JP2004349288A - Process for producing ceramic multilayer substrate - Google Patents

Process for producing ceramic multilayer substrate Download PDF

Info

Publication number
JP2004349288A
JP2004349288A JP2003141395A JP2003141395A JP2004349288A JP 2004349288 A JP2004349288 A JP 2004349288A JP 2003141395 A JP2003141395 A JP 2003141395A JP 2003141395 A JP2003141395 A JP 2003141395A JP 2004349288 A JP2004349288 A JP 2004349288A
Authority
JP
Japan
Prior art keywords
ceramic
hole
sheet
green sheet
multilayer substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003141395A
Other languages
Japanese (ja)
Other versions
JP4196730B2 (en
Inventor
Hideaki Itakura
秀明 板倉
Shinji Imazu
信二 今津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003141395A priority Critical patent/JP4196730B2/en
Publication of JP2004349288A publication Critical patent/JP2004349288A/en
Application granted granted Critical
Publication of JP4196730B2 publication Critical patent/JP4196730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for producing a ceramic multilayer substrate in which residual particles of a ceramic member are prevented from being generated in a recess formed by closing a through hole for castellation. <P>SOLUTION: The process for producing a ceramic multilayer substrate 10 by pressure sintering a ceramic green sheet 18 becoming one major surface side of a laminate 16 provided with a through hole 15 for castellation 14 and a ceramic sheet 20 becoming the other major surface side not provided with a hole communicating with the through hole 15 while superposing comprises a step for forming a tapered part 19 in the through hole 15 by irradiating the ceramic green sheet 18 with laser light, a step for filling the through hole 15 with a ceramic member 21, a step for pressure sintering the ceramic sheet 20, the ceramic green sheet 18 and an unsintered ceramic sheet 22 while superposing, and a step for removing the unsintered ceramicsheet 22 and the ceramic member 21 from a sintered compact 23 to form the laminate 16. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、複数枚のセラミック基材の側面にキャスタレーションを有する積層体を加圧しながら焼成して形成するセラミック多層基板の製造方法に関する。
【0002】
【従来の技術】
従来からセラミック多層基板には、複数枚のセラミック基材の側面に凹部を形成し、この凹部に導体金属膜を設けて外部接続端子用の電極とするキャスタレーションを有するものがある。図3(A)、(B)に示すように、従来のセラミック多層基板のキャスタレーション用の貫通孔51は、例えば、ピン52とダイス53からなる打ち抜き方式により、セラミック基材の焼成前のセラミックグリーンシート54をダイス53の上に載置し、ピン52でセラミックグリーンシート54の厚さ方向に対して垂直に打ち抜いて形成している。
【0003】
図4(A)〜(C)を参照しながら、従来のセラミック多層基板50の製造方法を説明する。図4(A)に示すように、1又は複数枚で構成されるセラミックグリーンシート54のキャスタレーション用の貫通孔51の壁面には、導体金属ペーストをスクリーン印刷等で塗布してスルーホール導体55が形成される。一方、貫通孔51と連通する挿通孔を有さない1又は複数枚で構成されるセラミック基材56を準備する。この挿通孔を有さないセラミック基材56は、焼成前のセラミックグリーンシートの状態であってもよく、焼成済みセラミックシートであってもよい。次に、図4(B)に示すように、セラミックグリーンシート53及びセラミック基材56は、重ね合わされ、更に、重ね合わされた上、下表面にセラミックグリーンシート53の焼成温度では焼結しないセラミック部材からなる未焼結セラミックシート57を重ね合わせて、加圧しながら焼成されて焼成体が形成される。次に、図4(C)に示すように、焼成体の上、下面として付着する未焼結セラミックシート57は、サンドブラスト処理等で除去されることで、積層体58が形成され、孔の実質的中心線を通る分割線59で切断されることで、キャスタレーション60付きのセラミック多層基板50が作製されている。
【0004】
ここで、上記の加圧焼成とは、積層体の焼成収縮を小さくして基板寸法精度を向上させることを目的にして、セラミック基材の焼成前のセラミックグリーンシートを重ね合わせ、更に、上、下表面にこのセラミックグリーンシートの焼成温度では焼結しないセラミック部材からなるセラミックシートを重ね合わせて加圧しながら焼成した後、セラミックシートを除去して積層体を作製する方法である(例えば、特許文献1参照)。
【0005】
また、セラミック多層基板には、セラミックグリーンシートの焼成収縮を焼成済みのセラミック基板で拘束することで、基板全体の焼成収縮を小さく抑えて、基板を高精度に作製することを目的に、焼成済みのセラミック基板上に、予め導体配線パターンを印刷した未焼成のセラミックグリーンシートを重ね合わせて熱圧着し、これを焼成してセラミック多層基板を作製することが提案されている(例えば、特許文献2参照)。
【0006】
また、セラミックグリーンシートに貫通孔を形成する方法は、ピンとダイスを用いて形成する方法では形成できない小さな孔を形成し、この孔に導体金属を充填させて実装密度を向上させることを目的にして、レーザー光を照射して断面視して鼓形の貫通孔を形成することが提案されている(例えば、特許文献3参照)。
【0007】
【特許文献1】
特開平5−503498号公報
【特許文献2】
特開2001−267743号公報
【特許文献3】
特開平11−54885号公報
【0008】
【発明が解決しようとする課題】
しかしながら、前述したような従来のセラミック多層基板の製造方法は、次のような問題がある。
(1)加圧しながら焼成して積層体を形成する場合には、キャスタレーション用の貫通孔の内部が空洞となっているので、加圧によって孔部に変形を発生させるている。
(2)(1)の変形を防止するために、予め、セラミックグリーンシートの焼成温度では焼結しないセラミック部材を孔内に充填して加圧焼成を行うことが考えられる。しかしながら、複数枚の一方の主面側のセラミック基材で、キャスタレーション用の貫通孔が閉塞して形成される凹部を有する積層体の場合には、凹部にセラミック部材を充填し加圧焼成を行ったとしても、焼成後、凹部からセラミック部材をサンドブラスト等で除去する時に、貫通孔の壁面がストレートであるので、凹部の底周縁部のセラミック部材が除去しきれずに粒子が残り、後から行われる工程、例えば、めっき工程において、めっき不着等の不具合を発生させている。
【0009】
(3)焼成済みのセラミック基板上に、予め導体配線パターンを印刷した未焼成のセラミックグリーンシートを重ね合わせて熱圧着し、これを焼成してセラミック多層基板を作製する場合には、セラミックグリーンシートの焼成収縮力が大きいため、セラミックグリーンシートの焼成収縮を焼成済みセラミック基板の片面側のみで抑えようとしても十分に抑えることができない。従って、セラミックグリーンシートの焼成体と焼成済みセラミック基板との間に剥がれや、セラミックグリーンシートの焼成体にクラックや、セラミックグリーンシートの焼成体と焼成済みセラミック基板の積層体に反り等の不具合が発生することがある。
(4)セラミックグリーンシートに貫通孔を形成するのにレーザー光を照射して断面視して鼓形の貫通孔を形成し、キャスタレーション用の貫通孔が閉塞されて形成される凹部を有する場合には、この凹部にセラミック部材を充填し加圧焼成を行い、焼成後、凹部からセラミック部材をサンドブラスト等で除去する時に、貫通孔の壁面が鼓形であるので、凹部の底周縁部にセラミック部材が溜まりやすく除去しきれずに粒子が残り、後から行われる工程、例えば、めっき工程において、めっき不着等の不具合を発生させる。
本発明は、かかる事情に鑑みてなされたものであって、キャスタレーション用の貫通孔が閉塞されて形成される凹部にセラミック部材の粒子残りの発生を防止するセラミック多層基板の製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
前記目的に沿う本発明に係るセラミック多層基板の製造方法は、複数枚のセラミック基材からなる積層体の一方の主面側となる1又は複数枚のセラミック基材の未焼成のセラミックグリーンシートにキャスタレーション用の貫通孔を設け、他方の主面側となる1又は複数枚のセラミック基材の焼成済みのセラミックシートに、貫通孔と連通する挿通孔を設けないで、セラミックグリーンシートとセラミックシートを重ね合わせて加圧しながら焼成して形成するセラミック多層基板の製造方法において、セラミックグリーンシートにレーザー光を照射し、レーザー光が当接する側の貫通孔の径を大きく、レーザー光が抜ける側の貫通孔の径を小さく穿孔して、貫通孔の側壁にテーパ部を形成する工程と、貫通孔にセラミック基材の焼成温度では焼結しないセラミック部材からなるセラミックペーストを貫通孔の径の大きい側から充填する工程と、他方の主面側となる1又は複数枚のセラミックシートに、セラミックグリーンシートを、貫通孔の径の大きい側が外表面となるようにして重ね合わせ、しかも、重ね合わされた上、下表面にセラミックグリーンシートの焼成温度では焼結しないセラミック部材からなる未焼結セラミックシートを重ね合わせて、加圧しながら焼成して焼成体を形成する工程と、焼成体から未焼結セラミックシート及び貫通孔内に充填したセラミック部材を除去して積層体を形成する工程を有する。
【0011】
これにより、貫通孔にテーパ部をレーザー光によって外表面側に大きい径となるように容易に設けることができ、この大きい径の貫通孔から容易に充填されたセラミック基材の焼成温度では焼結しないセラミック部材には、例えば、ブラスト用の砥粒が底部まで全面にわたって照射できるので、セラミック部材の粒子残りの発生を防止することができる。また、セラミック多層基板は加圧しながら焼成されて作製されるので、基板の焼成収縮を抑えて、基板を高精度にできると共に、基材間の剥がれや、基板のクラック、反り等の不具合の発生を防止することができる。
【0012】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。
ここに、図1(A)、(B)はそれぞれ本発明の一実施の形態に係るセラミック多層基板の製造方法で作製されるセラミック多層基板の説明図、図2(A)〜(D)はそれぞれ同セラミック多層基板の製造方法の説明図である。
【0013】
図1(A)、(B)を参照しながら、本発明の一実施の形態に係るセラミック多層基板10の製造方法で作製されるセラミック多層基板10を説明する。図1(A)に示すように、セラミック多層基板10は、セラミック基材11が、例えば、低温焼成セラミック基板からなり、複数枚のセラミック基材11が重ね合わされ、加圧しながら焼成されて形成されている。このセラミック多層基板10には、例えば、基板側面に凹部が形成され、この凹部の表面に導体金属膜12、及び凹部と接続する基板表面に導体パターン13が設けられて外部接続端子用の電極とするためのキャスタレーション14を有している。このキャスタレーション14を形成するためのセラミック基材11に設ける貫通孔15の壁面は、複数枚のセラミック基材11の外表面側の穴径が大きく、内部側の底の穴径が小さくなるテーパ形状となっている。
【0014】
図1(B)に示すように、このキャスタレーション14を有するセラミック多層基板10は、複数個、例えば、4個のセラミック多層基板10を一度に形成するための大型のシート状のセラミック基板の複数枚が積層された積層体16から形成されている。この積層体16は、それぞれの大型のシート状のセラミック基板の決められた位置にそれぞれ貫通孔15や、導体金属膜12や、導体パターン13等を有し、複数枚を重ね合わせて、加圧焼成して形成されている。そして、焼成して形成された積層体16は、貫通孔15の実質的中心を通るように分割線17で分割されることで、個々のセラミック多層基板10が形成されている。
【0015】
次いで、図2(A)〜(D)を参照しながら、本発明の一実施の形態に係るセラミック多層基板10の製造方法を説明する。
図2(A)に示すように、本発明の一実施の形態に係るセラミック多層基板10の一方の主面側を形成するセラミック基材11となる大型のシート状のセラミック基板の未焼成のセラミックグリーンシート18には、低温焼成セラミックが用いられている。この低温焼成セラミックからなるセラミックグリーンシート18は、例えば、CaO−Al−SiO−B系ガラスを50〜65重量%(好ましくは60重量%)と、Alを50〜35重量%(好ましくは40重量%)とからなるセラミック粉末に樹脂、溶剤、及び、可塑剤を添加して混合し、ドクターブレード法等で所望の厚みのシート状にし、更に、切断して所望の大きさの矩形状に形成されている。このセラミックグリーンシート18には、YAGレーザーや、炭酸ガスレーザー等からなるレーザー加工機を用いて、レーザー光を照射してレーザー光が当接する側の貫通孔15の径Aが大きく、レーザー光が抜ける側の貫通孔15の径Bが小さくなるようにしてセラミックグリーンシート18の側壁にテーパ部19を有するキャスタレーション14用の貫通孔15を形成している。
【0016】
なお、セラミック多層基板10の一方の主面側を複数枚のセラミックグリーンシート18で形成する場合のテーパ部19は、それぞれのセラミックグリーンシート18毎にレーザー光を照射してテーパ部19を形成し、重ね合わせたら実質的に全体のテーパ部19が段差の小さい直線となるように形成することができる。あるいは、テーパ部19は、先に複数枚のセラミックグリーンシート18を重ね合わせて仮接合した接合体にレーザー光を照射して形成することもできる。
【0017】
セラミック多層基板10の他方の主面側となる焼成済みのセラミックシート20は、セラミック基材11となる1又は複数枚の大型のシート状のセラミック基板の未焼成のセラミックグリーンシートが予め、加圧焼成されて形成されたものである。このセラミックシート20には、セラミックグリーンシート18に形成された貫通孔15と連通する挿通孔が設けられていない。
【0018】
次に、図2(B)に示すように、貫通孔15が形成されたセラミックグリーンシート18には、貫通孔15のテーパ部19に、Ag系や、Cu系等の低融点金属からなる導体ペーストを用いてスクリーン印刷等で導体金属膜12を形成する。また、セラミックグリーンシート18の外表面側には、導体パターン13が導体金属膜12と同様の導体ペーストを用いてスクリーン印刷等で形成される。そして、導体金属膜12が形成された貫通孔15の内部には、セラミックグリーンシート18の焼成温度では焼結しないセラミックペースト状のセラミック部材21が貫通孔15の径の大きい側からスクリーン印刷等で充填される。
【0019】
なお、セラミック多層基板10の他方の主面側となる焼成済みのセラミックシート20の最外表面には、図示されていないが、通常、配線パターンを有している。この配線パターンと、導体金属膜12及び導体パターン13との間を電気的に導通状態とするために、外表面側のセラミックシート20や、複数枚の場合の内層側のセラミックシート20には、導体金属膜12と同様の導体ペーストを用いたビア導体や配線パターンが形成されている。
【0020】
次に、図2(C)に示すように、セラミック多層基板10の他方の主面側となる焼成済みのセラミックシート20には、セラミックグリーンシート18を、セラミックグリーンシート18に形成された貫通孔15の孔径の小さい側が接し、大きい側が外表面となるようにして重ね合わせている。更に、セラミックシート20とセラミックグリーンシート18の重ね合わされた上、下表面には、セラミックグリーンシート18の焼成温度では焼結しないセラミック部材からなる未焼結セラミックシート22を重ね合わせている。そして、両面に重ね合わされた未焼結セラミックシート22の上から加圧しながら、例えば、800〜1100℃程度の温度で焼成して、焼成体23を形成している。
【0021】
次に、図2(D)に示すように、焼成体23の中の焼結しないで残っている未焼結セラミックシート22、及び、貫通孔15内に充填されているセラミック部材21は、例えば、サンドブラスト処理等によって除去される。これによって、複数個のセラミック多層基板10を設けた複数枚のセラミック基材11からなる積層体16が形成される。この積層体16は、所定の位置の貫通孔15の中心線を通る分割線17で切断される。これによって、基板側面にキャスタレーション14を設けるセラミック多層基板10が作製されている。
【0022】
【発明の効果】
請求項1記載のセラミック多層基板の製造方法は、セラミックグリーンシートにレーザー光を照射し、レーザー光が当接する側の貫通孔の径を大きく、抜ける側の貫通孔の径を小さく穿孔して、貫通孔の側壁にテーパ部を形成する工程と、貫通孔にセラミック基材の焼成温度では焼結しないセラミック部材からなるセラミックペーストを貫通孔の径の大きい側から充填する工程と、他方の主面側となる1又は複数枚のセラミックシートに、セラミックグリーンシートを、貫通孔の径の大きい側が外表面となるようにして重ね合わせ、しかも、重ね合わされた上、下表面にセラミックグリーンシートの焼成温度では焼結しないセラミック部材からなる未焼結セラミックシートを重ね合わせて、加圧しながら焼成して焼成体を形成する工程と、焼成体から未焼結セラミックシート及び貫通孔内に充填したセラミック部材を除去して積層体を形成する工程を有するので、貫通孔にテーパ部を外表面側に大きい径となるように容易に設けることができ、この大きい径の貫通孔から容易に充填されたセラミック部材には、例えば、ブラスト用の砥粒が底部まで全面にわたって照射でき、セラミック部材の粒子残りの発生を防止することができる。また、加圧焼成によって、基板の焼成収縮を抑えて、基板を高精度にできると共に、基材間の剥がれや、基板のクラック、反り等の不具合の発生を防止することができる。
【図面の簡単な説明】
【図1】(A)、(B)はそれぞれ本発明の一実施の形態に係るセラミック多層基板の製造方法で作製されるセラミック多層基板の説明図である。
【図2】(A)〜(D)はそれぞれ同セラミック多層基板の製造方法の説明図である。
【図3】(A)、(B)はそれぞれ従来のセラミック多層基板のキャスタレーション用の貫通孔の形成方法の説明図である。
【図4】(A)〜(C)はそれぞれ従来のセラミック多層基板の製造方法の説明図である。
【符号の説明】
10:セラミック多層基板、11:セラミック基材、12:導体金属膜、13:導体パターン、14:キャスタレーション、15:貫通孔、16:積層体、17:分割線、18:セラミックグリーンシート、19:テーパ部、20:セラミックシート、21:セラミック部材、22:未焼結セラミックシート、23:焼成体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a ceramic multilayer substrate formed by firing a laminate having castellations on side surfaces of a plurality of ceramic substrates while applying pressure.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, some ceramic multilayer substrates have a castellation in which a concave portion is formed on a side surface of a plurality of ceramic base materials, and a conductive metal film is provided in the concave portion to serve as an electrode for an external connection terminal. As shown in FIGS. 3 (A) and 3 (B), a through hole 51 for castellation of a conventional ceramic multilayer substrate is formed, for example, by a punching method including a pin 52 and a die 53, before the ceramic base material is fired. The green sheet 54 is placed on a die 53 and formed by punching out the ceramic green sheet 54 with pins 52 in a direction perpendicular to the thickness direction.
[0003]
With reference to FIGS. 4A to 4C, a method for manufacturing the conventional ceramic multilayer substrate 50 will be described. As shown in FIG. 4 (A), a conductor metal paste is applied on the wall surface of the castellation through-hole 51 of the ceramic green sheet 54 composed of one or a plurality of sheets by screen printing or the like to form a through-hole conductor 55. Is formed. On the other hand, a ceramic substrate 56 composed of one or a plurality of sheets having no insertion hole communicating with the through hole 51 is prepared. The ceramic substrate 56 having no insertion hole may be a ceramic green sheet before firing or a fired ceramic sheet. Next, as shown in FIG. 4 (B), the ceramic green sheet 53 and the ceramic base material 56 are overlapped, and furthermore, the ceramic members which are superimposed and are not sintered at the firing temperature of the ceramic green sheet 53 on the lower surface. The unsintered ceramic sheet 57 made of is laminated and fired while applying pressure to form a fired body. Next, as shown in FIG. 4C, the unsintered ceramic sheet 57 adhered as the upper and lower surfaces of the fired body is removed by sandblasting or the like, so that a laminate 58 is formed, and substantially the holes are formed. The ceramic multilayer substrate 50 with the castellations 60 is manufactured by being cut along the dividing line 59 passing through the central line.
[0004]
Here, the above-mentioned pressure firing is to overlap the ceramic green sheets before firing the ceramic base material with the aim of reducing the firing shrinkage of the laminate and improving the dimensional accuracy of the substrate, and further, This is a method in which a ceramic sheet made of a ceramic member that does not sinter at the firing temperature of the ceramic green sheet is superimposed on the lower surface, fired while pressing, and then the ceramic sheet is removed to produce a laminate (for example, Patent Document 1). 1).
[0005]
In addition, the ceramic multi-layer substrate is fired for the purpose of suppressing the firing shrinkage of the ceramic green sheet with the fired ceramic substrate, thereby suppressing the firing shrinkage of the entire substrate to be small, and manufacturing the substrate with high accuracy. It has been proposed that an unfired ceramic green sheet on which a conductor wiring pattern is printed in advance is superimposed on the ceramic substrate and thermocompression-bonded, followed by firing to produce a ceramic multilayer substrate (for example, Patent Document 2). reference).
[0006]
Also, the method of forming a through hole in a ceramic green sheet is to form a small hole that cannot be formed by a method using a pin and a die, and to fill this hole with a conductive metal to improve the mounting density. It has been proposed to form a through-hole in the shape of a drum when viewed in cross section by irradiating a laser beam (for example, see Patent Document 3).
[0007]
[Patent Document 1]
JP-A-5-503498 [Patent Document 2]
JP 2001-267743 A [Patent Document 3]
JP-A-11-54885
[Problems to be solved by the invention]
However, the conventional method for manufacturing a ceramic multilayer substrate as described above has the following problems.
(1) In the case where the laminate is formed by firing while applying pressure, since the interior of the through-hole for castellation is hollow, the pressure causes deformation of the hole.
(2) In order to prevent the deformation in (1), it is conceivable to previously fill the holes with a ceramic member that does not sinter at the firing temperature of the ceramic green sheet and perform pressure firing. However, in the case of a laminate having a plurality of ceramic base materials on one main surface side and having a recess formed by closing a castellation through hole, a ceramic member is filled in the recess and pressure firing is performed. Even if it is performed, when the ceramic member is removed from the concave portion by sand blasting or the like after firing, the wall of the through hole is straight, so that the ceramic member at the bottom peripheral portion of the concave portion cannot be completely removed, and particles remain, and the particles are removed later. In a process to be performed, for example, in a plating process, defects such as non-sticking of plating occur.
[0009]
(3) An unfired ceramic green sheet on which a conductive wiring pattern has been printed in advance is laminated on a fired ceramic substrate and thermocompression-bonded, and then fired to form a ceramic multilayer substrate. Of the ceramic green sheet cannot be sufficiently suppressed even if only one side of the fired ceramic substrate is suppressed. Accordingly, defects such as peeling between the fired ceramic green sheet and the fired ceramic substrate, cracks in the fired ceramic green sheet, and warpage of the fired ceramic green sheet and fired ceramic substrate laminate. May occur.
(4) A case in which a through hole is formed in a ceramic green sheet by irradiating a laser beam to form a drum-shaped through hole in a cross-sectional view and the through hole for castellation is closed and formed. In this case, a ceramic member is filled into the concave portion and pressure firing is performed. After the firing, when the ceramic member is removed from the concave portion by sandblasting or the like, the wall surface of the through-hole has a drum shape. The particles tend to collect and cannot be completely removed, leaving particles, which may cause problems such as non-plating in a later step, for example, a plating step.
The present invention has been made in view of the above circumstances, and provides a method of manufacturing a ceramic multilayer substrate that prevents generation of particles remaining in a ceramic member in a recess formed by closing a castellation through hole. The purpose is to:
[0010]
[Means for Solving the Problems]
The method for manufacturing a ceramic multilayer substrate according to the present invention, which meets the above object, comprises the steps of: forming one or a plurality of ceramic base green unfired ceramic green sheets on one main surface side of a laminate including a plurality of ceramic bases; A through hole for castellation is provided, and a ceramic green sheet and a ceramic sheet are provided without providing a through hole communicating with the through hole in one or a plurality of fired ceramic sheets of a ceramic base material on the other main surface side. In the method for manufacturing a ceramic multilayer substrate formed by sintering and pressing while laminating, the ceramic green sheet is irradiated with laser light, the diameter of the through hole on the side where the laser light comes into contact is increased, and the side on which the laser light exits In the step of forming a tapered portion on the side wall of the through-hole by drilling the diameter of the through-hole small, and the firing temperature of the ceramic base material in the through-hole, A step of filling a ceramic paste made of a ceramic member not to be bonded from a side having a large through-hole, and a step of filling a ceramic green sheet into one or a plurality of ceramic sheets serving as the other main surface side. An unsintered ceramic sheet made of a ceramic member that does not sinter at the firing temperature of the ceramic green sheet is superimposed on the lower surface, and fired while applying pressure. Forming a fired body; and removing the unsintered ceramic sheet and the ceramic member filled in the through hole from the fired body to form a laminate.
[0011]
This makes it possible to easily provide a tapered portion in the through-hole so as to have a large diameter on the outer surface side by the laser beam, and to sinter the ceramic substrate easily filled from the large-diameter through-hole at the firing temperature. For example, abrasive particles for blasting can be radiated to the entire surface up to the bottom of the ceramic member which is not used, so that the generation of residual particles of the ceramic member can be prevented. In addition, since the ceramic multilayer substrate is manufactured by firing while being pressed, the shrinkage of the substrate during firing can be suppressed, and the substrate can be made highly accurate, and at the same time, problems such as peeling between the substrates, cracking and warping of the substrate occur. Can be prevented.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
Here, FIGS. 1A and 1B are explanatory views of a ceramic multilayer substrate manufactured by the method for manufacturing a ceramic multilayer substrate according to one embodiment of the present invention, and FIGS. It is explanatory drawing of the manufacturing method of the same ceramic multilayer substrate.
[0013]
With reference to FIGS. 1A and 1B, a description will be given of a ceramic multilayer substrate 10 manufactured by a method for manufacturing a ceramic multilayer substrate 10 according to an embodiment of the present invention. As shown in FIG. 1A, the ceramic multilayer substrate 10 is formed by a ceramic substrate 11 formed of, for example, a low-temperature fired ceramic substrate, and a plurality of ceramic substrates 11 are stacked and fired while applying pressure. ing. In the ceramic multilayer substrate 10, for example, a concave portion is formed on the side surface of the substrate, a conductive metal film 12 is provided on the surface of the concave portion, and a conductive pattern 13 is provided on the substrate surface connected to the concave portion. And a castellation 14 for performing the operation. The wall surface of the through hole 15 provided in the ceramic base material 11 for forming the castellation 14 has a taper in which the hole diameter on the outer surface side of the plurality of ceramic base materials 11 is large and the hole diameter on the bottom side on the internal side is small. It has a shape.
[0014]
As shown in FIG. 1B, the ceramic multilayer substrate 10 having the castellations 14 is a plurality of, for example, a plurality of large ceramic substrates for forming four ceramic multilayer substrates 10 at one time. It is formed from a laminate 16 in which sheets are laminated. The laminated body 16 has a through-hole 15, a conductive metal film 12, a conductive pattern 13, and the like at predetermined positions of each large sheet-shaped ceramic substrate. It is formed by firing. Then, the laminated body 16 formed by firing is divided by the dividing lines 17 so as to pass substantially through the center of the through hole 15, thereby forming the individual ceramic multilayer substrates 10.
[0015]
Next, a method of manufacturing the ceramic multilayer substrate 10 according to one embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 2A, unfired ceramic of a large sheet-shaped ceramic substrate serving as a ceramic base 11 forming one main surface side of a ceramic multilayer substrate 10 according to one embodiment of the present invention. The green sheet 18 is made of a low-temperature fired ceramic. Ceramic green sheet 18 made of the low temperature co-fired ceramic, for example, a CaO-Al 2 O 3 -SiO 2 -B 2 O 3 based glass 50-65% by weight (preferably 60 wt%), the Al 2 O 3 A resin, a solvent, and a plasticizer are added to and mixed with 50 to 35% by weight (preferably 40% by weight) of ceramic powder, and the mixture is formed into a sheet having a desired thickness by a doctor blade method or the like. And is formed in a rectangular shape of a desired size. The ceramic green sheet 18 is irradiated with a laser beam by using a laser beam machine such as a YAG laser or a carbon dioxide laser, and the diameter A of the through hole 15 on the side where the laser beam comes into contact is large. The through hole 15 for the castellation 14 having the tapered portion 19 on the side wall of the ceramic green sheet 18 is formed such that the diameter B of the through hole 15 on the exit side is reduced.
[0016]
In the case where one main surface side of the ceramic multilayer substrate 10 is formed of a plurality of ceramic green sheets 18, the tapered portions 19 are formed by irradiating a laser beam to each of the ceramic green sheets 18. When superimposed, the entire tapered portion 19 can be formed to be a straight line with a small step. Alternatively, the tapered portion 19 can be formed by irradiating a laser beam to a joined body in which a plurality of ceramic green sheets 18 are first overlapped and temporarily joined.
[0017]
The fired ceramic sheet 20 which is the other main surface side of the ceramic multilayer substrate 10 is formed by pressing unfired ceramic green sheets of one or more large-sized sheet-shaped ceramic substrates serving as the ceramic base material 11 in advance. It is formed by firing. This ceramic sheet 20 is not provided with an insertion hole communicating with the through hole 15 formed in the ceramic green sheet 18.
[0018]
Next, as shown in FIG. 2B, in the ceramic green sheet 18 in which the through-holes 15 are formed, a conductor made of a low melting point metal such as Ag-based or Cu-based is provided on the tapered portion 19 of the through-hole 15. The conductive metal film 12 is formed by screen printing or the like using the paste. On the outer surface side of the ceramic green sheet 18, a conductor pattern 13 is formed by screen printing or the like using the same conductor paste as the conductor metal film 12. Then, inside the through hole 15 in which the conductive metal film 12 is formed, a ceramic member 21 in the form of a ceramic paste that does not sinter at the firing temperature of the ceramic green sheet 18 is formed by screen printing or the like from the side where the diameter of the through hole 15 is large. Will be filled.
[0019]
Although not shown, the outermost surface of the fired ceramic sheet 20 on the other main surface side of the ceramic multilayer substrate 10 usually has a wiring pattern. In order to electrically connect the wiring pattern with the conductive metal film 12 and the conductive pattern 13, the ceramic sheet 20 on the outer surface and the ceramic sheet 20 on the inner layer in the case of a plurality of sheets, Via conductors and wiring patterns using the same conductive paste as the conductive metal film 12 are formed.
[0020]
Next, as shown in FIG. 2C, a ceramic green sheet 18 is provided in the fired ceramic sheet 20 on the other main surface side of the ceramic multilayer substrate 10 by forming through holes formed in the ceramic green sheet 18. 15 are overlapped so that the side with the smaller hole diameter is in contact and the larger side is the outer surface. Further, an unsintered ceramic sheet 22 made of a ceramic member that does not sinter at the firing temperature of the ceramic green sheet 18 is overlaid on the lower surface of the ceramic sheet 20 and the ceramic green sheet 18 which are overlapped. The sintered body 23 is formed by firing at a temperature of, for example, about 800 to 1100 ° C. while applying pressure from above the unsintered ceramic sheet 22 superposed on both surfaces.
[0021]
Next, as shown in FIG. 2D, the unsintered ceramic sheet 22 remaining without sintering in the fired body 23 and the ceramic member 21 filled in the through-hole 15 are, for example, , And are removed by sandblasting or the like. As a result, a laminate 16 including a plurality of ceramic substrates 11 provided with a plurality of ceramic multilayer substrates 10 is formed. The laminate 16 is cut at a dividing line 17 passing through the center line of the through hole 15 at a predetermined position. Thus, the ceramic multilayer substrate 10 having the castellations 14 on the side surfaces of the substrate is manufactured.
[0022]
【The invention's effect】
In the method for manufacturing a ceramic multilayer substrate according to claim 1, the ceramic green sheet is irradiated with a laser beam, and the diameter of the through hole on the side contacting the laser beam is increased, and the diameter of the through hole on the exit side is reduced. A step of forming a tapered portion on the side wall of the through hole, a step of filling the through hole with a ceramic paste made of a ceramic member that does not sinter at the firing temperature of the ceramic base material from the side with the larger diameter of the through hole, and the other main surface The ceramic green sheet is superimposed on one or more ceramic sheets on the side such that the side with the larger diameter of the through hole becomes the outer surface. A step of laminating unsintered ceramic sheets made of non-sintered ceramic members and firing them under pressure to form a fired body; Since there is a step of forming a laminate by removing the unsintered ceramic sheet and the ceramic member filled in the through hole from the body, it is easy to provide a tapered portion in the through hole so as to have a large diameter on the outer surface side. The ceramic member easily filled from the large-diameter through-hole can be irradiated with, for example, blasting abrasive grains over the entire surface up to the bottom, thereby preventing generation of particles remaining in the ceramic member. Further, by firing under pressure, the shrinkage of the substrate can be suppressed and the substrate can be made with high precision, and at the same time, the occurrence of problems such as peeling between the substrates and cracking and warping of the substrate can be prevented.
[Brief description of the drawings]
FIGS. 1A and 1B are explanatory views of a ceramic multilayer substrate manufactured by a method for manufacturing a ceramic multilayer substrate according to an embodiment of the present invention.
FIGS. 2A to 2D are explanatory views of a method for manufacturing the same ceramic multilayer substrate.
FIGS. 3A and 3B are explanatory views of a conventional method for forming a through hole for castellation of a ceramic multilayer substrate.
FIGS. 4A to 4C are explanatory views of a conventional method for manufacturing a ceramic multilayer substrate.
[Explanation of symbols]
10: ceramic multilayer substrate, 11: ceramic base material, 12: conductive metal film, 13: conductive pattern, 14: castellation, 15: through hole, 16: laminated body, 17: division line, 18: ceramic green sheet, 19 : Taper portion, 20: ceramic sheet, 21: ceramic member, 22: unsintered ceramic sheet, 23: fired body

Claims (1)

複数枚のセラミック基材からなる積層体の一方の主面側となる1又は複数枚の前記セラミック基材の未焼成のセラミックグリーンシートにキャスタレーション用の貫通孔を設け、他方の主面側となる1又は複数枚の前記セラミック基材の焼成済みのセラミックシートに、前記貫通孔と連通する挿通孔を設けないで、前記セラミックグリーンシートと前記セラミックシートを重ね合わせて加圧しながら焼成して形成するセラミック多層基板の製造方法において、
前記セラミックグリーンシートにレーザー光を照射し、該レーザー光が当接する側の前記貫通孔の径を大きく、前記レーザー光が抜ける側の前記貫通孔の径を小さく穿孔して、前記貫通孔の側壁にテーパ部を形成する工程と、
前記貫通孔に前記セラミック基材の焼成温度では焼結しないセラミック部材からなるセラミックペーストを前記貫通孔の径の大きい側から充填する工程と、
前記他方の主面側となる1又は複数枚の前記セラミックシートに、前記セラミックグリーンシートを、前記貫通孔の径の大きい側が外表面となるようにして重ね合わせ、しかも、重ね合わされた上、下表面に前記セラミックグリーンシートの焼成温度では焼結しないセラミック部材からなる未焼結セラミックシートを重ね合わせて、加圧しながら焼成して焼成体を形成する工程と、
前記焼成体から前記未焼結セラミックシート及び前記貫通孔内に充填した前記セラミック部材を除去して前記積層体を形成する工程を有することを特徴とするセラミック多層基板の製造方法。
A through hole for castellation is provided in one or more unfired ceramic green sheets of the ceramic base material on one main surface side of the multilayer body composed of a plurality of ceramic base materials, and the other main surface side One or more of the fired ceramic sheets of the ceramic base material are not provided with an insertion hole communicating with the through hole, and the ceramic green sheet and the ceramic sheet are stacked and fired while being pressed. In the method for manufacturing a ceramic multilayer substrate to
The ceramic green sheet is irradiated with laser light, the diameter of the through-hole on the side where the laser light comes into contact is increased, and the diameter of the through-hole on the side where the laser light exits is reduced to form a side wall of the through-hole. Forming a tapered portion on
Filling the through-hole with a ceramic paste made of a ceramic member that does not sinter at the firing temperature of the ceramic base material from the side with the larger diameter of the through-hole;
The ceramic green sheet is superimposed on one or a plurality of the ceramic sheets on the other main surface side such that the side with the larger diameter of the through hole becomes the outer surface, and furthermore, the superimposed upper and lower A step of laminating an unsintered ceramic sheet made of a ceramic member that does not sinter at the firing temperature of the ceramic green sheet on the surface, and firing while pressing to form a fired body,
A method of manufacturing a ceramic multilayer substrate, comprising a step of removing the unsintered ceramic sheet and the ceramic member filled in the through hole from the fired body to form the laminate.
JP2003141395A 2003-05-20 2003-05-20 Manufacturing method of ceramic multilayer substrate Expired - Fee Related JP4196730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003141395A JP4196730B2 (en) 2003-05-20 2003-05-20 Manufacturing method of ceramic multilayer substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003141395A JP4196730B2 (en) 2003-05-20 2003-05-20 Manufacturing method of ceramic multilayer substrate

Publications (2)

Publication Number Publication Date
JP2004349288A true JP2004349288A (en) 2004-12-09
JP4196730B2 JP4196730B2 (en) 2008-12-17

Family

ID=33529756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003141395A Expired - Fee Related JP4196730B2 (en) 2003-05-20 2003-05-20 Manufacturing method of ceramic multilayer substrate

Country Status (1)

Country Link
JP (1) JP4196730B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066996A (en) * 2005-08-29 2007-03-15 Kyocera Corp Package for storing electronic component, and electronic device
JP2010232439A (en) * 2009-03-27 2010-10-14 Kyocera Corp Wiring board, method of manufacturing the same, and electronic device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066996A (en) * 2005-08-29 2007-03-15 Kyocera Corp Package for storing electronic component, and electronic device
JP4587912B2 (en) * 2005-08-29 2010-11-24 京セラ株式会社 Electronic component storage package and electronic device
JP2010232439A (en) * 2009-03-27 2010-10-14 Kyocera Corp Wiring board, method of manufacturing the same, and electronic device using the same

Also Published As

Publication number Publication date
JP4196730B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
US7833370B2 (en) Method for manufacturing a ceramic multi-layered substrate
JP2008300636A (en) Printed wiring board, its manufacturing method, electronic component housing board using the printed wiring board and its manufacturing method
JP2004235323A (en) Manufacturing method of wiring substrate
KR100521941B1 (en) Method of manufacturing a multi-layered ceramic substrate
US20100101701A1 (en) Method of manufacturing non-shrinking multilayer ceramic substrate
JP5448400B2 (en) Manufacturing method of ceramic parts
JPH06215982A (en) Manufacture of ceramic electronic component
JP5170684B2 (en) Multilayer ceramic package
JP2011044681A (en) Ceramic substrate, and manufacturing method therefor
JP2002290038A (en) Manufacturing method for multilayer ceramic board
JP2007059863A (en) Multilayer ceramic substrate and its manufacture
JP2010069620A (en) Method for producing ceramic component
JP2020088364A (en) Multilayer ceramic substrate for semiconductor element test, and manufacturing method thereof
JP2004349288A (en) Process for producing ceramic multilayer substrate
JP5314370B2 (en) Manufacturing method of ceramic parts
JP2005072539A (en) Method of manufacturing ceramic green sheet, and method of manufacturing electronic component using the ceramic green sheet
JP2003318309A (en) Method for manufacturing multilayer ceramic substrate with cavity
KR20000058317A (en) Multi layer PCB and making method the same
JP2005111856A (en) Chucking plate for screen printing
JP6375595B2 (en) Coreless wiring board manufacturing method and peeling apparatus
JP2005123508A (en) Method of manufacturing laminated electronic component
WO2023152918A1 (en) Package manufacturing method
JP2002118194A (en) Method for manufacturing ceramic multilayer board for flip-chip
JP6933747B2 (en) Wiring board and electronics
KR20070043244A (en) Method of manufacturing a multi-layer ceramic substrate and multi-layer ceramic substrate using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4196730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees