JP2004363517A - Method of chipping semiconductor wafer - Google Patents

Method of chipping semiconductor wafer Download PDF

Info

Publication number
JP2004363517A
JP2004363517A JP2003163399A JP2003163399A JP2004363517A JP 2004363517 A JP2004363517 A JP 2004363517A JP 2003163399 A JP2003163399 A JP 2003163399A JP 2003163399 A JP2003163399 A JP 2003163399A JP 2004363517 A JP2004363517 A JP 2004363517A
Authority
JP
Japan
Prior art keywords
wafer
chip
chipping
semiconductor
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003163399A
Other languages
Japanese (ja)
Other versions
JP4288573B2 (en
Inventor
Koji Matsushita
浩二 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003163399A priority Critical patent/JP4288573B2/en
Publication of JP2004363517A publication Critical patent/JP2004363517A/en
Application granted granted Critical
Publication of JP4288573B2 publication Critical patent/JP4288573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of chipping, a semiconductor wafer in which a thin part is formed by plasma etching and it is difficult to apply a dicing method for the chipping, wherein there is a low possibility that a wafer is damaged in handling, it is unnecessary to increase a production process and the number of semiconductor devices to be taken can be increased. <P>SOLUTION: In the same process as plasma etching for forming the thin part, a trench 11a for chipping is simultaneously formed in a region except for an outer peripheral part of a semiconductor wafer 1. The trench for chipping is not formed in the outer peripheral part of the wafer so as to ensure the strength of the wafer, to avoid damages of the wafer in handling and in particular damages from the outer peripheral part which are easy to occur. If the shape of the terminal of the trench for forming the chip is narrowed toward the terminal, an effect is increased further. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、シリコンウェハ等の半導体ウェハの一部をエッチングして形成した肉薄のダイアフラムや梁等を有する半導体センサおよび半導体アクチュエータ(両者を総称して「半導体デバイス」という)の製造技術の内のチップ化技術に関する。
【0002】
【従来の技術】
半導体ウェハ、特にシリコンウェハ、を用いた半導体デバイスは、日々、その小型化、高精度化が進んでいる。この中には、半導体の一部をエッチングして薄く加工したり、半導体上に形成した薄膜を残したりして形成したダイアフラムを利用するものがある。このような構造は、圧力センサやガスセンサ、マイクロバルブ等に用いられている。また、半導体を肉薄の梁状に加工して利用する、加速度センサ等もある。
このような構造の半導体デバイスは、ウェハプロセスによって多数の半導体デバイスが集積されたウェハとして製作され、このウェハを最終段階でチップ化することによって得られる。しかし、このウェハには肉薄のダイアフラム等が形成されているため、ウェハのチップ化に際して、通常のウェハの場合に使用されるダイシング法を使用することができない。その理由は、ダイシングの際に吹きつけられる水によってダイアフラム等が破損してしまうからである。
【0003】
ダイアフラム等の肉薄部を有する半導体ウェハを破損させることなくチップ化する方法としては、超音波カッタによる方法や予め分割線上にドライエッチングまたはウェットエッチングによってエッチング溝を形成しておいて超音波カッタを用いる方法が、特許文献1に開示されている。また、半導体ウェハの一部をエッチングして肉薄部を形成する際に、同時にチップ化用溝を形成し、このチップ化用溝を利用してチップ化する方法が、特許文献2に開示されている。特許文献2に開示されている方法では、ウェットエッチングである異方性エッチングが用いられている。
【0004】
図3は、このようなチップ化方法の一例を説明するために、ウェハプロセス中のチップ化に関係する工程での状態を示したもので、(a)は加工前のシリコンウェハ1を示す断面図、(b)は薄膜ダイアフラム21とするシリコン酸化膜2を生成した状態を示す断面図、(c)はエッチングマスクとするアルミ膜3を生成した状態を示す断面図、(d)はアルミ膜3をパターニングした状態を示す断面図、(e)はプラズマエッチングした状態を示す断面図である。
シリコンウェハ1〔図3(a)〕の片面には、薄膜ダイアフラム21となるシリコン酸化膜2が生成され〔図3(b)〕、反対側の面には、シリコンウェハ1をプラズマエッチングによって選択的にエッチングするためのエッチングマスクとなるアルミ膜3が生成される〔図3(c)〕。アルミ膜3は、フォトリソグラフィによってパターニングされ、ダイアフラム用パターン31とチップ化用溝パターン32とに相当する部分のアルミ膜を除去されたパターン化されたアルミ膜3aとなる〔図3(d)〕。このパターン化されたアルミ膜3aをエッチングマスクとして、面積の大きなダイアフラム用パターン31の部分のシリコンがなくなるまでプラズマエッチングされて、この部分に薄膜ダイアフラム21が形成される。これと同時に、チップ化用溝パターン32の部分のシリコンもエッチングされるが、パターンの幅が狭いためにサイズ効果によって、厚さ全部のシリコンはエッチングされないで、その一部が残り、チップ化用溝11が形成される〔図3(e)〕。チップ化用溝11の下に残ったシリコンによってウェハとしての取扱いが可能となり、ウェハはチップ化用溝11の部分で劈開されることによってチップ化される。
【0005】
チップ化のし易さとウェハとしての取扱い易さとのバランスは、ウェハの元の厚さとチップ化用溝11の下に残るシリコンの厚さ(残り厚さ)とで決まる。一方、残り厚さはダイアフラム用パターン31の大きさとチップ化用溝パターン32の幅との相対関係で決まるので、残り厚さの最適値に合わせてチップ化用溝パターン32の幅が決められる。
しかし、従来のダイシングラインをエッチングしてチップ化用溝11を形成するこのような方法は、ダイシング法によらずにチップ化できるという特長があるけれども、ウェハの外周部にチップ化用溝11の肉薄部を存在させるので、ウェハを破損し易くするという問題をもっている。
【0006】
一方、肉薄部を有する半導体ウェハのチップ化ではないが、薄いチップを得るために、ウェハプロセスの最終工程でウェハを研磨して薄くした後、ウェハの外周部を除く領域に分離用の溝をダイシング法で形成してチップ化する方法が、特許文献3に開示されている。ウェハの外周部に溝を形成しないことによってウェハの機械的強度を確保しているのである。
【0007】
【特許文献1】
特開平7−240392号公報
【特許文献2】
特開平6−216244号公報
【特許文献3】
特開平5−198671号公報
【0008】
【発明が解決しようとする課題】
この発明の課題は、プラズマエッチングによって肉薄部を形成されてチップ化にダイシング法を適用することが困難な半導体ウェハをチップ化する方法として、ウェハの取扱い時にウェハを破損する可能性が低く、製造工程を増やす必要がなく、且つ半導体デバイスの取れ個数をより多くすることができる方法を提供することである。
【0009】
【課題を解決するための手段】
請求項1の発明は、プラズマエッチングによって形成された薄膜ダイアフラム等の肉薄部を有する複数の半導体デバイスの集合体である半導体ウェハを、チップ化用溝を用いて個々の半導体デバイスに分割する半導体ウェハのチップ化方法であって、前記プラズマエッチングと同じ工程において同時に、ウェハの外周部を除く領域にチップ化用溝を形成する。
薄膜ダイアフラム等の肉薄部を形成するためのプラズマエッチングと同じ工程において同時に、ウェハの外周部を除く領域にチップ化用溝を形成するので、チップ化用溝を形成するための工程を追加する必要がなく、且つウェハの外周部は元の厚さを有しているので、取扱いにおいて破損する可能性の高いウェハ外周部の強度が確保できて、破損し難いウェハを得ることができる。なお、プラズマエッチングによる加工部にはマイクロクラックが生成されず、且つ加工されたコーナー部は曲面となって鋭利に尖った状態にはならないので、応力の集中が起きにくい。これらの効果によって、半導体ウェハの同じ領域に同じ幅で同じ深さのチップ化用溝を形成しても、プラズマエッチングでチップ化用溝を形成したウェハの方が、ダイシング法でチップ化用溝を形成したウェハより、後の取扱いで破損する可能性が低い。
【0010】
請求項2の発明は、請求項1の発明において、前記チップ化用溝の終端部の形状として、終端に近づくほど幅を狭くし且つ深さを浅くする。
チップ化用溝の終端部の形状が、終端に近づくほど幅が狭くなり且つ深さが浅くなっていると、チップ化用溝がその終端部まで同じ幅で同じ深さを有しているのに比べて、ウェハの強度がより大きくなって、ウェハがより破損し難くなる。見方を換えて、ウェハのもつ強度が同じで良いとすれば、チップ化用溝の終端部をより外縁に近づけることが可能となり、1枚のウェハから取れる半導体デバイスの数を増やすことが可能となる。
【0011】
請求項3の発明は、請求項2の発明において、前記の終端に近づくほど狭くする幅方向の形状を、終端を頂点とする二等辺三角形とする。
終端に近づくほど狭くする幅方向の形状が終端を頂点とする二等辺三角形であると、チップ化用溝の終端部は、終端に近づくにしたがってその幅を一様に低減し、これに対応して深さも単調に低減し、応力集中を最も生じ難い形状となる。
【0012】
【発明の実施の形態】
この発明による半導体ウェハのチップ化方法は、ダイアフラム等の肉薄部をプラズマエッチングで形成する際に同時にチップ化用溝を形成するものであって、チップ化用溝を半導体ウェハの外周部に形成しないことで、半導体ウェハの外周部の強度低下をなくして、チップ化用溝を形成した後の半導体ウェハが破損し易くなることを回避したものである。
以下において、この発明による半導体ウェハのチップ化方法の実施の形態について実施例を用いて更に詳しく説明する。
【0013】
〔第1の実施例〕
図1は、第1の実施例を説明するための半導体ウェハ(以下では単に「ウェハ」という)1の外観を示し、(a)はウェハ1全体を示す平面図、(b)は拡大部分を示す拡大平面図、(c)はそのAA断面図である。
この実施例のチップ化用溝11aは、図1(a)に示すように、ウェハ1の外縁から5〜10mmの外周部には形成されていない。
このチップ化用溝11aは、「従来の技術」の項で図3を用いて説明したチップ化用溝11と全く同じ工程で形成されるので、その工程の詳細説明は省略し、異なる点についてのみ説明する。
【0014】
チップ化用溝11aがチップ化用溝11と異なる点は、図3のチップ化用溝11がウェハ1の外縁まで形成されているのに対して、この実施例のチップ化用溝11aは図1に示すようにウェハ1の外周部には形成されていないことである。すなわち、アルミ膜をパターニングする際に、ウェハ1の外周部にチップ化用溝パターンを形成していないマスクを用いてアルミ膜をパターニングする。
プラズマエッチングにより半導体をエッチングすると、ダイシングのような機械加工と異なり、加工部にマイクロクラックを残さず、更に、加工されたコーナー部は曲面となって鋭利に尖った状態にはならないので、素材の機械的な強度を維持でき、取扱いで破損し難くなる。
【0015】
上記の方法に基づいて、Φ100mmで厚さ400μmのシリコンウェハに、中央部にΦ0.5mmの薄膜ダイアフラムをもつ2.5mm角の半導体センサと25μm幅のチップ化用溝とを、ウェハの外周部8mmを除く領域に配置して、半導体センサを製作したところ、ウェハが破損することはなかった。
なお、この実施例によれば、薄膜ダイアフラム等を形成するためのプラズマエッチング工程で同時にチップ化用溝が形成できるので、追加の工程を必要とせず、工数の積み増しを必要とはしない。
〔第2の実施例〕
図2は、第2の実施例を説明するためのウェハ1の外観を示し、(a)はウェハ1全体を示す平面図、(b)は拡大部分を示す拡大平面図、(c)はそのAA断面図であり、第1の実施例の図1に対応する。
【0016】
この実施例は、チップ化用溝の終端部の形状に特徴がある。すなわち、この実施例のチップ化用溝11bは、図2に示すように、その終端部111bの形状を、幅方向の形状が終端を頂点とする二等辺三角形としている。幅方向の形状をこのようにすると、溝の深さも幅に対応して終端に近づくほど浅くなる。この実施例のチップ化用溝11bを第1の実施例のチップ化用溝11aと比較すると、チップ化用溝11bの終端部111bの下に残る半導体の厚さの方が、チップ化用溝11aの場合より厚くなるので、機械的強度としては、チップ化用溝11bの方がチップ化用溝11aより大きくなり、取扱い時の破損が第1の実施例より更に低減する。このことは、ウェハに同じ強度をもたせるとすれば、チップ化用溝を形成しない外周部の幅をより狭くすることができることとなるので、ウェハからの半導体デバイスの取れ個数を増やせることになる。
【0017】
以上の実施例では、薄膜ダイアフラムを備えた半導体センサの場合を説明したが、この発明は、薄く残した半導体をダイアフラムとする半導体センサや、薄膜や薄い半導体の梁を備えた半導体センサや半導体アクチュエータ等の、プラズマエッチングで半導体をエッチングして作成される半導体デバイス全般に適用可能である。
【0018】
【発明の効果】
請求項1の発明においては、薄膜ダイアフラム等の肉薄部を形成するためのプラズマエッチングと同じ工程において同時に、ウェハの外周部を除く領域にチップ化用溝を形成するので、チップ化用溝を形成するための工程を追加する必要がなく、且つウェハの外周部は元の厚さを有しているので、取扱いにおいて破損する可能性の高いウェハ外周部の強度が確保できて、破損し難いウェハを得ることができる。なお、プラズマエッチングによる加工部にはマイクロクラックが生成されず、且つ加工されたコーナー部は曲面となって鋭利に尖った状態にはならないので、応力の集中が起きにくい。これらの効果によって、ウェハの同じ領域に同じ幅で同じ深さのチップ化用溝を形成しても、プラズマエッチングでチップ化用溝を形成したウェハの方が、ダイシング法でチップ化用溝を形成したウェハより、後の取扱いで破損し難くなる。
【0019】
したがって、この発明によれば、プラズマエッチングによって肉薄部を形成されてチップ化にダイシング法を適用することが困難な半導体ウェハをチップ化する方法として、ウェハの取扱い時にウェハを破損する可能性が低く、且つ製造工程を増やす必要がない方法を提供することができる。
請求項2の発明においては、チップ化用溝の終端部の形状として、終端に近づくほど幅を狭くし且つ深さを浅くする。チップ化用溝の終端部の形状が、終端に近づくほど幅が狭くなり且つ深さが浅くなっていると、チップ化用溝がその終端部まで同じ幅で同じ深さを有しているのに比べて、ウェハの強度がより大きくなって、ウェハがより破損し難くなる。見方を換えて、ウェハのもつ強度が同じで良いとすれば、チップ化用溝の終端部をより外縁に近づけることが可能となり、1枚のウェハから取れる半導体デバイスの数を増やすことが可能となる。
【0020】
したがって、この発明によれば、プラズマエッチングによって肉薄部を形成されてチップ化にダイシング法を適用することが困難な半導体ウェハをチップ化する方法として、ウェハの取扱い時にウェハを破損する可能性が低く、製造工程を増やす必要がなく、且つ半導体デバイスの取れ個数をより多くすることができる方法を提供することができる。
請求項3の発明においては、終端に近づくほど狭くする幅方向の形状を、終端を頂点とする二等辺三角形とする。終端部の形状を、終端を頂点とする二等辺三角形にすると、チップ化用溝の終端部は、終端に近づくにしたがってその幅を一様に低減し、これに対応して深さも単調に低減し、応力集中を最も生じ難い形状となる。したがって、この発明によれば、ウェハの破損がより発生し難くなる。
【図面の簡単な説明】
【図1】この発明による半導体ウェハのチップ化方法の第1の実施例を説明するためのウェハ外観を示し、(a)はウェハ全体を示す平面図、(b)は拡大部分を示す拡大平面図、(c)はそのAA断面図
【図2】この発明による半導体ウェハのチップ化方法の第2の実施例を説明するためのウェハ外観を示し、(a)はウェハ全体を示す平面図、(b)は拡大部分を示す拡大平面図、(c)はそのAA断面図
【図3】この発明が対象とする半導体センサのウェハプロセス中のウェハの状態の一部を示し、(a)は加工前のシリコンウェハを示す断面図、(b)は下面にシリコン酸化膜を生成した状態を示す断面図、(c)は上面にアルミ膜を生成した状態を示す断面図、(d)はアルミ膜をパターニングした状態を示す断面図、(e)はプラズマエッチングした状態を示す断面図
【符号の説明】
1 シリコンウェハ
11、11a、11b チップ化用溝
111a、111b チップ化用溝終端部
2 シリコン酸化膜
21 薄膜ダイアフラム
3 アルミ膜
3a パターン化されたアルミ膜
31 ダイアフラム用パターン 32 チップ化用溝パターン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a manufacturing technique of a semiconductor sensor and a semiconductor actuator having a thin diaphragm and a beam formed by etching a part of a semiconductor wafer such as a silicon wafer. Related to chip technology.
[0002]
[Prior art]
2. Description of the Related Art Semiconductor devices using semiconductor wafers, especially silicon wafers, are becoming smaller and more accurate every day. Some of them use a diaphragm formed by etching a part of a semiconductor to make it thinner or leaving a thin film formed on the semiconductor. Such a structure is used for a pressure sensor, a gas sensor, a micro valve, and the like. There is also an acceleration sensor or the like that uses a semiconductor by processing it into a thin beam.
A semiconductor device having such a structure is manufactured as a wafer in which a large number of semiconductor devices are integrated by a wafer process, and is obtained by chipping the wafer in a final stage. However, since a thin diaphragm or the like is formed on the wafer, a dicing method used for a normal wafer cannot be used when the wafer is formed into chips. The reason is that the water blown at the time of dicing breaks the diaphragm and the like.
[0003]
As a method of chipping a semiconductor wafer having a thin portion such as a diaphragm without breaking it, a method using an ultrasonic cutter or an ultrasonic cutter in which an etching groove is formed in advance on a dividing line by dry etching or wet etching and used. A method is disclosed in US Pat. Patent Document 2 discloses a method of forming a chip forming groove at the same time as forming a thin portion by etching a part of a semiconductor wafer and forming a chip using the chip forming groove. I have. In the method disclosed in Patent Document 2, anisotropic etching, which is wet etching, is used.
[0004]
FIG. 3 shows a state in a step related to chipping in a wafer process in order to explain an example of such a chipping method. FIG. 3A is a cross section showing a silicon wafer 1 before processing. FIG. 4B is a cross-sectional view showing a state in which a silicon oxide film 2 serving as a thin-film diaphragm 21 has been formed, FIG. 4C is a cross-sectional view showing a state in which an aluminum film 3 serving as an etching mask has been formed, and FIG. 3 is a cross-sectional view showing a state in which patterning is performed, and FIG. 3E is a cross-sectional view showing a state in which plasma etching is performed.
On one side of the silicon wafer 1 [FIG. 3 (a)], a silicon oxide film 2 serving as a thin film diaphragm 21 is generated [FIG. 3 (b)], and on the opposite side, the silicon wafer 1 is selected by plasma etching. An aluminum film 3 serving as an etching mask for performing the etching is generated (FIG. 3C). The aluminum film 3 is patterned by photolithography to form a patterned aluminum film 3a in which portions of the aluminum film corresponding to the diaphragm pattern 31 and the chip forming groove pattern 32 have been removed (FIG. 3D). . Using the patterned aluminum film 3a as an etching mask, plasma etching is performed until silicon in the portion of the diaphragm pattern 31 having a large area is eliminated, and a thin film diaphragm 21 is formed in this portion. At the same time, the silicon in the portion of the chip forming groove pattern 32 is also etched. However, since the width of the pattern is small, the entire thickness of the silicon is not etched due to the size effect, and a part thereof remains, and A groove 11 is formed (FIG. 3E). The silicon remaining under the chip-forming groove 11 enables handling as a wafer, and the wafer is cleaved at the chip-forming groove 11 into chips.
[0005]
The balance between the ease of chip formation and the ease of handling as a wafer is determined by the original thickness of the wafer and the thickness of silicon remaining under the chip forming grooves 11 (remaining thickness). On the other hand, since the remaining thickness is determined by the relative relationship between the size of the diaphragm pattern 31 and the width of the chip forming groove pattern 32, the width of the chip forming groove pattern 32 is determined according to the optimum value of the remaining thickness.
However, such a method of forming a chip forming groove 11 by etching a conventional dicing line has a feature that a chip can be formed without using a dicing method, but the chip forming groove 11 is formed on an outer peripheral portion of a wafer. There is a problem that the wafer is easily damaged because the thin portion exists.
[0006]
On the other hand, although not a semiconductor wafer having a thin portion, in order to obtain a thin chip, the wafer is polished and thinned in the final step of the wafer process, and then a separation groove is formed in a region excluding the outer peripheral portion of the wafer. Patent Document 3 discloses a method of forming a chip by dicing. By not forming a groove on the outer peripheral portion of the wafer, the mechanical strength of the wafer is secured.
[0007]
[Patent Document 1]
JP-A-7-240392 [Patent Document 2]
JP-A-6-216244 [Patent Document 3]
JP-A-5-198671
[Problems to be solved by the invention]
An object of the present invention is to provide a method of chipping a semiconductor wafer in which a thin portion is formed by plasma etching and it is difficult to apply a dicing method to chipping. An object of the present invention is to provide a method capable of increasing the number of semiconductor devices that can be obtained without increasing the number of steps.
[0009]
[Means for Solving the Problems]
The invention according to claim 1 divides a semiconductor wafer, which is an aggregate of a plurality of semiconductor devices having a thin portion such as a thin film diaphragm formed by plasma etching, into individual semiconductor devices by using a chip forming groove. In the chip forming method, a chip forming groove is formed in a region excluding the outer peripheral portion of the wafer in the same step as the plasma etching.
In the same process as plasma etching for forming a thin portion such as a thin film diaphragm, a chip forming groove is formed in a region excluding an outer peripheral portion of a wafer at the same time, so a step for forming a chip forming groove needs to be added. And the outer peripheral portion of the wafer has the original thickness, so that the strength of the outer peripheral portion of the wafer that is likely to be damaged during handling can be secured, and a wafer that is difficult to be damaged can be obtained. Since microcracks are not generated in the processed portion by the plasma etching and the processed corners are curved and do not become sharply sharp, concentration of stress hardly occurs. Due to these effects, even if chip forming grooves having the same width and the same depth are formed in the same region of a semiconductor wafer, the chip forming grooves formed by plasma etching are more likely to be formed by the dicing method. Is less likely to be damaged in later handling than a wafer formed with.
[0010]
According to a second aspect of the present invention, in the first aspect of the present invention, the shape of the end portion of the chip forming groove is such that the width is reduced and the depth is reduced toward the end.
If the shape of the end portion of the chip forming groove is narrower and the depth is smaller as approaching the terminal end, the chip forming groove has the same width and the same depth up to the terminal portion. The strength of the wafer is larger than that of the above, and the wafer is harder to be damaged. In other words, if the strength of the wafer is the same, it is possible to make the end of the groove for chip formation closer to the outer edge, and it is possible to increase the number of semiconductor devices that can be obtained from one wafer. Become.
[0011]
According to a third aspect of the present invention, in the second aspect of the present invention, the shape in the width direction that becomes narrower as approaching the terminal end is an isosceles triangle having the terminal end as a vertex.
If the shape in the width direction that becomes narrower as it approaches the end is an isosceles triangle with the apex at the end, the end of the groove for chipping uniformly reduces its width as it approaches the end. As a result, the depth is also monotonically reduced, and the shape is most unlikely to cause stress concentration.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
In the method of chipping a semiconductor wafer according to the present invention, a chip-forming groove is formed at the same time as a thin portion such as a diaphragm is formed by plasma etching, and the chip-forming groove is not formed on the outer peripheral portion of the semiconductor wafer. Thus, the strength of the outer peripheral portion of the semiconductor wafer is not reduced, and the semiconductor wafer after the formation of the chip forming groove is prevented from being easily damaged.
Hereinafter, embodiments of the method of forming a semiconductor wafer into chips according to the present invention will be described in more detail with reference to examples.
[0013]
[First embodiment]
1A and 1B show the appearance of a semiconductor wafer (hereinafter simply referred to as "wafer") 1 for explaining a first embodiment, wherein FIG. 1A is a plan view showing the entire wafer 1, and FIG. FIG. 3 is an enlarged plan view, and FIG.
As shown in FIG. 1A, the chip-forming groove 11a of this embodiment is not formed in the outer peripheral portion of 5 to 10 mm from the outer edge of the wafer 1.
Since the chip-forming groove 11a is formed in exactly the same step as the chip-forming groove 11 described with reference to FIG. 3 in the section of "Prior Art", the detailed description of the step is omitted, and the difference will be described. I will explain only.
[0014]
The difference between the chip forming groove 11a and the chip forming groove 11 is that the chip forming groove 11 of FIG. 3 is formed up to the outer edge of the wafer 1, whereas the chip forming groove 11a of FIG. As shown in FIG. 1, it is not formed on the outer peripheral portion of the wafer 1. That is, when patterning the aluminum film, the aluminum film is patterned using a mask in which a chip-forming groove pattern is not formed on the outer peripheral portion of the wafer 1.
When a semiconductor is etched by plasma etching, unlike a mechanical process such as dicing, a microcrack is not left in a processed portion, and furthermore, the processed corner portion is a curved surface and does not become sharp and sharp, so the material is not etched. The mechanical strength can be maintained, and it is hard to be damaged by handling.
[0015]
Based on the above method, a 2.5 mm square semiconductor sensor having a 0.5 mm thin film diaphragm in the center and a 25 μm wide chip forming groove were formed on a silicon wafer having a thickness of 100 mm and a thickness of 400 μm. When the semiconductor sensor was manufactured by arranging it in a region except for 8 mm, the wafer was not damaged.
According to this embodiment, since a chip-forming groove can be formed at the same time in the plasma etching process for forming the thin film diaphragm and the like, no additional process is required, and no additional man-hour is required.
[Second embodiment]
2A and 2B show the appearance of the wafer 1 for explaining the second embodiment, in which FIG. 2A is a plan view showing the whole wafer 1, FIG. 2B is an enlarged plan view showing an enlarged portion, and FIG. FIG. 2 is an AA cross-sectional view, which corresponds to FIG. 1 of the first embodiment.
[0016]
This embodiment is characterized by the shape of the terminal end of the groove for chip formation. That is, as shown in FIG. 2, the chip-forming groove 11b of this embodiment has an end portion 111b in the form of an isosceles triangle whose shape in the width direction has a vertex at the end. When the shape in the width direction is set in this manner, the depth of the groove also becomes shallower toward the end corresponding to the width. Comparing the chip forming groove 11b of this embodiment with the chip forming groove 11a of the first embodiment, the thickness of the semiconductor remaining under the end portion 111b of the chip forming groove 11b is larger than that of the chip forming groove 11b. Since it is thicker than in the case of 11a, the chipping groove 11b is larger in mechanical strength than the chipping groove 11a, and the breakage during handling is further reduced as compared with the first embodiment. This means that if the wafer has the same strength, the width of the outer peripheral portion where the chip-forming groove is not formed can be further reduced, so that the number of semiconductor devices removed from the wafer can be increased.
[0017]
In the above embodiments, the case of a semiconductor sensor having a thin-film diaphragm has been described. However, the present invention relates to a semiconductor sensor having a thin-film semiconductor as a diaphragm, a semiconductor sensor or a semiconductor actuator having a thin-film or a thin semiconductor beam. The present invention is applicable to all semiconductor devices made by etching a semiconductor by plasma etching.
[0018]
【The invention's effect】
According to the first aspect of the present invention, since the chip-forming groove is formed in a region excluding the outer peripheral portion of the wafer at the same time as the plasma etching for forming the thin portion such as the thin-film diaphragm, the chip-forming groove is formed. No additional process is required, and the outer peripheral portion of the wafer has the original thickness, so that the strength of the outer peripheral portion of the wafer, which is likely to be damaged in handling, can be secured, and the wafer that is hard to be damaged Can be obtained. Since microcracks are not generated in the processed portion by the plasma etching and the processed corners are curved and do not become sharply sharp, concentration of stress hardly occurs. Due to these effects, even if chip-forming grooves having the same width and the same depth are formed in the same region of the wafer, the chip-forming grooves formed by the plasma etching have the chip-forming grooves formed by the dicing method. The formed wafer is less likely to be damaged in later handling.
[0019]
Therefore, according to the present invention, as a method of chipping a semiconductor wafer in which a thin portion is formed by plasma etching and it is difficult to apply the dicing method to chipping, the possibility of damaging the wafer during wafer handling is low. In addition, it is possible to provide a method that does not require an increase in the number of manufacturing steps.
According to the second aspect of the present invention, the shape of the end portion of the chip forming groove is such that the width is reduced and the depth is reduced toward the end. If the shape of the end portion of the chip forming groove is narrower and the depth is smaller as approaching the terminal end, the chip forming groove has the same width and the same depth up to the terminal portion. The strength of the wafer is larger than that of the above, and the wafer is harder to be damaged. In other words, if the strength of the wafer is the same, it is possible to make the end of the groove for chip formation closer to the outer edge, and it is possible to increase the number of semiconductor devices that can be obtained from one wafer. Become.
[0020]
Therefore, according to the present invention, as a method of chipping a semiconductor wafer in which a thin portion is formed by plasma etching and it is difficult to apply the dicing method to chipping, the possibility of damaging the wafer during wafer handling is low. Thus, it is possible to provide a method that does not require an increase in the number of manufacturing steps and that can increase the number of semiconductor devices to be obtained.
In the invention according to claim 3, the shape in the width direction that becomes narrower toward the end is an isosceles triangle having the end as the vertex. If the shape of the end is an isosceles triangle with the end at the top, the width of the end of the groove for chip formation is reduced uniformly as it approaches the end, and the depth is monotonously reduced accordingly. Thus, a shape in which stress concentration hardly occurs is obtained. Therefore, according to the present invention, damage to the wafer is less likely to occur.
[Brief description of the drawings]
FIGS. 1A and 1B show a wafer appearance for explaining a first embodiment of a semiconductor wafer chip forming method according to the present invention, wherein FIG. 1A is a plan view showing the whole wafer, and FIG. FIG. 2C is a cross-sectional view of the wafer taken along the line AA. FIG. 2A is an external view of a wafer for explaining a second embodiment of the method of chipping a semiconductor wafer according to the present invention. FIG. FIG. 3B is an enlarged plan view showing an enlarged portion, FIG. 3C is a cross-sectional view taken along the line AA. FIG. 3 shows a part of a wafer state during a wafer process of a semiconductor sensor to which the present invention is applied. Sectional view showing a silicon wafer before processing, (b) is a sectional view showing a state in which a silicon oxide film is formed on the lower surface, (c) is a sectional view showing a state in which an aluminum film is formed on the upper side, and (d) is a sectional view showing aluminum. Sectional view showing the state in which the film was patterned, FIG. Sectional view showing a Zuma etching state EXPLANATION OF REFERENCE NUMERALS
DESCRIPTION OF SYMBOLS 1 Silicon wafer 11, 11a, 11b Chip formation groove 111a, 111b Chip formation groove end part 2 Silicon oxide film 21 Thin film diaphragm 3 Aluminum film 3a Patterned aluminum film 31 Diaphragm pattern 32 Chip formation groove pattern

Claims (3)

プラズマエッチングによって形成された薄膜ダイアフラム等の肉薄部を有する複数の半導体デバイスの集合体である半導体ウェハを、チップ化用溝を用いて個々の半導体デバイスに分割する半導体ウェハのチップ化方法であって、
前記プラズマエッチングと同じ工程において同時に、半導体ウェハの外周部を除く領域にチップ化用溝を形成する、
ことを特徴とする半導体ウェハのチップ化方法。
A method of forming a semiconductor wafer into chips by dividing a semiconductor wafer, which is an aggregate of a plurality of semiconductor devices having a thin portion such as a thin film diaphragm formed by plasma etching, into individual semiconductor devices using a chip forming groove. ,
In the same step as the plasma etching, at the same time, forming a chipping groove in a region except the outer peripheral portion of the semiconductor wafer,
A method of forming a semiconductor wafer into chips.
前記チップ化用溝の終端部の形状として、終端に近づくほど幅を狭くし且つ深さを浅くする、
ことを特徴とする請求項1に記載の半導体ウェハのチップ化方法。
As the shape of the terminal portion of the groove for chipping, the width is reduced and the depth is reduced as approaching the terminal,
The method for chipping a semiconductor wafer according to claim 1, wherein:
前記の終端に近づくほど狭くする幅方向の形状を、終端を頂点とする二等辺三角形とする、
ことを特徴とする請求項2に記載の半導体ウェハのチップ化方法。
The shape in the width direction to be narrower as approaching the terminal end is an isosceles triangle having the terminal end as a vertex,
3. The method according to claim 2, wherein the semiconductor wafer is chipped.
JP2003163399A 2003-06-09 2003-06-09 Semiconductor wafer chip forming method Expired - Fee Related JP4288573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003163399A JP4288573B2 (en) 2003-06-09 2003-06-09 Semiconductor wafer chip forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003163399A JP4288573B2 (en) 2003-06-09 2003-06-09 Semiconductor wafer chip forming method

Publications (2)

Publication Number Publication Date
JP2004363517A true JP2004363517A (en) 2004-12-24
JP4288573B2 JP4288573B2 (en) 2009-07-01

Family

ID=34055232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003163399A Expired - Fee Related JP4288573B2 (en) 2003-06-09 2003-06-09 Semiconductor wafer chip forming method

Country Status (1)

Country Link
JP (1) JP4288573B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188428A (en) * 2009-05-25 2009-08-20 Panasonic Corp Semiconductor substrate
WO2009139417A1 (en) * 2008-05-13 2009-11-19 富士電機デバイステクノロジー株式会社 Semiconductor device and method for manufacturing the same
US7754584B2 (en) 2006-05-12 2010-07-13 Panasonic Corporation Semiconductor substrate, and semiconductor device and method of manufacturing the semiconductor device
JP2012243927A (en) * 2011-05-19 2012-12-10 Mitsuboshi Diamond Industrial Co Ltd Semiconductor wafer and method of processing the same
JP2012253140A (en) * 2011-06-01 2012-12-20 Disco Abrasive Syst Ltd Method for processing wafer
JP2014183141A (en) * 2013-03-19 2014-09-29 Fuji Electric Co Ltd Semiconductor device manufacturing method and exposure mask used therefor
JP2018195701A (en) * 2017-05-17 2018-12-06 株式会社デンソー Method of manufacturing semiconductor device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754584B2 (en) 2006-05-12 2010-07-13 Panasonic Corporation Semiconductor substrate, and semiconductor device and method of manufacturing the semiconductor device
US7808059B2 (en) 2006-05-12 2010-10-05 Panasonic Corporation Semiconductor substrate, and semiconductor device and method of manufacturing the semiconductor device
WO2009139417A1 (en) * 2008-05-13 2009-11-19 富士電機デバイステクノロジー株式会社 Semiconductor device and method for manufacturing the same
US8507327B2 (en) 2008-05-13 2013-08-13 Fuji Electric Co., Ltd. Semiconductor device manufacturing method thereof
JP5327219B2 (en) * 2008-05-13 2013-10-30 富士電機株式会社 Manufacturing method of semiconductor device
JP2009188428A (en) * 2009-05-25 2009-08-20 Panasonic Corp Semiconductor substrate
JP2012243927A (en) * 2011-05-19 2012-12-10 Mitsuboshi Diamond Industrial Co Ltd Semiconductor wafer and method of processing the same
JP2012253140A (en) * 2011-06-01 2012-12-20 Disco Abrasive Syst Ltd Method for processing wafer
JP2014183141A (en) * 2013-03-19 2014-09-29 Fuji Electric Co Ltd Semiconductor device manufacturing method and exposure mask used therefor
US9601440B2 (en) 2013-03-19 2017-03-21 Fuji Electric Co., Ltd. Method for manufacturing semiconductor device and exposure mask used in the same method
JP2018195701A (en) * 2017-05-17 2018-12-06 株式会社デンソー Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP4288573B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
JP5390769B2 (en) Ultra-thin die and manufacturing method thereof
US6162702A (en) Self-supported ultra thin silicon wafer process
US10510626B2 (en) Method for use in manufacturing a semiconductor device die
US6933211B2 (en) Semiconductor device whose semiconductor chip has chamfered backside surface edges and method of manufacturing the same
US8030180B2 (en) Method of manufacturing a semiconductor device
JP2005051007A (en) Manufacturing method of semiconductor chip
JP5441371B2 (en) Method of manufacturing a wafer for use in a microelectromechanical system
US20060148129A1 (en) Silicon direct bonding method
EP1582499A2 (en) Encapsulation wafer process
JP2004363517A (en) Method of chipping semiconductor wafer
US20020197862A1 (en) Semiconductor component in a wafer assembly
JP2644069B2 (en) Method for manufacturing semiconductor device
JPH1064855A (en) Method for manufacturing semiconductor device
JP4046645B2 (en) Semiconductor device and manufacturing method thereof
JPH0745560A (en) Semiconductor device and manufacturing method thereof
JP2008166576A (en) Semiconductor device manufacturing method
KR20070002594A (en) Method for forming overlay vernier of semiconductor device
US10221066B2 (en) Process for manufacturing a microelectromechanical interaction system for a storage medium
JP2003294556A (en) Manufacturing method of semiconductor device and semiconductor device using it
JPH10242480A (en) Semiconductor pressure sensor
JP2000088686A (en) Pedestal for semiconductor pressure sensor and its manufacture
JPH0444336A (en) Manufacture of semiconductor device
TWI445132B (en) Method for forming a penetrating space in a circuitry layer and method for manufacturing a micro-electromechanical device
JP2003298070A (en) Method of manufacturing semiconductor device and semiconductor device manufactured thereby
Lam et al. Development of novel dicing process by anisotropic wet etching with convex corner compensation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090305

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees