JP2004356565A - Flexible printed wiring board - Google Patents

Flexible printed wiring board Download PDF

Info

Publication number
JP2004356565A
JP2004356565A JP2003155325A JP2003155325A JP2004356565A JP 2004356565 A JP2004356565 A JP 2004356565A JP 2003155325 A JP2003155325 A JP 2003155325A JP 2003155325 A JP2003155325 A JP 2003155325A JP 2004356565 A JP2004356565 A JP 2004356565A
Authority
JP
Japan
Prior art keywords
layer
wiring board
printed wiring
flexible printed
constant potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003155325A
Other languages
Japanese (ja)
Inventor
Hiroshi Takahira
宏士 高比良
Noriyuki Yamawaki
則幸 山脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima Opt Corp
Kyocera Display Corp
Original Assignee
Hiroshima Opt Corp
Kyocera Display Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima Opt Corp, Kyocera Display Corp filed Critical Hiroshima Opt Corp
Priority to JP2003155325A priority Critical patent/JP2004356565A/en
Publication of JP2004356565A publication Critical patent/JP2004356565A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flexible printed wiring board in which a countermeasure is taken against noise while ensuring reliable connection by soldering. <P>SOLUTION: The flexible printed wiring board has a signal layer 4 and a constant potential layer 2 superposed on the signal layer 4 through an insulating layer 3. The constant potential layer 2 is provided, at a part 2a superposing the external connection terminal 4a of the signal layer, with an opening 2b for preventing heat from spreading at the time of soldering. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、フレキシブルプリント配線板に係り、特に、ノイズ対策のための導電層を備えたフレキシブルプリント配線板に関する。
【0002】
【従来の技術】
従来から、ポリイミドフィルムやポリエステルフィルムなど可撓性のベースフィルムの表面の両面または片面に導体パターンを形成したフレキシブルプリント配線板は、部品間を接続するために広く用いられ、電子機器の小型化、軽量化に貢献し、可動部分の採用にも寄与していた。
【0003】
フレキシブルプリント配線板を他の基板の電極等に接続する場合は、表面保護層を除去したフレキシブルプリント配線板の外部接続用端子を他の基板の電極等と対面させて、半田接続や熱圧着による方法で接続されていた。
【0004】
このようなフレキシブルプリント配線板において、導体パターンの配線間の干渉等により、配線を伝播する電気信号の波形の歪み等(ノイズ)が生じていた。
【0005】
近年、フレキシブルプリント配線板において、電子機器を高密度化するためや高密度のICをTCP(Tape Carrier Package)で実装するために、複数の導体層を絶縁層を介して積層させた多層フレキシブルプリント配線板が実用化されている。多層フレキシブルプリント配線板は、信号層、電源層、グラウンド層などの導体パターンを形成した両面または片面フレキシブルプリント配線板を複数枚接着して作製することができる。
【0006】
従来、多層フレキシブルプリント配線板においては、異なる層の導電パターンが絶縁層を介して立体的に交差するため、導電パターンの重畳部分にコンデンサが形成されてしまうことは避けられなかった。信号層における電気信号の伝送を目的とする導体パターン同士が重畳して容量が形成されると、電気信号の波形の歪み等を発生させるので、多層フレキシブルプリント配線板は、特にノイズが生じやすかった。
【0007】
このようなフレキシブルプリント配線板において、導体パターンの配線間の干渉等により、配線を伝播する電気信号の波形の歪み等(ノイズ)を防止する目的で、絶縁層(誘電体)を介してグラウンド層や電源層などの一定の電位の層(以下、定電位層という。)を隣接させ、予めコンデンサを形成しておき、このコンデンサの電気容量によってノイズ成分を減衰させる方法が知られている(特許文献1参照)。特に、このコンデンサは大容量であることが好ましいので、ノイズ対策用の定電位層は、両面フレキシブルプリント配線板の一方の面にべた(対象となる信号層の導体パターンのほぼ全面を覆って、導体パターンよりも十分大きな面積)の導体層を形成して用いることが多かった。
【0008】
しかしながら、上述したとおり、フレキシブルプリント配線板は、半田接続や熱圧着による方法で他の基板の電極等と接続されるので、フレキシブルプリント配線板の外部接続用端子は、裏面から加熱されることになる。このため、ノイズ対策としてべたの導体層が外部接続用端子に対応する部分に積層されていると、べたの導体層を通じて接続用の熱が周囲に放熱されてしまうため、目的温度に達せず、接続不良を発生させる原因となることがあった。従って、フレキシブルプリント配線板の外部接続用端子に重畳する部分には、ノイズ対策としての導体層を除去する構造としていた。
【0009】
【特許文献1】
特開2003−23257号公報
【0010】
【発明が解決しようとする課題】
しかしながら、近年の精密化された電子機器においては、フレキシブルプリント配線板の配線同士の干渉等により発生するノイズの影響をできるだけ低減させることが求められていた。特に、多層フレキシブルプリント配線板を用いたときには、配線同士の干渉等により発生するノイズの影響が大きく、何らかの対策が必要であった。
【0011】
そこで、本発明は、ノイズ対策と熱逃げのない確実な接続を両立させたフレキシブルプリント配線板を提供することを目的とする。
【0012】
【課題を解決するための手段】
前述した目的を達成するために本発明のフレキシブルプリント配線板は、導体パターンを有する信号層と、絶縁層を介して前記信号層と重畳した導電体からなる定電位層とを有し、前記信号層は外部接続用端子を有し、前記定電位層には、前記外部接続用端子と重畳する部分の周辺に開口を設けたことを特徴とする。
【0013】
このような構成を採用したことにより、外部接続用端子を接続する際に熱が加えられても、定電位層の外部接続用端子に重畳する部分の周辺に開口が設けられているため、加熱される部分の定電位層が周囲と連続している部分が従来に比べて狭いので、定電位層を伝導して放熱する量を減らすことができる。そして、外部接続用端子に重畳する部分を含む領域にも定電位層が重畳しているので、ノイズを低減することもできる。
【0014】
また、本発明のフレキシブルプリント配線板は、前記開口によって囲まれた前記定電位層の領域内には、複数の前記外部接続用端子と重畳する部分が含まれていることを特徴とする。
【0015】
このような構成を採用したことにより、外部接続用端子の接続工程において加熱された熱は、定電位層において、領域内から開口の外側には伝わりにくいが、領域内においては伝わるため、領域全体における熱分布の均一性が向上するので、領域に重畳した各外部接続用端子は、均等に加熱され、領域に含まれる全ての外部接続用端子は確実な接続がなされる。
【0016】
更に、本発明のフレキシブルプリント配線板は、前記領域内の定電位層はその領域外の定電位層と連結していることを特徴とする。
【0017】
このような構成を採用したことにより、開口によって囲まれた定電位層の領域も定電位に保持されるため、ノイズ低減の効果が向上する。
【0018】
また、信号層を多層に備える多層フレキシブルプリント配線板においては、異なる層の導電パターンが絶縁層を介して立体的に交差するため、導電パターンの重畳部分にコンデンサが形成されてしまい、特にノイズが生じやすいので、本発明を適用するのに好適である。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を図面を用いて説明する。
【0020】
図1(A)は本発明のフレキシブルプリント配線板の概略縦断面図、(B)は概略平面図、(C)は、定電位層の概略平面図である。
【0021】
図1(A)に示すように、フレキシブルプリント配線板1は、導体層として、信号層4と定電位層2とを有し、各導体層間は絶縁層3で絶縁され、信号層4の表面には保護のための絶縁層5が設けられている。そして、フレキシブルプリント配線板1は、他の基板の電極等と接続される部分において、絶縁層5を除去して接続用開口5aを設け、信号層4を露出させて外部接続用端子4aとしている。
【0022】
図1(B)に示すように、信号層4は、横方向に延びる3本の平行な配線からなる導体パターンを有し、各配線の終端近傍において外部接続用端子4aが設けられている。定電位層2には、外部接続用端子4aの両横に離間した位置に開口2b(図1(B)においては一点鎖線で示している。)が配置されている。
【0023】
導体層2,4は、フレキシブルプリント配線板の導体層として通常使用されるものであれば、特に制限されず、例えば、銅、ニッケル、金、はんだ、または、これらの合金などの金属箔が用いられる。好ましくは、銅箔が用いられる。
【0024】
定電位層2は、一定の電位に保持されることを目的とした導体パターンが主に形成されている層であり、コンデンサの他方の電極となる。ノイズ対策用の定電位層2としては、べた(対象となる信号層の導体パターンのほぼ全面を覆って、導体パターンよりも十分大きな面積)の導体層を用いることが好ましい。また、定電位層として、グラウンド層や電源層を兼用させても良い。特に、定電位層に、グラウンド層を採用して電位を接地電位に保持することが好ましい。
【0025】
定電位層2は、信号層4の外部接続用端子4aに重畳する部分2a(以下、重畳部分という。図1(C)においては点線で示す。)を含む領域の周辺に開口2bを備えており、重畳部分2aを含む領域は、開口2b以外の部分である連絡部2cによって、その周囲の導電体と連結している。
【0026】
このため、接続をする際に外部接続用端子4aに熱が加えられても、周囲の導電体と連結している連絡部2cが従来に比べて狭いので、定電位層2を伝導して放熱する量を減らすことができる。よって、重畳部分2aと周囲の導電体とを連絡する連絡部2bを小さくするほど放熱の量を減らすことができる。しかし、重畳部分2aの周囲を開口2bによって完全に囲ってしまうと、重畳部分2aが島状に孤立するので、ノイズ低減の効果が小さくなってしまう。このため、開口2bは、重畳部分2aが孤立しないように周辺と少なくとも一部で連結するような形状および配置にすることが好ましい。
【0027】
図1(C)において、開口2bは、2本の縦長の長方形を平行に離間して配置し、その間に3つの重畳部分2aが配置されているので、3つの重畳部分2aから横方向への放熱を抑制することができる。
【0028】
開口2bの形状としては、直線状、L字状、曲線状、コの字状等、種々の形状を選択できる。また、開口2bは、図1のように複数の重畳部分2aを領域内に含むように設けても良いし、各重畳部分2aごとに領域を設けても良い。図2に開口2bの変形例を示す。図2においても、重畳部分21a、22a、23a、24aを点線で示している。
【0029】
図2(A)は、図1に比べると短い開口21bを複数個直列に配置したものを、重畳部分21aの左右に平行して設けられており、連絡部21cによって周囲の導電体と電気的に連絡され、重畳部分21aから横方向に放熱することを抑制した構成である。
【0030】
図2(B)は、3つの重畳部分22aの周辺をまとめて開口22bで囲っており、連絡部22cによって周囲の導電体と連絡している。このため、図2(B)においては、3つの重畳部分22aは連絡部22cを除いて周囲の導電体と断熱されており、周囲への放熱を大幅に抑制できる。
【0031】
図2(C)では、定電位層に形成された切れ目が開口23bであり、連絡部23cによって周囲の導電体と連絡している。図2(C)に示すように、切れ目のように四方を導体層に囲まれていないパターンであっても、べたの状態と比較すれば狭い連絡部23cによって周囲の導電体と連絡し、放熱を抑制する効果を有しているので、開口の一態様に含まれる。
【0032】
図2(D)は、各重畳部分24aの間にも開口24bを設けた構成であり、折れ線状の開口24bを組み合わせて、各重畳部分24aに2つの連絡部24cを持つようなパターンが形成されている。このパターンでは、各重畳部分24aに対して領域が構成されている。
【0033】
図1(C)および図2(A)乃至(C)においては、開口2b、21b、22b、23bを境界として特定される定電位層の領域内に3つの重畳部分23aを含んでいる。このため、加熱工程において加熱された熱は、定電位層の領域内から開口2b、21b、22b、23bの外側には伝わりにくいが、領域内においては伝わるため、定電位層の領域全体における熱分布の均一性が向上する。よって、定電位層の領域に重畳した外部接続用端子は、均等に加熱されるので、確実な接続がなされる。
【0034】
信号層4は、電気信号の伝送を目的とした導体パターンが主に形成されている層であり、本実施の形態のごとく1層でも良いが、2層以上設けてもよい。図1に示すように、信号層4の外部接続用端子4aを互いに近接して配置すると、開口を境界として特定される定電位層の領域内に複数の重畳部分を含ませることが容易になる。
【0035】
導体層2,4の導体パターン(定電位層2の開口2bを含む)は、配線板の導体パターン形成法として通常使用されるものであれば、特に制限されず、例えば、サブトラクティブ法やアディティブ法などが使用される。
【0036】
絶縁層3,5としては、配線板の絶縁層として通常使用されるものであれば、特に制限されず、例えば、ポリイミド樹脂、アクリル樹脂、ポリエーテルニトリル樹脂、ポリエーテルスルホン樹脂、ポリエステル樹脂、ポリエチレンナフタレート樹脂、ポリ塩化ビニル樹脂などの合成樹脂が用いられる。また、絶縁層3,5は、多層フレキシブルプリント配線板において他の層と接着するための接着剤が硬化したものであってもよい。
【0037】
図3は本発明を多層フレキシブルプリント配線板に適用した態様である。図3(A)は本発明の多層フレキシブルプリント配線板の概略縦断面図、(B)は概略平面図である。
【0038】
図3(A)に示すように、多層フレキシブルプリント配線板30は、導体層として、複数の信号層32,38と定電位層33とを有し、各導体層間は絶縁層31,35で絶縁され、信号層38の表面には保護のための絶縁層37が設けられている。そして、信号層32と信号層38は、絶縁層35に設けられたビア35aに配置された導体36によって層間接続されている。そして、多層フレキシブルプリント配線板30は、他の基板の電極等と接続される部分において、絶縁層37を除去して接続用開口37aを設け、信号層38を露出させて外部接続用端子38aとしている。
【0039】
図3(B)に示すように、信号層32(図3(B)においては点線で示している。)と信号層38は、横方向に延びる3本の平行な配線からなる導体パターンを有し、各配線が重畳する部分の絶縁層35にはビア35aが設けられており、両信号層32,38の配線間が層間接続されている。定電位層33には、外部接続用端子38aの両横に離間した位置に開口33b(図3(B)においては一点鎖線で示している。)が配置されている。
【0040】
本実施の形態においては、導体層が信号層2層と定電位層1層の合わせて3層の多層フレキシブルプリント配線板を示したが、更に信号層、電源層、グラウンド層などを積層させても良い。
【0041】
このような多層フレキシブルプリント配線板30を作製するには、従来の方法を適用することができる。図4は、多層フレキシブルプリント配線板30の製造方法の一例であり、(A)乃至(E)は各工程における概略縦断面図を示す。
【0042】
まず、図4(A)に示すように、第1の絶縁層31の両面に所定の導体パターンが形成された導体層を積層している両面基材34を用意する。導体層32,33として、上面の導体層を第1の信号層32とし、下面の導体層を定電位層33とすればよい。定電位層33は、導体パターンとして、他の基板の電極等と接続される部分に重畳する部分を含む領域の周辺に開口33bを形成しておく。
【0043】
次に、図4(B)に示すように、両面基材34の第1の信号層32に接着剤層35を積層し、層間接続される部分の接着剤層35を除去してビア35aを形成する。
【0044】
更に、図4(C)に示すように、ビア35aに導体ペースト36を充填し、第2の絶縁層37の片面に所定の導体パターンが形成された導体層を積層している片面基材39を用意する。導体層は、第2の信号層38になる。
【0045】
そして、図4(D)に示すように、両面基材34の第1の信号層32と片面基材39の第2の信号層38とを接着剤層35を介して対面させ、位置合わせした後、密着させて、熱プレス装置や加熱加圧ローラなどの加熱加圧装置を用いて、加圧および/または加熱して接着する。その後、導体ペースト36を加熱溶融して、接着剤層35によって接着されている第1の信号層32と第2の信号層38の間を電気的に接続することにより層間接続させる。
【0046】
最後に、図4(E)に示すように、他の基板の電極等と接続される部分における第2の絶縁層37を除去して接続用開口37aを設け、第2の信号層38を露出させ、外部接続用端子38aを形成する。
【0047】
なお、本発明の多層フレキシブルプリント配線板は、上記の製造方法に限定されるものではなく、種々の製造方法を適宜採用することができる。
【0048】
【発明の効果】
以上のとおり、本発明のフレキシブルプリント配線板は、外部接続用端子を接続する際に熱が加えられても、定電位層の外部接続用端子に重畳する部分の周辺に開口が設けられているため、加熱される部分の定電位層が周囲と連続している部分が従来に比べて狭いので、定電位層を伝導して放熱する量を減らすことができる。そして、外部接続用端子に重畳する部分を含む領域にも定電位層が重畳しているので、ノイズを低減することもできる。
【0049】
また、開口によって囲まれた定電位層の領域内に信号層の外部接続用端子に重畳する部分を複数含んでいる場合、外部接続用端子の接続工程において加熱された熱は、定電位層において、領域内から開口の外側には伝わりにくいが、領域内においては伝わるため、領域全体における熱分布の均一性が向上するので、領域に重畳した各外部接続用端子は、均等に加熱され、領域に含まれる全ての外部接続用端子で確実な接続がなされる。
【0050】
更に、信号層を多層に備える多層フレキシブルプリント配線板においては、異なる層の導電パターンが絶縁層を介して立体的に交差するため、導電パターンの重畳部分にコンデンサが形成されてしまい、特にノイズが生じやすいので、本発明を適用するのに好適である。
【図面の簡単な説明】
【図1】(A)は本発明の多層フレキシブルプリント配線板の概略縦断面図、(B)は概略平面図、(C)は定電位層の概略平面図
【図2】(A)乃至(D)は本発明の定電位層の概略平面図
【図3】(A)は本発明の多層フレキシブルプリント配線板の概略縦断面図、(B)は概略平面図
【図4】(A)乃至(E)は多層フレキシブルプリント配線板の作製工程を説明する概略縦断面図
【符号の説明】
1 フレキシブルプリント配線板
2 定電位層
2a 重畳部分
2b 開口
3,5 絶縁層
4 信号層
4a 外部接続用端子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a flexible printed wiring board, and more particularly to a flexible printed wiring board provided with a conductive layer for noise suppression.
[0002]
[Prior art]
Conventionally, flexible printed wiring boards in which conductor patterns are formed on both or one side of the surface of a flexible base film such as a polyimide film or a polyester film have been widely used for connecting between components. It contributed to weight reduction and the adoption of moving parts.
[0003]
When connecting the flexible printed wiring board to an electrode or the like of another board, the external connection terminal of the flexible printed wiring board from which the surface protective layer has been removed faces the electrode or the like of the other board, and is connected by soldering or thermocompression bonding. Was connected in a way.
[0004]
In such a flexible printed wiring board, distortion (noise) of a waveform of an electric signal propagating through the wiring has occurred due to interference between the wirings of the conductor pattern.
[0005]
2. Description of the Related Art In recent years, in a flexible printed wiring board, in order to increase the density of an electronic device or to mount a high-density IC by TCP (Tape Carrier Package), a multilayer flexible print in which a plurality of conductor layers are laminated via an insulating layer. Wiring boards have been put to practical use. The multilayer flexible printed wiring board can be manufactured by bonding a plurality of double-sided or single-sided flexible printed wiring boards on which conductor patterns such as signal layers, power supply layers, and ground layers are formed.
[0006]
Conventionally, in a multilayer flexible printed wiring board, since conductive patterns of different layers intersect three-dimensionally via an insulating layer, it is inevitable that a capacitor is formed at a portion where conductive patterns overlap. When a conductor pattern intended for transmission of an electric signal in a signal layer is superposed to form a capacitance, a distortion or the like of a waveform of the electric signal occurs, so that the multilayer flexible printed wiring board is particularly likely to generate noise. .
[0007]
In such a flexible printed wiring board, a ground layer is provided via an insulating layer (dielectric) for the purpose of preventing distortion (noise) of a waveform of an electric signal propagating through the wiring due to interference between the wirings of the conductive pattern and the like. A method is known in which a layer having a constant potential (hereinafter, referred to as a constant potential layer) such as a power supply layer or a power supply layer is formed adjacent to a capacitor, and a noise component is attenuated by the electric capacity of the capacitor (Patent). Reference 1). In particular, since it is preferable that this capacitor has a large capacity, the constant potential layer for noise suppression is provided on one surface of the double-sided flexible printed wiring board (covering almost the entire conductor pattern of the target signal layer, In many cases, a conductor layer having an area sufficiently larger than the conductor pattern) is formed and used.
[0008]
However, as described above, since the flexible printed wiring board is connected to an electrode or the like of another substrate by a method of solder connection or thermocompression bonding, the external connection terminals of the flexible printed wiring board are heated from the back surface. Become. For this reason, if the solid conductor layer is laminated on the portion corresponding to the external connection terminal as a noise countermeasure, the heat for connection is radiated to the surroundings through the solid conductor layer, so that the target temperature is not reached, This could cause poor connection. Therefore, the portion of the flexible printed wiring board that overlaps with the external connection terminal has a structure in which the conductor layer is removed as a measure against noise.
[0009]
[Patent Document 1]
JP 2003-23257 A
[Problems to be solved by the invention]
However, in recent refined electronic devices, there has been a demand for reducing the influence of noise generated by interference between wirings of a flexible printed wiring board as much as possible. In particular, when a multilayer flexible printed wiring board is used, the influence of noise generated due to interference between wirings and the like is great, and some countermeasures are required.
[0011]
Therefore, an object of the present invention is to provide a flexible printed wiring board that achieves both noise countermeasures and reliable connection without heat escape.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the flexible printed wiring board of the present invention has a signal layer having a conductor pattern, and a constant potential layer made of a conductor superimposed on the signal layer via an insulating layer, The layer has an external connection terminal, and the constant potential layer is provided with an opening around a portion overlapping with the external connection terminal.
[0013]
By adopting such a configuration, even when heat is applied when connecting the external connection terminal, the opening is provided around the portion of the constant potential layer overlapping the external connection terminal, so that the heating is performed. Since the portion of the portion where the constant potential layer is continuous with the surrounding portion is narrower than in the related art, the amount of heat dissipated through the constant potential layer can be reduced. Further, since the constant potential layer also overlaps a region including a portion overlapping the external connection terminal, noise can be reduced.
[0014]
Further, the flexible printed wiring board of the present invention is characterized in that the region of the constant potential layer surrounded by the opening includes a portion overlapping with the plurality of external connection terminals.
[0015]
By adopting such a configuration, the heat heated in the step of connecting the external connection terminals is not easily transmitted from the inside of the region to the outside of the opening in the constant potential layer, but is transferred within the region, so that the entire region is not transferred. Since the uniformity of the heat distribution in the area is improved, the external connection terminals superimposed on the region are uniformly heated, and all the external connection terminals included in the region are reliably connected.
[0016]
Further, in the flexible printed wiring board according to the present invention, the constant potential layer in the region is connected to a constant potential layer outside the region.
[0017]
By employing such a configuration, the region of the constant potential layer surrounded by the opening is also kept at a constant potential, so that the effect of noise reduction is improved.
[0018]
Further, in a multilayer flexible printed wiring board having a plurality of signal layers, since conductive patterns of different layers intersect three-dimensionally via an insulating layer, a capacitor is formed at a superimposed portion of the conductive patterns. Since this is likely to occur, it is suitable for applying the present invention.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0020]
1A is a schematic longitudinal sectional view of a flexible printed wiring board of the present invention, FIG. 1B is a schematic plan view, and FIG. 1C is a schematic plan view of a constant potential layer.
[0021]
As shown in FIG. 1 (A), the flexible printed wiring board 1 has a signal layer 4 and a constant potential layer 2 as conductor layers, each conductor layer is insulated by an insulating layer 3, and the surface of the signal layer 4 Is provided with an insulating layer 5 for protection. The flexible printed wiring board 1 is provided with a connection opening 5a by removing the insulating layer 5 at a portion to be connected to an electrode or the like of another substrate, and the signal layer 4 is exposed to form an external connection terminal 4a. .
[0022]
As shown in FIG. 1B, the signal layer 4 has a conductor pattern including three parallel wirings extending in the horizontal direction, and an external connection terminal 4a is provided near the end of each wiring. In the constant potential layer 2, an opening 2b (indicated by a dashed line in FIG. 1B) is arranged at a position separated from both sides of the external connection terminal 4a.
[0023]
The conductor layers 2 and 4 are not particularly limited as long as they are generally used as a conductor layer of a flexible printed wiring board. For example, copper, nickel, gold, solder, or a metal foil of an alloy thereof is used. Can be Preferably, a copper foil is used.
[0024]
The constant potential layer 2 is a layer in which a conductor pattern intended to be maintained at a constant potential is mainly formed, and serves as the other electrode of the capacitor. As the constant potential layer 2 for noise suppression, it is preferable to use a solid conductor layer (covering substantially the entire conductor pattern of the target signal layer and having an area sufficiently larger than the conductor pattern). Further, a ground layer or a power supply layer may be used as the constant potential layer. In particular, it is preferable to employ a ground layer as the constant potential layer and maintain the potential at the ground potential.
[0025]
The constant potential layer 2 has an opening 2b around a region including a portion 2a (hereinafter, referred to as a superposed portion; indicated by a dotted line in FIG. 1C) that overlaps with the external connection terminal 4a of the signal layer 4. The region including the overlapping portion 2a is connected to the surrounding conductor by a connecting portion 2c other than the opening 2b.
[0026]
For this reason, even when heat is applied to the external connection terminal 4a when making the connection, the contact portion 2c connected to the surrounding conductor is narrower than in the related art, so that the constant potential layer 2 is conducted and heat is released. You can reduce the amount to do. Therefore, the amount of heat dissipation can be reduced by reducing the size of the connecting portion 2b that connects the overlapping portion 2a and the surrounding conductor. However, if the periphery of the overlapping portion 2a is completely surrounded by the opening 2b, the overlapping portion 2a is isolated in an island shape, and the effect of noise reduction is reduced. For this reason, it is preferable that the opening 2b be formed in a shape and arrangement such that the overlapping portion 2a is connected to the periphery at least partially so as not to be isolated.
[0027]
In FIG. 1 (C), the opening 2b has two vertically long rectangles arranged in parallel and spaced apart from each other, and three overlapping portions 2a are arranged therebetween. Therefore, the opening 2b extends from the three overlapping portions 2a in the horizontal direction. Heat radiation can be suppressed.
[0028]
As the shape of the opening 2b, various shapes such as a linear shape, an L shape, a curved shape, and a U shape can be selected. The opening 2b may be provided so as to include a plurality of overlapping portions 2a in the region as shown in FIG. 1, or a region may be provided for each overlapping portion 2a. FIG. 2 shows a modification of the opening 2b. Also in FIG. 2, the overlapping portions 21a, 22a, 23a, and 24a are indicated by dotted lines.
[0029]
FIG. 2A shows a configuration in which a plurality of openings 21b shorter than those shown in FIG. 1 are arranged in series and provided in parallel with the left and right sides of the overlapping portion 21a. , And suppresses lateral heat radiation from the overlapping portion 21a.
[0030]
In FIG. 2B, the periphery of the three overlapping portions 22a is collectively surrounded by an opening 22b, and is connected to the surrounding conductor by a connecting portion 22c. For this reason, in FIG. 2B, the three overlapping portions 22a are insulated from the surrounding conductor except for the connecting portion 22c, so that heat radiation to the surroundings can be significantly suppressed.
[0031]
In FIG. 2C, a cut formed in the constant potential layer is an opening 23b, and is connected to a surrounding conductor by a connecting portion 23c. As shown in FIG. 2 (C), even if the pattern is not surrounded by the conductor layer on all sides like a cut, it is connected to the surrounding conductor by a narrow connecting portion 23c as compared with the solid state, and heat is radiated. Is included in one aspect of the opening.
[0032]
FIG. 2D shows a configuration in which an opening 24b is also provided between the overlapping portions 24a, and a pattern is formed by combining the polygonal openings 24b to have two connecting portions 24c in each overlapping portion 24a. Have been. In this pattern, a region is formed for each overlapping portion 24a.
[0033]
1C and FIGS. 2A to 2C, three overlapping portions 23a are included in the region of the constant potential layer specified with the openings 2b, 21b, 22b, and 23b as boundaries. For this reason, the heat heated in the heating step is hardly transmitted from the region of the constant potential layer to the outside of the openings 2b, 21b, 22b, and 23b, but is transmitted within the region, so that heat in the entire region of the constant potential layer is transmitted. The uniformity of distribution is improved. Therefore, the external connection terminals superimposed on the region of the constant potential layer are uniformly heated, so that reliable connection is made.
[0034]
The signal layer 4 is a layer in which a conductor pattern for transmitting an electric signal is mainly formed, and may be one layer as in the present embodiment, or may be two or more layers. As shown in FIG. 1, when the external connection terminals 4a of the signal layer 4 are arranged close to each other, it is easy to include a plurality of overlapping portions in the region of the constant potential layer specified by the opening as a boundary. .
[0035]
The conductor patterns of the conductor layers 2 and 4 (including the openings 2b of the constant potential layer 2) are not particularly limited as long as they are generally used as a conductor pattern forming method of a wiring board. For example, a subtractive method or an additive method is used. The law is used.
[0036]
The insulating layers 3 and 5 are not particularly limited as long as they are generally used as an insulating layer of a wiring board. For example, polyimide resin, acrylic resin, polyether nitrile resin, polyether sulfone resin, polyester resin, polyethylene Synthetic resins such as naphthalate resin and polyvinyl chloride resin are used. Further, the insulating layers 3 and 5 may be formed by curing an adhesive for bonding to another layer in the multilayer flexible printed wiring board.
[0037]
FIG. 3 shows an embodiment in which the present invention is applied to a multilayer flexible printed wiring board. FIG. 3A is a schematic longitudinal sectional view of the multilayer flexible printed wiring board of the present invention, and FIG. 3B is a schematic plan view.
[0038]
As shown in FIG. 3A, the multilayer flexible printed wiring board 30 has a plurality of signal layers 32 and 38 and a constant potential layer 33 as conductive layers, and the conductive layers are insulated by insulating layers 31 and 35. On the surface of the signal layer 38, an insulating layer 37 for protection is provided. The signal layer 32 and the signal layer 38 are connected to each other by a conductor 36 arranged in a via 35 a provided in the insulating layer 35. Then, the multilayer flexible printed wiring board 30 is provided with a connection opening 37a by removing the insulating layer 37 at a portion connected to an electrode or the like of another substrate, exposing the signal layer 38 to serve as an external connection terminal 38a. I have.
[0039]
As shown in FIG. 3B, the signal layer 32 (indicated by a dotted line in FIG. 3B) and the signal layer 38 have conductor patterns formed of three parallel wirings extending in the horizontal direction. A via 35a is provided in the portion of the insulating layer 35 where the wirings overlap, and the wirings of the two signal layers 32 and 38 are interlayer-connected. In the constant potential layer 33, an opening 33b (indicated by a dashed line in FIG. 3B) is arranged at a position separated from both sides of the external connection terminal 38a.
[0040]
In the present embodiment, the multilayer flexible printed wiring board has three conductive layers including two signal layers and one constant potential layer. However, the signal layer, the power supply layer, the ground layer, and the like are further laminated. Is also good.
[0041]
In order to manufacture such a multilayer flexible printed wiring board 30, a conventional method can be applied. 4A to 4E show an example of a method for manufacturing the multilayer flexible printed wiring board 30. FIGS. 4A to 4E show schematic longitudinal sectional views in respective steps.
[0042]
First, as shown in FIG. 4A, a double-sided base material 34 is prepared in which a conductive layer having a predetermined conductive pattern formed on both surfaces of a first insulating layer 31 is laminated. As the conductor layers 32 and 33, the upper conductor layer may be the first signal layer 32 and the lower conductor layer may be the constant potential layer 33. In the constant potential layer 33, an opening 33b is formed as a conductor pattern around a region including a portion overlapping with a portion connected to an electrode or the like of another substrate.
[0043]
Next, as shown in FIG. 4 (B), an adhesive layer 35 is laminated on the first signal layer 32 of the double-sided base material 34, and the adhesive layer 35 at a portion connected between layers is removed to form a via 35a. Form.
[0044]
Further, as shown in FIG. 4C, a via paste 35a is filled with a conductive paste 36, and a single-sided base material 39 is formed by laminating a conductive layer having a predetermined conductive pattern on one surface of a second insulating layer 37. Prepare. The conductor layer becomes the second signal layer 38.
[0045]
Then, as shown in FIG. 4D, the first signal layer 32 of the double-sided base material 34 and the second signal layer 38 of the single-sided base material 39 face each other via the adhesive layer 35 and are aligned. Then, they are brought into close contact with each other, and are bonded by pressing and / or heating using a heating and pressing device such as a hot pressing device or a heating and pressing roller. After that, the conductive paste 36 is heated and melted, and the first signal layer 32 and the second signal layer 38 adhered by the adhesive layer 35 are electrically connected to establish an interlayer connection.
[0046]
Finally, as shown in FIG. 4 (E), the second insulating layer 37 is removed at a portion connected to an electrode or the like of another substrate to provide a connection opening 37a to expose the second signal layer 38. Then, the external connection terminal 38a is formed.
[0047]
In addition, the multilayer flexible printed wiring board of the present invention is not limited to the above manufacturing method, and various manufacturing methods can be appropriately adopted.
[0048]
【The invention's effect】
As described above, in the flexible printed wiring board of the present invention, even when heat is applied when connecting the external connection terminal, the opening is provided around the portion of the constant potential layer that overlaps the external connection terminal. Therefore, since the portion of the heated portion where the constant potential layer is continuous with the surroundings is narrower than in the related art, the amount of heat dissipated through the constant potential layer can be reduced. Further, since the constant potential layer also overlaps a region including a portion overlapping the external connection terminal, noise can be reduced.
[0049]
In the case where the region of the constant potential layer surrounded by the opening includes a plurality of portions overlapping the external connection terminals of the signal layer, heat heated in the step of connecting the external connection terminals is generated in the constant potential layer. However, since the heat is hardly transmitted from the region to the outside of the opening, but is transmitted within the region, the uniformity of the heat distribution in the entire region is improved. A reliable connection is made at all of the external connection terminals included in.
[0050]
Furthermore, in a multilayer flexible printed wiring board having a plurality of signal layers, since conductive patterns of different layers intersect three-dimensionally via an insulating layer, a capacitor is formed at a portion where the conductive patterns overlap. Since this is likely to occur, it is suitable for applying the present invention.
[Brief description of the drawings]
1A is a schematic longitudinal sectional view of a multilayer flexible printed wiring board of the present invention, FIG. 1B is a schematic plan view, and FIG. 1C is a schematic plan view of a constant potential layer. D) is a schematic plan view of the constant potential layer of the present invention. [FIG. 3] (A) is a schematic longitudinal sectional view of the multilayer flexible printed wiring board of the present invention, and (B) is a schematic plan view. (E) is a schematic longitudinal sectional view for explaining a manufacturing process of the multilayer flexible printed wiring board.
DESCRIPTION OF SYMBOLS 1 Flexible printed wiring board 2 Constant potential layer 2a Overlapping part 2b Opening 3,5 Insulating layer 4 Signal layer 4a Terminal for external connection

Claims (3)

導体パターンを有する信号層と、絶縁層を介して前記信号層と重畳した導電体からなる定電位層とを有するフレキシブルプリント配線板において、前記信号層は外部接続用端子を有し、前記定電位層には、前記外部接続用端子と重畳する部分の周辺に開口を設けたことを特徴とするフレキシブルプリント配線板。In a flexible printed wiring board having a signal layer having a conductor pattern and a constant potential layer made of a conductor overlapped with the signal layer via an insulating layer, the signal layer has an external connection terminal, An opening is provided in a layer around a portion overlapping with the external connection terminal, a flexible printed wiring board. 前記開口によって囲まれた前記定電位層の領域内には、複数の前記外部接続用端子と重畳する部分が含まれている請求項1に記載のフレキシブルプリント配線板。2. The flexible printed wiring board according to claim 1, wherein a portion of the constant potential layer surrounded by the opening includes a portion overlapping with the plurality of external connection terminals. 3. 前記領域内の定電位層はその領域外の定電位層と連結している請求項1または2に記載のフレキシブルプリント配線板。The flexible printed wiring board according to claim 1, wherein the constant potential layer in the region is connected to a constant potential layer outside the region.
JP2003155325A 2003-05-30 2003-05-30 Flexible printed wiring board Pending JP2004356565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003155325A JP2004356565A (en) 2003-05-30 2003-05-30 Flexible printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003155325A JP2004356565A (en) 2003-05-30 2003-05-30 Flexible printed wiring board

Publications (1)

Publication Number Publication Date
JP2004356565A true JP2004356565A (en) 2004-12-16

Family

ID=34049732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003155325A Pending JP2004356565A (en) 2003-05-30 2003-05-30 Flexible printed wiring board

Country Status (1)

Country Link
JP (1) JP2004356565A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303160A (en) * 2005-04-20 2006-11-02 Matsushita Electric Ind Co Ltd Multilayer printed circuit board
CN103377661A (en) * 2012-04-27 2013-10-30 日东电工株式会社 Printed circuit board and method of manufacturing the same
US11109482B2 (en) 2019-03-19 2021-08-31 Kabushiki Kaisha Toshiba Electronic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303160A (en) * 2005-04-20 2006-11-02 Matsushita Electric Ind Co Ltd Multilayer printed circuit board
CN103377661A (en) * 2012-04-27 2013-10-30 日东电工株式会社 Printed circuit board and method of manufacturing the same
JP2013232261A (en) * 2012-04-27 2013-11-14 Nitto Denko Corp Wiring circuit board and manufacturing method of the same
CN103377661B (en) * 2012-04-27 2017-12-08 日东电工株式会社 Wired circuit board and its manufacture method
US11109482B2 (en) 2019-03-19 2021-08-31 Kabushiki Kaisha Toshiba Electronic device

Similar Documents

Publication Publication Date Title
US8168893B2 (en) Multilayer wiring board with concave portion for accomodating electronic component
JP6958300B2 (en) Multilayer circuit board
US20190008033A1 (en) Printed circuit board having emi shielding function, method for manufacturing the same, and flat cable using the same
JP2008016844A (en) Printed circuit board and manufacturing method of the same
US20150245492A1 (en) Multilayer wiring board with built-in electronic component
JPWO2015005029A1 (en) Resin multilayer substrate and method for producing resin multilayer substrate
CN104425286A (en) IC carrier plate, semiconductor device having the same and manufacturing method of the IC carrier plate
JP2008078205A (en) Substrate assembly and method for manufacturing the same, electronic component assembly and method for manufacturing the same, and electronic apparatus
WO2020071493A1 (en) Module
US9629249B2 (en) Component-embedded substrate and communication module
KR101905879B1 (en) The printed circuit board and the method for manufacturing the same
JP2004356565A (en) Flexible printed wiring board
JP2012033529A (en) Wiring board
CN112449484B (en) Circuit board and method for manufacturing the same
JP7116843B2 (en) Multi-stack cooling structure for RF components
JP2017162989A (en) Electronic component built-in substrate and manufacturing method therefor
JP4235092B2 (en) Wiring substrate and semiconductor device using the same
JP2004266180A (en) Wiring board
JP5890978B2 (en) Wiring board manufacturing method
CN217363376U (en) Resin multilayer substrate and electronic component
JP2001291817A (en) Electronic circuit device and multilayer printed wiring board
JP4227502B2 (en) Wiring substrate and semiconductor device using the same
JP2017162990A (en) Electronic component built-in substrate and manufacturing method therefor
JP2009231480A (en) Semiconductor device
TW201709788A (en) Flexible print circuit board and method for manufacturing same