JP2004350027A - 広帯域90°移相器を用いるfm信号復調方法及びその装置 - Google Patents

広帯域90°移相器を用いるfm信号復調方法及びその装置 Download PDF

Info

Publication number
JP2004350027A
JP2004350027A JP2003144729A JP2003144729A JP2004350027A JP 2004350027 A JP2004350027 A JP 2004350027A JP 2003144729 A JP2003144729 A JP 2003144729A JP 2003144729 A JP2003144729 A JP 2003144729A JP 2004350027 A JP2004350027 A JP 2004350027A
Authority
JP
Japan
Prior art keywords
frequency
signal
phase
output
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003144729A
Other languages
English (en)
Inventor
Masaru Kobayashi
大 小林
Hideki Kawakatsu
英樹 川勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003144729A priority Critical patent/JP2004350027A/ja
Priority to RU2005140107/09A priority patent/RU2005140107A/ru
Priority to EP04734421A priority patent/EP1626495B1/en
Priority to DE602004011335T priority patent/DE602004011335T2/de
Priority to PCT/JP2004/007319 priority patent/WO2004105230A1/ja
Priority to US10/557,772 priority patent/US20070197176A1/en
Priority to KR1020057022361A priority patent/KR100667648B1/ko
Publication of JP2004350027A publication Critical patent/JP2004350027A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

【課題】復調の対象としている範囲を大きく超える周波数偏移に対して出力が滑らかに飽和する特性を持つ、広帯域90°移相器を用いるFM信号復調方法及びその装置を提供する。
【解決手段】広帯域90°移相器を用いるFM信号復調方法において、周波数が、復調しようとするFM信号の中心周波数で位相が互いに90°異なる基準信号を、入力されたFM信号とそれぞれに周波数混合して、0Hzを中心とした位相が互いに90°異なる中間周波信号IおよびQに変換し、この中間周波信号IおよびQそれぞれを広帯域90°移相器によって位相を操作した4種類の信号ISとIC、および、QSとQCを生成し、これらの信号間の演算IS・QC−IC・QSを出力とする。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、中心周波数の近傍では高い感度を持ち、かつ、広い周波数偏移の範囲にわたって周波数対出力値の関係が単調関数である広帯域90°移相器を用いるFM信号復調方法及びその装置に関するものである。
【0002】
【従来の技術】
従来、以下のようなFM信号復調方法または装置が存在する。
【0003】
(1)スロープ検波・復同調検波
(2)直交検波(クワドラチャ検波)
(3)遅延検波
(4)レシオ検波
(5)PLL検波
以下、それぞれのFM信号復調方法について説明する。
【0004】
(1)スロープ検波・復同調検波
図5は従来のスロープ検波のブロックダイヤグラムとその各部の波形図である。
【0005】
この図において、入力信号51はFM変調(波形5A)されているので、共振回路55が持つ周波数−振幅特性によって振幅変調(波形5B)を施された信号52になり、これを振幅検波56(波形5C)で信号53にして、フィルタ57によって低周波成分54を抽出(波形5D)することにより、FM信号復調が達成される。
【0006】
図6は従来のスロープ検波に使われる共振回路の周波数−振幅特性の一例を示す図である。この図において、横軸は周波数、縦軸は振幅利得を示している。
【0007】
共振回路はFM信号の中心周波数62より少し離れた周波数65に同調されており、周波数−振幅特性の傾きが大きい部分を利用することによって、周波数偏移63を振幅変化64に変換する際の感度を向上させている。
【0008】
また、従来の復同調検波は、上記のような共振回路を2個使用して、一方の共振回路をFM信号の中心周波数より上に、他方の共振回路をFM信号の中心周波数より下にそれぞれ同調させ、それぞれスロープ検波した結果を合成することで直線性を改善したFM信号復調方法である。
【0009】
(2)直交検波(クワドラチャ検波)
図7は従来の直交検波のブロックダイヤグラムを示す図である。
【0010】
この図において、入力信号71は位相比較器76に直接入力されるほか、共振回路75を通り、位相変化を受けた信号72が位相比較器76に入力される。位相比較器76の出力73をフィルタ77に通してその低周波成分74を取り出すことでFM信号復調が達成される。
【0011】
図8は従来の直交検波において共振回路が入力と出力の間に与える位相変化の一例を示す図である。この図において、横軸は周波数、縦軸は位相を示している。
【0012】
入力信号の中心周波数8Aにおいて位相が90°遅れになるように共振回路を同調しておくと、入力信号が正の周波数偏移を受けた場合には位相90°を越える遅れ(8B)となり、負の周波数偏移を受けた場合には位相90°未満の遅れ(8C)となる。共振回路と同じ目的で、セラミック振動子を利用することもある。
【0013】
位相比較器としては、アナログの乗算器の他にディジタルの排他的論理和ゲートを利用する場合もあるが、図9を用いてアナログ乗算器を用いる場合の動作を説明する。
【0014】
図9は従来のアナログ乗算器を用いた位相比較器の動作の説明図である。
【0015】
乗算器に入力される一対の信号の位相が直交している場合〔図9(a)〕には乗算結果は直流成分を含まない。一方、一対の信号の間に90°を越えるか、または90°に満たない位相差がある場合〔図9(b),(c)〕は乗算結果が位相差を反映した直流成分を含む。
【0016】
(3)遅延検波
図10は従来の遅延検波の代表的なブロックダイヤグラムを示す図である。
【0017】
遅延検波は、直交検波の共振回路を遅延手段に置き換えたものであり、広義の直交検波に分類することもできる。入力信号101は位相比較器106に直接入力されるほか、遅延手段105を通して遅延を受けた信号102が位相比較器106に入力される。位相比較器106の出力103をフィルタ107に通してその低周波成分104を取り出すことでFM信号復調が達成される。
【0018】
遅延手段105は信号の周波数に関係なく一定時間の遅延を与える目的で設置される。一定時間の遅延の結果、信号102に含まれる周波数成分は、周波数に比例する位相遅れを与えられる。遅延検波をアナログ回路で実現する場合には、遅延手段として同軸ケーブルや遅延線が利用される。ディジタル信号処理として実現する場合には、過去の時点でサンプルされたデータを利用することをもって、遅延手段とすることができる。
【0019】
下記非特許文献1に、遅延検波をディジタル信号処理として実現する方法が述べられている。
【0020】
図11は低周波成分を抽出するためのフィルタを用いない方法を示した図である。図11(a)ではFM信号111が遅延回路112に入力されるとともに、90°移相器113に入力され、遅延回路112及び90°移相器113それぞれの出力116とそれを回路要素114で1サンプリング時間遅延した信号117とをたすき掛けに乗算した結果115を互いに引き算して出力118とする。
【0021】
90°移相器113はFM信号の周波数偏移範囲全体に亘って、周波数に依存せず90°の位相変化を与えるものであり、遅延回路112の目的は90°移相器113で生じる時間遅れを補償することである。その結果として一対の信号116の位相は互いに90°ずれることになる。その後、遅延をかけた信号117ともとの信号116を乗算した信号115では、高周波成分は同位相に、低周波成分は逆位相になるので、互いに引き算することで低周波成分だけを抽出することができる。図11(b)の例も、前半の処理部119が異なるだけで、その後の処理は図11(a)と同じである。
【0022】
(4)レシオ検波
図12は従来のレシオ検波回路図、図13は従来のレシオ検波回路内部の電圧のベクトル図である。
【0023】
この図に示したコイルLとコンデンサCからなる並列共振回路はFM信号の中心周波数に同調されている。FM信号VはコイルLとコイルLならびにコイルLとコイルLの相互誘導によって、それぞれ電圧Vならびに電圧Vを発生させる。Vに対するVの位相は、FM信号の中心周波数において直交するようになっている。FM信号の周波数が中心周波数から偏移すると、コイルLとコンデンサCから成る並列共振の性質によってVに対するVの位相が変化する。
【0024】
ダイオードDとコンデンサCから成る振幅検波回路と、ダイオードDとコンデンサCから成る振幅検波回路には、それぞれ電圧Vの半値とVをベクトル的に加算した信号と減算した信号が印加される。
【0025】
図13に示すように、FM信号の周波数fが中心周波数fに一致しているとき〔図13(a)〕はVの半値とVのベクトル加算と減算は同じ振幅であるが、周波数が偏移すると、Vの位相が変わるので、Vの半値とVのベクトル加算と減算の振幅に差ができる〔図13(b),(c)〕。レシオ検波回路はこれらの振幅検波電圧の差Vを出力とすることでFM信号復調を達成する。
【0026】
(5)PLL検波
PLL(位相ロックループ)検波は、周波数−電圧変換を直接行なうのではなく、入力電圧によって出力周波数が変化する電圧制御発振器を電圧−周波数変換手段として用い、これを負帰還ループに挿入することで、周波数−電圧変換(FM信号復調)を実現する。
【0027】
図14は従来のPLL検波のブロック図である。FM信号141と電圧制御発振器147の出力信号144が位相比較器145に入力される。位相比較器145はアナログ乗算器、排他的論理和ゲート、またはフリップフロップなどで構成され、信号141と144の位相差を表す電圧142を出力する。位相比較器145の出力142は系を安定させるためのループフィルタ146を通して電圧制御発振器147に入力され、もって負帰還が成立し、信号144とFM信号141の位相差が一定にロックされる。なお、143は出力信号である。
【0028】
周波数は位相の時間微分なので、位相差が一定になるように制御することは、周波数差がない(周波数が等しい)ように制御することでもある。従って、電圧制御発振器の制御電圧は入力周波数の周波数偏移を反映して変化するので、FM信号復調が達成される。
【0029】
【非特許文献1】
谷萩隆嗣 編著「情報通信とディジタル信号処理」、ディジタル信号処理ライブラリー8、コロナ社、ISBN4−339−01128−2、153−154ページ
【非特許文献2】
IRE Transactions on Circuit Theory,June 1960,Pages 128−136,Normalized Design of 90° Phase−Difference Networks,S.D.Bedrosian
【0030】
【発明が解決しようとする課題】
しかしながら、上記した従来の多くの検波方式は、広い範囲に亘って出力が周波数の単調関数になっていない。すなわち、スロープ検波においては、FM信号の周波数偏移が共振回路の同調周波数65を越えるまで大きくなると、周波数と振幅がふたたび低下してしまい、検波出力は周波数に対して単調関数でなくなり、検波出力の周波数特性は共振回路の振幅・周波数特性と同様の図15(a)のような形になる。復同調検波では、これが上下に組み合わさり、図15(b)のような形になる。
【0031】
また、直交検波およびレシオ検波は共振回路の位相特性を利用しているが、共振回路は共振周波数から離れるほど振幅が低下してくるため、周波数偏移が小さいあいだは位相変化が支配的だが、周波数偏移が大きくなると振幅の低下が支配的になり、検波出力の周波数特性はやはり図15(b)のような形になる。
【0032】
遅延検波においては、出力電圧の周波数特性は、遅延時間逆数を1周期とする周期関数〔図15(c)〕となる。
【0033】
また、PLL検波においては、電圧制御発振器の周波数可変範囲を逸脱した入力周波数に対しては、位相ロックを維持することができない。周波数−位相比較器と呼ばれる種類の位相比較器は、ロックがはずれたときにも周波数が高すぎるか低すぎるかを判定できる。しかし、ロックがかかった状態とはずれた状態では帰還ループのループゲインが異なるので、正常動作に戻る時にハンチング現象が起きたりする。
【0034】
上記したように、従来のFM信号復調方法では、復調の対象としている範囲を大きく越える周波数偏移に対しては異常な値を出力するという問題がある。
【0035】
この問題は、FM信号復調器を何らかの制御ループの中において使用する場合に不都合を生じる。例えば、原子間力顕微鏡のカンチレバーの共振周波数の変化を検出するためにFM信号復調器を利用する場合には、致命的な欠陥になり得る。すなわち、非接触原子間力顕微鏡の制御器は、微小な片持ち梁(カンチレバー)を共振周波数で振動させながら試料表面に接近させ、カンチレバー先端と試料表面の相互作用による共振周波数の変化を検出して、これを一定に維持するようにカンチレバーの位置を調節する。上記の問題を有するFM信号復調器をこの目的に使用した場合、通常予想される範囲を逸脱した周波数偏移が発生すると、カンチレバーの位置制御ループのゲインが反転し、カンチレバーを試料から引き離すべき状況においてかえってカンチレバーを試料に近づけるように動作し、カンチレバーまたは試料を損傷する危険がある。
【0036】
本発明は、上記状況に鑑みて、復調の対象としている範囲を大きく超える周波数偏移に対して出力が滑らかに飽和する特性を持つ、広帯域90°移相器を用いるFM信号復調方法及びその装置を提供するものである。
【0037】
【課題を解決するための手段】
本発明は、上記目的を達成するために、
〔1〕広帯域90°移相器を用いるFM信号復調方法において、周波数が、復調しようとするFM信号の中心周波数で位相が互いに90°異なる基準信号を、入力されたFM信号とそれぞれに周波数混合して、0Hzを中心とした位相が互いに90°異なる中間周波信号IおよびQに変換し、この中間周波信号IおよびQそれぞれを広帯域90°位相器によって位相を操作した4種類の信号ISとIC、および、QSとQCを生成し、これらの信号間の演算IS・QC−IC・QSを出力とすることを特徴とする。
【0038】
〔2〕走査型プローブ顕微鏡のプローブの振動周波数の偏移を検出することを目的とするFM信号復調装置であって、上記〔1〕記載の広帯域90°移相器を用いるFM信号復調方法を用いることを特徴とする。
【0039】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0040】
図1は本発明にかかるFM信号復調方法のブロックダイヤグラムを示す図である。
【0041】
この図において、直交正弦波発生器12は、復調しようとするFM信号11の中心周波数fcをその周波数とし、互いに位相が90°異なる正弦波信号を発生させる。これらの正弦波信号とFM信号11は一対のミキサ13iおよび13qによって0Hzの中間周波に周波数変換され、それぞれ高周波除去フィルタ14iおよび14qによって高周波成分を除去されて信号IおよびQとなる。IおよびQの周波数は、もとのFM信号11の周波数偏移Δfに等しく、位相は互いに90°異なる。簡単にするためにこれらの振幅を1とすると、I=sin(2πΔft),Q=cos(2πΔft)の関係にある。
【0042】
信号IおよびQは相等しい特性を持つ広帯域90°移相器15iおよび15qに入力される。広帯域90°移相器15i,15qはそれぞれ2個の信号を出力する。広帯域移相器15iおよび15qからの出力をそれぞれIS,ICおよびQS,QCとするとき、本発明のFM信号復調方法はこれらの信号間の演算IS・QC−IC・QSを出力する。
【0043】
ここで、広帯域90°移相器15i,15qは、ヒルベルト変換を近似的に実現する装置である。ヒルベルト変換は入力信号に対して周波数が正ならば+90°の位相推移を、負ならば−90°の位相推移を与えて出力する。なお、16i,16qは乗算器である。
【0044】
図2はアナログ回路で構成された広帯域90°移相器の一例を示す図であり、図2(a)はその回路図、図2(b)はその位相特性、図2(c)は出力Sと出力Cの間の位相差と周波数の関係を示す図である。
【0045】
この回路は1次の全域通過フィルタを多段に接続したものであり、振幅利得は常に1であり、位相だけを変化させる。時定数C・RからC・Rに然るべき値を使用することで、ヒルベルト変換を近似できることが知られている(非特許文献2)。真のヒルベルト変換との違いは、90°移相が実現される周波数に下限と上限があることと、入出力間の位相差を90°に固定するかわりに2個の出力間の位相差を上記した下限と上限の間の周波数において一定の誤差以内で90°に近似することである。
【0046】
入力Pと出力Sの位相差および入力Pと出力Cの間の位相差は、図2(b)に示すように、下限周波数fから上限周波数fの間でいずれもほぼ直線的に増加していくが、出力Sと出力Cの間の位相差に着目すると、下限周波数fと上限周波数fの間で90°を保っている。
【0047】
図2(c)は周波数を負の値まで拡張してあるが、正の周波数のグラフを形式的に原点対称にしたものになる。
【0048】
さて、このような特性を持つ広帯域90°移相器を使用する本発明のFM信号復調方法において、FM信号の周波数偏移Δfが正で広帯域90°移相器の下限周波数fと上限周波数fの間にある(f<Δf<f)とき、広帯域移相器からの出力信号IS,IC,QS,QCは次のように書くことが出来る。
【0049】
IS=sin(2πΔft+θ)
IC=sin(2πΔft+θ+π)=cos(2πΔft+θ)
QS=cos(2πΔft+θ)
QC=cos(2πΔft+θ+π)=−sin(2πΔft+θ)
ただし、θは周波数偏移Δfに依存する位相推移である。
【0050】
この場合、このFM信号復調方法の出力は、
Figure 2004350027
となる。つまり周波数偏移Δfに依らず−1を出力する。逆に、FM信号の周波数偏移Δfが負で広帯域90°移相器の下限周波数fと上限周波数fの間にある(−f<Δf<−f)ときは、IS・QC−IC・QS=1となる。つまり、周波数偏移Δfに依らず+1を出力する。
【0051】
そして、FM信号の周波数偏移Δfが正負の下限周波数fの間にある(−f<Δf<f)とき、出力は1と−1の間を滑らかに変化し、周波数偏移Δf=0のときに出力は0になる。つまりこの領域では周波数偏移Δfと出力の関係は比例的であり、この領域をFM信号復調器として利用できる。
【0052】
本発明のFM信号復調方法は、全体をアナログ回路で実現することもできるし、高周波除去フィルタ14iおよび14qまでをアナログ回路で実現し、中間周波信号IおよびQをA/D変換して以下をディジタル信号処理によって実現することもできる。
【0053】
図3は本発明によるFM信号復調方法をアナログ回路で実現した実施例であり、図3(a)はその全体回路図、図3(b)はその広帯域90°移相器の回路図である。
【0054】
ここで、中心周波数は4.5MHzに設計されている。10MHzの基準信号31から4.5MHzの直交する正弦波32が作られ、直交正弦波発生器として機能する。これらの正弦波とFM信号33が一対のミキサ34に入力され、中間周波信号I信号とQ信号が生成される。I信号とQ信号はそれぞれ広帯域90°移相器35に入力される。広帯域90°移相器35の合計4個の出力は2個の乗算器37に入力され、その出力が互いに引き算(実際には乗算器37の前で片方の符号が反転されているので反転加算)されて出力38となる。
【0055】
広帯域90°移相器35の詳細は図3(b)に示されている。また、下限周波数fは100Hz、上限周波数fは100kHz、位相誤差は約2°である。
【0056】
図4は本発明の実施例を示すレシオ検波回路の出力−周波数偏移特性図である。
【0057】
図4(a)は上記の実施例において、FM信号33の周波数を4499800Hzから4500200Hzまでスイープした時(周波数偏移±200Hz)の出力41、I信号42およびQ信号43を示している。
【0058】
同様に、図4(b)はFM信号33の周波数を4499000Hzから4501000Hzまでスイープした時(周波数偏移±1kHz)の出力44、I信号45およびQ信号46を示している。
【0059】
前述した実施例の出力と周波数偏移の実測波形、図4(a)および図4(b)から明らかなように、周波数偏移が小さい中央付近では、周波数−出力値の関係が比例的であり、この範囲はFM信号復調器として動作している。また、それを越えた周波数偏移に対しては出力が滑らかに飽和している。上記の実施例では周波数偏移±100kHzまで出力が低下しない。
【0060】
従来技術との比較のために、図4(c)にレシオ検波回路の出力−周波数偏移特性例を示す。このレシオ検波回路は9MHzが中心になるように設計されており、図4(c)は入力周波数を8MHzから10MHzまでスイープした時の出力値の変化を示している。
【0061】
この図から明らかなように、レシオ検波回路では周波数偏移と出力が比例する領域を逸脱すると直ちに出力値が低下する。
【0062】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
【0063】
【発明の効果】
以上、詳細に説明したように、本発明によれば、復調の対象としている範囲を大きく超える周波数偏移に対して出力が滑らかに飽和する特性を持つFM信号復調方法が実現される。
【図面の簡単な説明】
【図1】本発明にかかるFM信号復調方法のブロックダイヤグラムを示す図である。
【図2】本発明の実施例を示すアナログ回路で実現した広帯域90°移相器の回路図とその位相特性を示す図である。
【図3】本発明によるFM信号復調方法をアナログ回路で実現した実施例である。
【図4】本発明の実施例を示すレシオ検波回路の出力−周波数偏移特性図である。
【図5】従来のスロープ検波のブロックダイヤグラムとその各部の波形図である。
【図6】従来のスロープ検波に使われる共振回路の周波数−振幅特性の一例を示す図である。
【図7】従来の直交検波のブロックダイヤグラムを示す図である。
【図8】従来の直交検波において共振回路が入力と出力の間に与える位相変化の一例を示す図である。
【図9】従来のアナログ乗算器を用いた位相比較器の動作の説明図である。
【図10】従来の遅延検波の代表的なブロックダイヤグラムを示す図である。
【図11】従来のディジタル信号処理による遅延検波の一例を示す図である。
【図12】従来のレシオ検波回路図である。
【図13】従来のレシオ検波回路内部の電圧のベクトル図である。
【図14】従来のPLL検波のブロック図である。
【図15】従来のFM信号復調方法の出力値−周波数特性図である。
【符号の説明】
11,33 FM信号
12 直交正弦波発生器
13i,13q,34 一対のミキサ
14i,14q 高周波除去フィルタ
15i,15q,35 広帯域90°移相器
16i,16q 乗算器
31 基準信号
32 正弦波
37 乗算器
38,41,44 出力
42,45 I信号
43,46 Q信号

Claims (2)

  1. 周波数が、復調しようとするFM信号の中心周波数で位相が互いに90°異なる基準信号を、入力されたFM信号とそれぞれに周波数混合して、0Hzを中心とした位相が互いに90°異なる中間周波信号IおよびQに変換し、該中間周波信号IおよびQそれぞれを広帯域90°移相器によって位相を操作した4種類の信号ISとIC、および、QSとQCを生成し、これらの信号間の演算IS・QC−IC・QSを出力とすることを特徴とする広帯域90°移相器を用いるFM信号復調方法。
  2. 走査型プローブ顕微鏡のプローブの振動周波数の偏移を検出することを目的とするFM信号復調装置であって、請求項1記載の広帯域90°移相器を用いるFM信号復調方法を用いることを特徴とするFM信号復調装置。
JP2003144729A 2003-05-22 2003-05-22 広帯域90°移相器を用いるfm信号復調方法及びその装置 Pending JP2004350027A (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003144729A JP2004350027A (ja) 2003-05-22 2003-05-22 広帯域90°移相器を用いるfm信号復調方法及びその装置
RU2005140107/09A RU2005140107A (ru) 2003-05-22 2004-05-21 Способ и устройство демодуляции частотно-модулированного сигнала
EP04734421A EP1626495B1 (en) 2003-05-22 2004-05-21 Fm signal demodulation method and device thereof
DE602004011335T DE602004011335T2 (de) 2003-05-22 2004-05-21 Verfahren und vorrichtung zur demodulierung von ukw-signalen
PCT/JP2004/007319 WO2004105230A1 (ja) 2003-05-22 2004-05-21 Fm信号復調方法及びその装置
US10/557,772 US20070197176A1 (en) 2003-05-22 2004-05-21 Fm signal demodulation method and device thereof
KR1020057022361A KR100667648B1 (ko) 2003-05-22 2004-05-21 Fm 신호 복조 방법 및 그 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003144729A JP2004350027A (ja) 2003-05-22 2003-05-22 広帯域90°移相器を用いるfm信号復調方法及びその装置

Publications (1)

Publication Number Publication Date
JP2004350027A true JP2004350027A (ja) 2004-12-09

Family

ID=33532108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003144729A Pending JP2004350027A (ja) 2003-05-22 2003-05-22 広帯域90°移相器を用いるfm信号復調方法及びその装置

Country Status (1)

Country Link
JP (1) JP2004350027A (ja)

Similar Documents

Publication Publication Date Title
WO2016128775A1 (en) Parameter estimation and control method and apparatus
JP3137370B2 (ja) デジタルpll回路
KR100667648B1 (ko) Fm 신호 복조 방법 및 그 장치
JP2004350027A (ja) 広帯域90°移相器を用いるfm信号復調方法及びその装置
JP2006254005A (ja) 90゜位相差発生回路および周波数シンセサイザおよび直交変調回路および直交復調回路
US11469763B1 (en) Low-pass filtering system having phase-locked loop
JP2800047B2 (ja) 低雑音発振回路
JPH0335612A (ja) Fm復調回路
KR20010104722A (ko) 위상 동기 루프, 위상 동기 루프에서의 에러 결정 방법,위상 캡처 및 동기화 방법
JP2004350026A (ja) 微分演算を用いるfm信号復調方法及びその装置
JPH0541717A (ja) デジタル変調波の復調装置
US5732003A (en) Sawtooth phase filter
RU2595638C1 (ru) Способ частотной модуляции колебаний и устройство для его осуществления
Vajpayee et al. A frequency demodulator based on adaptive sampling frequency phase-locking scheme for large deviation fm signals
Ruppert et al. Frequency domain analysis of robust demodulators for high-speed atomic force microscopy
Meniailo et al. Self-oscillator tracking filter with nonlinear feedback
JPH0846534A (ja) Fm信号の雑音除去方式
JP2005348208A (ja) 位相ロック回路
JPS6311764Y2 (ja)
JP3097582B2 (ja) 周波数掃引回路
JP5847762B2 (ja) 振幅変調信号を復調するための方法および装置
KR19980037634A (ko) 주파수 합성 장치의 루프회로
Ruppert et al. University of Newcastle Research Online nova. newcastle. edu. au
Abdellaoui et al. Integrated wide-band FSK demodulator based on ISPD PLL
JP2001292184A (ja) 受信装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050805

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A02 Decision of refusal

Effective date: 20081007

Free format text: JAPANESE INTERMEDIATE CODE: A02