいは、弁要素(370)は、前記移動部(361)の、第2クロージャウェハ(20)に面した面に配置されて、前記移動部材(40)が支持ウェハ(36)に可能な限り近づいたときに、弁要素(370)の前記第2クロージャウェハ(20’)に面した面と、第2クロージャウェハ(20’)の支持ウェハ(36)に面した面とが耐漏洩性の接触をし、それにより液体入口制御部材(100”)をその閉鎖位置に移動させ、この閉鎖位置において、第2クロージャウェハ(20’)のダクト(102”a)から支持ウェハ(36)の前記液体入口ダクト(102”)に向う液体の流れが止められることを特徴とする請求項12に記載の液体入口制御部材(100”)。
  16. 前記クロージャウェハ(20)が第1のクロージャウェハ(20)であり、さらに第2のクロージャウェハ(20’)が含まれ、第2クロージャウェハ(20’)は、前記支持ウェハ(36)の、前記第1クロージャウェハ(20)と反対側の面に固定され、かつ、内部を真直に通るダクト(102”a)が設けられており、環状の移動部(361)が前記支持ウェハ(36)内に、前記キャビティ(38)および前記移動部材(40)に面しかつ位置合わせされて形成され、材料を有さない第1の環状容積(102”’a)が支持ウェハ(36)の厚さ全体にわたって、前記キャビティ(38)、および、絶縁材料層(34)において材料を全く有さない前記ゾーン(35)に面して加工され、それにより、前記移動部(361)を支持ウェハ(36)の残りの部分から分離し、材料を有さない第2の円柱状容積(102”’)が支持ウェハ(36)の厚さ全体にわたって、移動部の位置にて加工され、それにより、前記ギャップ(104)と連通する前記液体入口ダクト(102)を形成し、前記絶縁材料層(34)は、前記移動部(361)を前記移動部材(40)に前記液体入口ダクト(102)およびギャップ(104)の周囲にて堅固に連結する連結ゾーン(321)を有し、さらに、前記液体入口ダクト(102”’)を取り囲む、耐付着性材料からつくられた環状の弁要素(370)を含み、前記弁要素(370)は、第2クロージャウェハ(20’)の、前記移動部(361)に面した面に配置されて、前記移動部材(40)が支持ウェハ(36)に可能な限り近づいたときに、前記移動部(361)の第2クロージャウェハ(20’)に面した面と、弁要素(370)の、支持ウェハ(36)に面した面とが耐漏洩性の接触をもたらし、それにより液体入口制御部材(100”’)をその閉鎖位置に移動させるか、あるいは、弁要素(370)は、前記移動部(361)の、第2ガラスクロージャウェハ(20’)に面した面に配置されて、前記移動部材(40)が支持ウェハ(36)に可能な限り近づいたときに、弁要素(370)の、前記第2クロージャウェハ(20’)に面した面と、第2クロージャウェハ(20’)の、支持ウェハ(36)に面した面とが耐漏洩性の接触をもたらし、それにより液体入口制御部材(100”’)をその閉鎖位置に移動させ、この閉鎖位置において、第2クロージャウェハ(20’)のダクト(102”a)から前記第1環状容積(102”’a)に到達した液体が支持ウェハ(36)内の前記液体入口ダクト(102”’)に侵入することが防止されることを特徴とする請求項12に記載の液体入口制御部材(100”)。
  17. 液圧検知部材(400)であって、クロージャウェハ(20)を覆うスタック(30)を含み、前記スタック(30)が、支持ウェハ(36)と、前記支持ウェハ(36)の少なくとも一部を覆う絶縁材料の層(34)と、前記絶縁材料の層(34)を覆いかつ前記クロージャウェハ(20)により覆われた単結晶シリコンまたは多結晶シリコンの層(32)とを含み、前記クロージャウェハ(20)および/または前記シリコン層(32)が、前記クロージャウェハ(20)と前記シリコン層(32)の間に液体を充填するためのキャビティ(38)を画成するように加工され、
    前記支持ウェハ(36)が、支持ウェハ内を真直に通りかつ前記キャビティ(38)に面して配置された少なくとも1つのダクト(412,412’)を有し、
    前記絶縁材料層(34)が、材料を全く有さない少なくとも1つのゾーン(35)を有し、ゾーン(35)は、前記キャビティ(38)と協働して前記シリコン層(32)内に移動部材(40)を画成するように、前記ダクト(412,412’)と少なくとも位置合わせして配置され、前記シリコン支持ウェハ(36)が、前記ダクト(412’)により支持ウェハ(36)の残りの部分から分離された島状部を形成する、移動部材(40)に面した部分(414)を有し、前記移動部材(40)が、その弾性および前記キャビティ(38)内の液体の圧力により支持ウェハ(36)に向って可逆的に移動することができる液圧検知部材(400)。
  18. 前記移動部材(40)が開放位置から閉鎖位置に移動することができ、閉鎖位置にて、移動部材(40)が、移動部材(40)に面した前記部分(414)と物理的接触をし、部分(414)は、前記ダクト(412’)により支持ウェハ(36)の残りの部分から分離された島状部を形成しかつシリコンウェハのベアリング部(414)を形成し、前記物理的接触が電気的に検知可能であることを特徴とする請求項17に記載の液圧検知部材(400)。
  19. さらに、ベアリング部(414)と前記シリコン層(32)の間に連結手段(416)を含むことを特徴とする請求項18に記載の液圧検知部材(400)。
  20. 前記クロージャウェハ(20)が第1のクロージャウェハ(20)であり、さらに、支持ウェハ(36)の、前記第1クロージャウェハ(20)と反対側の面に固定された第2のクロージャウェハ(20’)が含まれ、支持ウェハ(36)の残りの部分から分離された島状部を形成する前記部分が移動部(461)を構成し、かつ、前記絶縁材料の層(34)が、前記移動部(461)を前記移動部材(40)に堅固に連結する連結ゾーン(321)を有することを特徴とする請求項17に記載の液圧検知部材(400”’)。
  21. クロージャウェハ(20)に覆われたスタック(30)を含むマイクロポンプであって、前記スタック(30)が、支持ウェハ(36)と、前記支持ウェハ(36)の少なくとも一部を覆う絶縁材料の層(34)と、前記絶縁材料の層(34)を覆いかつ前記クロージャウェハ(20)により覆われた単結晶シリコンまたは多結晶シリコンの層(32)とを含み、
    前記クロージャウェハ(20)および/または前記シリコン層(32)が、前記クロージャウェハ(20)と前記シリコン層(32)の間にキャビティ(38)を画成するように加工され、このキャビティは液体が充填されるためのものであり、かつポンプチャンバ(504)を含み、
    前記支持ウェハ(36)が、支持ウェハ内を真直に通り、かつ前記キャビティ(38)に面した少なくとも1つの第1のダクト(102,508,412,412’,204)を含み、
    前記絶縁材料の層(34)が、材料を全く有さない少なくとも1つの第1のゾーン(35)を有し、ゾーン(35)は、前記キャビティ(38)と協働して前記シリコン層(32)内に第1の移動部材(40)を画成するように、前記第1ダクト(102,508,412,412’,204)と少なくとも位置合わせして配置され、第1移動部材が、前記ポンプチャンバ(504)内の液圧の下で前記支持ウェハ(36)に向って可逆的に移動するのに適しており、前記第1移動部材(40)が液体入口制御部材(100)のフラップの一部を形成し、
    前記マイクロポンプが、さらに、ポンプダイヤフラム(506)に固定されてポンプチャンバ(504)の容積を周期的に変化させる制御手段を含むポンプ部(502)と、液体出口制御部材(100)とを含むマイクロポンプ。
  22. 前記第1移動部材(40)が、前記支持ウェハ(36)と耐漏洩性の接触をするのに適しており、前記第1移動部材(40)が前記液体入口制御部材(100)のフラップを構成することを特徴とする請求項21に記載のマイクロポンプ。
  23. 前記絶縁材料の層(34)が、さらに、材料を全く有さない第2のゾーン(35)を有し、第2のゾーン(35)は、前記キャビティ(38)と協働して第2の移動部材(40)を前記シリコン層(32)内に画成し、第2移動部材は前記ポンプチャンバ内の液圧下で前記支持ウェハ(36)に向って移動するのに適しており、前記第2移動部材(40)が液体出口制御部材(200)のフラップを構成することを特徴とする請求項22に記載のマイクロポンプ。
  24. 前記液体入口制御部材(100)が請求項12〜16のいずれか一項に従っていることを特徴とする請求項21〜23のいずれか一項に記載のマイクロポンプ。
  25. さらに、請求項17〜20のいずれか一項に記載の少なくとも1つの液圧検知部材(400)を含むことを特徴とする請求項21〜24のいずれか一項に記載のマイクロポンプ。
  26. 前記クロージャウェハ(20)がガラスからつくられた第1のクロージャウェハ(20)であることを特徴とする請求項21〜25のいずれか一項に記載のマイクロポンプ。
  27. さらに、ガラスからつくられた第2のクロージャウェハ(20’)であって、シリコン支持ウェハ(36)の、ガラスからつくられた前記第1クロージャウェハ(20)と反対側の面に固定された第2のクロージャウェハ(20’)を含むことを特徴とする請求項26に記載のマイクロポンプ。
  28. 前記マイクロポンプ制御手段が、ポンプチャンバ(504)に面して配置され、かつ、マイクロポンプ内に直接に、第2クロージャウェハ(20’)の、スタック(30)と反対側の面に固定されることにより一体化されることを特徴とする請求項22に記載のマイクロポンプ。
  29. 前記マイクロポンプ制御手段がマイクロポンプの外部にあり、かつ前記ポンプダイヤフラム(506)に対して間接的に連結されることを特徴とする請求項21〜27のいずれか一項に記載のマイクロポンプ。
  30. 前記制御手段が、圧電により、電磁気によりまたは空気圧により動作することを特徴とする請求項21〜29のいずれか一項に記載のマイクロポンプ。
  31. ポンプの移動部(514;514’)が前記支持ウェハ(36)内に、ポンプチャンバ(504)に面してつくられ、材料を有さない環状容積(508)が前記支持ウェハ(36)内に加工され、前記移動部(514;514’)を前記支持ウェハ(36)の残りの部分から分離し、前記マイクロポンプ制御手段がポンプチャンバ(504)に面して配置され、かつ、前記移動ポンプ部(514;514’)に固定されることによりマイクロポンプ内に直接に一体化されることを特徴とする請求項21〜28のいずれか一項に記載のマイクロポンプ。
  32. シリコン層(32)が、ポンプチャンバ(504)に面した前記ポンプダイヤフラム(506)を形成し、前記移動ポンプ部(514’)が、ダイヤフラム(506)に固定された一端とハンドルを形成する他端とを有する制御ロッドを受けるのに適した通路(540)により真直に穿孔されていることを特徴とする請求項31に記載のマイクロポンプ。
  33. 前記移動部(514;514’)が少なくとも1つの液圧検知部材を含むことを特徴とする請求項31に記載のマイクロポンプ。
  34. 前記ポンプ部(502’)に、各々が液圧検知部材を形成する少なくとも2つの液圧検知器(400’)が設けられており、前記部材が前記移動ポンプ部(514’)内に規則的に間隔をあけて角度を成して配置され、前記部材が、各々、少なくとも2組のダクト(512’)により真直に穿孔されていることを特徴とする請求項33に記載のマイクロポンプ。
  35. 前記ポンプ部(502”)に環状の液圧検知部材(400”)が設けられており、液圧検知部材(400”)が、環状ゾーンにおいて前記移動部(514’)内を真直に通るダクト(512’)を有することを特徴とする請求項33に記載のマイクロポンプ。
  36. 請求項21〜35のいずれか一項に記載のマイクロポンプを、液状薬を連続的に配送するための医療用ポンプとして使用する方法。
  37. 前記マイクロポンプが患者の皮膚下に配置され、前記マイクロポンプが「移植可能な」タイプであることを特徴とする請求項36に記載の使用方法。
  38. 前記マイクロポンプの入口制御部材(100)が患者の血液循環系に、皮膚を通る入口を介して連結され、前記マイクロポンプが「外部」タイプのポンプであることを特徴とする請求項36に記載の使用方法。
JP2001586745A 2000-05-25 2001-05-25 マイクロ加工された流体装置およびその製造方法 Expired - Fee Related JP4776139B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0006669 2000-05-25
FR0006669 2000-05-25
PCT/EP2001/007032 WO2001090577A1 (fr) 2000-05-25 2001-05-25 Dispositif fluidique micro-usine et son procede de fabrication

Publications (3)

Publication Number Publication Date
JP2004505212A true JP2004505212A (ja) 2004-02-19
JP2004505212A5 JP2004505212A5 (ja) 2011-01-27
JP4776139B2 JP4776139B2 (ja) 2011-09-21

Family

ID=8850593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001586745A Expired - Fee Related JP4776139B2 (ja) 2000-05-25 2001-05-25 マイクロ加工された流体装置およびその製造方法

Country Status (9)

Country Link
US (2) US7005078B2 (ja)
EP (1) EP1283957B1 (ja)
JP (1) JP4776139B2 (ja)
CN (1) CN1324238C (ja)
AT (1) ATE307976T1 (ja)
AU (2) AU7250001A (ja)
CA (1) CA2410306C (ja)
DE (1) DE60114411T2 (ja)
WO (1) WO2001090577A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008528960A (ja) * 2005-01-25 2008-07-31 デビオテック ソシエテ アノニム 微小機械装置内の表面形状を光学的に測定することによって微小機械装置内の容積を測定する方法、及びこの測定を実行するアセンブリ
JP2009531111A (ja) * 2006-03-31 2009-09-03 デビオテック ソシエテ アノニム 医療用液体注射装置
JP2012506279A (ja) * 2008-10-22 2012-03-15 デビオテック ソシエテ アノニム ポンプ機能不全検出用の一体型圧力センサを有する微小電気機械流体ポンプ
JP2014205056A (ja) * 2014-06-20 2014-10-30 デビオテック ソシエテ アノニム ポンプ機能不全検出用の一体型圧力センサを有する微小電気機械流体ポンプ
JP2016529120A (ja) * 2013-08-12 2016-09-23 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. バルブを用いたマイクロ流体デバイス
JP2017064525A (ja) * 2017-01-19 2017-04-06 デビオテック ソシエテ アノニム 医療用ポンプ装置

Families Citing this family (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7347360B2 (en) 2003-12-10 2008-03-25 American Express Travel Related Services Company, Inc. Foldable transaction card systems for non-traditionally-sized transaction cards
FR2839712A1 (fr) * 2002-05-14 2003-11-21 Westonbridge Internat Ltd Dispositif micromecanique, en particulier fluidique, et son procede de fabrication, organe de controle d'entree de liquide et/ou organe de detection de pression de liquide et/ou micropompe formant un tel dispositif micromecanique
US20050160858A1 (en) * 2002-07-24 2005-07-28 M 2 Medical A/S Shape memory alloy actuator
JP2005533545A (ja) 2002-07-24 2005-11-10 エム2・メディカル・アクティーゼルスカブ 注入ポンプシステム、注入ポンプユニット、注入ポンプ
US20040021741A1 (en) * 2002-07-30 2004-02-05 Ottenheimer Thomas H. Slotted substrate and method of making
WO2004056412A2 (en) * 2002-12-23 2004-07-08 M2 Medical A/S A disposable, wearable insulin dispensing device, a combination of such a device and a programming controller and a method of controlling the operation of such a device
JP2006504476A (ja) 2002-11-05 2006-02-09 エム2・メディカル・アクティーゼルスカブ 使い捨て、着用式インシュリン投与装置、前記装置とプログラム制御装置の組合せ、及び前記装置の操作制御方法
US7147151B2 (en) * 2002-12-11 2006-12-12 American Express Travel Related Services Company, Inc. Foldable transaction card systems
ATE498421T1 (de) * 2002-12-23 2011-03-15 Asante Solutions Inc Biegsame kolbenstange
DE10321099A1 (de) * 2003-05-09 2004-11-25 Cgs Sensortechnik Gmbh Vorrichtung zur Druckmessung
DE10334240A1 (de) * 2003-07-28 2005-02-24 Robert Bosch Gmbh Verfahren zur Herstellung eines mikromechanischen Bauteils vorzugsweise für fluidische Anwendungen und Mikropumpe mit einer Pumpmembran aus einer Polysiliciumschicht
US7867194B2 (en) 2004-01-29 2011-01-11 The Charles Stark Draper Laboratory, Inc. Drug delivery apparatus
US7753879B2 (en) * 2004-01-29 2010-07-13 M2 Group Holdings, Inc. Disposable medicine dispensing device
WO2005072793A1 (en) 2004-01-29 2005-08-11 The Charles Stark Draper Laboratory, Inc. Implantable drug delivery apparatus
US7999435B2 (en) * 2004-06-14 2011-08-16 Massachusetts Institute Of Technology Electrochemical actuator
EP1784890A4 (en) 2004-06-14 2010-04-07 Massachusetts Inst Technology ELECTROCHEMICAL METHODS, DEVICES AND STRUCTURES
US8247946B2 (en) 2004-06-14 2012-08-21 Massachusetts Institute Of Technology Electrochemical actuator
US7994686B2 (en) * 2004-06-14 2011-08-09 Massachusetts Institute Of Technology Electrochemical methods, devices, and structures
US7872396B2 (en) 2004-06-14 2011-01-18 Massachusetts Institute Of Technology Electrochemical actuator
US7731678B2 (en) 2004-10-13 2010-06-08 Hyprotek, Inc. Syringe devices and methods for mixing and administering medication
WO2006056967A1 (fr) * 2004-11-29 2006-06-01 Debiotech Sa Dispositif microfluidique mecanique, le procede de fabrication d'un empilement intermediaire et de ce dispositif microfluidique, et une micropompe.
US7713238B2 (en) 2005-04-06 2010-05-11 M2 Group Holdings, Inc. Medicine dispensing device
US7534226B2 (en) 2005-09-26 2009-05-19 M2 Group Holdings, Inc. Dispensing fluid from an infusion pump system
US8551046B2 (en) 2006-09-18 2013-10-08 Asante Solutions, Inc. Dispensing fluid from an infusion pump system
US8409142B2 (en) * 2005-09-26 2013-04-02 Asante Solutions, Inc. Operating an infusion pump system
US8105279B2 (en) * 2005-09-26 2012-01-31 M2 Group Holdings, Inc. Dispensing fluid from an infusion pump system
US8057436B2 (en) 2005-09-26 2011-11-15 Asante Solutions, Inc. Dispensing fluid from an infusion pump system
EP1933901B1 (en) * 2005-09-26 2014-12-31 Asante Solutions, Inc. Portable infusion pump having a flexible pushrod with hinged portions
EP1955240B8 (en) 2005-11-08 2016-03-30 Bigfoot Biomedical, Inc. Method for manual and autonomous control of an infusion pump
DE602006008494D1 (de) * 2005-11-08 2009-09-24 M2 Medical As Infusionspumpensystem
CN101365503B (zh) 2005-11-09 2012-02-29 海浦德科公司 注射器设备、注射器设备的部件和形成部件和注射器设备的方法
US8043206B2 (en) 2006-01-04 2011-10-25 Allergan, Inc. Self-regulating gastric band with pressure data processing
US7798954B2 (en) 2006-01-04 2010-09-21 Allergan, Inc. Hydraulic gastric band with collapsible reservoir
US7516661B2 (en) * 2006-02-23 2009-04-14 Honeywell International Inc. Z offset MEMS device
FR2900400B1 (fr) * 2006-04-28 2008-11-07 Tronic S Microsystems Sa Procede collectif de fabrication de membranes et de cavites de faible volume et de haute precision
WO2008008845A2 (en) * 2006-07-11 2008-01-17 Microchips, Inc. Multi-reservoir pump device for dialysis, biosensing, or delivery of substances
FR2905429A1 (fr) 2006-09-04 2008-03-07 Debiotech Sa Dispositif de delivrance d'un liquide comportant une pompe et une valve
US8202267B2 (en) * 2006-10-10 2012-06-19 Medsolve Technologies, Inc. Method and apparatus for infusing liquid to a body
US20080161754A1 (en) * 2006-12-29 2008-07-03 Medsolve Technologies, Inc. Method and apparatus for infusing liquid to a body
US8168140B2 (en) * 2007-01-31 2012-05-01 Agilent Technologies, Inc. Microfluidic apparatuses with nanochannels
WO2008094672A2 (en) 2007-01-31 2008-08-07 Charles Stark Draper Laboratory, Inc. Membrane-based fluid control in microfluidic devices
US7833196B2 (en) * 2007-05-21 2010-11-16 Asante Solutions, Inc. Illumination instrument for an infusion pump
US7794426B2 (en) 2007-05-21 2010-09-14 Asante Solutions, Inc. Infusion pump system with contamination-resistant features
US7892199B2 (en) 2007-05-21 2011-02-22 Asante Solutions, Inc. Occlusion sensing for an infusion pump
US7981102B2 (en) 2007-05-21 2011-07-19 Asante Solutions, Inc. Removable controller for an infusion pump
US7828771B2 (en) * 2007-07-26 2010-11-09 Entra Pharmaceuticals, Inc. Systems and methods for delivering drugs
US7717903B2 (en) 2007-09-06 2010-05-18 M2 Group Holdings, Inc. Operating an infusion pump system
US7828528B2 (en) * 2007-09-06 2010-11-09 Asante Solutions, Inc. Occlusion sensing system for infusion pumps
US7935076B2 (en) 2007-09-07 2011-05-03 Asante Solutions, Inc. Activity sensing techniques for an infusion pump system
US7879026B2 (en) 2007-09-07 2011-02-01 Asante Solutions, Inc. Controlled adjustment of medicine dispensation from an infusion pump device
US7935105B2 (en) 2007-09-07 2011-05-03 Asante Solutions, Inc. Data storage for an infusion pump system
US8287514B2 (en) 2007-09-07 2012-10-16 Asante Solutions, Inc. Power management techniques for an infusion pump system
DE102007045637A1 (de) * 2007-09-25 2009-04-02 Robert Bosch Gmbh Mikrodosiervorrichtung zum Dosieren von Kleinstmengen eines Mediums
US8083503B2 (en) * 2007-09-27 2011-12-27 Curlin Medical Inc. Peristaltic pump assembly and regulator therefor
US8062008B2 (en) * 2007-09-27 2011-11-22 Curlin Medical Inc. Peristaltic pump and removable cassette therefor
US7934912B2 (en) * 2007-09-27 2011-05-03 Curlin Medical Inc Peristaltic pump assembly with cassette and mounting pin arrangement
US9522097B2 (en) 2007-10-04 2016-12-20 Hyprotek, Inc. Mixing/administration syringe devices, protective packaging and methods of protecting syringe handlers
US8002737B2 (en) * 2007-10-04 2011-08-23 Hyprotek, Inc. Mixing/administration syringe devices, protective packaging and methods of protecting syringe handlers
DE102008003792A1 (de) * 2008-01-10 2009-07-16 Robert Bosch Gmbh Verfahren zum Herstellen einer Mikropumpe sowie Mikropumpe
US8708961B2 (en) * 2008-01-28 2014-04-29 Medsolve Technologies, Inc. Apparatus for infusing liquid to a body
AU2009257591A1 (en) 2008-06-11 2009-12-17 Allergan, Inc. Implantable pump system
US7959598B2 (en) 2008-08-20 2011-06-14 Asante Solutions, Inc. Infusion pump systems and methods
EP2343456B1 (en) * 2008-09-29 2018-08-15 Murata Manufacturing Co., Ltd. Piezoelectric pump
WO2010042493A1 (en) 2008-10-06 2010-04-15 Allergan, Inc. Mechanical gastric band with cushions
US20100185049A1 (en) 2008-10-22 2010-07-22 Allergan, Inc. Dome and screw valves for remotely adjustable gastric banding systems
US8678993B2 (en) 2010-02-12 2014-03-25 Apollo Endosurgery, Inc. Remotely adjustable gastric banding system
US8758221B2 (en) 2010-02-24 2014-06-24 Apollo Endosurgery, Inc. Source reservoir with potential energy for remotely adjustable gastric banding system
US8764624B2 (en) * 2010-02-25 2014-07-01 Apollo Endosurgery, Inc. Inductively powered remotely adjustable gastric banding system
US20110223253A1 (en) * 2010-03-15 2011-09-15 Artimplant Ab Physically stabilized biodegradable osteochondral implant and methods for its manufacture and implantation
US20110270025A1 (en) 2010-04-30 2011-11-03 Allergan, Inc. Remotely powered remotely adjustable gastric band system
US8337457B2 (en) 2010-05-05 2012-12-25 Springleaf Therapeutics, Inc. Systems and methods for delivering a therapeutic agent
KR101153613B1 (ko) * 2010-05-25 2012-06-18 삼성전기주식회사 마이크로 이젝터 및 그 제조방법
USD669165S1 (en) 2010-05-27 2012-10-16 Asante Solutions, Inc. Infusion pump
US9226840B2 (en) 2010-06-03 2016-01-05 Apollo Endosurgery, Inc. Magnetically coupled implantable pump system and method
US8517915B2 (en) 2010-06-10 2013-08-27 Allergan, Inc. Remotely adjustable gastric banding system
DE102010030504A1 (de) 2010-06-24 2011-12-29 HSG-IMIT-Institut für Mikro- und Informationstechnologie Quellstoffaktor mit elektrisch angetriebener fluidischer Transportvorrichtung
US8698373B2 (en) 2010-08-18 2014-04-15 Apollo Endosurgery, Inc. Pare piezo power with energy recovery
US9211207B2 (en) 2010-08-18 2015-12-15 Apollo Endosurgery, Inc. Power regulated implant
US8932031B2 (en) 2010-11-03 2015-01-13 Xylem Ip Holdings Llc Modular diaphragm pumping system
US8961393B2 (en) 2010-11-15 2015-02-24 Apollo Endosurgery, Inc. Gastric band devices and drive systems
US8368285B2 (en) 2010-12-17 2013-02-05 Massachusette Institute Of Technology Electrochemical actuators
EP2469089A1 (en) 2010-12-23 2012-06-27 Debiotech S.A. Electronic control method and system for a piezo-electric pump
US8876795B2 (en) 2011-02-02 2014-11-04 The Charles Stark Draper Laboratory, Inc. Drug delivery apparatus
US8852152B2 (en) 2011-02-09 2014-10-07 Asante Solutions, Inc. Infusion pump systems and methods
US8454581B2 (en) 2011-03-16 2013-06-04 Asante Solutions, Inc. Infusion pump systems and methods
US8585657B2 (en) 2011-06-21 2013-11-19 Asante Solutions, Inc. Dispensing fluid from an infusion pump system
EP2551523A1 (en) 2011-07-29 2013-01-30 Debiotech S.A. Method and device for accurate and low-consumption mems micropump actuation
US8808230B2 (en) 2011-09-07 2014-08-19 Asante Solutions, Inc. Occlusion detection for an infusion pump system
CA2849486C (en) 2011-09-21 2017-12-12 Bayer Medical Care Inc. Continuous multi-fluid pump device, drive and actuating system, and method
US8454557B1 (en) 2012-07-19 2013-06-04 Asante Solutions, Inc. Infusion pump system and method
US8454562B1 (en) 2012-07-20 2013-06-04 Asante Solutions, Inc. Infusion pump system and method
KR101452050B1 (ko) * 2012-11-12 2014-10-21 삼성전기주식회사 마이크로 펌프
US9427523B2 (en) 2012-12-10 2016-08-30 Bigfoot Biomedical, Inc. Infusion pump system and method
US20140276536A1 (en) 2013-03-14 2014-09-18 Asante Solutions, Inc. Infusion Pump System and Methods
KR20140081570A (ko) * 2012-12-21 2014-07-01 삼성전기주식회사 마이크로 펌프
US9446186B2 (en) 2013-03-01 2016-09-20 Bigfoot Biomedical, Inc. Operating an infusion pump system
US9903508B2 (en) 2013-03-07 2018-02-27 Debiotech S.A. Microfluidic valve having improved tolerance to particles
KR20140118542A (ko) * 2013-03-29 2014-10-08 삼성전기주식회사 마이크로 펌프
US9457141B2 (en) 2013-06-03 2016-10-04 Bigfoot Biomedical, Inc. Infusion pump system and method
US9446187B2 (en) 2013-06-03 2016-09-20 Bigfoot Biomedical, Inc. Infusion pump system and method
US9561324B2 (en) 2013-07-19 2017-02-07 Bigfoot Biomedical, Inc. Infusion pump system and method
US10292424B2 (en) 2013-10-31 2019-05-21 Rai Strategic Holdings, Inc. Aerosol delivery device including a pressure-based aerosol delivery mechanism
US10569015B2 (en) 2013-12-02 2020-02-25 Bigfoot Biomedical, Inc. Infusion pump system and method
US9629901B2 (en) 2014-07-01 2017-04-25 Bigfoot Biomedical, Inc. Glucagon administration system and methods
US10137246B2 (en) 2014-08-06 2018-11-27 Bigfoot Biomedical, Inc. Infusion pump assembly and method
US9919096B2 (en) 2014-08-26 2018-03-20 Bigfoot Biomedical, Inc. Infusion pump system and method
US10668212B2 (en) 2014-08-26 2020-06-02 Debiotech S.A. Detection of an infusion anomaly
WO2016059616A1 (fr) 2014-10-17 2016-04-21 Debiotech S.A. Système sécurisé de commande de bolus
KR20240064764A (ko) 2015-01-09 2024-05-13 바이엘 헬쓰케어 엘엘씨 다회 사용 1회용 세트를 갖는 다중 유체 전달 시스템 및 그 특징부
CN104728492A (zh) * 2015-01-27 2015-06-24 东南大学 一种微型被动流量调节阀及其制作工艺
US10352314B2 (en) 2015-04-20 2019-07-16 Hewlett-Packard Development Company, L.P. Pump having freely movable member
US10684662B2 (en) 2015-04-20 2020-06-16 Hewlett-Packard Development Company, L.P. Electronic device having a coolant
US10100822B2 (en) 2015-04-20 2018-10-16 Hewlett-Packard Development Company, L.P. Pump having freely movable member
US9878097B2 (en) 2015-04-29 2018-01-30 Bigfoot Biomedical, Inc. Operating an infusion pump system
ITUB20151781A1 (it) * 2015-07-02 2017-01-02 Milano Politecnico Micropompa con attuazione elettrostatica
EP3374900A1 (en) 2016-01-05 2018-09-19 Bigfoot Biomedical, Inc. Operating multi-modal medicine delivery systems
US10449294B1 (en) 2016-01-05 2019-10-22 Bigfoot Biomedical, Inc. Operating an infusion pump system
CN107131333B (zh) * 2016-02-29 2020-05-22 博世汽车柴油系统有限公司 高压泵及其溢流组件
USD809134S1 (en) 2016-03-10 2018-01-30 Bigfoot Biomedical, Inc. Infusion pump assembly
EP3519011A4 (en) 2016-09-27 2020-05-20 Bigfoot Biomedical, Inc. SYSTEMS, DEVICES AND METHODS FOR MEDICATION INJECTION AND DISEASE MANAGEMENT
CA3037432A1 (en) 2016-12-12 2018-06-21 Bigfoot Biomedical, Inc. Alarms and alerts for medication delivery devices and related systems and methods
USD836769S1 (en) 2016-12-12 2018-12-25 Bigfoot Biomedical, Inc. Insulin delivery controller
USD839294S1 (en) 2017-06-16 2019-01-29 Bigfoot Biomedical, Inc. Display screen with graphical user interface for closed-loop medication delivery
WO2019014594A1 (en) 2017-07-13 2019-01-17 Desborough Lane MULTI-SCALE DISPLAY OF GLYCEMIA INFORMATION
EP3527826B1 (en) 2018-02-16 2020-07-08 ams AG Pumping structure, particle detector and method for pumping
US20200254985A1 (en) * 2019-02-12 2020-08-13 The Goodyear Tire & Rubber Company Brake pressure sensor for determination of braking efficiency
DE102019218485B4 (de) * 2019-11-28 2022-03-31 Festo Se & Co. Kg Arbeitseinrichtung
CN112452365B (zh) * 2020-11-23 2021-12-07 无锡市夸克微智造科技有限责任公司 微加工流体装置
CN112614797B (zh) * 2021-03-08 2021-07-02 杭州众硅电子科技有限公司 一种晶圆位置检测装置
EP4381192A1 (en) * 2021-08-04 2024-06-12 Aita Bio Inc. Mems micropump with sensor integration to detect abnormal function
CN116658400B (zh) * 2023-08-01 2023-09-29 常州威图流体科技有限公司 一种流体输送装置、液冷散热模组及微流控芯片

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69104585T2 (de) 1990-10-30 1995-05-18 Hewlett Packard Co Mikropumpe.
DE4143343C2 (de) * 1991-09-11 1994-09-22 Fraunhofer Ges Forschung Mikrominiaturisierte, elektrostatisch betriebene Mikromembranpumpe
GB2266751A (en) 1992-05-02 1993-11-10 Westonbridge Int Ltd Piezoelectric micropump excitation voltage control.
AU681470B2 (en) 1993-12-28 1997-08-28 Westonbridge International Limited Micropump
CH689836A5 (fr) * 1994-01-14 1999-12-15 Westonbridge Int Ltd Micropompe.
JP2628019B2 (ja) * 1994-04-19 1997-07-09 株式会社日立製作所 静電駆動型マイクロアクチュエータとバルブの製作方法、及び静電駆動型ポンプ
JPH0823153A (ja) * 1994-07-05 1996-01-23 Sharp Corp 配線形成方法
JP2001502247A (ja) * 1996-02-10 2001-02-20 フラウンホーファー―ゲゼルシャフト、ツール、フェルデルング、デァ、アンゲヴァンテン、フォルシュング、アインゲトラーゲネル、フェライン 膜連結による双安定マイクロアクチュエータ
US6123316A (en) * 1996-11-27 2000-09-26 Xerox Corporation Conduit system for a valve array
US6069392A (en) * 1997-04-11 2000-05-30 California Institute Of Technology Microbellows actuator
DE19719862A1 (de) * 1997-05-12 1998-11-19 Fraunhofer Ges Forschung Mikromembranpumpe
US6116863A (en) * 1997-05-30 2000-09-12 University Of Cincinnati Electromagnetically driven microactuated device and method of making the same
WO1999009321A1 (fr) 1997-08-20 1999-02-25 Westonbridge International Limited Micropompe comprenant un organe de controle d'entree permettant son auto-amorcage
US6126140A (en) * 1997-12-29 2000-10-03 Honeywell International Inc. Monolithic bi-directional microvalve with enclosed drive electric field
US6576478B1 (en) * 1998-07-14 2003-06-10 Zyomyx, Inc. Microdevices for high-throughput screening of biomolecules
JP2001304454A (ja) * 2000-04-27 2001-10-31 Matsushita Electric Works Ltd 半導体マイクロバルブ

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008528960A (ja) * 2005-01-25 2008-07-31 デビオテック ソシエテ アノニム 微小機械装置内の表面形状を光学的に測定することによって微小機械装置内の容積を測定する方法、及びこの測定を実行するアセンブリ
JP2009531111A (ja) * 2006-03-31 2009-09-03 デビオテック ソシエテ アノニム 医療用液体注射装置
US8298183B2 (en) 2006-03-31 2012-10-30 Debiotech S.A. Medical liquid injection device
JP2012506279A (ja) * 2008-10-22 2012-03-15 デビオテック ソシエテ アノニム ポンプ機能不全検出用の一体型圧力センサを有する微小電気機械流体ポンプ
US9192720B2 (en) 2008-10-22 2015-11-24 Debiotech S.A. MEMS fluid pump with integrated pressure sensor for dysfunction detection
US10316836B2 (en) 2008-10-22 2019-06-11 Debiotech S.A. MEMS fluid pump with integrated pressure sensor for dysfunction detection
JP2016529120A (ja) * 2013-08-12 2016-09-23 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. バルブを用いたマイクロ流体デバイス
JP2014205056A (ja) * 2014-06-20 2014-10-30 デビオテック ソシエテ アノニム ポンプ機能不全検出用の一体型圧力センサを有する微小電気機械流体ポンプ
JP2017064525A (ja) * 2017-01-19 2017-04-06 デビオテック ソシエテ アノニム 医療用ポンプ装置

Also Published As

Publication number Publication date
AU2001272500B2 (en) 2005-06-23
US20060027523A1 (en) 2006-02-09
JP4776139B2 (ja) 2011-09-21
CA2410306A1 (en) 2002-11-22
AU7250001A (en) 2001-12-03
US7005078B2 (en) 2006-02-28
CN1430703A (zh) 2003-07-16
DE60114411D1 (de) 2005-12-01
CA2410306C (en) 2009-12-15
ATE307976T1 (de) 2005-11-15
CN1324238C (zh) 2007-07-04
US20040052657A1 (en) 2004-03-18
EP1283957B1 (fr) 2005-10-26
US7311503B2 (en) 2007-12-25
WO2001090577A1 (fr) 2001-11-29
EP1283957A1 (fr) 2003-02-19
DE60114411T2 (de) 2006-07-20

Similar Documents

Publication Publication Date Title
JP2004505212A (ja) マイクロ加工された流体装置およびその製造方法
US5085562A (en) Micropump having a constant output
US6827559B2 (en) Piezoelectric micropump with diaphragm and valves
JP3948493B2 (ja) マイクロポンプ
Cao et al. Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology
JP3718724B2 (ja) マイクロポンプ
JP3111319B2 (ja) 位置検出器を備えた弁及び前記弁を組み込んだマイクロポンプ
JP4531563B2 (ja) 蠕動マイクロポンプ
US10082135B2 (en) Method for producing at least one deformable membrane micropump and deformable membrane micropump
Nguyen et al. Hybrid-assembled micro dosing system using silicon-based micropump/valve and mass flow sensor
CN101918054A (zh) 具有可丢弃组件的流体泵
JPH04501449A (ja) マイクロポンプ
US11555554B2 (en) Membrane microfluidic valve with piezoelectric actuation and manufacturing process thereof
US8690830B2 (en) In-plane electromagnetic MEMS pump
US20230006127A1 (en) Micropump and method of fabricating the same
JP3130483B2 (ja) マイクロポンプ
WO2023014770A1 (en) Mems micropump with sensor integration to detect abnormal function
WO2003089138A2 (en) Microfluidic device
Teymoori et al. A novel electrostatic micromachined pump for drug delivery systems
JP3020488B2 (ja) 液体マイクロポンプ
JPH01266376A (ja) 液体マイクロバルブとマイクロポンプ
EP3772589B1 (en) Mems pump
JPH03199682A (ja) マイクロポンプ
EP3752221B1 (en) Devices and methods for flow restriction in a microfluidic circuit for drug delivery
WO2023141072A1 (en) Mems micropump with multi-chamber cavity for a device for delivering insulin

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20101130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110628

R150 Certificate of patent or registration of utility model

Ref document number: 4776139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees