JP2004500240A - 光触媒膜付き基体およびその製造方法 - Google Patents

光触媒膜付き基体およびその製造方法 Download PDF

Info

Publication number
JP2004500240A
JP2004500240A JP2001569433A JP2001569433A JP2004500240A JP 2004500240 A JP2004500240 A JP 2004500240A JP 2001569433 A JP2001569433 A JP 2001569433A JP 2001569433 A JP2001569433 A JP 2001569433A JP 2004500240 A JP2004500240 A JP 2004500240A
Authority
JP
Japan
Prior art keywords
film
substrate
atmosphere
surface resistance
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001569433A
Other languages
English (en)
Inventor
木島 義文
安崎 利明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Publication of JP2004500240A publication Critical patent/JP2004500240A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • C03C17/2456Coating containing TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/212TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/214Al2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/217FeOx, CoOx, NiOx
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/218V2O5, Nb2O5, Ta2O5
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/257Refractory metals
    • C03C2217/258Ti, Zr, Hf
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

【課題】
【解決手段】金属チタンを含有するターゲットを減圧した雰囲気内でスパッタして基体上に酸化チタン膜を被覆し、その後その膜の酸素欠陥状態に応じて酸化性、不活性または還元性雰囲気で加熱処理をして、膜の表面抵抗を10〜1013Ω/□に制御する。酸化チタンに酸化ニオブを少量成分として含有させ、あるいは下地膜として酸化ニオブ膜を設けてもよい。

Description

【0001】
技術分野
本発明は、酸化チタンを主成分とする光触媒膜が被覆された基体およびその製造方法に関する。
【0002】
背景技術
光触媒膜がその表面に被覆された基体(物品)は、汚れ防止性や抗菌性などが要求される建築物の窓ガラス、電子ディスプレイ機器の表示パネル、携帯機器、衛生設備、医療設備等の枠体、DNA分析等のバイオテクノロジー分野の器具などに広く用いられる。すなわち基体表面に汚れ防止性、抗菌性、脱臭機能などを付与するために、酸化チタンを主成分とする光触媒膜が被覆されたものが広く用いられている。
【0003】
このような光触媒膜はスパッタ法により被覆されるが、光触媒膜の光触媒活性を大きくして汚れ防止性能をよくするためには、結晶性の二酸化チタン膜とするのがよいことが知られている。しかしながら、結晶性のよい二酸化チタン膜を基体に被覆するには、被覆するときの基体を300℃以上の高温に加熱しなければならないという問題点があった(特開平10−152396号公報)。
【0004】
また、金属チタンのターゲットに酸化雰囲気で電子ビームを照射して無定型チタニア(非晶質酸化チタン)膜をガラス板上に被覆し、その後400〜500℃以上の温度で焼成してルチル型チタニア結晶にした光触媒膜(特開平10−146251号公報)や、ガラス板上にスパッタリングにより金属チタン膜あるいは酸化チタン膜を被覆し、それを焼成して結晶性の二酸化チタンの光触媒膜とすること(特開平10−278165号公報、特開平10−146251号公報)が知られている。
【0005】
しかし、減圧した雰囲気中で行うスパッタ法で、光触媒膜を高温に加熱した基体に被覆することには、加熱された減圧容器(成膜室容器)内壁から水分などの不純物ガスが放出され、純度のよい減圧雰囲気を確保することが困難であるという技術的な問題点があった。すなわち、良好な光触媒活性を得るために必要な純度のよい減圧雰囲気を確保するには、大規模の真空排気系をスパッタ成膜装置に必要とし、光触媒膜の被覆コストが増大するという課題があった。
【0006】
また、上記の非晶質の酸化チタン膜や金属チタン膜を大気中で加熱焼成することにより結晶化する方法は、高温で十分な時間による焼成(加熱処理)を行う必要があり、高価な焼成設備を必要とするとともに加熱サイクルが長くなるので生産性が良好でないという問題点があった。さらに光触媒膜を再現性よく得ることが容易でないという問題点があった。
【0007】
発明の開示
本発明の課題は、上記の問題点を解決することであり、その第1の目的は、光触媒活性の大きな光触媒膜が被覆された基体を提供することである。また本発明の第2の目的は、そのような光触媒膜付き基板を膜の被覆工程で高温加熱を必要とすることなく製造できる方法を提供することである。
【0008】
本発明は、スパッタ法により基体表面に被覆した非晶質あるいは結晶性が十分に発達していない状態の酸化チタン膜を、その膜の酸素欠陥状態を制御して加熱結晶化すれば、良好な光触媒活性を有する酸化チタン主成分の光触媒膜とすることができるという知見を得たことによりなされたものである。
【0009】
請求項1の発明は、チタンを含有するターゲットを減圧した雰囲気内でスパッタして基体上に被覆された、表面抵抗が10〜1013Ω/□の酸化チタン主成分の光触媒膜付き基体である。
【0010】
本発明の酸化チタン膜を主成分とする光触媒膜は、アナターゼ型結晶を含有する結晶質の二酸化チタン膜であり、その酸素欠陥状態が制御されていることを特徴とする。二酸化チタン膜は、チタンと酸素とがほぼ化学量論量で含有されている場合、その表面抵抗は1015Ω/□レベルまたはそれ以上である。それに対して、本発明の光触媒膜は、酸素不足の状態にされ、それにより膜の表面抵抗は10〜1013Ω/□の範囲内に制御されている。
【0011】
酸化チタン膜の光触媒活性の大きさが、二酸化チタン膜の酸素欠陥状態に依存する理由については明確に分からないが、酸素欠陥が結晶性の酸化チタン膜のエネルギー準位に寄与しているからだと考えられる。
【0012】
光触媒活性と二酸化チタン膜の表面抵抗との関係は、表面抵抗が1013Ω/□を越えて酸素欠陥量が少なくなると、光触媒活性が低下するようになる。一方、表面抵抗が10Ω/□未満であると、すなわち10Ω/□で示される酸素欠陥量よりも酸素欠陥が多く存在する(酸化チタン膜中の酸素が二酸化チタンとしての化学量論量に見合う量よりもさらに少なくなる)と、光触媒活性はむしろ低下するようになる。本発明の二酸化チタンの光触媒膜は、その表面抵抗が10〜1013Ω/□の範囲内に制御されているので、光触媒活性が大きい。
【0013】
本発明の光触媒膜は、スパッタ法によって基体上に被覆される。ターゲットとして金属チタンまたは金属チタンを主成分とする金属を用い、アルゴンのような不活性ガスと酸素との混合ガスあるいは酸素のみでつくられた減圧雰囲気内のスパッタにより被覆される。そして、このときの酸化チタン膜の酸素欠陥の制御は、ターゲットをスパッタするときの雰囲気ガスの全圧および酸素分圧を制御することにより行われる。
【0014】
さらに、本発明の光触媒膜は、化学量論量の組成である二酸化チタンあるいは化学量論量よりも若干酸素が不足状態である二酸化チタン(亜酸化チタンと呼ぶことがある)をターゲットとして、アルゴンのような不活性ガスと酸素との混合ガス、あるいは酸素のみでつくられた減圧雰囲気内のスパッタにより被覆される。そして、このときの酸化チタン膜の酸素欠陥の状態の制御は、ターゲットをスパッタするときの雰囲気ガスの全圧および酸素分圧を制御することにより行われる。
【0015】
請求項2の発明は、請求項1の発明において、基体上に被覆後の加熱処理処理により、光触媒膜の表面抵抗が10〜1013Ω/□に制御されたことを特徴とする。
【0016】
本発明においては、被覆直後の二酸化チタンの膜が上記の抵抗範囲になるように表面抵抗を制御してもよいが、被覆時での抵抗制御と被覆後の加熱処理による抵抗制御を組み合わせて行うようにしたほうが好ましい。これにより、表面硬度がより大きな光触媒膜とすることができるからである。
【0017】
請求項3の発明は、請求項1又は2の発明において、光触媒膜の表面における純水の接触角を65°以下となるように加熱処理したことを特徴とする。光触媒活性の大きさや実用的な性能は、その膜表面の親水性の影響を受ける。光触媒膜の表面抵抗を上記範囲内に制御するように加熱処理が施されるとともに、親水性が小さくなるように加熱処理が施されるのが好ましい。このような観点から、光触媒膜表面の純水の接触角が65°以下となるようにしたものが好ましい。本発明における純水の接触角とは、UV照射(中心波長360nm、3mW/cm)を30分間照射した後に、2週間暗室内に放置した状態での接触角をいう。
【0018】
請求項4の発明は、請求項1〜3の発明のいずれかにおいて、光触媒膜に副成分として酸化ニオブ、酸化アルミニウム、酸化鉄、酸化ニッケルのいずれかを含有することを特徴とする。これらの金属を酸化チタンの結晶格子中に取り込むことにより、結晶格子のエネルギー準位を変化させて、より大きな光触媒活性を有する膜とすることができる。
【0019】
請求項5の発明は、請求項1〜4の発明のいずれかにおいて、基体と光触媒膜の間に下地膜として酸化ニオブ膜、酸化アルミニウム膜、酸化鉄膜又は酸化ニッケル膜を介在させたことを特徴とする。例えば、酸化ニオブ膜を下地膜とする場合は、酸化ニオブ膜と酸化チタン膜を基体上に積層被覆し、その後加熱処理した光触媒膜は、酸化チタン膜と酸化ニオブ膜の界面からニオブが酸化チタン膜内に拡散し、光触媒活性がより大きくなる。請求項6の発明によれば、請求項5の発明において、これらの酸化膜うち、酸化ニオブ膜が特に好ましい(請求項6)。
【0020】
本発明に用いられる基体は、材料、形状をとくに限定されるものでない。スパッタによる膜の被覆時に、必要により施される基体の加熱や被覆後の加熱処理に対して劣化しないものであればよい。請求項7の発明によれば、ガラス、セラミックス、樹脂、金属の基体を用いることができる。特に、請求項8の発明は、請求項7の発明において、ソーダライムシリケートガラス板のようにアルカリ成分を含むガラスに対して下地膜は、ガラス中のアルカリ成分が酸化チタンの光触媒膜内に拡散することにより光触媒活性を低下さするのを防止する。
【0021】
請求項9の発明は、チタンを含有するターゲットを減圧した雰囲気内でスパッタして基体上に酸化チタン主成分の光触媒膜を被覆する工程と、被覆後の光触媒膜を加熱処理する工程とを含む光触媒膜付き基体の製造方法である。
【0022】
請求項10の発明では、請求項9の発明において、本発明のスパッタに用いるスパッタリングターゲットとして、金属チタンまたは二酸化チタンの微粉末を焼結成型したものを用いることができる。金属チタンの場合、少量のニオブ、鉄、アルミニウム、ニッケルなどの金属を混入させて、得られる二酸化チタン光触媒膜のエネルギー準位を変化させることにより、光触媒活性をより大きくすることができる。また、酸化チタンの焼結体をターゲットする場合は、二酸化チタンの微粉末を焼結したもの、亜酸化チタン(二酸化チタンよりも、O/Ti比が若干小さい)微粉末を焼結成型したものを用いることができる。
【0023】
請求項11の発明では、請求項9又は10の発明において、被膜を被覆するときの減圧雰囲気としては、酸素雰囲気、酸素とアルゴンなどのような不活性ガスとの混合ガスが雰囲気が用いられる。基体に被覆された膜の結晶化をあるいは膜の結晶性の増大をはかるとともに、膜の酸素欠陥の状態をその表面抵抗で表して10〜1013Ω/□の範囲内に制御する。
【0024】
請求項12の発明は、請求項9〜11の発明において、被覆された膜の表面抵抗が1013Ω/□を越える場合、加熱処理を不活性または還元性雰囲気内で行うことを特徴としている。
【0025】
被覆後の表面抵抗が1013Ω/□を越える膜は、膜中の酸素欠陥を増大させることにより光触媒活性を大きくすることができ、このために加熱処理の雰囲気を不活性の雰囲気または還元性の雰囲気とする。
【0026】
請求項13の発明に示すように、請求項12の発明において、不活性の雰囲気としては、窒素ガス雰囲気やアルゴンなどの不活性ガス雰囲気、あるいは十分に減圧された真空排気空間が例示できる。また還元性雰囲気としては水素ガスを含有する雰囲気を採用できる。
【0027】
請求項14発明は、請求項12又は13の発明において、光触媒膜の表面抵抗を10Ω/□以上の値に減少させる表面抵抗制御であることを特徴としている。
【0028】
請求項15の発明では、請求項14の発明において、膜の酸素欠陥の生成、増大は、膜中からチタンとの結合が不安定あるいは弱い酸素を外部へ引き抜くことにより行われるものと考えられる。光触媒活性を増大させるには、膜の表面抵抗が10Ω/□以上の表面抵抗値に減少させるのがよく、1010Ω/□以上の抵抗値に減少させるのがさらによい。
【0029】
請求項16の発明は、請求項9の発明において、スパッタ法により被覆された光触媒膜の表面抵抗が10Ω/□未満である場合、加熱処理工程を酸化性雰囲気内で行うことを特徴としている。
【0030】
膜の表面抵抗が10Ω/□未満であることは、膜中の酸素欠陥が多くて、光触媒活性が小さい膜である。この場合膜中の酸素欠陥量を減らして、すなわち酸素欠陥量を表す表面抵抗値を増大させることにより光触媒活性を大きくする。用いる酸化性雰囲気としては、酸素あるいはオゾンを含有する雰囲気であり、大気中の加熱処理は経済性の観点から最も好ましい。
【0031】
請求項17の発明は、請求項16の発明において、光触媒膜の表面抵抗を1013Ω/□以下の値に増大させる表面抵抗制御であることを特徴としている。
【0032】
請求項18の発明では、請求項17の発明において、膜中の酸素欠陥を消滅させ光触媒活性を増大させるには、膜の表面抵抗を10Ω/□以上の表面抵抗値に増加させるのがよく、さらに1010Ω/□以上の抵抗値に増加させるのが好ましい。
【0033】
請求項19の発明は、請求項9〜18の発明のいずれかにおいて、加熱処理工程の加熱温度を200〜350℃とすることを特徴とする。請求項20の発明によれば、請求項9〜18の発明のいずれかにおいて、加熱温度を200〜300℃とするのが特に好ましい。
【0034】
請求項19、20の発明によれば、光触媒膜のトリオレイン分解率を大きくするとともに、膜表面の親水性を大きくすることができる。
【0035】
請求項21の発明は、請求項9〜20の発明のいずれかにおいて、スパッタリングターゲットに副成分としてニオブ、アルミニウム、鉄、ニッケルのいずれかを含有することを特徴としている。同時に複数の副成分を含んでいてもよい。
【0036】
請求項22の発明に示すように、請求項21の発明において、用いるターゲットが金属ターゲットである場合は、金属チタンにこれらの金属を0.1〜3重量%含有させものが好ましい。このような金属ターゲットを酸素含有雰囲気でスパッタした光触媒膜は、加熱処理で酸素欠陥状態が酸化チタン単一組成の場合と同じように制御される。
【0037】
請求項23の発明は、請求項9〜22の発明のいずれかにおいて、酸化チタン主成分の光触媒膜の被覆に先立ち、ニオブ、アルミニウム、鉄及びニッケルのいずれかを含有するターゲットを減圧した雰囲気内でスパッタして基体上に酸化ニオブ膜、酸化アルミニウム膜、酸化鉄膜及び酸化ニッケル膜のいずれかを被覆する工程を含むことを特徴としている。
【0038】
例えば、酸化ニオブ膜を用いる場合は、基体上に積層された酸化ニオブ膜と酸化チタン膜の積層体は、加熱処理によりニオブが酸化チタン膜中に拡散して、光触媒膜のエネルギー準位に影響を及ぼし、これにより光触媒活性を向上させる。なお、請求項24の発明に示すように、請求項9〜23の発明において、光触媒膜を基体上にスパッタにより被覆するときの基体温度は200℃未満とするのが好ましい。
【0039】
発明を実施するための最良の形態
以下に本発明の実施の形態を示す。図1は本発明の光触媒膜付き基体の一実施例の断面図であり、光触媒膜付き基体1は、ガラス板2の表面に酸化ニオブの下地膜4と酸化チタンの光触媒膜3が積層被覆されている。図2は、酸化チタンの光触媒膜の光触媒活性と表面抵抗の関係を説明する図である。図3は、加熱処理温度が及ぼす光触媒活性への影響を示す図である。図4は、加熱処理が及ぼす光触媒膜の親水性への影響を示す図である。
【0040】
本発明の光触媒膜を基体に被覆するときのスパッタ成膜装置は、成膜室内に流量が制御されたアルゴンや酸素を導入する機構を有し、同時に成膜室内を真空排気ポンプにより排気して、一定圧力の減圧した雰囲気を安定持続させる機能を有する公知のスパッタ成膜装置を用いることができる。
【0041】
ターゲットをスパッタするためのグロー放電を生起する方法としては、公知の方法を用いることができる。すなわち、直流スパッタ法、高周波スパッタ法、隣り合わせに並べて配置したカソードに印加電圧の極性を交互反転させて印加し、ターゲット表面に帯電する電荷を除電しながらスパッタするPMS(パルスマグネトロンスパッタ)法などの公知の方法を用いることができる。
【0042】
以下に本発明の光触媒膜を、マグネトロンスパッタ法により通常用いられるスパッタ時の雰囲気全圧力を0.4Paとしたとき、酸素とアルゴンの混合ガスからなる雰囲気ガス組成と得られる膜の酸素欠陥との関係を説明する。酸化性雰囲気で加熱処理して光触媒活性を向上させることができる被覆後の膜は、酸素欠陥が多くあるという意味で、以下「酸素不足膜」と呼ぶ。一方、不活性雰囲気または還元性雰囲気で加熱還元処理して光触媒活性を向上させることができる被覆直後の膜は、酸素欠陥が少ない量で存在し、上記の酸素不足膜に対して、酸素が相対的に多く含まれるので、以下「酸素リッチ膜」と呼ぶことにする。
【0043】
(1)チタン金属系ターゲットを用いる場合
被覆直後の膜は、ほぼ化学量論組成に近い酸化チタン膜から酸素欠陥が比較的多い酸素不足膜まで、膜中の酸素含有量が広範囲にわたる膜が被覆される。酸素と反応的にスパッタを行うために、通常雰囲気ガスの酸素は60〜65容量%以上含有させるのがよい。本発明における酸素リッチ膜は、酸素が約80%以上の雰囲気において得られる。一方、酸素が70〜75容量%以下の含有量であると酸素不足膜になり、この膜は酸化熱処理を行う。被覆直後の膜の酸素欠陥状態とスパッタガスの組成(酸素含有割合)との関係は一義的に定まるものでは決してなく、スパッタされるときの全圧や反応的に被覆する被覆速度(被覆レート)や、真空中の残留不純物ガスなどの存在に依存する。
【0044】
(2)二酸化チタン系の微粉末焼結体ターゲットを用いる場合
ターゲットの加圧成型品を、たとえば1300℃以上の高温の不活性雰囲気で熱処理を施すこと、通電性の亜酸化チタンターゲットになり、直流グロー放電によるスパッタが可能になる。このような直流スパッタが可能な程度に処理された酸化チタン系焼結ターゲットを用いる場合、ほぼ化学量論的な組成に近い二酸化チタン膜が基体に被覆される。この場合、雰囲気ガスの酸素は通常少量成分でまかなうことができる。
【0045】
スパッタ雰囲気中の酸素含有量が30〜40容量%で、被覆される膜はすでに酸素リッチ膜になり、この膜は被覆後不活性雰囲気または還元性雰囲気で加熱処理をすることにより光触媒活性が増大する。一方、酸素が4〜5容量%以下であると、得られる膜は酸素不足膜になり、この膜は酸化熱処理により良好な光触媒活性の膜とすることができる。この雰囲気中の酸素含有割合と得られる膜の酸素欠陥状態とは、被覆レートや全圧、さらに不純物ガス量にも依存するので一義的に決して定まるものではない。
【0046】
本発明の光触媒膜を基体にスパッタにより被覆するときの基体の温度は、被覆時にその結晶化が大きく進まない200℃未満とするのがよい。通常150℃以下あるいは室温(とくに基体を加熱しない)で行なうのが好ましい。
【0047】
本発明の加熱処理工程において被膜の結晶化と抵抗制御が行われる。結晶化と抵抗制御を光触媒活性が効果的に大きくなるようにするために、加熱温度は150℃以上とするのが好ましい。これにより、スパッタ法により被覆された光触媒膜は、結晶化が進むとともに所定の表面抵抗の制御を短い時間で行うことができる。光触媒膜の表面の親水性を大きくする観点からも200℃以上とするのが好ましい。このような総合的な観点から加熱処理温度は200℃以上とするのが好ましい。
【0048】
加熱処理温度が400℃を越えると光触媒膜の結晶化は一層進行するが、触媒膜は、結晶の異常成長、ドーパントの拡散並びに偏析という変化が生じるので、むしろ光触媒活性が低下してしまう。したがって、加熱処理温度は350℃以下が好ましく、さらに300℃以下が好ましい。
【0049】
加熱処理をするときの雰囲気は、酸化結晶化を行い表面抵抗を増加させるときには酸素含有雰囲気、たとえば大気やオゾン含有雰囲気が用いられる。一方、非酸化の結晶化を行い、表面抵抗を大略同じ値かむしろ減少させるには、窒素、アルゴン、ヘリウム、ネオンなどの不活性ガス含有雰囲気や、水素を含有する還元性雰囲気(たとえば窒素と水素の混合ガス、一酸化炭素を5〜50容量%含む水素ガスなど)が用いられる。また、不活性雰囲気と同じ効果をを有する雰囲気として減圧雰囲気(真空排気されている雰囲気)を用いることもできる。この場合、スパッタ法により基体に被覆された光触媒膜を、そのままスパッタ装置の真空排気雰囲気内で連続加熱処理できる利点がある。
【0050】
以下に、実施例および比較例により本発明をさらに詳述する。光触媒膜の被覆方法および加熱処理方法を下記に示す。
(スパッタ被覆条件)
A.基体
厚みが2mmのソーダライムシリケート組成のフロートガラス板
B.二酸化チタン膜の被覆
1)ターゲット
(1)99.99%の金属チタン(Tiで表す)
(2)0.5重量%の金属ニオブを含有する金属チタン(TiNbで表す)。
(3)0.5重量%の金属アルミニウムを含有する金属チタン(TiAlで表す)。
(4)0.3重量%の金属鉄を含有する金属チタン(TiFeで表す)。
(5)0.3重量%の金属ニッケルを含有する金属チタン(TiNiで表す)。(6)二酸化チタン微粉末を大気中で加圧成型し、窒素雰囲気中で熱処理を施し、二酸化チタンの化学量論量の組成よりも若干酸素不足の状態にしたもの(表中TiOxで表す)。
(7)99重量%の二酸化チタン(TiO2)微粉末と1重量%酸化ニオブ(Nb2O5)微粉末の混合粉末を同様の処理により成型加工したもの(表中TiNbOyで表す)。
2)グロー放電:直流スパッタリング
3)スパッタ時の雰囲気
全圧を0.4Paとし、スパッタをするときの雰囲気をアルゴン、酸素、アルゴンと酸素との混合ガスのいずれかとした。
4)スパッタ時の基体温度
室温(加熱せず)
C.酸化ニオブ下地膜の被覆
1)金属ニオブターゲット:99.99%の金属ニオブ(表中Nbで表す)。
2)グロー放電:直流スパッタリング
3)スパッタ時の雰囲気
全圧を0.4Paとし、スパッタをするときの雰囲気を酸素100%とした。4)スパッタ時の基体温度
室温(加熱せず)
D.加熱処理
加熱処理に用いた炉は、0.4Pa以下まで真空排気してから、炉内に雰囲気ガスを導入口から大気圧になるまで流し込むことができる電気炉である。炉内に雰囲気ガスを導入し、5分間以上かけて以前の雰囲気と置換し、所定の熱処理温度の雰囲気で充満されるように雰囲気ガスをさらに炉内に流しながら、10℃/分の昇温速度で炉内雰囲気を加熱し、その後1時間保持した。そして雰囲気ガスを流したまま室温まで徐冷した。酸化性雰囲気(表面抵抗増加処理)は大気を、不活性雰囲気(表面抵抗減少処理)は窒素を、還元性雰囲気(表面抵抗減少処理)は、窒素75容量%水素25容量%の混合ガスを用いた。
【0051】
(光触媒膜の評価)
A.光触媒活性
トリオレインを膜の表面に0.1mg/cmとなるように塗布し、紫外線を3mW/cmの強度で46時間照射し、塗布したトリオレインのうち分解した割合を塗布量と残存量の重量測定から算出した。
B.表面抵抗
JIS(C2141)による。
C.親水性
光触媒膜にUV(中心波長360nm、3mW/cm)を30分間照射し、2週間暗室内に放置した状態の膜面の純水の接触角で評価した。
D.膜の結晶性
理学電機製X線回折装置により測定した。
【0052】
実施例1
ターゲットに亜酸化チタン焼結成形体を用い、酸素50容量%アルゴン50容量%のガス組成で、厚み500nmの光触媒膜を被覆したサンプルを得た。得られた光触媒膜の表面抵抗は1×1014Ω/□の大きな表面抵抗を示した(表1)。この膜を不活性雰囲気で加熱処理をしたところ、表面抵抗は1×1013Ω/□に減少した。この抵抗の減少(導電性の増加)は、被膜から酸素が引き抜かれて二酸化チタン膜の結晶中で酸素欠陥が増加して伝導に寄与する電子が増加するとともに、膜の結晶化の促進により、その易動度が増加したことによるものと考えられた。光触媒活性を測定したところ、トリオレイン分解率は47%で、汚れ防止性、抗菌性を付与する上で実用的に有用な値であった。
【0053】
実施例2
実施例1とは、加熱処理をする雰囲気を還元性にした以外は同じようにして、サンプル2を作製した。この光触媒膜は、実施例1と同様に加熱処理により表面抵抗が1×1010Ω/□に減少し、トリオレイン分解率が63%と良好であった。
【0054】
実施例3
ターゲットに金属チタンを用いたこと、およびスパッタ時の雰囲気ガスを酸素90容量%としたことを除いて実施例1と同じようにして、ガラス板に光触媒膜を被覆した。被覆直後の表面抵抗は1×1014Ω/□であったが、不活性雰囲気で加熱処理をすることにより5×1012Ω/□となった。この光触媒膜の分解率は53%と高いものであった。
【0055】
実施例4
実施例3とは、スパッタ時の雰囲気の酸素を70容量%にした以外は同じようにして、ガラス板に光触媒膜を被覆した。被覆直後の表面抵抗は2×10Ω/□であり、多くの酸素欠陥を有する膜であることが推定された。この膜を酸化性雰囲気で加熱処理をすることにより、表面抵抗を5×1011Ω/□に増加した。すなわち酸素欠陥量が減少した。この光触媒膜のトリオレイン分解率は60%と高いものであった。
【0056】
実施例5
次に、実施例1とはスパッタ時の雰囲気の酸素を4容量%とし、加熱処理を酸化性雰囲気で行った以外は同じようにして、ガラス板上に光触媒膜を被覆した。この膜の表面抵抗は5×10Ω/□と小さく、酸素欠陥量の多い膜であった。この膜を酸化性雰囲気で酸化結晶化すると表面抵抗はほぼ三桁増加し4×10 Ω/□になった。そしてこの膜の光触媒活性を測定したところ、トリオレイン分解率は60%であった。
【0057】
【表1】
Figure 2004500240
【0058】
実施例6
スパッタ時の雰囲気の酸素割合を変えた以外は、実施例3と同じようにしてガラス板に光触媒膜を被覆したサンプルを得た。このサンプルの光触媒膜は、被覆直後の膜の表面抵抗は1×1012Ω/□であり、トリオレイン分解率は57%と高いものであった。この光触媒膜を不活性ガス雰囲気で加熱処理すると、表面抵抗は1×1010とほぼ二桁減少したが、光触媒活性は55%とほほ同じであった。このことから、熱処理を施さなくても、酸化チタン膜の表面抵抗を制御すれば、光触媒活性の良好な膜が得られることが分かった。
【0059】
実施例7
スパッタ時の雰囲気の酸素割合を変えた以外は、実施例5と同じようにしてガラス板に光触媒膜を被覆したサンプルを得た。このサンプルの光触媒膜の評価結果を表1に示す。
【0060】
実施例8
スパッタ時の雰囲気の酸素割合を変えた以外は、実施例1と同じようにしてガラス板に光触媒膜を被覆したサンプルを得た。このサンプルの光触媒膜の評価結果を表1に示す。
【0061】
実施例9
ターゲットに金属チタンを用いて、スパッタ時の雰囲気ガスを酸素95容量%として500nmの厚みの酸化チタンの膜をガラス板上に被覆した。この膜を還元性雰囲気で加熱処理して得たサンプルの光触媒膜を得た。被覆直後の膜の表面抵抗は4×1014Ω/□であったが、還元性雰囲気で加熱処理をすることにより、ほぼ三桁小さい3×1011Ω/□となった。この光触媒膜の分解率は65%と高いものであった。
【0062】
比較例1(実施例3に対応)
表1に示す条件でガラス板上に光触媒膜を被覆した。この膜の表面抵抗は7×10Ω/□であった。この膜を不活性雰囲気で加熱処理をしたところ、表面抵抗はほぼ一桁小さい5×10Ω/□に減少し、極めて酸素欠陥量の多い膜となった。そしてこの膜のトリオレイン分解率は5%と小さい値であり、実用性に乏しいものであった。
【0063】
比較例2(実施例4に対応)
表1に示す条件でガラス板上に光触媒膜を被覆した。この膜の表面抵抗は1×1013Ω/□であった。この膜を酸化性雰囲気で加熱処理をしたところ、表面抵抗は、ほぼ一桁大きい1×1014Ω/□に増大し酸素欠陥量は減少した。この膜のトリオレイン分解率は20%と低下した。
【0064】
比較例3(実施例5に対応)
表1に示す条件でガラス板上に光触媒膜を被覆した。この膜の表面抵抗は1×1014Ω/□であった。この膜を酸化性雰囲気で加熱処理をしたところ、表面抵抗は一桁大きい1×1015Ω/□に増大し、比較例2のサンプルと比べるとより酸素欠陥量の少ない膜になった。この膜のトリオレイン分解率は、比較例2のサンプルよりもさらに小さく5%であった。
【0065】
比較例4(実施例1に対応)
表1に示す条件でガラス板上に光触媒膜を被覆した。この膜の表面抵抗は5×10Ω/□であった。この膜を不活性雰囲気で加熱処理をしたところ、表面抵抗は、加熱処理前よりもほぼ一桁小さい4×10Ω/□に減少した。このサンプルは実施例2のサンプルとくらべると、より酸素欠陥量多い膜であった。この膜のトリオレイン分解率は極めて小さい1〜3%であった。
【0066】
比較例5(実施例1に対応)
実施例7と同じようにしてガラス板上に光触媒膜を被覆した。この膜の表面抵抗は3×1010Ω/□であった。この膜を不活性雰囲気で加熱処理をしたところ、表面抵抗は、熱処理前よりも小さい3×10Ω/□に減少した。このサンプルは実施例7のサンプルとくらべると、より酸素欠陥量多い膜であった。この膜のトリオレイン分解率は30%であった。
【0067】
比較例6(加熱処理なし)
金属チタンをターゲットに用い、スパッタ時の雰囲気を酸素100%としてガラス板上に酸化チタン膜を被覆した。この膜のトリオレイン分解率は、5%でほとんど光触媒活性が認められなかった。
【0068】
表1中の光触媒膜は、室温度で被覆したので、いずれもX線回折分析では結晶による回折ピークがほとんど認められないか弱いピークが認められる程度であったが、加熱処理により結晶の回折ピークが認められた。すなわち加熱処理により結晶化が生じていることが認められた。
【0069】
表1で得られたサンプルについて、加熱処理後の膜の表面抵抗を横軸にトリオレイン分解率を縦軸にプロットしたものが図2である。このことから、光触媒膜の表面抵抗値を1×10Ω/□〜1×1013Ω/□になるように、さらに好ましくは1×1010Ω/□〜1×1012Ω/□になるように、酸化チタン膜の酸素欠陥状態を制御することにより、トリオレイン分解率を大きくすることができることが分かった。
【0070】
実施例10(光触媒活性と加熱処理の温度)
実施例4と同じ方法で室温のガラス板上に被覆した酸化チタン膜について、大気中での加熱処理の温度と時間がトリオレイン分解率に及ぼす影響を調べた。温度を100℃、150℃、200℃、250℃、300℃、350℃、400℃、450℃の8水準とり、それぞれの温度で1時間と3時間の2水準とって調べた。得られた結果を図3に示す。
【0071】
図3からトリオレイン分解率は、両処理時間とも温度が約250℃で極大となった。また、両処理時間とも150℃〜300℃の温度範囲でトリオレイン分解率が向上した。しかしながら、450℃以上の加熱処理では、むしろトリオレイン分解率が加熱する前の値と略同程度まで低下することが認められた。これは高い温度であるために、酸化が十分に行われ、酸素欠陥が適正な範囲よりも多くなったことによるものと考えられた。それに対して、150〜350℃で加熱処理を施すことにより、酸化チタン膜中の酸素欠陥を減らすことなく結晶化できる。
【0072】
実施例11(親水性と後熱処理の温度)
実施例4と同じ方法で室温のガラス板上に被覆した酸化チタン膜について、大気中で1時間、窒素雰囲気中で1時間、加熱処理をしたときの加熱温度が与える光触媒膜表面の純水の接触角への影響を測定した。加熱処理の温度を150℃、250℃、350℃、450℃の4水準とった結果を図4に示す。
【0073】
熱処理前の光触媒膜の水の接触角は78°であった。大気中の加熱処理の場合、熱処理温度が150℃までは、温度が上昇すると水の接触角は単調に63°まで減少し親水性が増加した。さらに加熱処理温度が350℃まで高くなっても、接触角は大きく低下せず親水性は向上しなかった。350℃を越えると、親水性がやや増加(接触角が減少)した。一方、窒素雰囲気では加熱処理温度が高くなるに従い、単調に親水性が増加した。図3および図4から、光触媒活性を大きくし、かつ親水性を効果的に大きくするには熱処理温度は200℃〜350℃の温度範囲がよいことが分かる。
【0074】
実施例12および実施例13(酸化ニオブ不純物の添加実験)
ターゲットに酸化チタンと酸化ニオブの混合粉末の焼結成型体を用い表2に示す条件で、酸化チタン主成分の光触媒膜をガラス板に被覆し、加熱処理をした。結果を表2の実施例12、実施例13の欄に示す。表2より、酸化チタンに酸化ニオブを含有させることにより、トリオレインの分解率がさらに向上することが認められた。
【0075】
実施例14〜実施16(その他の金属酸化物不純物の添加実験)
金属チタンに、アルミニウム、鉄、ニッケルをそれぞれ添加した3種の金属ターゲットを用いて、実施例4と同じスパッタ時の雰囲気でガラス板上に酸化チタン主成分の被膜を被覆した。この膜を実施例4と同じ酸化性雰囲気で加熱処理して得たサンプルの光触媒膜を評価した結果を表2に示す。この結果から、酸化チタン膜にアルミニウム、鉄、ニッケルを少量不純物として含有させると光触媒活性が若干向上することが分かった。
【0076】
【表2】
Figure 2004500240
【0077】
実施例17(積層構成の実験)
ガラス基体上に酸化ニオブの下地膜を10nmの厚みとなるように被覆した。その後、実施例3と同じように金属チタンをターゲットとし、雰囲気ガスを酸素90容量%とする反応性スパッタにより、250nmの厚みの酸化チタン膜を酸化ニオブ膜の上に被覆した。これらの積層構成の光触媒膜を大気雰囲気中で250℃、1時間の加熱処理を施した。得られた光触媒膜のトリオレインの分解率は、表3に示すように65%と実施例3のものよりも向上した。
【0078】
【表3】
Figure 2004500240
【0079】
実施例18
実施例17でガラス板上に被覆した積層構成の膜について、不活性雰囲気中での加熱処理の加熱温度が及ぼす光触媒活性への影響を調べた。処理時間を1時間とし、温度を100℃、200℃、300℃、450℃としたときの結果を表4にサンプル18A、18B、18C、18D、18Eとして、比較のために実施例17のサンプルの結果とともに示す。表4の結果から、酸化ニオブ膜と酸化チタン膜の積層構成を採用することにより、トリオレイン分解率は若干向上した。この理由については明確でないが、加熱処理により酸化チタン膜との界面から拡散侵入したニオブが二酸化チタンの結晶中で最適な配位状態を取ったことによるものと考えられる。
【0080】
【表4】
Figure 2004500240
【0081】
以上の説明により、酸化チタン膜の表面抵抗は、酸素欠陥状態、結晶性に関連し、これが光触媒活性に大きく関与していることを明らかにした。添加した不純物は、酸化チタンの結晶性の膜内に含有することにより、そのエネルギー準位(バンド構造)を変化させ、それにより光触媒活性が向上するものと考えられる。
【0082】
産業上の利用性
本発明のスパッタ法により基体に被覆された酸化チタンの光触媒膜は、その表面抵抗が10〜1013Ω/□の範囲内に制御されているので、光触媒活性が大きい。
【0083】
加えて、表面抵抗の制御を加熱処理によりともなう膜の結晶化により行うことにより膜の表面硬さを大きくすることができる。
【0084】
加えて、酸化チタンの光触媒膜に不純物を少量添加することにより、光触媒活性を大きくすることができる。また、酸化チタン光触媒膜の下地膜を被覆することにより光触媒活性を大きくすることができる。
【0085】
本発明の方法は、スパッタ法により基体上に酸化チタン主成分の光触媒膜を被覆する工程と、被覆後の加熱処理する工程とを有し、被覆工程により得られた膜をその表面抵抗を所定範囲に制御するようにしたので、膜中の酸素欠陥状態を制御することができ、大きな光触媒活性を有する光触媒膜付き基体を再現性よく製造することができる。
【0086】
また、光触媒膜の被覆を基体を加熱することなく行うことができるので、スパッタ成膜装置に大きな加熱機構や排気機構を備える必要がなく、経済性よく被覆できる。
【図面の簡単な説明】
【図1】図1は、本発明の光触媒膜付き基体の一実施例を示す断面図である。
【図2】図2は、酸化チタンの光触媒膜のトリオレイン分解率と表面抵抗の関係を説明するグラフである。
【図3】図3は、加熱処理の温度が及ぼすトリオレイン分解率への影響を示すグラフである。
【図4】図4は、加熱処理の温度が及ぼす光触媒膜表面の水の接触角への影響を示すグラフである。

Claims (24)

  1. チタンを含有するターゲットを減圧した雰囲気内でスパッタして基体上に被覆された、表面抵抗が10〜1013Ω/□の酸化チタン主成分の光触媒膜付き基体。
  2. 前記光触媒膜の表面抵抗が、基体上に被覆後の加熱処理により制御される、請求項1に記載の光触媒膜付き基体。
  3. 前記光触媒膜の表面の純水に対する接触角が65°以下となるように加熱処理される、請求項2に記載の光触媒膜付き基体。
  4. 前記光触媒膜が、副成分として酸化ニオブ、酸化アルミニウム、酸化鉄、酸化ニッケルのいずれかを含有する、請求項1〜請求項3のいずれか一項に記載の光触媒膜付き基体。
  5. 前記基体と前記光触媒膜の間に、下地膜として酸化ニオブ膜、酸化アルミニウム膜、酸化鉄膜及び酸化ニッケル膜のいずれかを設けた、請求項1〜4のいずれか一項に記載の光触媒膜付き基体。
  6. 前記下地膜が酸化ニオブ膜である、請求項5に記載の光触媒膜付き基体。
  7. 前記基体がガラス、セラミック、樹脂及び金属から選択される、請求項1〜請求項6のいずれか一項に記載の光触媒膜付き基体。
  8. 前記基体がアルカリ成分を含むガラスである、請求項7に記載の光触媒膜付き基体。
  9. チタンを含有するターゲットを減圧した雰囲気内でスパッタして基体上に酸化チタン主成分の光触媒膜を被覆する工程と、前記被覆後の光触媒膜を加熱処理する工程とを含む光触媒膜付き基体の製造方法。
  10. 前記ターゲットが、金属チタン、二酸化チタン又は亜酸化チタンの微粉末の焼結成形体である、請求項9に記載の光触媒膜付き基体の製造方法。
  11. 前記減圧雰囲気が酸素雰囲気、又は、酸素とアルゴンのような不活性ガスとの混合雰囲気である、請求項9又は請求項10に記載の光触媒膜付き基体の製造方法。
  12. 前記被覆後の光触媒膜の表面抵抗が1013Ω/□を越える場合、加熱処理を不活性または還元性雰囲気内で行う、請求項9〜請求項11のいずれか一項に記載の光触媒膜付き基体の製造方法。
  13. 前記不活性雰囲気が、窒素ガス雰囲気、アルゴンなどの不活性雰囲気又は真空排気雰囲気であり、前記還元性雰囲気が水素ガスを含有する雰囲気である、請求項12に記載の光触媒膜付き基体の製造方法。
  14. 前記加熱処理が、光触媒膜の表面抵抗を10Ω/□以上の値に減少させるように表面抵抗を制御する、請求項12又は請求項13に記載の光触媒膜付き基体の製造方法。
  15. 前記加熱処理が、光触媒膜の表面抵抗を1010Ω/□以上の値に減少させるように表面抵抗を制御する、請求項14に記載の光触媒膜付き基体の製造方法。
  16. 前記被覆後の光触媒膜の表面抵抗が10Ω/□未満である場合、前記加熱処理を酸化性雰囲気内で行う、請求項9に記載の光触媒膜付き基体の製造方法。
  17. 前記加熱処理が、光触媒膜の表面抵抗を1013Ω/□以下の値に増大させるように表面抵抗を制御する、請求項16に記載の光触媒膜付き基体の製造方法。
  18. 前記加熱処理が、光触媒膜の表面抵抗を1010Ω/□以上の値に増大させるように表面抵抗を制御する、請求項17に記載の光触媒膜付き基体の製造方法。
  19. 前記加熱処理工程の加熱温度が200℃〜350℃である、請求項9〜請求項18のいずれか一項に記載の光触媒膜付き基体の製造方法。
  20. 前記加熱処理工程の加熱温度が200℃〜300℃である、請求項9〜請求項18のいずれか一項に記載の光触媒膜付き基体の製造方法。
  21. 前記チタンを含有するターゲットが、ニオブ、アルミニウム、鉄、ニッケルのいずれかの成分を副成分として含有する、請求項9〜請求項20のいずれか一項に記載の光触媒膜付き基体の製造方法。
  22. 前記副成分が金属チタンの0.1〜3重量%含有されている、請求項21に記載の光触媒膜付き基体の製造方法。
  23. 前記光触媒膜の被覆に先立ち、ニオブ、アルミニウム、鉄及びニッケルのいずれかを含有するターゲットを減圧した雰囲気内でスパッタして、基体上に酸化ニオブ膜、酸化アルミニウム膜、酸化鉄膜及び酸化ニッケル膜のいずれかを被覆する工程を更に含む、請求項9〜請求項22のいずれか一項に記載の光触媒膜付き基体の製造方法。
  24. 前記光触媒膜を前記基体にスパッタにより被覆する時の基体の温度が、200℃未満である、請求項9〜請求項23のいずれか一項に記載の光触媒膜付き基体の製造方法。
JP2001569433A 2000-03-22 2001-03-15 光触媒膜付き基体およびその製造方法 Withdrawn JP2004500240A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000079853 2000-03-22
PCT/JP2001/002037 WO2001071055A1 (en) 2000-03-22 2001-03-15 Substrate with photocatalytic film and method for producing the same

Publications (1)

Publication Number Publication Date
JP2004500240A true JP2004500240A (ja) 2004-01-08

Family

ID=18597042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001569433A Withdrawn JP2004500240A (ja) 2000-03-22 2001-03-15 光触媒膜付き基体およびその製造方法

Country Status (4)

Country Link
US (1) US6777091B2 (ja)
JP (1) JP2004500240A (ja)
AU (1) AU2001241144A1 (ja)
WO (1) WO2001071055A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532290A (ja) * 2004-04-09 2007-11-15 サン−ゴバン グラス フランス 可視スペクトルの光子を吸収するよう改質された光触媒特性を伴うフィルムを有する、ガラス基材のような、基材
JP2007532462A (ja) * 2004-04-13 2007-11-15 サン−ゴバン グラス フランス 可視光下で活性な光触媒性基材
JP2008084824A (ja) * 2006-03-20 2008-04-10 Kanagawa Acad Of Sci & Technol 導電体の製造方法
JP2008523979A (ja) * 2004-12-17 2008-07-10 アルミン 光触媒作用のための非晶質状態の複合構造物
JP2008164660A (ja) * 2006-12-27 2008-07-17 Sony Corp 光学的素子及び光学装置、並びに光学的素子の製造方法
JP2009227513A (ja) * 2008-03-24 2009-10-08 Mitsubishi Materials Corp 高密度および低比抵抗を有する酸化チタンターゲットの製造方法
JP2010237637A (ja) * 2009-03-13 2010-10-21 Seiko Epson Corp 光学物品およびその製造方法
JP2012032690A (ja) * 2010-08-02 2012-02-16 Seiko Epson Corp 光学物品およびその製造方法
JP2013505820A (ja) * 2009-09-25 2013-02-21 エクス−マルセイユ ユニヴェルシテ 超多孔性光触媒材料、その製造方法およびその使用
WO2019031243A1 (ja) * 2017-08-09 2019-02-14 住友金属鉱山株式会社 電磁波吸収粒子、電磁波吸収粒子分散液、電磁波吸収粒子の製造方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1655869A (zh) * 2002-03-25 2005-08-17 住友钛株式会社 二氧化钛基光催化剂及其制备方法和应用
JP2006501052A (ja) * 2002-09-30 2006-01-12 インコート・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 複合材料
JP4353978B2 (ja) * 2004-03-12 2009-10-28 東邦チタニウム株式会社 酸化チタン光触媒の製造方法
EP1773729B1 (en) 2004-07-12 2007-11-07 Cardinal CG Company Low-maintenance coatings
US8092660B2 (en) 2004-12-03 2012-01-10 Cardinal Cg Company Methods and equipment for depositing hydrophilic coatings, and deposition technologies for thin films
US7923114B2 (en) 2004-12-03 2011-04-12 Cardinal Cg Company Hydrophilic coatings, methods for depositing hydrophilic coatings, and improved deposition technology for thin films
US20060280660A1 (en) * 2005-06-09 2006-12-14 Weiss Robert M Photocatalytic air purifier
US8344238B2 (en) * 2005-07-19 2013-01-01 Solyndra Llc Self-cleaning protective coatings for use with photovoltaic cells
US7989094B2 (en) 2006-04-19 2011-08-02 Cardinal Cg Company Opposed functional coatings having comparable single surface reflectances
US20080011599A1 (en) 2006-07-12 2008-01-17 Brabender Dennis M Sputtering apparatus including novel target mounting and/or control
EP2128876B1 (en) * 2007-03-19 2013-05-22 Asahi Glass Company, Limited Process for producing electroconductor
DE102007025577B4 (de) * 2007-06-01 2011-08-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 Verfahren zur Herstellung von Titanoxidschichten mit hoher photokatalytischer Aktivität
FR2920762B1 (fr) * 2007-09-10 2009-10-23 Saint Gobain Materiau a proprietes photocatalytiques
KR101563197B1 (ko) 2007-09-14 2015-10-26 카디날 씨지 컴퍼니 관리 용이한 코팅 및 이의 제조방법
JP2016102950A (ja) * 2014-11-28 2016-06-02 セイコーエプソン株式会社 光学部品および時計
US9720142B2 (en) * 2014-11-28 2017-08-01 Seiko Epson Corporation Optical component and timepiece
KR101651946B1 (ko) * 2015-06-19 2016-08-29 충남대학교산학협력단 전자파 차폐능을 갖는 광 투과성 항균유리
US10604442B2 (en) 2016-11-17 2020-03-31 Cardinal Cg Company Static-dissipative coating technology
CN114807877B (zh) * 2021-01-19 2023-11-10 中国科学院上海硅酸盐研究所 一种黑色二氧化钛光催化薄膜及其制备方法和应用

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH571268A5 (ja) * 1970-07-24 1975-12-31 Siemens Ag
JPH0817228B2 (ja) 1988-03-11 1996-02-21 サンケン電気株式会社 半導体装置の製造方法
US5595813A (en) * 1992-09-22 1997-01-21 Takenaka Corporation Architectural material using metal oxide exhibiting photocatalytic activity
US5346831A (en) 1992-09-29 1994-09-13 Hoffman-La Roche Inc. Cytorich process system
DE19655363B4 (de) 1995-03-20 2007-05-24 Toto Ltd., Kitakyushu Verwendung eines Verbundstoffes um ein Beschlagen der Oberflächen zu verhindern
JPH09129012A (ja) 1995-03-31 1997-05-16 Toshiba Lighting & Technol Corp 光触媒体、蛍光ランプおよび照明器具
FR2738813B1 (fr) * 1995-09-15 1997-10-17 Saint Gobain Vitrage Substrat a revetement photo-catalytique
GB9600210D0 (en) 1996-01-05 1996-03-06 Vanderstraeten E Bvba Improved sputtering targets and method for the preparation thereof
FR2752570B1 (fr) * 1996-08-22 1998-10-02 Saint Gobain Vitrage Vitrage a proprietes optiques et/ou energetiques variables
JP3455653B2 (ja) 1996-09-24 2003-10-14 恒成株式会社 二酸化チタン結晶配向膜を有する材料及びその製造方法
US6054227A (en) * 1997-03-14 2000-04-25 Ppg Industries Ohio, Inc. Photocatalytically-activated self-cleaning appliances
JP3518240B2 (ja) 1997-04-08 2004-04-12 旭硝子株式会社 積層体の製造方法
JPH10310653A (ja) 1997-05-13 1998-11-24 Toto Ltd 光触媒性親水性部材
US6303229B2 (en) 1998-04-10 2001-10-16 Matsushita Electric Works, Ltd. Hydrophilic inorganic coating film and composition made from alkoxysilane and silica
CZ295546B6 (cs) * 1998-07-30 2005-08-17 Toto Ltd. Způsob výroby materiálu s fotokatalytickým účinkem a zařízení k jeho provádění
EP1205244B1 (en) 1999-08-05 2012-05-02 Kabushiki Kaisha Toyota Chuo Kenkyusho Use of a photocatalytic material

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532290A (ja) * 2004-04-09 2007-11-15 サン−ゴバン グラス フランス 可視スペクトルの光子を吸収するよう改質された光触媒特性を伴うフィルムを有する、ガラス基材のような、基材
JP2007532462A (ja) * 2004-04-13 2007-11-15 サン−ゴバン グラス フランス 可視光下で活性な光触媒性基材
JP2008523979A (ja) * 2004-12-17 2008-07-10 アルミン 光触媒作用のための非晶質状態の複合構造物
JP2008084824A (ja) * 2006-03-20 2008-04-10 Kanagawa Acad Of Sci & Technol 導電体の製造方法
JP2008164660A (ja) * 2006-12-27 2008-07-17 Sony Corp 光学的素子及び光学装置、並びに光学的素子の製造方法
JP2009227513A (ja) * 2008-03-24 2009-10-08 Mitsubishi Materials Corp 高密度および低比抵抗を有する酸化チタンターゲットの製造方法
JP2010237637A (ja) * 2009-03-13 2010-10-21 Seiko Epson Corp 光学物品およびその製造方法
JP2013505820A (ja) * 2009-09-25 2013-02-21 エクス−マルセイユ ユニヴェルシテ 超多孔性光触媒材料、その製造方法およびその使用
JP2012032690A (ja) * 2010-08-02 2012-02-16 Seiko Epson Corp 光学物品およびその製造方法
WO2019031243A1 (ja) * 2017-08-09 2019-02-14 住友金属鉱山株式会社 電磁波吸収粒子、電磁波吸収粒子分散液、電磁波吸収粒子の製造方法
CN110997572A (zh) * 2017-08-09 2020-04-10 住友金属矿山株式会社 电磁波吸收颗粒、电磁波吸收颗粒分散液、电磁波吸收颗粒的制造方法
JPWO2019031243A1 (ja) * 2017-08-09 2020-09-17 住友金属鉱山株式会社 電磁波吸収粒子、電磁波吸収粒子分散液、電磁波吸収粒子の製造方法
US11369048B2 (en) 2017-08-09 2022-06-21 Sumitomo Metal Mining Co., Ltd. Electromagnetic-wave-absorbing particles, electromagnetic-wave-absorbing particle dispersion liquids, and manufacturing methods of electromagnetic-wave-absorbing particles
US11533832B2 (en) 2017-08-09 2022-12-20 Sumitomo Metal Mining Co., Ltd. Electromagnetic wave absorbing particle dispersoid and electromagnetic wave absorbing laminated transparent base material
JP7491692B2 (ja) 2017-08-09 2024-05-28 住友金属鉱山株式会社 電磁波吸収粒子、電磁波吸収粒子分散液、電磁波吸収粒子の製造方法

Also Published As

Publication number Publication date
WO2001071055A1 (en) 2001-09-27
AU2001241144A1 (en) 2001-10-03
US20030064179A1 (en) 2003-04-03
US6777091B2 (en) 2004-08-17

Similar Documents

Publication Publication Date Title
JP2004500240A (ja) 光触媒膜付き基体およびその製造方法
Eufinger et al. Photocatalytic activity of dc magnetron sputter deposited amorphous TiO2 thin films
AU2004225545B2 (en) Substrates coated with mixtures of titanium and aluminum materials, methods for making the substrates, and cathode targets of titanium and aluminum metal
JP5221364B2 (ja) 基材の製造方法
CN1610581B (zh) 光催化剂的制造方法和光催化剂的制造装置
JP3806521B2 (ja) 透明導電膜、スパッタリングターゲットおよび透明導電膜付き基体
TW512137B (en) Low-temperature crystallization of ceramic films by high-pressure processing
WO2001046488A1 (fr) Article recouvert d'un film photocatalyseur, procede de preparation dudit article et cible de pulverisation destinee a etre utilisee pour le depot du film
US20110011632A1 (en) Electric conductor and process for its production
EP2740815B1 (en) Method for forming silicon carbide thin film
JP2008545521A (ja) 水素ベースのプラズマを用いた処理による材料の清浄化
US20060005745A1 (en) Method of producing a titanium-suboxide-based coating material, correspondingly produced coating material and sputter target provided there-with
EP1693482A1 (en) Ti OXIDE FILM EXHIBITING PHOTOCATALYTIC ACTIVITY UPON VISIBLE LIGHT IRRADIATION AND PROCESS FOR PRODUCING THE SAME
Abadias et al. Structural and photoelectrochemical properties of Ti1− xWxO2 thin films deposited by magnetron sputtering
JP5515030B2 (ja) 可視光応答性ルチル型二酸化チタン光触媒
JPWO2003106732A1 (ja) チタン化合物膜が被覆された物品、その物品の製造方法及びその膜を被覆するために用いるスパッタリングターゲット
JP2000096212A (ja) 光触媒膜被覆部材およびその製造方法
Kim et al. Structural analysis on photocatalytic efficiency of TiO2 by chemical vapor deposition
JP2004143584A (ja) ジルコニウム化合物膜が被覆された物品、その物品の製造方法及びその膜を被覆するために用いるスパッタリングターゲット
JP2003311157A (ja) 金属酸化物光触媒体及びその製造方法
Tomaszewski et al. Effect of substrate sodium content on crystallization and photocatalytic activity of TiO2 films prepared by DC magnetron sputtering
Yildirim et al. Role of annealing environment and partial pressure on structure and optical performance of TiO2 thin films fabricated by RF sputter method
JP3912976B2 (ja) 光触媒膜を有するチタン基材の製造方法及びチタン基材表面の親水化方法
JP4096606B2 (ja) チタン化合物膜被覆物品の製造方法
JP4371539B2 (ja) 酸化けい素質蒸着膜の製造方法

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603