JP2004362925A - Surge absorbing element - Google Patents

Surge absorbing element Download PDF

Info

Publication number
JP2004362925A
JP2004362925A JP2003159501A JP2003159501A JP2004362925A JP 2004362925 A JP2004362925 A JP 2004362925A JP 2003159501 A JP2003159501 A JP 2003159501A JP 2003159501 A JP2003159501 A JP 2003159501A JP 2004362925 A JP2004362925 A JP 2004362925A
Authority
JP
Japan
Prior art keywords
discharge
trigger
absorbing element
surge absorbing
iodide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003159501A
Other languages
Japanese (ja)
Inventor
Yoshikazu Hanamura
義和 花村
Koichi Imai
孝一 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okaya Electric Industry Co Ltd
Original Assignee
Okaya Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okaya Electric Industry Co Ltd filed Critical Okaya Electric Industry Co Ltd
Priority to JP2003159501A priority Critical patent/JP2004362925A/en
Priority to CN2008101336442A priority patent/CN101350285B/en
Priority to KR1020077003298A priority patent/KR100711943B1/en
Priority to EP04725153A priority patent/EP1612899A4/en
Priority to KR1020057017791A priority patent/KR100735859B1/en
Priority to PCT/JP2004/004785 priority patent/WO2004091060A1/en
Priority to US10/549,586 priority patent/US20060209485A1/en
Publication of JP2004362925A publication Critical patent/JP2004362925A/en
Priority to US12/047,111 priority patent/US20080180017A1/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surge absorbing element with long life, utilizing creeping corona discharge as a trigger means against atmospheric discharge, capable of restraining deterioration of insulation. <P>SOLUTION: An airtight envelope 16 is formed by airtightly sealing openings at both end parts of a case member 12 made of an insulation material by a pair of lid members 14, 14 serving as discharge electrodes, discharge gas is sealed in the airtight envelope 16, and a prescribed discharge gap 22 is formed between discharge electrodes 18, 18 of the lid members 14, 14 disposed inside the airtight envelope 16. Further, a plurality of linear trigger discharge films 28 of which both ends are arranged in opposition so as to separate the lid member 14, 14 serving as the discharge electrodes from minute discharge gaps 26, are formed on inner wall faces 24 of the case member 12, and a film 30 having an insulation property containing alkaline iodide is formed on the surface of the discharge electrodes 18. Since the both ends of the trigger discharge films are arranged so as to have a minute discharge gaps against the lid members serving as the discharge electrodes, the insulation property is not deteriorated unless an electrode material of the discharge electrodes scattered by the discahrge electrode parts being sputtered is adhered on both of the minute discharge gaps arranged at both ends of the trigger discharge films. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、気密外囲器内に封入した放電間隙における放電現象を利用して誘導雷等のサージを吸収することにより電子機器が損傷することを防止するサージ吸収素子に係り、特に、気中放電に対するトリガ手段として沿面コロナ放電を用いたサージ吸収素子に関する。
【0002】
【従来の技術】
従来、誘導雷等のサージから電子機器の電子回路を保護するためのサージ吸収素子として、電圧非直線特性を有する高抵抗体素子よりなるバリスタや、放電間隙を気密容器内に収容したガスアレスタ等、種々のサージ吸収素子が使用されている。そして、かかるサージ吸収素子の中、高い応答性を実現するために沿面コロナ放電をトリガ放電としたサージ吸収素子が多く用いられている。
この種のサージ吸収素子(放電管)として、本出願人は、先に特開2003−7420号を提案した。このサージ吸収素子(放電管)60は、図4に示すように、両端が開口した絶縁材よりなる円筒状のケース部材62の両端開口部を、放電電極を兼ねた一対の蓋部材64,64で気密に閉塞することによって気密外囲器66を形成し、該気密外囲器66内に、所定の放電ガスを封入してなる。
【0003】
上記蓋部材64は、気密外囲器66の中心に向けて大きく突き出た平面状の放電電極部68と、ケース部材62の端面に接する接合部70を備えており、両蓋部材64,64の放電電極部68,68間には、所定の放電間隙72が形成されている。
また、上記ケース部材62の内壁面74には、微小放電間隙76を隔てて対向配置された一対のトリガ放電膜78,78が、複数組形成されている。一対のトリガ放電膜78,78の内、一方のトリガ放電膜78は、一方の放電電極部68と電気的に接続され、他方のトリガ放電膜78は、他方の放電電極部68と電気的に接続されている。
上記放電電極部68の表面には、放電開始電圧の安定に効果的なアルカリヨウ化物が含有された絶縁性の被膜80が形成されている。
上記気密外囲器66内に封入する放電ガスとしては、例えば、アルゴン、ネオン、ヘリウム、キセノン等の希ガスあるいは窒素ガス等の不活性ガスの単体又は混合ガスが該当する。また、希ガスあるいは不活性ガスの単体又は混合ガスと、H等の負極性ガスとの混合ガスが該当する。
【0004】
而して、上記サージ吸収素子60にサージが印加されると、トリガ放電膜78,78間の微小放電間隙76に電界が集中し、これにより微小放電間隙76に電子が放出されてトリガ放電としての沿面コロナ放電が発生する。次いで、この沿面コロナ放電は、電子のプライミング効果によってグロー放電へと移行する。そして、このグロー放電が放電電極部68,68間の放電間隙72へと転移し、主放電としてのアーク放電に移行してサージの吸収が行われるのである。
【0005】
上記従来のサージ吸収素子60にあっては、放電電極部68の表面に、放電開始電圧の安定に効果的なアルカリヨウ化物の含有された被膜80を形成したことにより、立ち上がり時間の早いサージが印加された場合においても、安定した放電開始電圧を得ることができる。
また、上記放電管60にあっては、放電回数が約200万回となっても放電開始電圧に大きな変化はなく、放電管60の長寿命化を図ることもできる。
【特許文献1】
特開2003−7420号
【0006】
【発明が解決しようとする課題】
ところで、上記サージ吸収素子60においては、トリガ放電膜78,78を、放電電極部68,68を備えた蓋部材64,64と電気的に接続すると共に、微小放電間隙76を隔てて一対のトリガ放電膜78,78を対向配置させていることから、微小放電間隙76における電界集中の度合が強く、電子が大量に放出されることから放電開始電圧の低下には寄与するものの、放電生成時に放電電極部68がスパッタされて飛散する電極材料が、対向配置させた一対のトリガ放電膜78,78間の微小放電間隙76に付着してトリガ放電膜78,78間の絶縁劣化を生じ易かった。
【0007】
本発明は、上記問題に鑑みてなされたものであり、その目的とするところは、絶縁劣化の発生を抑制することのできる長寿命なサージ吸収素子の実現にある。
【0008】
【課題を解決するための手段】
上記の目的を達成するため、本発明に係るサージ吸収素子は、両端が開口した絶縁材よりなるケース部材の両端開口部を、放電電極を兼ねた一対の蓋部材で気密に封止することによって気密外囲器を形成すると共に、該気密外囲器内に放電ガスを封入し、また、気密外囲器内に配置される上記蓋部材の放電電極部間に放電間隙を形成すると共に、上記ケース部材の内壁面に、その両端が上記蓋部材と微小放電間隙を隔てて対向配置されたトリガ放電膜を形成し、さらに、上記放電電極部の表面に、アルカリヨウ化物が含有された被膜を形成したことを特徴とする。
【0009】
本発明のサージ吸収素子にあっては、トリガ放電膜の両端が、放電電極を兼ねた蓋部材と微小放電間隙を隔てて配置されているので、トリガ放電膜の両端に設けられた微小放電間隙の双方に、放電電極部がスパッタされて飛散する電極材料が付着しない限り絶縁劣化を生じることがない。このため、本発明のサージ吸収素子は、微小放電間隙76を隔てて一対のトリガ放電膜78,78を対向配置して成る従来のサージ吸収素子60に比べて、絶縁劣化の発生を抑制することができ、サージ吸収素子10の長寿命化を図ることができる。
尚、本発明のサージ吸収素子は、トリガ放電膜が放電電極を兼ねた蓋部材と電気的に接続されていないため微小放電間隙における電子の放出量は抑制されるが、放電電極部の表面に、仕事関数が小さく電子放出特性に優れたアルカリヨウ化物が含有された被膜を形成しているので、高い応答性も確保できる。
【0010】
上記アルカリヨウ化物としては、例えば、ヨウ化カリウム(KI)、ヨウ化ナトリウム(NaI)、ヨウ化セシウム(CsI)、ヨウ化ルビジウム(RbI)の単体又は混合物が該当する。
【0011】
【発明の実施の形態】
本発明に係るサージ吸収素子10は、図1に示すように、両端が開口した絶縁材としてのセラミックよりなる円筒状のケース部材12の両端開口部を、放電電極を兼ねた一対の蓋部材14,14で閉塞して気密に封止することによって気密外囲器16を形成してなる。
【0012】
上記蓋部材14は、気密外囲器16の中心に向けて大きく突き出た平面状の放電電極部18と、ケース部材12の端面に接する接合部20を備えており、両蓋部材14,14の放電電極部18,18間には、所定の放電間隙22が形成されている。
放電電極部18と接合部20を備えた上記蓋部材14は、無酸素銅や、無酸素銅にジルコニウム(Zr)を含有させたジルコニウム銅で構成されている。
尚、ケース部材12の端面と蓋部材14の接合部20とは、銀ろう等のシール材(図示せず)を介して気密封止されている。
【0013】
また、上記ケース部材12の内壁面24には、その両端が、放電電極を兼ねた上記蓋部材14,14と微小放電間隙26を隔てて対向配置された線状のトリガ放電膜28が複数形成されている。該トリガ放電膜28は、カーボン系材料等の導電性材料で構成されている。このトリガ放電膜28は、例えば、カーボン系材料より成る芯材を擦り付けることにより形成することができる。
【0014】
上記気密外囲器16内には、所定の放電ガスが封入されている。この放電ガスとしては、例えば、アルゴン、ネオン、ヘリウム、キセノン等の希ガスあるいは窒素ガス等の不活性ガスの単体又は混合ガスが該当する。また、希ガスあるいは不活性ガスの単体又は混合ガスと、H等の負極性ガスとの混合ガスが該当する。
【0015】
上記放電電極部18の表面には、放電開始電圧の安定に効果的なアルカリヨウ化物が含有された絶縁性の被膜30が形成されている。この被膜30は、ヨウ化カリウム(KI)、ヨウ化ナトリウム(NaI)、ヨウ化セシウム(CsI)、ヨウ化ルビジウム(RbI)等のアルカリヨウ化物の単体又は混合物を、珪酸ナトリウム溶液と純水よりなるバインダーに添加したものを、放電電極部18表面に塗布することによって形成することができる。
この場合、アルカリヨウ化物の単体又は混合物が0.01〜70重量%、バインダーが99.99〜30重量%の配合割合で混合される。また、バインダー中の珪酸ナトリウム溶液と純水との配合割合は、珪酸ナトリウム溶液が0.01〜70重量%、純水が99.99〜30重量%となされる。
【0016】
上記被膜30中に、臭化セシウム(CsBr)、臭化ルビジウム(RbBr)、臭化ニッケル(NiBr)、臭化インジウム(InBr)、臭化コバルト(CoBr)、臭化鉄(FeBr、FeBr)等の臭化物の1種類以上を添加すると、より一層、サージ吸収素子10の放電開始電圧の安定化を図ることができる。
尚、塩化バリウム(BaCl)、フッ化バリウム(BaF)、酸化イットリウム(Y)、塩化イットリウム(YCl)、フッ化イットリウム(YF)、モリブデン酸カリウム(KMoO)、タングステン酸カリウム(KWO)、クロム酸セシウム(CsCrO)、酸化プラセオジウム(Pr11)、チタン酸カリウム(KTi)の1種類以上を、上記臭化物と共に、或いは上記臭化物以外に、上記被膜30中に添加しても、サージ吸収素子10の放電開始電圧の安定化に寄与する。
これら物質は、上記アルカリヨウ化物の単体又は混合物とバインダーとの混合物中に、0.01〜10重量%の配合割合で添加される。
【0017】
尚、アルカリヨウ化物が含有された絶縁性の上記被膜30は、仕事関数が小さく電子放出特性に優れているため放電開始電圧を低下させる作用を有しており、特に、ヨウ化カリウム(KI)を珪酸ナトリウム溶液と純水よりなるバインダーに添加して被膜30を形成した場合に、放電開始電圧の低下作用が顕著である。
図2は、珪酸ナトリウム溶液と純水よりなるバインダー(珪酸ナトリウム溶液と純水の配合比は1:1)に添加するヨウ化カリウムの配合割合(重量%)と、サージ吸収素子10の直流放電開始電圧との関係を示すグラフである。尚、このサージ吸収素子10は、放電ガスとしてアルゴンをガス圧120kPaで封入すると共に、放電電極部18,18間の放電間隙22が0.55mmと成されているものを用いた。
図2のグラフから明らかな通り、珪酸ナトリウム溶液と純水よりなるバインダー(珪酸ナトリウム溶液と純水の配合比は1:1)に添加するヨウ化カリウムの配合割合が大きくなるに従って、直流放電開始電圧が低下していく。
【0018】
また、図3は、珪酸ナトリウム溶液と純水よりなるバインダー(珪酸ナトリウム溶液と純水の配合比は1:1)に添加するヨウ化カリウムの配合割合(重量%)と、サージ吸収素子10のインパルス放電開始電圧との関係を示すグラフである。このサージ吸収素子10は、放電ガスとしてアルゴンをガス圧120kPaで封入すると共に、放電電極部18,18間の放電間隙22が0.55mmと成されているものを用い、1.2/50μsで2.5kVのインパルス電圧を印加して測定した。
図3のグラフから明らかな通り、珪酸ナトリウム溶液と純水よりなるバインダー(珪酸ナトリウム溶液と純水の配合比は1:1)に添加するヨウ化カリウムの配合割合が大きくなるに従って、インパルス放電開始電圧が低下していく。
【0019】
尚、バインダー(珪酸ナトリウム溶液と純水の配合比は1:1)に添加するヨウ化カリウムの配合割合が40重量%を越えると、バインダーに対するヨウ化カリウムの溶解度が飽和となりそれ以上溶解されないため、ヨウ化カリウムの配合割合は、0.1重量%〜40重量%の範囲と成すのが好ましく、ヨウ化カリウムの配合割合が40重量%の場合に、放電開始電圧の低下作用が最も大きくなる。
【0020】
本発明のサージ吸収素子10に、放電電極を兼ねた上記蓋部材14,14を介してサージが印加されると、トリガ放電膜28の両端と蓋部材14,14間の微小放電間隙26に電界が集中し、これにより微小放電間隙26に電子が放出されてトリガ放電としての沿面コロナ放電が発生する。次いで、この沿面コロナ放電は、電子のプライミング効果によってグロー放電へと移行する。そして、このグロー放電が放電電極部18,18間の放電間隙22へと転移し、主放電としてのアーク放電に移行してサージの吸収が行われるのである。
【0021】
而して、本発明のサージ吸収素子10にあっては、各トリガ放電膜28の両端が、放電電極を兼ねた上記蓋部材14,14と微小放電間隙26を隔てて配置されているので、トリガ放電膜28の両端に設けられた微小放電間隙26の双方に、放電電極部18がスパッタされて飛散する電極材料が付着しない限り絶縁劣化を生じることがない。このため、本発明のサージ吸収素子10は、微小放電間隙76を隔てて一対のトリガ放電膜78,78を対向配置して成る従来のサージ吸収素子60に比べて、絶縁劣化の発生を抑制することができ、サージ吸収素子10の長寿命化を図ることができる。
【0022】
尚、トリガ放電膜28が放電電極を兼ねた蓋部材14,14と電気的に接続されていないため微小放電間隙26における電子の放出量は抑制されるが、放電電極部18の表面に、仕事関数が小さく電子放出特性に優れているアルカリヨウ化物が含有された被膜30を形成しているので、高い応答性も確保できる。
【0023】
【発明の効果】
本発明のサージ吸収素子にあっては、トリガ放電膜の両端が、放電電極を兼ねた蓋部材と微小放電間隙を隔てて配置されているので、トリガ放電膜の両端に設けられた微小放電間隙の双方に、放電電極部がスパッタされて飛散する電極材料が付着しない限り絶縁劣化を生じることがない。このため、本発明のサージ吸収素子は、微小放電間隙76を隔てて一対のトリガ放電膜78,78を対向配置して成る従来のサージ吸収素子60に比べて、絶縁劣化の発生を抑制することができ、サージ吸収素子10の長寿命化を図ることができる。
また、本発明のサージ吸収素子は、トリガ放電膜が放電電極を兼ねた蓋部材と電気的に接続されていないため微小放電間隙における電子の放出量は抑制されるが、放電電極部の表面に、仕事関数が小さく電子放出特性に優れたアルカリヨウ化物が含有された被膜を形成しているので、高い応答性も確保できる。
【図面の簡単な説明】
【図1】本発明に係るサージ吸収素子を示す断面図である。
【図2】ヨウ化カリウムの配合割合と直流放電開始電圧との関係を示すグラフである。
【図3】ヨウ化カリウムの配合割合とインパルス放電開始電圧との関係を示すグラフである。
【図4】従来のサージ吸収素子を示す断面図である。
【符号の説明】
10 サージ吸収素子
12 ケース部材
14 蓋部材
16 気密外囲器
18 放電電極部
22 放電間隙
26 微小放電間隙
28 トリガ放電膜
30 被膜
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a surge absorbing element for preventing damage to an electronic device by absorbing a surge such as an induced lightning by utilizing a discharge phenomenon in a discharge gap enclosed in an airtight envelope. The present invention relates to a surge absorbing element using a surface corona discharge as a trigger means for a discharge.
[0002]
[Prior art]
Conventionally, varistors composed of high-resistance elements with non-linear voltage characteristics and gas arresters with discharge gaps housed in airtight containers have been used as surge absorbing elements to protect electronic circuits of electronic equipment from surges such as induced lightning. In addition, various surge absorbing elements have been used. Among such surge absorbing elements, a surge absorbing element using a creeping corona discharge as a trigger discharge is often used in order to realize high responsiveness.
As a surge absorbing element (discharge tube) of this type, the present applicant has previously proposed Japanese Patent Application Laid-Open No. 2003-7420. As shown in FIG. 4, the surge absorbing element (discharge tube) 60 has a pair of lid members 64, 64 which also serve as discharge electrodes, by opening both ends of a cylindrical case member 62 made of an insulating material having both ends opened. The hermetic enclosure 66 is formed by airtightly closing with a gas, and a predetermined discharge gas is sealed in the hermetic enclosure 66.
[0003]
The lid member 64 includes a flat discharge electrode portion 68 protruding largely toward the center of the hermetic envelope 66 and a joining portion 70 in contact with the end surface of the case member 62. A predetermined discharge gap 72 is formed between the discharge electrode portions 68.
On the inner wall surface 74 of the case member 62, a plurality of pairs of a pair of trigger discharge films 78, 78 which are opposed to each other with a minute discharge gap 76 therebetween, are formed. Of the pair of trigger discharge films 78, 78, one trigger discharge film 78 is electrically connected to one discharge electrode unit 68, and the other trigger discharge film 78 is electrically connected to the other discharge electrode unit 68. It is connected.
On the surface of the discharge electrode section 68, an insulating film 80 containing an alkali iodide effective for stabilizing the discharge starting voltage is formed.
As the discharge gas sealed in the hermetic envelope 66, for example, a single gas or a mixed gas of a rare gas such as argon, neon, helium, xenon, or an inert gas such as nitrogen gas corresponds. In addition, a mixed gas of a single or mixed gas of a rare gas or an inert gas and a negative gas such as H 2 is applicable.
[0004]
Thus, when a surge is applied to the surge absorbing element 60, an electric field concentrates in the minute discharge gap 76 between the trigger discharge films 78, 78, whereby electrons are emitted to the minute discharge gap 76 and trigger discharge occurs. Generates a creeping corona discharge. Next, the creeping corona discharge shifts to a glow discharge due to a priming effect of electrons. Then, the glow discharge is transferred to the discharge gap 72 between the discharge electrode portions 68, 68, and shifts to an arc discharge as a main discharge to absorb the surge.
[0005]
In the above-described conventional surge absorbing element 60, a surge 80 having a fast rise time can be formed by forming a coating 80 containing an alkali iodide effective for stabilizing a discharge starting voltage on the surface of the discharge electrode section 68. Even when the voltage is applied, a stable discharge starting voltage can be obtained.
In addition, in the discharge tube 60, even when the number of discharges reaches about 2 million, there is no significant change in the discharge start voltage, and the life of the discharge tube 60 can be extended.
[Patent Document 1]
JP-A-2003-7420
[Problems to be solved by the invention]
Incidentally, in the surge absorbing element 60, the trigger discharge films 78, 78 are electrically connected to the lid members 64, 64 provided with the discharge electrode portions 68, 68, and a pair of trigger discharge films are separated by a minute discharge gap 76. Since the discharge films 78 and 78 are disposed to face each other, the degree of electric field concentration in the minute discharge gap 76 is high, and a large amount of electrons are emitted, which contributes to a reduction in the discharge starting voltage. The electrode material that is sputtered and scattered from the electrode portion 68 adheres to the minute discharge gap 76 between the pair of trigger discharge films 78 and 78 that are opposed to each other and easily causes insulation deterioration between the trigger discharge films 78 and 78.
[0007]
The present invention has been made in view of the above problems, and an object of the present invention is to realize a long-life surge absorbing element capable of suppressing occurrence of insulation deterioration.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the surge absorbing element according to the present invention is configured such that an opening at both ends of a case member made of an insulating material having both ends opened is hermetically sealed with a pair of lid members also serving as discharge electrodes. Along with forming an airtight envelope, filling a discharge gas in the airtight envelope, and forming a discharge gap between the discharge electrode portions of the lid member disposed in the airtight envelope, On the inner wall surface of the case member, a trigger discharge film whose both ends are opposed to each other with a minute discharge gap from the lid member is formed, and further, a film containing an alkali iodide is formed on the surface of the discharge electrode portion. It is characterized by having been formed.
[0009]
In the surge absorbing element of the present invention, since both ends of the trigger discharge film are arranged with the minute discharge gap separated from the lid member also serving as the discharge electrode, the minute discharge gap provided at both ends of the trigger discharge film is provided. As long as the electrode material that is sputtered and scattered on the discharge electrode portion does not adhere to both of them, the insulation does not deteriorate. For this reason, the surge absorbing element of the present invention suppresses the occurrence of insulation deterioration as compared with the conventional surge absorbing element 60 in which a pair of trigger discharge films 78, 78 are arranged to face each other with a minute discharge gap 76 therebetween. Therefore, the life of the surge absorbing element 10 can be extended.
In the surge absorbing element of the present invention, the amount of electrons emitted in the minute discharge gap is suppressed because the trigger discharge film is not electrically connected to the lid member also serving as the discharge electrode. Since a film containing an alkali iodide having a small work function and excellent electron emission characteristics is formed, high responsiveness can be secured.
[0010]
As the alkali iodide, for example, a simple substance or a mixture of potassium iodide (KI), sodium iodide (NaI), cesium iodide (CsI), and rubidium iodide (RbI) corresponds.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIG. 1, the surge absorbing element 10 according to the present invention includes a pair of lid members 14 serving also as discharge electrodes, which are formed by opening both ends of a cylindrical case member 12 made of ceramic as an insulating material having both ends opened. , 14 to form an airtight enclosure 16 by hermetically sealing.
[0012]
The lid member 14 includes a flat discharge electrode portion 18 that protrudes largely toward the center of the hermetic envelope 16 and a joint portion 20 that contacts the end surface of the case member 12. A predetermined discharge gap 22 is formed between the discharge electrode portions 18.
The lid member 14 including the discharge electrode part 18 and the joint part 20 is made of oxygen-free copper or zirconium copper containing zirconium (Zr) in oxygen-free copper.
Note that the end face of the case member 12 and the joint 20 of the lid member 14 are hermetically sealed via a sealing material (not shown) such as silver solder.
[0013]
Further, on the inner wall surface 24 of the case member 12, a plurality of linear trigger discharge films 28 whose both ends are opposed to the lid members 14 serving also as discharge electrodes with a minute discharge gap 26 therebetween are formed. Have been. The trigger discharge film 28 is made of a conductive material such as a carbon-based material. The trigger discharge film 28 can be formed, for example, by rubbing a core material made of a carbon-based material.
[0014]
A predetermined discharge gas is sealed in the hermetic envelope 16. As the discharge gas, for example, a single gas or a mixed gas of a rare gas such as argon, neon, helium, xenon, or an inert gas such as nitrogen gas corresponds. In addition, a mixed gas of a single or mixed gas of a rare gas or an inert gas and a negative gas such as H 2 is applicable.
[0015]
On the surface of the discharge electrode portion 18, an insulating film 30 containing an alkali iodide effective for stabilizing the discharge starting voltage is formed. The coating 30 is made of a single or mixture of alkali iodides such as potassium iodide (KI), sodium iodide (NaI), cesium iodide (CsI), and rubidium iodide (RbI) prepared from a sodium silicate solution and pure water. It can be formed by applying a material added to the binder to the surface of the discharge electrode portion 18.
In this case, the alkali iodide alone or as a mixture is mixed at 0.01 to 70% by weight, and the binder is mixed at 99.99 to 30% by weight. The mixing ratio of the sodium silicate solution and pure water in the binder is 0.01 to 70% by weight for the sodium silicate solution and 99.99 to 30% by weight for pure water.
[0016]
Cesium bromide (CsBr), rubidium bromide (RbBr), nickel bromide (NiBr 2 ), indium bromide (InBr 3 ), cobalt bromide (CoBr 2 ), iron bromide (FeBr 2 ) , FeBr 3 ) or the like, the discharge starting voltage of the surge absorbing element 10 can be further stabilized.
In addition, barium chloride (BaCl), barium fluoride (BaF), yttrium oxide (Y 2 O 3 ), yttrium chloride (YCl 2 ), yttrium fluoride (YF 3 ), potassium molybdate (K 2 MoO 4 ), tungsten One or more of potassium silicate (K 2 WO 4 ), cesium chromate (Cs 2 CrO 4 ), praseodymium oxide (Pr 6 O 11 ), and potassium titanate (K 2 Ti 4 O 9 ), together with the bromide or In addition to the bromide, addition to the coating 30 contributes to stabilization of the discharge starting voltage of the surge absorbing element 10.
These substances are added in a mixing ratio of 0.01 to 10% by weight to a mixture of the above-mentioned alkali iodide alone or a mixture thereof with a binder.
[0017]
The insulating film 30 containing an alkali iodide has a small work function and is excellent in electron emission characteristics, and thus has an action of lowering a discharge starting voltage. In particular, potassium iodide (KI) Is added to a binder composed of a sodium silicate solution and pure water to form the coating 30, the effect of lowering the firing voltage is remarkable.
FIG. 2 shows the mixing ratio (% by weight) of potassium iodide added to a binder composed of a sodium silicate solution and pure water (the mixing ratio of sodium silicate solution and pure water is 1: 1), and the DC discharge of the surge absorbing element 10. 4 is a graph showing a relationship with a starting voltage. The surge absorbing element 10 used was one in which argon was sealed as a discharge gas at a gas pressure of 120 kPa, and a discharge gap 22 between the discharge electrodes 18 was 0.55 mm.
As is clear from the graph of FIG. 2, as the mixing ratio of potassium iodide added to the binder composed of sodium silicate solution and pure water (the mixing ratio of sodium silicate solution and pure water is 1: 1) increases, DC discharge starts. The voltage decreases.
[0018]
FIG. 3 shows the mixing ratio (% by weight) of potassium iodide added to a binder composed of a sodium silicate solution and pure water (the mixing ratio of sodium silicate solution and pure water is 1: 1), 6 is a graph showing a relationship with an impulse discharge starting voltage. As the surge absorbing element 10, an argon gas as a discharge gas is sealed at a gas pressure of 120 kPa, and a discharge gap 22 between the discharge electrode portions 18 is formed to be 0.55 mm. The measurement was performed by applying an impulse voltage of 2.5 kV.
As is clear from the graph of FIG. 3, as the mixing ratio of potassium iodide added to the binder composed of sodium silicate solution and pure water (the mixing ratio of sodium silicate solution and pure water is 1: 1) increases, the impulse discharge starts. The voltage decreases.
[0019]
If the mixing ratio of potassium iodide to be added to the binder (the mixing ratio of sodium silicate solution and pure water is 1: 1) exceeds 40% by weight, the solubility of potassium iodide in the binder becomes saturated and cannot be further dissolved. The mixing ratio of potassium iodide is preferably in the range of 0.1% by weight to 40% by weight, and when the mixing ratio of potassium iodide is 40% by weight, the effect of lowering the firing voltage is maximized. .
[0020]
When a surge is applied to the surge absorbing element 10 of the present invention via the lid members 14 serving also as discharge electrodes, an electric field is applied to the minute discharge gap 26 between both ends of the trigger discharge film 28 and the lid members 14. Are concentrated, whereby electrons are emitted into the minute discharge gap 26 to generate a creeping corona discharge as a trigger discharge. Next, the creeping corona discharge shifts to a glow discharge due to a priming effect of electrons. Then, this glow discharge is transferred to the discharge gap 22 between the discharge electrode portions 18 and 18 and shifts to arc discharge as main discharge, thereby absorbing surge.
[0021]
Thus, in the surge absorbing element 10 of the present invention, since both ends of each trigger discharge film 28 are arranged with the minute discharge gap 26 separated from the lid members 14 serving also as discharge electrodes. As long as the electrode material which is spattered and spattered from the discharge electrode portion 18 does not adhere to both of the minute discharge gaps 26 provided at both ends of the trigger discharge film 28, the insulation does not deteriorate. For this reason, the surge absorbing element 10 of the present invention suppresses the occurrence of insulation deterioration as compared with the conventional surge absorbing element 60 in which a pair of trigger discharge films 78, 78 are arranged to face each other with a minute discharge gap 76 therebetween. Therefore, the life of the surge absorbing element 10 can be extended.
[0022]
Since the trigger discharge film 28 is not electrically connected to the lid members 14 serving also as discharge electrodes, the amount of emitted electrons in the minute discharge gap 26 is suppressed. Since the coating 30 containing an alkali iodide having a small function and excellent electron emission characteristics is formed, high responsiveness can be secured.
[0023]
【The invention's effect】
In the surge absorbing element of the present invention, since both ends of the trigger discharge film are arranged with the minute discharge gap separated from the lid member also serving as the discharge electrode, the minute discharge gap provided at both ends of the trigger discharge film is provided. As long as the electrode material that is sputtered and scattered on the discharge electrode portion does not adhere to both of them, the insulation does not deteriorate. For this reason, the surge absorbing element of the present invention suppresses the occurrence of insulation deterioration as compared with the conventional surge absorbing element 60 in which a pair of trigger discharge films 78, 78 are arranged to face each other with a minute discharge gap 76 therebetween. Therefore, the life of the surge absorbing element 10 can be extended.
Further, in the surge absorbing element of the present invention, since the trigger discharge film is not electrically connected to the lid member also serving as the discharge electrode, the amount of emitted electrons in the minute discharge gap is suppressed. Since a film containing an alkali iodide having a small work function and excellent electron emission characteristics is formed, high responsiveness can be secured.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a surge absorbing element according to the present invention.
FIG. 2 is a graph showing a relationship between a mixing ratio of potassium iodide and a DC discharge starting voltage.
FIG. 3 is a graph showing a relationship between a mixing ratio of potassium iodide and an impulse discharge starting voltage.
FIG. 4 is a sectional view showing a conventional surge absorbing element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Surge absorption element 12 Case member 14 Cover member 16 Hermetic envelope 18 Discharge electrode part 22 Discharge gap 26 Micro discharge gap 28 Trigger discharge film 30 Coating

Claims (2)

両端が開口した絶縁材よりなるケース部材の両端開口部を、放電電極を兼ねた一対の蓋部材で気密に封止することによって気密外囲器を形成すると共に、該気密外囲器内に放電ガスを封入し、また、気密外囲器内に配置される上記蓋部材の放電電極部間に放電間隙を形成すると共に、上記ケース部材の内壁面に、その両端が上記蓋部材と微小放電間隙を隔てて対向配置されたトリガ放電膜を形成し、さらに、上記放電電極部の表面に、アルカリヨウ化物が含有された被膜を形成したことを特徴とするサージ吸収素子。Both ends of a case member made of an insulating material having both ends opened are hermetically sealed with a pair of lid members serving also as discharge electrodes, thereby forming an airtight envelope and discharging into the airtight envelope. A gas is sealed, and a discharge gap is formed between the discharge electrode portions of the lid member disposed in the hermetic envelope. A trigger discharge film which is opposed to the discharge electrode portion, and a coating containing an alkali iodide is formed on the surface of the discharge electrode portion. 上記アルカリヨウ化物が、ヨウ化カリウム(KI)、ヨウ化ナトリウム(NaI)、ヨウ化セシウム(CsI)、ヨウ化ルビジウム(RbI)の単体又は混合物であることを特徴とする請求項1に記載のサージ吸収素子。2. The alkali iodide is a simple substance or a mixture of potassium iodide (KI), sodium iodide (NaI), cesium iodide (CsI), and rubidium iodide (RbI). Surge absorbing element.
JP2003159501A 2003-04-10 2003-06-04 Surge absorbing element Pending JP2004362925A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003159501A JP2004362925A (en) 2003-06-04 2003-06-04 Surge absorbing element
CN2008101336442A CN101350285B (en) 2003-04-10 2004-04-01 Discharge tube
KR1020077003298A KR100711943B1 (en) 2003-04-10 2004-04-01 Discharge tube
EP04725153A EP1612899A4 (en) 2003-04-10 2004-04-01 Discharge tube and surge absorbing device
KR1020057017791A KR100735859B1 (en) 2003-04-10 2004-04-01 Discharge tube
PCT/JP2004/004785 WO2004091060A1 (en) 2003-04-10 2004-04-01 Discharge tube and surge absorbing device
US10/549,586 US20060209485A1 (en) 2003-04-10 2004-04-01 Discharge tube and surge absorbing device
US12/047,111 US20080180017A1 (en) 2003-04-10 2008-03-12 Discharge tube and surge absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003159501A JP2004362925A (en) 2003-06-04 2003-06-04 Surge absorbing element

Publications (1)

Publication Number Publication Date
JP2004362925A true JP2004362925A (en) 2004-12-24

Family

ID=34052543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003159501A Pending JP2004362925A (en) 2003-04-10 2003-06-04 Surge absorbing element

Country Status (1)

Country Link
JP (1) JP2004362925A (en)

Similar Documents

Publication Publication Date Title
KR100735859B1 (en) Discharge tube
JP4209240B2 (en) Discharge tube
JP3718142B2 (en) Discharge tube
JP2004362925A (en) Surge absorbing element
JP4469255B2 (en) Discharge tube
JP2006244794A (en) Discharge tube
JP3114203U7 (en)
JP2006024423A (en) Discharge tube
JP3114203U (en) Discharge tube
JP4338466B2 (en) Discharge tube
JP4133797B2 (en) Discharge tube
JP2005025953A (en) Discharge tube
JP3125268U (en) Discharge tube
JP4764076B2 (en) Discharge tube
JP2006024422A (en) Discharge tube
JP2005032640A (en) Discharge tube
JP2004259459A (en) Discharge tube
JP4426982B2 (en) Discharge tube
JP4651433B2 (en) Discharge tube
JP4426983B2 (en) Discharge tube
JP4764059B2 (en) Discharge tube
JP3130568U (en) Discharge tube
JP2006040831A (en) Discharge tube
JP3125269U (en) Discharge tube
JP4594152B2 (en) Discharge tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050719

A871 Explanation of circumstances concerning accelerated examination

Effective date: 20050720

Free format text: JAPANESE INTERMEDIATE CODE: A871

A521 Written amendment

Effective date: 20050721

Free format text: JAPANESE INTERMEDIATE CODE: A821

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060328

A521 Written amendment

Effective date: 20060420

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20060523

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20060630

Free format text: JAPANESE INTERMEDIATE CODE: A912