JP2004346838A - 内燃機関の排気浄化装置 - Google Patents
内燃機関の排気浄化装置 Download PDFInfo
- Publication number
- JP2004346838A JP2004346838A JP2003145304A JP2003145304A JP2004346838A JP 2004346838 A JP2004346838 A JP 2004346838A JP 2003145304 A JP2003145304 A JP 2003145304A JP 2003145304 A JP2003145304 A JP 2003145304A JP 2004346838 A JP2004346838 A JP 2004346838A
- Authority
- JP
- Japan
- Prior art keywords
- nox
- amount
- combustion engine
- internal combustion
- exhaust
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Exhaust-Gas Circulating Devices (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Electrical Control Of Ignition Timing (AREA)
- Exhaust Gas After Treatment (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
【課題】内燃機関の各気筒群毎に独立して配設された排気通路に対してそれぞれNOx 触媒を設置すると共に、それぞれの吸蔵能力を十分に発揮させること。
【解決手段】内燃機関1が第1気筒群(#1気筒〜#3気筒)1a及び第2気筒群(#4気筒〜#6気筒)1bに分割され、各気筒群毎に独立的に排気通路12a,12bが配設され、それぞれにNOx 触媒13a,13bが設置されている。そして、吸気側可変バルブタイミング制御機構16a,16b及び排気側可変バルブタイミング制御機構19a,19bによるバルブオーバラップ量が変えられ内部EGR(排気ガス再循環)量が増減され、各気筒群毎のNOx 量が独立して制御される。これにより、NOx 触媒13a,13bのそれぞれの吸蔵能力にかかわらず同じリーン時間が設定でき、吸蔵能力が劣っているNOx 触媒側のリーン時間を延ばすことができ、燃費を向上することができる。
【選択図】 図1
【解決手段】内燃機関1が第1気筒群(#1気筒〜#3気筒)1a及び第2気筒群(#4気筒〜#6気筒)1bに分割され、各気筒群毎に独立的に排気通路12a,12bが配設され、それぞれにNOx 触媒13a,13bが設置されている。そして、吸気側可変バルブタイミング制御機構16a,16b及び排気側可変バルブタイミング制御機構19a,19bによるバルブオーバラップ量が変えられ内部EGR(排気ガス再循環)量が増減され、各気筒群毎のNOx 量が独立して制御される。これにより、NOx 触媒13a,13bのそれぞれの吸蔵能力にかかわらず同じリーン時間が設定でき、吸蔵能力が劣っているNOx 触媒側のリーン時間を延ばすことができ、燃費を向上することができる。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気ガス中のNOx を浄化する内燃機関の排気浄化装置に関するものである。
【0002】
【従来の技術】
従来、内燃機関の排気浄化装置に関連する先行技術文献としては、特許第2836523号公報にて開示されたものが知られている。このものでは、NOx 触媒(NOx 吸収剤)の劣化の度合いが高くなるほど、NOx 触媒に流入する排気ガスの空燃比をリーンからリッチに切換えて吸蔵されたNOx を浄化するための還元(Regeneration:リジェネレーション;以下、単に『リジェネ』と記す)周期またはNOx 触媒に流入する排気ガスの空燃比をリーンからリッチに切換えNOx 触媒の還元のためリッチ燃焼させるリッチ時間を短くして燃料消費率を低減し、リジェネ時に未燃HC,COが大気中に放出されるのを阻止する技術が示されている。
【特許文献】特許第2836523号公報(第1頁〜第2頁)
【0003】
【発明が解決しようとする課題】
ところで、内燃機関の排気量に対応するNOx 触媒によるNOx 吸蔵量の拡大や触媒温度の低下を図ろうとすると、複数のNOx 触媒を並列に設置する必要が生じることとなる。この際、各NOx 触媒毎の設置位置や劣化の度合い等から吸蔵能力に差が生じることが考えられる。しかし、各NOx 触媒毎の吸蔵能力に応じてリジェネ周期を設定することができないため、エミッション悪化を回避するには、各NOx 触媒のうち吸蔵能力の低いNOx 触媒に合わせてリジェネ周期を短く設定せざるを得ないこととなり、各NOx 触媒はそれぞれの吸蔵能力を十分に発揮できないという不具合があった。
【0004】
そこで、この発明はかかる不具合を解決するためになされたもので、内燃機関の各気筒群毎に独立して配設された排気通路に対してそれぞれNOx 触媒を設置すると共に、それぞれの吸蔵能力を十分に発揮させることが可能な内燃機関の排気浄化装置の提供を課題としている。
【0005】
【課題を解決するための手段】
請求項1の内燃機関の排気浄化装置によれば、内燃機関を構成する複数の気筒が複数の気筒群に分割され、これらの気筒群に対して独立的に配設された排気通路途中にNOx 触媒がそれぞれ設置され、NOx 量制御手段によって各気筒群毎に排気通路からNOx 触媒に流入されるNOx 量が独立して制御される。これにより、各気筒群毎に排気通路からNOx 触媒へのNOx 量が適切に流入できるため、それらの吸蔵能力が十分に発揮されるという効果が得られる。
【0006】
請求項2の内燃機関の排気浄化装置におけるNOx 量制御手段では、各気筒群毎のNOx 量がNOx 触媒の吸蔵能力に応じて設定されるため、各気筒群毎のNOx 触媒のそれぞれの吸蔵能力にかかわらず同じリーン時間が設定でき、共通のリジェネ周期が設定できることとなり、吸蔵能力が劣っているNOx 触媒に対するリーン時間を延ばすことができることで燃費が向上される。
【0007】
請求項3の内燃機関の排気浄化装置によれば、内燃機関の各気筒群毎の吸気バルブ及び排気バルブに対応して可変バルブタイミング制御機構が設置されており、NOx 量制御手段によって各気筒群毎の可変バルブタイミング制御機構による吸気バルブと排気バルブとのバルブオーバラップ量を変えて内部EGR量を各気筒群毎に変化させることができる。これにより、内部EGR量を増加させると燃焼温度が低下され発生するNOx 量が減少されるという現象を利用して、各気筒群毎のNOx 量だけを独立して制御できることで、各NOx 触媒毎の設置位置や劣化の度合い等にかかわらず、また、各気筒群毎にトルク段差を生じさせることなく、各気筒群毎のリーン時間を同じに設定することができる。
【0008】
請求項4の内燃機関の排気浄化装置によれば、内燃機関の各気筒群毎に排気ガス再循環機構が設置されており、NOx 量制御手段によって排気ガス再循環機構により外部EGR量を各気筒群毎に変化させることができ、この際、外部EGR量を増加させると燃焼温度が低下され発生するNOx 量が減少されるという現象を利用して、各気筒群毎のNOx 量だけを独立して制御できることで、各NOx 触媒毎の設置位置や劣化の度合い等にかかわらず、また、各気筒群毎にトルク段差を生じさせることなく、各気筒群毎のリーン時間を同じに設定することができる。
【0009】
請求項5の内燃機関の排気浄化装置におけるNOx 量制御手段では、点火時期の遅角量を遅角側に変化させることで筒内圧が下がり、結果的に、燃焼温度が低下され発生するNOx 量が減少されるという現象を利用して、各気筒群毎のNOx 量だけを独立して制御できることで、各NOx 触媒毎の設置位置や劣化の度合い等にかかわらず、また、各気筒群毎にトルク段差を生じさせることなく、各気筒群毎のリーン時間を同じに設定することができる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を実施例に基づいて説明する。
【0011】
図1は本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置が適用された内燃機関及びその周辺機器を示す概略構成図である。
【0012】
図1において、内燃機関1はV型6気筒(#1気筒〜#6気筒)4サイクルの火花点火式として構成されている。内燃機関1の上流側のエアクリーナ2から吸入された空気は吸気通路3、スロットルバルブ4、サージタンク5、吸気マニホルド6を通過し、吸気マニホルド6内で#1気筒〜#6気筒に対応する各インジェクタ(燃料噴射弁)7から噴射された燃料と混合され、所定の空燃比(Air−Fuel Ratio)の混合気として各気筒(#1気筒〜#6気筒)に分配供給される。また、内燃機関1の#1気筒〜#6気筒に設けられた各点火プラグ8には点火回路9から高電圧が逐次、分配供給され、#1気筒〜#6気筒の混合気が所定タイミングで点火燃焼される。
【0013】
そして、燃焼後の排気ガスは、内燃機関1の第1気筒群(#1気筒〜#3気筒)1a及び第2気筒群(#4気筒〜#6気筒)1bに分割され、それぞれに対応する排気マニホルド11a,11bに接続された排気通路12a,12bに設置された触媒コンバータとしてのNOx 触媒13a,13bを通過した後大気中に排出される。このNOx 触媒13a,13bによって、主にリーン空燃比での燃焼時、排気ガス中のNOx が吸蔵されると共に、リッチ空燃比での燃焼時、吸蔵されたNOx がリッチ成分としてのHC(炭化水素)やCO(一酸化炭素)等にてリジェネ(還元)され放出される。
【0014】
また、吸気通路3には吸入空気量QA〔g/sec〕を検出する吸入空気量センサとしてのエアフローメータ21が配設されている。また、スロットルバルブ4にはスロットル開度TA〔°〕を検出するスロットル開度センサ22が配設されている。このスロットル開度センサ22にはアイドルスイッチも内蔵されており、スロットルバルブ4が略全閉である旨の検出信号も出力される。そして、スロットルバルブ4の下流側には、吸気通路3内の負圧としての吸気圧PM〔kPa〕を検出する吸気圧センサ23が配設されている。
【0015】
更に、内燃機関1のシリンダブロックには冷却水温THW〔℃〕を検出する水温センサ24が配設されている。また、内燃機関1の図示しないクランクシャフトのクランク角〔°CA(Crank Angle)〕を検出するクランクポジションセンサ25が配設され、このクランクポジションセンサ25から内燃機関1の2回転、即ち、720〔°CA(Crank Angle:クランク角)〕毎に等間隔で24個のパルス信号が出力され、内燃機関1の機関回転速度NE〔rpm〕が検出される。
【0016】
また、排気通路12a,12b途中で触媒13a,13bの上流側には、排気ガス中のO2 (酸素)濃度に比例して広域でかつリニアな空燃比としてのA/Fセンサ出力値AF1,AF2を検出するA/Fセンサ26a,26bがそれぞれ配設されている。そして、排気通路12a,12b途中でNOx 触媒13a,13bの下流側には、排気ガス中の空燃比がリッチまたはリーンに応じて生じる異なる起電力としてのO2 センサ出力値VOX1,VOX2を検出するO2 センサ27a,27bが配設されている。
【0017】
更に、上述のように、内燃機関1の各気筒は、第1気筒群(#1気筒〜#3気筒)1a及び第2気筒群(#4気筒〜#6気筒)1bに分割されており、第1気筒群1aの各吸気バルブ14aには、それらの開閉タイミングを吸気側カムシャフト15aを介して変更自在な周知の吸気側可変バルブタイミング制御機構16a、第1気筒群1aの各排気バルブ17aには、それらの開閉タイミングを排気側カムシャフト18aを介して変更自在な周知の排気側可変バルブタイミング制御機構19aが設置されている。そして、第1気筒群1aにおいて、吸気側可変バルブタイミング制御機構16aによる吸気側カムシャフト15aのクランクシャフト(図示略)に対する位相差は、吸気側カムポジションセンサ28aとクランクポジションセンサ25とによって検出され、排気側可変バルブタイミング制御機構19aによる排気側カムシャフト18aのクランクシャフト(図示略)に対する位相差は、排気側カムポジションセンサ29aとクランクポジションセンサ25とによって検出される。
【0018】
また、第2気筒群1bの各吸気バルブ14bには、それらの開閉タイミングを吸気側カムシャフト15bを介して変更自在な周知の吸気側可変バルブタイミング制御機構16b、第2気筒群1bの各排気バルブ17bには、それらの開閉タイミングを排気側カムシャフト18bを介して変更自在な周知の排気側可変バルブタイミング制御機構19bが設置されている。そして、第2気筒群1bにおいて、吸気側可変バルブタイミング制御機構16bによる吸気側カムシャフト15bのクランクシャフト(図示略)に対する位相差は、吸気側カムポジションセンサ28bとクランクポジションセンサ25とによって検出され、排気側可変バルブタイミング制御機構19bによる排気側カムシャフト18bのクランクシャフト(図示略)に対する位相差は、排気側カムポジションセンサ29bとクランクポジションセンサ25とによって検出される。
【0019】
ECU(Electronic Control Unit:電子制御ユニット)30は、周知の各種演算処理を実行する中央処理装置としてのCPU31、制御プログラムや制御マップ等を格納したROM32、各種データを格納するRAM33、B/U(バックアップ)RAM34、入出力回路35及びそれらを接続するバスライン36等からなる論理演算回路として構成されている。そして、ECU30のCPU31によって入出力回路35を介して各種センサ信号が読込まれ演算処理され、#1気筒〜#6気筒のインジェクタ7、点火回路9、第1気筒群1aの吸気側可変バルブタイミング制御機構16a及び排気側可変バルブタイミング制御機構19a、第2気筒群1bの吸気側可変バルブタイミング制御機構16b及び排気側可変バルブタイミング制御機構19b、その他の各種アクチュエータ等に入出力回路35を介して各種制御信号が出力され、内燃機関10の運転状態が制御される。
【0020】
ここで、本実施例の排気浄化制御の概要について、図2及び図3を参照して簡単に説明する。なお、本実施例では、第1気筒群1aのNOx 触媒13aと第2気筒群1bのNOx 触媒13bとに劣化の度合い等による吸蔵能力差が生じており、第1気筒群1aのNOx 触媒13aに吸蔵されるNOx 吸蔵量の方が第2気筒群1bのNOx 触媒13bに吸蔵されるNOx 吸蔵量より多い場合が想定されている。そして、第1気筒群1aのNOx 触媒13a及び第2気筒群1bのNOx 触媒13bに吸蔵されたNOx をリジェネ(還元)するのに必要な時間間隔であるリジェネ周期(図3に示す時刻t0 〜時刻t3 )に対して、第1気筒群1aのNOx 触媒13a及び第2気筒群1bのNOx 触媒13bの現在のそれぞれの吸蔵能力に合わせてNOx を吸蔵させるためのリーン時間(図3に示す時刻t2 〜時刻t3 )が等しくなるよう第1気筒群1aに対するリジェネ周期カウンタCNOXAD1の傾きと第2気筒群1bに対するリジェネ周期カウンタCNOXAD2の傾きとがそれぞれ設定される。
【0021】
本実施例では、第1気筒群1aのNOx 触媒13a及び第2気筒群1bのNOx 触媒13bに対するリーン時間を等しくするため、第1気筒群1aのVCT進角量VCT1に対して第2気筒群1bのVCT進角量VCT2を進角させたときの差分であるVCT補正量VCTCMP2による内部EGR量の増量によって第2気筒群1bのNOx 触媒13bに対する入りガスNOx 量がNOx 吸蔵量差DLNOX2だけ少なくなるよう設定される。
【0022】
図2に示すマップに基づき、機関回転速度NE〔rpm〕及び吸気圧〔kPa〕をパラメータとして適宜、目標空燃比AFTGが算出される。そして、図3にタイムチャートを示すように、内燃機関1に対するリーン燃焼の実施途中において一時的にリッチ燃焼が実施されるよう、燃料噴射毎に計数される第1気筒群1aに対するリジェネ周期カウンタCNOXAD1に基づき、第1気筒群1aの目標空燃比AFTG1によるリッチ燃焼とするリッチ時間(時刻t0 〜時刻t2 、時刻t3 〜時刻t5 )、また、燃料噴射毎に計数される第2気筒群1bに対するリジェネ周期カウンタCNOXAD2に基づき、第2気筒群1bの目標空燃比AFTG2によるリッチ燃焼とするリッチ時間(時刻t0 〜時刻t1 、時刻t3 〜時刻t4 )が設定される。
【0023】
ここで、第2気筒群1bに対するリッチ時間(時刻t0 〜時刻t1 )が終了した後、第1気筒群1aに対するリッチ時間(時刻t0 〜時刻t2 )が終了するまでは、第2気筒群1bに対して理論空燃比(Stoichiometric Air−Fuel Ratio;以下、『ストイキ』と記す)燃焼とするストイキ時間(時刻t1 〜時刻t2 )が設定される。そして、第1気筒群1a及び第2気筒群1bに共通なリーン燃焼とするリーン時間(時刻t2 〜時刻t3 )が設定され、これら設定された各時間に応じてリッチ燃焼、ストイキ燃焼及びリーン燃焼が実施される。これにより、内燃機関1の排気通路12a,12b途中に設置されたNOx 触媒13a,13bにより、内燃機関1のリーン燃焼時、排気ガス中のNOx が吸蔵され、内燃機関1のリッチ燃焼時、吸蔵されたNOx がリジェネ(還元)され浄化されることとなる。なお、第1気筒群1aのNOx 触媒13aと第2気筒群1bのNOx 触媒13bとのNOx 吸蔵量差DLNOXが「0(零)」であるときには、第1気筒群1aに対するリジェネ周期カウンタCNOXAD1及び第2気筒群1bに対するリジェネ周期カウンタCNOXAD2は同じように遷移することでストイキ燃焼の必要がないためストイキ時間は設定されない。
【0024】
次に、本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置で使用されているECU30内のCPU31における燃料噴射制御の処理手順を示す図4のフローチャートに基づいて説明する。なお、この燃料噴射制御ルーチンは各気筒の燃料噴射タイミング毎(本実施例では120〔°CA〕毎)にCPU31にて繰返し実行される。
【0025】
図4において、ステップS101で、内燃機関の運転状態に応じた各種センサ情報が読込まれる。次にステップS102に移行して、ROM32内に予め格納されている基本噴射マップを用い機関回転速度NE〔rpm〕及び吸気圧PM〔kPa〕に基づいて基本噴射量Tpが算出される。次にステップS103に移行して、後述の演算処理により目標空燃比AFTGが算出される。次にステップS104に移行して、実際の空燃比(センサ計測値)と目標空燃比AFTGとの偏差に基づいて空燃比フィードバック補正係数FAFが算出される。なお、A/Fセンサ26a,26bからの空燃比信号に基づく空燃比フィードバック制御については、周知であり、その詳細な説明は省略する。次にステップS105に移行して、最終燃料噴射量TAUが次式(1)にて算出され、この最終燃料噴射量TAUに相当する制御信号がインジェクタ7に出力され本ルーチンを終了する。ここで、FALLは冷却水温、エアコン負荷等に基づく各種補正係数である。
【0026】
【数1】
TAU=Tp・FAF・FALL ・・・(1)
【0027】
なお、空燃比フィードバック制御は、内燃機関1の冷却水温THWが所定温度以上、高回転・高負荷状態になく、A/Fセンサ26a,26bが活性状態にある等のフィードバック実行条件が成立するときに実行され、フィードバック実行条件が不成立であるときにはFAF=1.0とする空燃比オープン制御が実行される。
【0028】
次に、本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置で使用されているECU30内のCPU31における目標空燃比AFTG算出の処理手順を示す図5のフローチャートに基づいて説明する。
【0029】
図5において、ステップS201では、第1気筒群1aのNOx 触媒13aに吸蔵されたNOx のリジェネ時間間隔を設定するためのリジェネ周期カウンタCNOXAD1が第1気筒群1aのNOx 触媒13aに対するNOx リジェネ処理実行を判定するためのNOx リジェネ実行判定値NOXJDG1以上であるかが判定される。ステップS201の判定条件が成立せず、即ち、リジェネ周期カウンタCNOXAD1がNOx リジェネ実行判定値NOXJDG1未満と小さいときにはステップS202に移行し、第2気筒群1bのNOx 触媒13bに吸蔵されたNOx のリジェネ時間間隔を設定するためのリジェネ周期カウンタCNOXAD2が第2気筒群1bのNOx 触媒13bに対するNOx リジェネ処理実行を判定するためのNOx リジェネ実行判定値NOXJDG2以上であるかが判定される。なお、NOx リジェネ実行判定値NOXJDG1,NOXJDG2は後述の演算処理によって算出される。
【0030】
ステップS202の判定条件が成立、即ち、リジェネ周期カウンタCNOXAD2がNOx リジェネ実行判定値NOXJDG2以上と大きいとき、またはステップS201の判定条件が成立、即ち、リジェネ周期カウンタCNOXAD1がNOx リジェネ実行判定値NOXJDG1以上と大きいときにはステップS203に移行する。ステップS203では、NOx リジェネ実行フラグ1及びNOx リジェネ実行フラグ2が共に「ON(オン)」とされ、リッチ制御値が目標空燃比AFTG1及び目標空燃比AFTG2とされる。一方、ステップS202の判定条件が成立せず、即ち、リジェネ周期カウンタCNOXAD2がNOx リジェネ実行判定値NOXJDG2未満と小さいときにはステップS203がスキップされる。
【0031】
次に、ステップS204に移行して、リジェネ周期カウンタCNOXAD1が「0」以下であるかが判定される。ステップS204の判定条件が成立、即ち、リジェネ周期カウンタCNOXAD1が「0」以下と小さいときにはステップS205に移行し、NOx リジェネ実行フラグ1が「OFF(オフ)」とされ、第1気筒群1aの目標空燃比AFTG1がストイキに設定される。一方、ステップS204の判定条件が成立せず、即ち、リジェネ周期カウンタCNOXAD1が「0」を越え大きいときにはステップS205がスキップされる。
【0032】
次に、ステップS206に移行して、リジェネ周期カウンタCNOXAD2が「0」以下であるかが判定される。ステップS206の判定条件が成立、即ち、リジェネ周期カウンタCNOXAD2が「0」以下と小さいときにはステップS207に移行し、NOx リジェネ実行フラグ2が「OFF」とされ、第2気筒群1bの目標空燃比AFTG2がストイキに設定される。一方、ステップS206の判定条件が成立せず、即ち、リジェネ周期カウンタCNOXAD2が「0」を越え大きいときにはステップS207がスキップされる。
【0033】
次に、ステップS208に移行して、NOx リジェネ実行フラグ1及びNOx リジェネ実行フラグ2が共に「OFF」であるかが判定される。ステップS208の判定条件が成立、即ち、NOx リジェネ実行フラグ1及びNOx リジェネ実行フラグ2が共に「OFF」であるときにはステップS209に移行し、リーン制御値が目標空燃比AFTG1及び目標空燃比AFTG2とされ、本ルーチンを終了する。一方、ステップS208の判定条件が成立せず、即ち、NOx リジェネ実行フラグ1及びNOx リジェネ実行フラグ2が共に「OFF」でないときにはステップS209をスキップし、本ルーチンを終了する。
【0034】
次に、本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置で使用されているECU30内のCPU31におけるリッチガス積算値AFAD算出の処理手順を示す図6のフローチャートに基づいて参照して説明する。なお、このリッチガス積算値AFAD算出ルーチンは所定時間毎にCPU31にて繰返し実行される。
【0035】
図6において、まず、ステップS301で、ストイキ空燃比AFSDからA/F(空燃比)センサ26aのA/Fセンサ出力値AF1が減算されリッチ空燃比AFDVが算出される。次にステップS302に移行して、ステップS301で算出されたリッチ空燃比AFDVが「0」を越えているかが判定される。ステップS302の判定条件が成立、即ち、リッチ空燃比AFDVが0を越え大きいときにはステップS303に移行して、リッチ空燃比AFDVに吸入空気量QAが乗算されリッチ供給量AFDV1が算出される。次にステップS304に移行して、ステップS303で算出されたリッチ供給量AFDV1が加算されリッチガス積算値AFAD1が更新される。一方、ステップS302の判定条件が成立せず、即ち、リッチ空燃比AFDVが0以下と小さいときにはステップS303及びステップS304がスキップされる。
【0036】
次に、ステップS305に移行して、ストイキ空燃比AFSDからA/F(空燃比)センサ26bのA/Fセンサ出力値AF2が減算されリッチ空燃比AFDVが算出される。次にステップS306に移行して、ステップS305で算出されたリッチ空燃比AFDVが「0」を越えているかが判定される。ステップS305の判定条件が成立、即ち、リッチ空燃比AFDVが0を越え大きいときにはステップS306に移行して、リッチ空燃比AFDVに吸入空気量QAが乗算されリッチ供給量AFDV2が算出される。次にステップS307に移行して、ステップS307で算出されたリッチ供給量AFDV2が加算されリッチガス積算値AFAD2が更新された後、本ルーチンを終了する。一方、ステップS306の判定条件が成立せず、即ち、リッチ空燃比AFDVが0以下と小さいときにはステップS307及びステップS308がスキップされ、本ルーチンを終了する。
【0037】
次に、本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置で使用されているECU30内のCPU31におけるNOx 積算量算出の処理手順を示す図7のフローチャートに基づき、図8を参照して説明する。ここで、図8は機関回転速度NE〔rpm〕及び吸気圧PM〔kPa〕をパラメータとして排気ガス中のNOx 量CNOXを算出するマップである。なお、このNOx 積算量算出ルーチンは所定時間毎にCPU31にて繰返し実行される。
【0038】
図7において、ステップS401で、A/Fセンサ値1及びA/Fセンサ値2が共にリーンを示しているかが判定される。ステップS401の判定条件が成立、即ち、A/Fセンサ値がリーンを示しているときにはステップS402に移行し、図8のマップにより排気ガス中のNOx 量CNOX〔モル〕が算出される。次に、ステップS403に移行して、NOx 積算量算出として、ステップS402で算出された排気ガス中のNOx 量CNOXが加算され、第1気筒群1aのNOx 触媒13aによるNOx 吸蔵に伴うNOx 吸蔵量差DLNOX1が減算されることでリジェネ周期カウンタCNOXAD1が更新され、また、ステップS402で算出された排気ガス中のNOx 量CNOXが加算され、第2気筒群1bのNOx 触媒13bによるNOx 吸蔵に伴うNOx 吸蔵量差DLNOX2が減算されることでリジェネ周期カウンタCNOXAD2が更新された後、本ルーチンを終了する。
【0039】
一方、ステップS401の判定条件が成立せず、即ち、A/Fセンサ値1及びA/Fセンサ値2が共にリーンを示していないときにはステップS404に移行し、NOx 還元量DNOX〔モル〕が算出される。次にステップS405に移行して、A/Fセンサ値1がリッチを示しているかが判定される。ステップS405の判定条件が成立、即ち、A/Fセンサ値1がリッチを示しているときにはステップS406に移行し、ステップS404で算出されたNOx 還元量DNOXが加算されNOx 積算量として第1気筒群1aに対するリジェネ周期カウンタCNOXAD1が更新される。一方、ステップS405の判定条件が成立せず、即ち、A/Fセンサ値1がリーンを示しているときにはステップS406がスキップされる。
【0040】
次に、ステップS407に移行して、A/Fセンサ値2がリッチを示しているかが判定される。ステップS407の判定条件が成立、即ち、A/Fセンサ値2がリッチを示しているときにはステップS408に移行し、ステップS404で算出されたNOx 還元量DNOXが加算されNOx 積算量として第2気筒群1bに対するリジェネ周期カウンタCNOXAD2が更新され、本ルーチンを終了する。一方、ステップS407の判定条件が成立せず、即ち、A/Fセンサ値2がリーンを示しているときにはステップS408がスキップされ、本ルーチンを終了する。
【0041】
次に、本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置で使用されているECU30内のCPU31における触媒劣化検出の処理手順を示す図9のフローチャートに基づき、図10及び図11を参照して説明する。ここで、図10はNOx 吸蔵量差DLNOXをパラメータとしてVCT補正量VCTCMPを算出するマップである。図11はNOx 吸蔵量NOXCAPをパラメータとしてNOx リジェネ実行判定値NOXJDGを算出するマップである。なお、この触媒劣化検出ルーチンは所定時間毎にCPU31にて繰返し実行される。
【0042】
図9において、ステップS501で、劣化検出タイミングカウンタCCATDTが「0」であるかが判定される。ステップS501の判定条件が成立、即ち、劣化検出タイミングカウンタCCATDTが「0」であるときにはステップS502に移行し、リッチ制御開始であるかが判定される。ステップS502の判定条件が成立せず、即ち、リッチ制御開始でないときにはステップS503に移行し、リーン制御中であるかが判定される。ステップS503の判定条件が成立、即ち、リーン制御中であるときにはステップS504に移行し、リーン時平均O2 センサ出力値算出としてO2 センサ出力値VOX1の(1/32)と前回までのリーン時平均O2 センサ出力値VOX1SMの(31/32)とが加算され今回のリーン時平均O2 センサ出力値VOX1SM、また、リーン時平均O2 センサ出力値算出としてO2 センサ出力値VOX2の(1/32)と前回までのリーン時平均O2 センサ出力値VOX2SMの(31/32)とが加算され今回のリーン時平均O2 センサ出力値VOX2SMが算出され、本ルーチンを終了する。一方、ステップS503の判定条件が成立せず、即ち、リーン制御中でもないときにはステップS504がスキップされ本ルーチンを終了する。
【0043】
ここで、ステップS501の判定条件が成立せず、即ち、劣化検出タイミングカウンタCCATDTが「0」でないときにはステップS505に移行し、劣化検出タイミングカウンタCCATDTが「1」デクリメントされる。一方、ステップS502の判定条件が成立、即ち、リッチ制御開始であるときにはステップS506に移行し、劣化検出タイミング判定値KCCATDTが劣化検出タイミングカウンタCCATDTに設定される。
【0044】
ステップS505またはステップS506における処理の後ステップS507に移行し、後述の演算処理によりO2 センサ出力積算値VOXADが算出される。次にステップS508に移行して、リッチガス積算値AFADが算出される。次にステップS509に移行して、再度、劣化検出タイミングカウンタCCATDTが「0」であるかが判定される。ステップS509の判定条件が成立せず、即ち、劣化検出タイミングカウンタCCATDTが「0」でないときには、本ルーチンを終了する。一方、ステップS509の判定条件が成立、即ち、劣化検出タイミングカウンタCCATDTが「0」であるときにはステップS510に移行し、第1気筒群1aにおいてリッチガス積算値AFAD1からリッチ排出量VOX1ADが減算されNOx 最大吸蔵量NOXCAP1とされる。また、第2気筒群1bにおいてリッチガス積算値AFAD2からリッチ排出量VOX2ADが減算されNOx 最大吸蔵量NOXCAP2とされる。そして、NOx 最大吸蔵量NOXCAP1とNOx 最大吸蔵量NOXCAP2との偏差の絶対値が両気筒群間におけるNOx 吸蔵量差DLNOXとされる。
【0045】
次に、ステップS511に移行して、第1気筒群1aのNOx 最大吸蔵量NOXCAP1が第2気筒群1bのNOx 最大吸蔵量NOXCAP2を越えているかが判定される。ステップS511の判定条件が成立、即ち、NOx 最大吸蔵量NOXCAP1がNOx 最大吸蔵量NOXCAP2を越え多いときにはステップS512に移行し、図10のマップによりNOx 吸蔵量差DLNOXをパラメータとして第2気筒群1bのVCT補正量VCTCMP2が算出されると共に、第1気筒群1aのVCT補正量VCTCMP1が「0」にクリアされる。
【0046】
一方、ステップS511の判定条件が成立せず、即ち、NOx 最大吸蔵量NOXCAP1がNOx 最大吸蔵量NOXCAP2以下と少ないときにはステップS513に移行し、図10のマップによりNOx 吸蔵量差DLNOXをパラメータとして第1気筒群1aのVCT補正量VCTCMP1が算出されると共に、第2気筒群1bのVCT補正量VCTCMP2が「0」にクリアされる。次にステップS514に移行して、図11のマップによりNOx 吸蔵量NOXCAPをパラメータとして第1気筒群1aのNOx リジェネ実行判定値NOXJDG1及び第2気筒群1bのNOx リジェネ実行判定値NOXJDG2が算出され、本ルーチンを終了する。
【0047】
次に、本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置で使用されているECU30内のCPU31におけるO2 センサ出力積算値算出の処理手順を示す図12のフローチャートに基づいて説明する。なお、このO2 センサ出力積算値算出ルーチンは所定時間毎にCPU31にて繰返し実行される。
【0048】
図12において、ステップS601で、第1気筒群1aのO2 センサ出力値VOX1からリーン時平均O2 センサ出力値VOX1SMが減算されリッチ出力偏差VOX1DVとされる。次にステップS602に移行して、ステップS601によるリッチ出力偏差VOX1DVの絶対値が0.02〔V:ボルト〕以上であるかが判定される。ステップS602の判定条件が成立、即ち、リッチ出力偏差VOX1DVの絶対値が0.02〔V〕以上と大きいときにはステップS603に移行して、リッチ出力偏差VOX1DVに吸入空気量QAが乗算されリッチ出力偏差VOX1DVが補正される。そして、ステップS604に移行し、リッチ出力偏差VOX1DVが加算されリッチ排出量VOX1ADが更新される。一方、ステップS602の判定条件が成立せず、即ち、リッチ出力偏差VOX1DVの絶対値が0.02〔V〕未満と小さいときにはステップS603及びステップS604がスキップされる。
【0049】
次に、ステップS605に移行して、第2気筒群1bのO2 センサ出力値VOX2からリーン時平均O2 センサ出力値VOX2SMが減算されリッチ出力偏差VOX2DVとされる。次にステップS606に移行して、ステップS605によるリッチ出力偏差VOX2DVの絶対値が0.02〔V:ボルト〕以上であるかが判定される。ステップS606の判定条件が成立、即ち、リッチ出力偏差VOX2DVの絶対値が0.02〔V〕以上と大きいときにはステップS607に移行して、リッチ出力偏差VOX2DVに吸入空気量QAが乗算されリッチ出力偏差VOX2DVが補正される。そして、ステップS608に移行し、リッチ出力偏差VOX2DVが加算されリッチ排出量VOX2ADが更新され、本ルーチンを終了する。一方、ステップS606の判定条件が成立せず、即ち、リッチ出力偏差VOX2DVの絶対値が0.02〔V〕未満と小さいときにはステップS607及びステップS608がスキップされ、本ルーチンを終了する。
【0050】
このように、本実施例の内燃機関の排気浄化装置は、内燃機関1を構成する複数の気筒(#1気筒〜#6気筒)を第1気筒群(#1気筒〜#3気筒)1a及び第2気筒群(#4気筒〜#6気筒)1bからなる2つの気筒群に分割し、各気筒群毎に独立して配設する排気通路12a,12bと、排気通路12a,12b途中にそれぞれ設置し、内燃機関1のリーン燃焼時、排気ガス中のNOx (窒素酸化物)を吸蔵し、内燃機関1のリッチ燃焼時、吸蔵したNOx を還元し浄化するNOx 触媒13a,13bと、各気筒群毎に排気通路12a,12bからNOx 触媒13a,13bに流入するNOx 量を独立して制御するECU30にて達成されるNOx 量制御手段とを具備するものである。
【0051】
つまり、内燃機関1を構成する6つの気筒(#1気筒〜#6気筒)が第1気筒群(#1気筒〜#3気筒)1a及び第2気筒群(#4気筒〜#6気筒)1bからなる2つの気筒群に分割され、これら2つの気筒群に対して独立的に排気通路12a,12bが配設され、この排気通路12a,12b途中にNOx 触媒13a,13bが設置されている。そして、各気筒群毎に排気通路12a,12bからNOx 触媒13a,13bに流入されるNOx 量が独立して制御される。これにより、NOx 触媒13a,13bへのNOx 量が適切に流入できることとなり、それらの吸蔵能力を十分に発揮することができる。
【0052】
また、本実施例の内燃機関の排気浄化装置のECU30にて達成されるNOx 量制御手段は、各気筒群毎のNOx 量をNOx 触媒13a,13bの吸蔵能力に応じて設定するものである。これにより、NOx 触媒13a,13bのそれぞれの吸蔵能力にかかわらず同じリーン時間が設定でき、共通のリジェネ周期が設定できることとなり、吸蔵能力が劣っているNOx 触媒側のリーン時間を延ばすことができ、燃費を向上することができる。
【0053】
そして、本実施例の内燃機関の排気浄化装置は、内燃機関1の第1気筒群(#1気筒〜#3気筒)1a及び第2気筒群(#4気筒〜#6気筒)1bからなる各気筒群毎に、駆動軸としてのクランクシャフト(図示略)から各吸気バルブ14a,14bまたは各排気バルブ17a,17bを開閉する従動軸としての吸気側カムシャフト15a,15b、排気側カムシャフト18a,18bに駆動力を伝達する駆動力伝達系に設けられ、各吸気バルブ14a,14bまたは各排気バルブ17a,17bの開閉タイミングを変更自在な吸気側可変バルブタイミング制御機構16a,16b、排気側可変バルブタイミング制御機構19a,19bを具備し、ECU30にて達成されるNOx 量制御手段は、各気筒群毎に設けられた吸気側可変バルブタイミング制御機構16a,16bによる各吸気バルブ14a,14bと排気側可変バルブタイミング制御機構19a,19bによる各排気バルブ17a,17bとのバルブオーバラップ量を変えて内部EGR(排気ガス再循環)量を増減変化させ、各気筒群毎のNOx 量を独立して制御するものである。
【0054】
つまり、内燃機関1の第1気筒群1a及び第2気筒群1bの各吸気バルブ14a,14b及び各排気バルブ17a,17bに対応して設けられた吸気側可変バルブタイミング制御機構16a,16b及び排気側可変バルブタイミング制御機構19a,19bが設置されており、それらによる各気筒群毎のバルブオーバラップ量を変えることで内部EGR量が変化されるため、各気筒群毎に排気通路12a,12bからNOx 触媒13a,13bに流入させるべき適切なNOx 量を独立して制御でき、各NOx 触媒毎の設置位置や劣化の度合い等にかかわらず、また、各気筒群毎にトルク段差を生じさせることなく、各気筒群毎のリーン時間を同じに設定することができる。
【0055】
ところで、上記実施例では、内燃機関1の各気筒群毎に吸気側可変バルブタイミング制御機構16a,16b及び排気側可変バルブタイミング制御機構19a,19bを設置し、それらによるバルブオーバラップ量を変えることで内部EGR量を増減変化させているが、本発明を実施する場合には、これに限定されるものではなく、各気筒群毎に例えば、吸気側可変バルブタイミング制御機構を設置するだけでもバルブオーバラップ量を変え内部EGR量を増減変化させることができ、上述の実施例と同様の作用・効果が期待できる。
【0056】
また、上記実施例では、図9のステップS512またはステップS513にて、NOx 吸蔵量差DLNOXをパラメータとしてVCT補正量VCTCMPを算出し、各気筒群毎に設置した吸気側可変バルブタイミング制御機構16a,16b及び排気側可変バルブタイミング制御機構19a,19bを制御し内部EGR量を増減変化させたが、本発明を実施する場合には、これに限定されるものではなく、各気筒群毎に排気通路12a,12b側の排気ガスの一部を吸気通路3側に再循環自在な周知の排気ガス再循環機構(図示略)を設置したものでは、図13のマップにより、NOx 吸蔵量差DLNOXをパラメータとしてEGR補正量を算出し、このEGR補正量に基づき各気筒群毎の排気ガス再循環機構を制御し外部EGR量を増減変化させるようにすれば、各気筒群毎のNOx 量を独立して制御することができる。
【0057】
このような内燃機関の排気浄化装置は、内燃機関1の各気筒群毎に、排気通路12a,12b側の排気ガスの一部を吸気通路3側に再循環自在な排気ガス再循環機構を具備し、ECU30にて達成されるNOx 量制御手段が、各気筒群毎に設けられた排気ガス再循環機構により外部EGR量を増減変化させ、各気筒群毎のNOx 量を独立して制御するものであり、上述の実施例と同様の作用・効果が期待できる。
【0058】
そして、図14のマップにより、NOx 吸蔵量差DLNOXをパラメータとして点火時期の遅角補正量を算出し、この遅角補正量に基づき各気筒群毎の点火時期を制御することで、各気筒群毎のNOx 量を独立して制御することができる。このような内燃機関の排気浄化装置は、ECU30にて達成されるNOx 量制御手段が、各気筒群毎に点火時期を進角/遅角変化させ、各気筒群毎のNOx 量を独立して制御するものであり、上述の実施例と同様の作用・効果が期待できる。
【0059】
なお、各気筒群毎の燃料噴射量を制御してNOx 量を調整することで、リジェネ周期のうちのリーン時間を第1気筒群1aと第2気筒群1bとで合致させることもできるが、基本的にリーン燃焼時においては、トルク発生に関与するパラメータとして燃料噴射量が支配的であり、各気筒群毎の燃料噴射量に差を付けると各気筒群毎の発生トルクに段差が現われることとなる。したがって、上記実施例で述べたように、内部EGR量の増減制御、外部EGR量の増減制御や点火時期の進角/遅角制御による各気筒群毎のNOx 量の調整が特に、有効であると言える。
【図面の簡単な説明】
【図1】図1は本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置が適用された内燃機関及びその周辺機器を示す概略構成図である。
【図2】図2は本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置における機関回転速度及び吸気圧をパラメータとして目標空燃比を算出するマップである。
【図3】図3は本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置におけるリジェネ周期カウンタの値に基づきリーン時間及びリッチ時間の設定を示す説明図である。
【図4】図4は本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置で使用されているECU内のCPUにおける燃料噴射制御の処理手順を示すフローチャートである。
【図5】図5は本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置で使用されているECU内のCPUにおける目標空燃比算出の処理手順を示すフローチャートである。
【図6】図6は本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置で使用されているECU内のCPUにおけるリッチガス積算値算出の処理手順を示すフローチャートである。
【図7】図7は本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置で使用されているECU内のCPUにおけるNOx 積算量算出の処理手順を示すフローチャートである。
【図8】図8は図7で機関回転速度及び吸気圧をパラメータとして排気ガス中のNOx 量を算出するマップである。
【図9】図9は本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置で使用されているECU内のCPUにおける触媒劣化検出の処理手順を示すフローチャートである。
【図10】図10は図9でNOx 吸蔵量差をパラメータとしてVCT補正量を算出するマップである。
【図11】図11は図9でNOx 吸蔵量をパラメータとしてNOx リジェネ実行判定値を算出するマップである。
【図12】図12は本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置で使用されているECU内のCPUにおけるO2 センサ出力積算値算出の処理手順を示すフローチャートである。
【図13】図13は図9における触媒劣化検出に際し、NOx 吸蔵量差をパラメータとしてEGR補正量を算出するマップである。
【図14】図14は図9における触媒劣化検出に際し、NOx 吸蔵量差をパラメータとして点火時期の遅角補正量を算出するマップである。
【符号の説明】
1 内燃機関
1a 第1気筒群
1b 第2気筒群
3 吸気通路
12a,12b 排気通路
13a,13b NOx 触媒
14a,14b 吸気バルブ
15a,15b 吸気側カムシャフト
16a,16b 吸気側可変バルブタイミング制御機構
17a,17b 排気バルブ
18a,18b 排気側カムシャフト
19a,19b 排気側可変バルブタイミング制御機構
30 ECU(電子制御ユニット)
【発明の属する技術分野】
本発明は、内燃機関の排気ガス中のNOx を浄化する内燃機関の排気浄化装置に関するものである。
【0002】
【従来の技術】
従来、内燃機関の排気浄化装置に関連する先行技術文献としては、特許第2836523号公報にて開示されたものが知られている。このものでは、NOx 触媒(NOx 吸収剤)の劣化の度合いが高くなるほど、NOx 触媒に流入する排気ガスの空燃比をリーンからリッチに切換えて吸蔵されたNOx を浄化するための還元(Regeneration:リジェネレーション;以下、単に『リジェネ』と記す)周期またはNOx 触媒に流入する排気ガスの空燃比をリーンからリッチに切換えNOx 触媒の還元のためリッチ燃焼させるリッチ時間を短くして燃料消費率を低減し、リジェネ時に未燃HC,COが大気中に放出されるのを阻止する技術が示されている。
【特許文献】特許第2836523号公報(第1頁〜第2頁)
【0003】
【発明が解決しようとする課題】
ところで、内燃機関の排気量に対応するNOx 触媒によるNOx 吸蔵量の拡大や触媒温度の低下を図ろうとすると、複数のNOx 触媒を並列に設置する必要が生じることとなる。この際、各NOx 触媒毎の設置位置や劣化の度合い等から吸蔵能力に差が生じることが考えられる。しかし、各NOx 触媒毎の吸蔵能力に応じてリジェネ周期を設定することができないため、エミッション悪化を回避するには、各NOx 触媒のうち吸蔵能力の低いNOx 触媒に合わせてリジェネ周期を短く設定せざるを得ないこととなり、各NOx 触媒はそれぞれの吸蔵能力を十分に発揮できないという不具合があった。
【0004】
そこで、この発明はかかる不具合を解決するためになされたもので、内燃機関の各気筒群毎に独立して配設された排気通路に対してそれぞれNOx 触媒を設置すると共に、それぞれの吸蔵能力を十分に発揮させることが可能な内燃機関の排気浄化装置の提供を課題としている。
【0005】
【課題を解決するための手段】
請求項1の内燃機関の排気浄化装置によれば、内燃機関を構成する複数の気筒が複数の気筒群に分割され、これらの気筒群に対して独立的に配設された排気通路途中にNOx 触媒がそれぞれ設置され、NOx 量制御手段によって各気筒群毎に排気通路からNOx 触媒に流入されるNOx 量が独立して制御される。これにより、各気筒群毎に排気通路からNOx 触媒へのNOx 量が適切に流入できるため、それらの吸蔵能力が十分に発揮されるという効果が得られる。
【0006】
請求項2の内燃機関の排気浄化装置におけるNOx 量制御手段では、各気筒群毎のNOx 量がNOx 触媒の吸蔵能力に応じて設定されるため、各気筒群毎のNOx 触媒のそれぞれの吸蔵能力にかかわらず同じリーン時間が設定でき、共通のリジェネ周期が設定できることとなり、吸蔵能力が劣っているNOx 触媒に対するリーン時間を延ばすことができることで燃費が向上される。
【0007】
請求項3の内燃機関の排気浄化装置によれば、内燃機関の各気筒群毎の吸気バルブ及び排気バルブに対応して可変バルブタイミング制御機構が設置されており、NOx 量制御手段によって各気筒群毎の可変バルブタイミング制御機構による吸気バルブと排気バルブとのバルブオーバラップ量を変えて内部EGR量を各気筒群毎に変化させることができる。これにより、内部EGR量を増加させると燃焼温度が低下され発生するNOx 量が減少されるという現象を利用して、各気筒群毎のNOx 量だけを独立して制御できることで、各NOx 触媒毎の設置位置や劣化の度合い等にかかわらず、また、各気筒群毎にトルク段差を生じさせることなく、各気筒群毎のリーン時間を同じに設定することができる。
【0008】
請求項4の内燃機関の排気浄化装置によれば、内燃機関の各気筒群毎に排気ガス再循環機構が設置されており、NOx 量制御手段によって排気ガス再循環機構により外部EGR量を各気筒群毎に変化させることができ、この際、外部EGR量を増加させると燃焼温度が低下され発生するNOx 量が減少されるという現象を利用して、各気筒群毎のNOx 量だけを独立して制御できることで、各NOx 触媒毎の設置位置や劣化の度合い等にかかわらず、また、各気筒群毎にトルク段差を生じさせることなく、各気筒群毎のリーン時間を同じに設定することができる。
【0009】
請求項5の内燃機関の排気浄化装置におけるNOx 量制御手段では、点火時期の遅角量を遅角側に変化させることで筒内圧が下がり、結果的に、燃焼温度が低下され発生するNOx 量が減少されるという現象を利用して、各気筒群毎のNOx 量だけを独立して制御できることで、各NOx 触媒毎の設置位置や劣化の度合い等にかかわらず、また、各気筒群毎にトルク段差を生じさせることなく、各気筒群毎のリーン時間を同じに設定することができる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を実施例に基づいて説明する。
【0011】
図1は本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置が適用された内燃機関及びその周辺機器を示す概略構成図である。
【0012】
図1において、内燃機関1はV型6気筒(#1気筒〜#6気筒)4サイクルの火花点火式として構成されている。内燃機関1の上流側のエアクリーナ2から吸入された空気は吸気通路3、スロットルバルブ4、サージタンク5、吸気マニホルド6を通過し、吸気マニホルド6内で#1気筒〜#6気筒に対応する各インジェクタ(燃料噴射弁)7から噴射された燃料と混合され、所定の空燃比(Air−Fuel Ratio)の混合気として各気筒(#1気筒〜#6気筒)に分配供給される。また、内燃機関1の#1気筒〜#6気筒に設けられた各点火プラグ8には点火回路9から高電圧が逐次、分配供給され、#1気筒〜#6気筒の混合気が所定タイミングで点火燃焼される。
【0013】
そして、燃焼後の排気ガスは、内燃機関1の第1気筒群(#1気筒〜#3気筒)1a及び第2気筒群(#4気筒〜#6気筒)1bに分割され、それぞれに対応する排気マニホルド11a,11bに接続された排気通路12a,12bに設置された触媒コンバータとしてのNOx 触媒13a,13bを通過した後大気中に排出される。このNOx 触媒13a,13bによって、主にリーン空燃比での燃焼時、排気ガス中のNOx が吸蔵されると共に、リッチ空燃比での燃焼時、吸蔵されたNOx がリッチ成分としてのHC(炭化水素)やCO(一酸化炭素)等にてリジェネ(還元)され放出される。
【0014】
また、吸気通路3には吸入空気量QA〔g/sec〕を検出する吸入空気量センサとしてのエアフローメータ21が配設されている。また、スロットルバルブ4にはスロットル開度TA〔°〕を検出するスロットル開度センサ22が配設されている。このスロットル開度センサ22にはアイドルスイッチも内蔵されており、スロットルバルブ4が略全閉である旨の検出信号も出力される。そして、スロットルバルブ4の下流側には、吸気通路3内の負圧としての吸気圧PM〔kPa〕を検出する吸気圧センサ23が配設されている。
【0015】
更に、内燃機関1のシリンダブロックには冷却水温THW〔℃〕を検出する水温センサ24が配設されている。また、内燃機関1の図示しないクランクシャフトのクランク角〔°CA(Crank Angle)〕を検出するクランクポジションセンサ25が配設され、このクランクポジションセンサ25から内燃機関1の2回転、即ち、720〔°CA(Crank Angle:クランク角)〕毎に等間隔で24個のパルス信号が出力され、内燃機関1の機関回転速度NE〔rpm〕が検出される。
【0016】
また、排気通路12a,12b途中で触媒13a,13bの上流側には、排気ガス中のO2 (酸素)濃度に比例して広域でかつリニアな空燃比としてのA/Fセンサ出力値AF1,AF2を検出するA/Fセンサ26a,26bがそれぞれ配設されている。そして、排気通路12a,12b途中でNOx 触媒13a,13bの下流側には、排気ガス中の空燃比がリッチまたはリーンに応じて生じる異なる起電力としてのO2 センサ出力値VOX1,VOX2を検出するO2 センサ27a,27bが配設されている。
【0017】
更に、上述のように、内燃機関1の各気筒は、第1気筒群(#1気筒〜#3気筒)1a及び第2気筒群(#4気筒〜#6気筒)1bに分割されており、第1気筒群1aの各吸気バルブ14aには、それらの開閉タイミングを吸気側カムシャフト15aを介して変更自在な周知の吸気側可変バルブタイミング制御機構16a、第1気筒群1aの各排気バルブ17aには、それらの開閉タイミングを排気側カムシャフト18aを介して変更自在な周知の排気側可変バルブタイミング制御機構19aが設置されている。そして、第1気筒群1aにおいて、吸気側可変バルブタイミング制御機構16aによる吸気側カムシャフト15aのクランクシャフト(図示略)に対する位相差は、吸気側カムポジションセンサ28aとクランクポジションセンサ25とによって検出され、排気側可変バルブタイミング制御機構19aによる排気側カムシャフト18aのクランクシャフト(図示略)に対する位相差は、排気側カムポジションセンサ29aとクランクポジションセンサ25とによって検出される。
【0018】
また、第2気筒群1bの各吸気バルブ14bには、それらの開閉タイミングを吸気側カムシャフト15bを介して変更自在な周知の吸気側可変バルブタイミング制御機構16b、第2気筒群1bの各排気バルブ17bには、それらの開閉タイミングを排気側カムシャフト18bを介して変更自在な周知の排気側可変バルブタイミング制御機構19bが設置されている。そして、第2気筒群1bにおいて、吸気側可変バルブタイミング制御機構16bによる吸気側カムシャフト15bのクランクシャフト(図示略)に対する位相差は、吸気側カムポジションセンサ28bとクランクポジションセンサ25とによって検出され、排気側可変バルブタイミング制御機構19bによる排気側カムシャフト18bのクランクシャフト(図示略)に対する位相差は、排気側カムポジションセンサ29bとクランクポジションセンサ25とによって検出される。
【0019】
ECU(Electronic Control Unit:電子制御ユニット)30は、周知の各種演算処理を実行する中央処理装置としてのCPU31、制御プログラムや制御マップ等を格納したROM32、各種データを格納するRAM33、B/U(バックアップ)RAM34、入出力回路35及びそれらを接続するバスライン36等からなる論理演算回路として構成されている。そして、ECU30のCPU31によって入出力回路35を介して各種センサ信号が読込まれ演算処理され、#1気筒〜#6気筒のインジェクタ7、点火回路9、第1気筒群1aの吸気側可変バルブタイミング制御機構16a及び排気側可変バルブタイミング制御機構19a、第2気筒群1bの吸気側可変バルブタイミング制御機構16b及び排気側可変バルブタイミング制御機構19b、その他の各種アクチュエータ等に入出力回路35を介して各種制御信号が出力され、内燃機関10の運転状態が制御される。
【0020】
ここで、本実施例の排気浄化制御の概要について、図2及び図3を参照して簡単に説明する。なお、本実施例では、第1気筒群1aのNOx 触媒13aと第2気筒群1bのNOx 触媒13bとに劣化の度合い等による吸蔵能力差が生じており、第1気筒群1aのNOx 触媒13aに吸蔵されるNOx 吸蔵量の方が第2気筒群1bのNOx 触媒13bに吸蔵されるNOx 吸蔵量より多い場合が想定されている。そして、第1気筒群1aのNOx 触媒13a及び第2気筒群1bのNOx 触媒13bに吸蔵されたNOx をリジェネ(還元)するのに必要な時間間隔であるリジェネ周期(図3に示す時刻t0 〜時刻t3 )に対して、第1気筒群1aのNOx 触媒13a及び第2気筒群1bのNOx 触媒13bの現在のそれぞれの吸蔵能力に合わせてNOx を吸蔵させるためのリーン時間(図3に示す時刻t2 〜時刻t3 )が等しくなるよう第1気筒群1aに対するリジェネ周期カウンタCNOXAD1の傾きと第2気筒群1bに対するリジェネ周期カウンタCNOXAD2の傾きとがそれぞれ設定される。
【0021】
本実施例では、第1気筒群1aのNOx 触媒13a及び第2気筒群1bのNOx 触媒13bに対するリーン時間を等しくするため、第1気筒群1aのVCT進角量VCT1に対して第2気筒群1bのVCT進角量VCT2を進角させたときの差分であるVCT補正量VCTCMP2による内部EGR量の増量によって第2気筒群1bのNOx 触媒13bに対する入りガスNOx 量がNOx 吸蔵量差DLNOX2だけ少なくなるよう設定される。
【0022】
図2に示すマップに基づき、機関回転速度NE〔rpm〕及び吸気圧〔kPa〕をパラメータとして適宜、目標空燃比AFTGが算出される。そして、図3にタイムチャートを示すように、内燃機関1に対するリーン燃焼の実施途中において一時的にリッチ燃焼が実施されるよう、燃料噴射毎に計数される第1気筒群1aに対するリジェネ周期カウンタCNOXAD1に基づき、第1気筒群1aの目標空燃比AFTG1によるリッチ燃焼とするリッチ時間(時刻t0 〜時刻t2 、時刻t3 〜時刻t5 )、また、燃料噴射毎に計数される第2気筒群1bに対するリジェネ周期カウンタCNOXAD2に基づき、第2気筒群1bの目標空燃比AFTG2によるリッチ燃焼とするリッチ時間(時刻t0 〜時刻t1 、時刻t3 〜時刻t4 )が設定される。
【0023】
ここで、第2気筒群1bに対するリッチ時間(時刻t0 〜時刻t1 )が終了した後、第1気筒群1aに対するリッチ時間(時刻t0 〜時刻t2 )が終了するまでは、第2気筒群1bに対して理論空燃比(Stoichiometric Air−Fuel Ratio;以下、『ストイキ』と記す)燃焼とするストイキ時間(時刻t1 〜時刻t2 )が設定される。そして、第1気筒群1a及び第2気筒群1bに共通なリーン燃焼とするリーン時間(時刻t2 〜時刻t3 )が設定され、これら設定された各時間に応じてリッチ燃焼、ストイキ燃焼及びリーン燃焼が実施される。これにより、内燃機関1の排気通路12a,12b途中に設置されたNOx 触媒13a,13bにより、内燃機関1のリーン燃焼時、排気ガス中のNOx が吸蔵され、内燃機関1のリッチ燃焼時、吸蔵されたNOx がリジェネ(還元)され浄化されることとなる。なお、第1気筒群1aのNOx 触媒13aと第2気筒群1bのNOx 触媒13bとのNOx 吸蔵量差DLNOXが「0(零)」であるときには、第1気筒群1aに対するリジェネ周期カウンタCNOXAD1及び第2気筒群1bに対するリジェネ周期カウンタCNOXAD2は同じように遷移することでストイキ燃焼の必要がないためストイキ時間は設定されない。
【0024】
次に、本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置で使用されているECU30内のCPU31における燃料噴射制御の処理手順を示す図4のフローチャートに基づいて説明する。なお、この燃料噴射制御ルーチンは各気筒の燃料噴射タイミング毎(本実施例では120〔°CA〕毎)にCPU31にて繰返し実行される。
【0025】
図4において、ステップS101で、内燃機関の運転状態に応じた各種センサ情報が読込まれる。次にステップS102に移行して、ROM32内に予め格納されている基本噴射マップを用い機関回転速度NE〔rpm〕及び吸気圧PM〔kPa〕に基づいて基本噴射量Tpが算出される。次にステップS103に移行して、後述の演算処理により目標空燃比AFTGが算出される。次にステップS104に移行して、実際の空燃比(センサ計測値)と目標空燃比AFTGとの偏差に基づいて空燃比フィードバック補正係数FAFが算出される。なお、A/Fセンサ26a,26bからの空燃比信号に基づく空燃比フィードバック制御については、周知であり、その詳細な説明は省略する。次にステップS105に移行して、最終燃料噴射量TAUが次式(1)にて算出され、この最終燃料噴射量TAUに相当する制御信号がインジェクタ7に出力され本ルーチンを終了する。ここで、FALLは冷却水温、エアコン負荷等に基づく各種補正係数である。
【0026】
【数1】
TAU=Tp・FAF・FALL ・・・(1)
【0027】
なお、空燃比フィードバック制御は、内燃機関1の冷却水温THWが所定温度以上、高回転・高負荷状態になく、A/Fセンサ26a,26bが活性状態にある等のフィードバック実行条件が成立するときに実行され、フィードバック実行条件が不成立であるときにはFAF=1.0とする空燃比オープン制御が実行される。
【0028】
次に、本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置で使用されているECU30内のCPU31における目標空燃比AFTG算出の処理手順を示す図5のフローチャートに基づいて説明する。
【0029】
図5において、ステップS201では、第1気筒群1aのNOx 触媒13aに吸蔵されたNOx のリジェネ時間間隔を設定するためのリジェネ周期カウンタCNOXAD1が第1気筒群1aのNOx 触媒13aに対するNOx リジェネ処理実行を判定するためのNOx リジェネ実行判定値NOXJDG1以上であるかが判定される。ステップS201の判定条件が成立せず、即ち、リジェネ周期カウンタCNOXAD1がNOx リジェネ実行判定値NOXJDG1未満と小さいときにはステップS202に移行し、第2気筒群1bのNOx 触媒13bに吸蔵されたNOx のリジェネ時間間隔を設定するためのリジェネ周期カウンタCNOXAD2が第2気筒群1bのNOx 触媒13bに対するNOx リジェネ処理実行を判定するためのNOx リジェネ実行判定値NOXJDG2以上であるかが判定される。なお、NOx リジェネ実行判定値NOXJDG1,NOXJDG2は後述の演算処理によって算出される。
【0030】
ステップS202の判定条件が成立、即ち、リジェネ周期カウンタCNOXAD2がNOx リジェネ実行判定値NOXJDG2以上と大きいとき、またはステップS201の判定条件が成立、即ち、リジェネ周期カウンタCNOXAD1がNOx リジェネ実行判定値NOXJDG1以上と大きいときにはステップS203に移行する。ステップS203では、NOx リジェネ実行フラグ1及びNOx リジェネ実行フラグ2が共に「ON(オン)」とされ、リッチ制御値が目標空燃比AFTG1及び目標空燃比AFTG2とされる。一方、ステップS202の判定条件が成立せず、即ち、リジェネ周期カウンタCNOXAD2がNOx リジェネ実行判定値NOXJDG2未満と小さいときにはステップS203がスキップされる。
【0031】
次に、ステップS204に移行して、リジェネ周期カウンタCNOXAD1が「0」以下であるかが判定される。ステップS204の判定条件が成立、即ち、リジェネ周期カウンタCNOXAD1が「0」以下と小さいときにはステップS205に移行し、NOx リジェネ実行フラグ1が「OFF(オフ)」とされ、第1気筒群1aの目標空燃比AFTG1がストイキに設定される。一方、ステップS204の判定条件が成立せず、即ち、リジェネ周期カウンタCNOXAD1が「0」を越え大きいときにはステップS205がスキップされる。
【0032】
次に、ステップS206に移行して、リジェネ周期カウンタCNOXAD2が「0」以下であるかが判定される。ステップS206の判定条件が成立、即ち、リジェネ周期カウンタCNOXAD2が「0」以下と小さいときにはステップS207に移行し、NOx リジェネ実行フラグ2が「OFF」とされ、第2気筒群1bの目標空燃比AFTG2がストイキに設定される。一方、ステップS206の判定条件が成立せず、即ち、リジェネ周期カウンタCNOXAD2が「0」を越え大きいときにはステップS207がスキップされる。
【0033】
次に、ステップS208に移行して、NOx リジェネ実行フラグ1及びNOx リジェネ実行フラグ2が共に「OFF」であるかが判定される。ステップS208の判定条件が成立、即ち、NOx リジェネ実行フラグ1及びNOx リジェネ実行フラグ2が共に「OFF」であるときにはステップS209に移行し、リーン制御値が目標空燃比AFTG1及び目標空燃比AFTG2とされ、本ルーチンを終了する。一方、ステップS208の判定条件が成立せず、即ち、NOx リジェネ実行フラグ1及びNOx リジェネ実行フラグ2が共に「OFF」でないときにはステップS209をスキップし、本ルーチンを終了する。
【0034】
次に、本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置で使用されているECU30内のCPU31におけるリッチガス積算値AFAD算出の処理手順を示す図6のフローチャートに基づいて参照して説明する。なお、このリッチガス積算値AFAD算出ルーチンは所定時間毎にCPU31にて繰返し実行される。
【0035】
図6において、まず、ステップS301で、ストイキ空燃比AFSDからA/F(空燃比)センサ26aのA/Fセンサ出力値AF1が減算されリッチ空燃比AFDVが算出される。次にステップS302に移行して、ステップS301で算出されたリッチ空燃比AFDVが「0」を越えているかが判定される。ステップS302の判定条件が成立、即ち、リッチ空燃比AFDVが0を越え大きいときにはステップS303に移行して、リッチ空燃比AFDVに吸入空気量QAが乗算されリッチ供給量AFDV1が算出される。次にステップS304に移行して、ステップS303で算出されたリッチ供給量AFDV1が加算されリッチガス積算値AFAD1が更新される。一方、ステップS302の判定条件が成立せず、即ち、リッチ空燃比AFDVが0以下と小さいときにはステップS303及びステップS304がスキップされる。
【0036】
次に、ステップS305に移行して、ストイキ空燃比AFSDからA/F(空燃比)センサ26bのA/Fセンサ出力値AF2が減算されリッチ空燃比AFDVが算出される。次にステップS306に移行して、ステップS305で算出されたリッチ空燃比AFDVが「0」を越えているかが判定される。ステップS305の判定条件が成立、即ち、リッチ空燃比AFDVが0を越え大きいときにはステップS306に移行して、リッチ空燃比AFDVに吸入空気量QAが乗算されリッチ供給量AFDV2が算出される。次にステップS307に移行して、ステップS307で算出されたリッチ供給量AFDV2が加算されリッチガス積算値AFAD2が更新された後、本ルーチンを終了する。一方、ステップS306の判定条件が成立せず、即ち、リッチ空燃比AFDVが0以下と小さいときにはステップS307及びステップS308がスキップされ、本ルーチンを終了する。
【0037】
次に、本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置で使用されているECU30内のCPU31におけるNOx 積算量算出の処理手順を示す図7のフローチャートに基づき、図8を参照して説明する。ここで、図8は機関回転速度NE〔rpm〕及び吸気圧PM〔kPa〕をパラメータとして排気ガス中のNOx 量CNOXを算出するマップである。なお、このNOx 積算量算出ルーチンは所定時間毎にCPU31にて繰返し実行される。
【0038】
図7において、ステップS401で、A/Fセンサ値1及びA/Fセンサ値2が共にリーンを示しているかが判定される。ステップS401の判定条件が成立、即ち、A/Fセンサ値がリーンを示しているときにはステップS402に移行し、図8のマップにより排気ガス中のNOx 量CNOX〔モル〕が算出される。次に、ステップS403に移行して、NOx 積算量算出として、ステップS402で算出された排気ガス中のNOx 量CNOXが加算され、第1気筒群1aのNOx 触媒13aによるNOx 吸蔵に伴うNOx 吸蔵量差DLNOX1が減算されることでリジェネ周期カウンタCNOXAD1が更新され、また、ステップS402で算出された排気ガス中のNOx 量CNOXが加算され、第2気筒群1bのNOx 触媒13bによるNOx 吸蔵に伴うNOx 吸蔵量差DLNOX2が減算されることでリジェネ周期カウンタCNOXAD2が更新された後、本ルーチンを終了する。
【0039】
一方、ステップS401の判定条件が成立せず、即ち、A/Fセンサ値1及びA/Fセンサ値2が共にリーンを示していないときにはステップS404に移行し、NOx 還元量DNOX〔モル〕が算出される。次にステップS405に移行して、A/Fセンサ値1がリッチを示しているかが判定される。ステップS405の判定条件が成立、即ち、A/Fセンサ値1がリッチを示しているときにはステップS406に移行し、ステップS404で算出されたNOx 還元量DNOXが加算されNOx 積算量として第1気筒群1aに対するリジェネ周期カウンタCNOXAD1が更新される。一方、ステップS405の判定条件が成立せず、即ち、A/Fセンサ値1がリーンを示しているときにはステップS406がスキップされる。
【0040】
次に、ステップS407に移行して、A/Fセンサ値2がリッチを示しているかが判定される。ステップS407の判定条件が成立、即ち、A/Fセンサ値2がリッチを示しているときにはステップS408に移行し、ステップS404で算出されたNOx 還元量DNOXが加算されNOx 積算量として第2気筒群1bに対するリジェネ周期カウンタCNOXAD2が更新され、本ルーチンを終了する。一方、ステップS407の判定条件が成立せず、即ち、A/Fセンサ値2がリーンを示しているときにはステップS408がスキップされ、本ルーチンを終了する。
【0041】
次に、本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置で使用されているECU30内のCPU31における触媒劣化検出の処理手順を示す図9のフローチャートに基づき、図10及び図11を参照して説明する。ここで、図10はNOx 吸蔵量差DLNOXをパラメータとしてVCT補正量VCTCMPを算出するマップである。図11はNOx 吸蔵量NOXCAPをパラメータとしてNOx リジェネ実行判定値NOXJDGを算出するマップである。なお、この触媒劣化検出ルーチンは所定時間毎にCPU31にて繰返し実行される。
【0042】
図9において、ステップS501で、劣化検出タイミングカウンタCCATDTが「0」であるかが判定される。ステップS501の判定条件が成立、即ち、劣化検出タイミングカウンタCCATDTが「0」であるときにはステップS502に移行し、リッチ制御開始であるかが判定される。ステップS502の判定条件が成立せず、即ち、リッチ制御開始でないときにはステップS503に移行し、リーン制御中であるかが判定される。ステップS503の判定条件が成立、即ち、リーン制御中であるときにはステップS504に移行し、リーン時平均O2 センサ出力値算出としてO2 センサ出力値VOX1の(1/32)と前回までのリーン時平均O2 センサ出力値VOX1SMの(31/32)とが加算され今回のリーン時平均O2 センサ出力値VOX1SM、また、リーン時平均O2 センサ出力値算出としてO2 センサ出力値VOX2の(1/32)と前回までのリーン時平均O2 センサ出力値VOX2SMの(31/32)とが加算され今回のリーン時平均O2 センサ出力値VOX2SMが算出され、本ルーチンを終了する。一方、ステップS503の判定条件が成立せず、即ち、リーン制御中でもないときにはステップS504がスキップされ本ルーチンを終了する。
【0043】
ここで、ステップS501の判定条件が成立せず、即ち、劣化検出タイミングカウンタCCATDTが「0」でないときにはステップS505に移行し、劣化検出タイミングカウンタCCATDTが「1」デクリメントされる。一方、ステップS502の判定条件が成立、即ち、リッチ制御開始であるときにはステップS506に移行し、劣化検出タイミング判定値KCCATDTが劣化検出タイミングカウンタCCATDTに設定される。
【0044】
ステップS505またはステップS506における処理の後ステップS507に移行し、後述の演算処理によりO2 センサ出力積算値VOXADが算出される。次にステップS508に移行して、リッチガス積算値AFADが算出される。次にステップS509に移行して、再度、劣化検出タイミングカウンタCCATDTが「0」であるかが判定される。ステップS509の判定条件が成立せず、即ち、劣化検出タイミングカウンタCCATDTが「0」でないときには、本ルーチンを終了する。一方、ステップS509の判定条件が成立、即ち、劣化検出タイミングカウンタCCATDTが「0」であるときにはステップS510に移行し、第1気筒群1aにおいてリッチガス積算値AFAD1からリッチ排出量VOX1ADが減算されNOx 最大吸蔵量NOXCAP1とされる。また、第2気筒群1bにおいてリッチガス積算値AFAD2からリッチ排出量VOX2ADが減算されNOx 最大吸蔵量NOXCAP2とされる。そして、NOx 最大吸蔵量NOXCAP1とNOx 最大吸蔵量NOXCAP2との偏差の絶対値が両気筒群間におけるNOx 吸蔵量差DLNOXとされる。
【0045】
次に、ステップS511に移行して、第1気筒群1aのNOx 最大吸蔵量NOXCAP1が第2気筒群1bのNOx 最大吸蔵量NOXCAP2を越えているかが判定される。ステップS511の判定条件が成立、即ち、NOx 最大吸蔵量NOXCAP1がNOx 最大吸蔵量NOXCAP2を越え多いときにはステップS512に移行し、図10のマップによりNOx 吸蔵量差DLNOXをパラメータとして第2気筒群1bのVCT補正量VCTCMP2が算出されると共に、第1気筒群1aのVCT補正量VCTCMP1が「0」にクリアされる。
【0046】
一方、ステップS511の判定条件が成立せず、即ち、NOx 最大吸蔵量NOXCAP1がNOx 最大吸蔵量NOXCAP2以下と少ないときにはステップS513に移行し、図10のマップによりNOx 吸蔵量差DLNOXをパラメータとして第1気筒群1aのVCT補正量VCTCMP1が算出されると共に、第2気筒群1bのVCT補正量VCTCMP2が「0」にクリアされる。次にステップS514に移行して、図11のマップによりNOx 吸蔵量NOXCAPをパラメータとして第1気筒群1aのNOx リジェネ実行判定値NOXJDG1及び第2気筒群1bのNOx リジェネ実行判定値NOXJDG2が算出され、本ルーチンを終了する。
【0047】
次に、本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置で使用されているECU30内のCPU31におけるO2 センサ出力積算値算出の処理手順を示す図12のフローチャートに基づいて説明する。なお、このO2 センサ出力積算値算出ルーチンは所定時間毎にCPU31にて繰返し実行される。
【0048】
図12において、ステップS601で、第1気筒群1aのO2 センサ出力値VOX1からリーン時平均O2 センサ出力値VOX1SMが減算されリッチ出力偏差VOX1DVとされる。次にステップS602に移行して、ステップS601によるリッチ出力偏差VOX1DVの絶対値が0.02〔V:ボルト〕以上であるかが判定される。ステップS602の判定条件が成立、即ち、リッチ出力偏差VOX1DVの絶対値が0.02〔V〕以上と大きいときにはステップS603に移行して、リッチ出力偏差VOX1DVに吸入空気量QAが乗算されリッチ出力偏差VOX1DVが補正される。そして、ステップS604に移行し、リッチ出力偏差VOX1DVが加算されリッチ排出量VOX1ADが更新される。一方、ステップS602の判定条件が成立せず、即ち、リッチ出力偏差VOX1DVの絶対値が0.02〔V〕未満と小さいときにはステップS603及びステップS604がスキップされる。
【0049】
次に、ステップS605に移行して、第2気筒群1bのO2 センサ出力値VOX2からリーン時平均O2 センサ出力値VOX2SMが減算されリッチ出力偏差VOX2DVとされる。次にステップS606に移行して、ステップS605によるリッチ出力偏差VOX2DVの絶対値が0.02〔V:ボルト〕以上であるかが判定される。ステップS606の判定条件が成立、即ち、リッチ出力偏差VOX2DVの絶対値が0.02〔V〕以上と大きいときにはステップS607に移行して、リッチ出力偏差VOX2DVに吸入空気量QAが乗算されリッチ出力偏差VOX2DVが補正される。そして、ステップS608に移行し、リッチ出力偏差VOX2DVが加算されリッチ排出量VOX2ADが更新され、本ルーチンを終了する。一方、ステップS606の判定条件が成立せず、即ち、リッチ出力偏差VOX2DVの絶対値が0.02〔V〕未満と小さいときにはステップS607及びステップS608がスキップされ、本ルーチンを終了する。
【0050】
このように、本実施例の内燃機関の排気浄化装置は、内燃機関1を構成する複数の気筒(#1気筒〜#6気筒)を第1気筒群(#1気筒〜#3気筒)1a及び第2気筒群(#4気筒〜#6気筒)1bからなる2つの気筒群に分割し、各気筒群毎に独立して配設する排気通路12a,12bと、排気通路12a,12b途中にそれぞれ設置し、内燃機関1のリーン燃焼時、排気ガス中のNOx (窒素酸化物)を吸蔵し、内燃機関1のリッチ燃焼時、吸蔵したNOx を還元し浄化するNOx 触媒13a,13bと、各気筒群毎に排気通路12a,12bからNOx 触媒13a,13bに流入するNOx 量を独立して制御するECU30にて達成されるNOx 量制御手段とを具備するものである。
【0051】
つまり、内燃機関1を構成する6つの気筒(#1気筒〜#6気筒)が第1気筒群(#1気筒〜#3気筒)1a及び第2気筒群(#4気筒〜#6気筒)1bからなる2つの気筒群に分割され、これら2つの気筒群に対して独立的に排気通路12a,12bが配設され、この排気通路12a,12b途中にNOx 触媒13a,13bが設置されている。そして、各気筒群毎に排気通路12a,12bからNOx 触媒13a,13bに流入されるNOx 量が独立して制御される。これにより、NOx 触媒13a,13bへのNOx 量が適切に流入できることとなり、それらの吸蔵能力を十分に発揮することができる。
【0052】
また、本実施例の内燃機関の排気浄化装置のECU30にて達成されるNOx 量制御手段は、各気筒群毎のNOx 量をNOx 触媒13a,13bの吸蔵能力に応じて設定するものである。これにより、NOx 触媒13a,13bのそれぞれの吸蔵能力にかかわらず同じリーン時間が設定でき、共通のリジェネ周期が設定できることとなり、吸蔵能力が劣っているNOx 触媒側のリーン時間を延ばすことができ、燃費を向上することができる。
【0053】
そして、本実施例の内燃機関の排気浄化装置は、内燃機関1の第1気筒群(#1気筒〜#3気筒)1a及び第2気筒群(#4気筒〜#6気筒)1bからなる各気筒群毎に、駆動軸としてのクランクシャフト(図示略)から各吸気バルブ14a,14bまたは各排気バルブ17a,17bを開閉する従動軸としての吸気側カムシャフト15a,15b、排気側カムシャフト18a,18bに駆動力を伝達する駆動力伝達系に設けられ、各吸気バルブ14a,14bまたは各排気バルブ17a,17bの開閉タイミングを変更自在な吸気側可変バルブタイミング制御機構16a,16b、排気側可変バルブタイミング制御機構19a,19bを具備し、ECU30にて達成されるNOx 量制御手段は、各気筒群毎に設けられた吸気側可変バルブタイミング制御機構16a,16bによる各吸気バルブ14a,14bと排気側可変バルブタイミング制御機構19a,19bによる各排気バルブ17a,17bとのバルブオーバラップ量を変えて内部EGR(排気ガス再循環)量を増減変化させ、各気筒群毎のNOx 量を独立して制御するものである。
【0054】
つまり、内燃機関1の第1気筒群1a及び第2気筒群1bの各吸気バルブ14a,14b及び各排気バルブ17a,17bに対応して設けられた吸気側可変バルブタイミング制御機構16a,16b及び排気側可変バルブタイミング制御機構19a,19bが設置されており、それらによる各気筒群毎のバルブオーバラップ量を変えることで内部EGR量が変化されるため、各気筒群毎に排気通路12a,12bからNOx 触媒13a,13bに流入させるべき適切なNOx 量を独立して制御でき、各NOx 触媒毎の設置位置や劣化の度合い等にかかわらず、また、各気筒群毎にトルク段差を生じさせることなく、各気筒群毎のリーン時間を同じに設定することができる。
【0055】
ところで、上記実施例では、内燃機関1の各気筒群毎に吸気側可変バルブタイミング制御機構16a,16b及び排気側可変バルブタイミング制御機構19a,19bを設置し、それらによるバルブオーバラップ量を変えることで内部EGR量を増減変化させているが、本発明を実施する場合には、これに限定されるものではなく、各気筒群毎に例えば、吸気側可変バルブタイミング制御機構を設置するだけでもバルブオーバラップ量を変え内部EGR量を増減変化させることができ、上述の実施例と同様の作用・効果が期待できる。
【0056】
また、上記実施例では、図9のステップS512またはステップS513にて、NOx 吸蔵量差DLNOXをパラメータとしてVCT補正量VCTCMPを算出し、各気筒群毎に設置した吸気側可変バルブタイミング制御機構16a,16b及び排気側可変バルブタイミング制御機構19a,19bを制御し内部EGR量を増減変化させたが、本発明を実施する場合には、これに限定されるものではなく、各気筒群毎に排気通路12a,12b側の排気ガスの一部を吸気通路3側に再循環自在な周知の排気ガス再循環機構(図示略)を設置したものでは、図13のマップにより、NOx 吸蔵量差DLNOXをパラメータとしてEGR補正量を算出し、このEGR補正量に基づき各気筒群毎の排気ガス再循環機構を制御し外部EGR量を増減変化させるようにすれば、各気筒群毎のNOx 量を独立して制御することができる。
【0057】
このような内燃機関の排気浄化装置は、内燃機関1の各気筒群毎に、排気通路12a,12b側の排気ガスの一部を吸気通路3側に再循環自在な排気ガス再循環機構を具備し、ECU30にて達成されるNOx 量制御手段が、各気筒群毎に設けられた排気ガス再循環機構により外部EGR量を増減変化させ、各気筒群毎のNOx 量を独立して制御するものであり、上述の実施例と同様の作用・効果が期待できる。
【0058】
そして、図14のマップにより、NOx 吸蔵量差DLNOXをパラメータとして点火時期の遅角補正量を算出し、この遅角補正量に基づき各気筒群毎の点火時期を制御することで、各気筒群毎のNOx 量を独立して制御することができる。このような内燃機関の排気浄化装置は、ECU30にて達成されるNOx 量制御手段が、各気筒群毎に点火時期を進角/遅角変化させ、各気筒群毎のNOx 量を独立して制御するものであり、上述の実施例と同様の作用・効果が期待できる。
【0059】
なお、各気筒群毎の燃料噴射量を制御してNOx 量を調整することで、リジェネ周期のうちのリーン時間を第1気筒群1aと第2気筒群1bとで合致させることもできるが、基本的にリーン燃焼時においては、トルク発生に関与するパラメータとして燃料噴射量が支配的であり、各気筒群毎の燃料噴射量に差を付けると各気筒群毎の発生トルクに段差が現われることとなる。したがって、上記実施例で述べたように、内部EGR量の増減制御、外部EGR量の増減制御や点火時期の進角/遅角制御による各気筒群毎のNOx 量の調整が特に、有効であると言える。
【図面の簡単な説明】
【図1】図1は本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置が適用された内燃機関及びその周辺機器を示す概略構成図である。
【図2】図2は本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置における機関回転速度及び吸気圧をパラメータとして目標空燃比を算出するマップである。
【図3】図3は本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置におけるリジェネ周期カウンタの値に基づきリーン時間及びリッチ時間の設定を示す説明図である。
【図4】図4は本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置で使用されているECU内のCPUにおける燃料噴射制御の処理手順を示すフローチャートである。
【図5】図5は本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置で使用されているECU内のCPUにおける目標空燃比算出の処理手順を示すフローチャートである。
【図6】図6は本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置で使用されているECU内のCPUにおけるリッチガス積算値算出の処理手順を示すフローチャートである。
【図7】図7は本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置で使用されているECU内のCPUにおけるNOx 積算量算出の処理手順を示すフローチャートである。
【図8】図8は図7で機関回転速度及び吸気圧をパラメータとして排気ガス中のNOx 量を算出するマップである。
【図9】図9は本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置で使用されているECU内のCPUにおける触媒劣化検出の処理手順を示すフローチャートである。
【図10】図10は図9でNOx 吸蔵量差をパラメータとしてVCT補正量を算出するマップである。
【図11】図11は図9でNOx 吸蔵量をパラメータとしてNOx リジェネ実行判定値を算出するマップである。
【図12】図12は本発明の実施の形態の一実施例にかかる内燃機関の排気浄化装置で使用されているECU内のCPUにおけるO2 センサ出力積算値算出の処理手順を示すフローチャートである。
【図13】図13は図9における触媒劣化検出に際し、NOx 吸蔵量差をパラメータとしてEGR補正量を算出するマップである。
【図14】図14は図9における触媒劣化検出に際し、NOx 吸蔵量差をパラメータとして点火時期の遅角補正量を算出するマップである。
【符号の説明】
1 内燃機関
1a 第1気筒群
1b 第2気筒群
3 吸気通路
12a,12b 排気通路
13a,13b NOx 触媒
14a,14b 吸気バルブ
15a,15b 吸気側カムシャフト
16a,16b 吸気側可変バルブタイミング制御機構
17a,17b 排気バルブ
18a,18b 排気側カムシャフト
19a,19b 排気側可変バルブタイミング制御機構
30 ECU(電子制御ユニット)
Claims (5)
- 内燃機関を構成する複数の気筒を複数の気筒群に分割し、各気筒群毎に独立して配設する排気通路と、
前記排気通路途中にそれぞれ設置し、前記内燃機関のリーン燃焼時、排気ガス中のNOx (窒素酸化物)を吸蔵し、前記内燃機関のリッチ燃焼時、吸蔵したNOx を還元し浄化するNOx 触媒と、
前記各気筒群毎に前記排気通路から前記NOx 触媒に流入するNOx 量を独立して制御するNOx 量制御手段と
を具備することを特徴とする内燃機関の排気浄化装置。 - 前記NOx 量制御手段は、前記各気筒群毎のNOx 量を前記NOx 触媒の吸蔵能力に応じて設定することを特徴とする請求項1に記載の内燃機関の排気浄化装置。
- 前記内燃機関の各気筒群毎に、駆動軸から吸気バルブまたは排気バルブの少なくとも何れか一方を開閉する従動軸に駆動力を伝達する駆動力伝達系に設けられ、前記吸気バルブまたは前記排気バルブの開閉タイミングまたはリフト量を変更自在な可変バルブタイミング制御機構を具備し、
前記NOx 量制御手段は、前記各気筒群毎に設けられた前記可変バルブタイミング制御機構による前記吸気バルブと前記排気バルブとのバルブオーバラップ量を変えて内部EGR(Exhaust Gas Recirculation:排気ガス再循環)量を増減変化させ、前記各気筒群毎のNOx 量を独立して制御することを特徴とする請求項1または請求項2に記載の内燃機関の排気浄化装置。 - 前記内燃機関の各気筒群毎に、前記排気通路側の排気ガスの一部を吸気通路側に再循環自在な排気ガス再循環機構を具備し、
前記NOx 量制御手段は、前記各気筒群毎に設けられた前記排気ガス再循環機構により外部EGR量を増減変化させ、前記各気筒群毎のNOx 量を独立して制御することを特徴とする請求項1または請求項2に記載の内燃機関の排気浄化装置。 - 前記NOx 量制御手段は、前記各気筒群毎に点火時期を進角/遅角変化させ、前記各気筒群毎のNOx 量を独立して制御することを特徴とする請求項1または請求項2に記載の内燃機関の排気浄化装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003145304A JP2004346838A (ja) | 2003-05-22 | 2003-05-22 | 内燃機関の排気浄化装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003145304A JP2004346838A (ja) | 2003-05-22 | 2003-05-22 | 内燃機関の排気浄化装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004346838A true JP2004346838A (ja) | 2004-12-09 |
Family
ID=33532520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003145304A Pending JP2004346838A (ja) | 2003-05-22 | 2003-05-22 | 内燃機関の排気浄化装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004346838A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005036662A (ja) * | 2003-07-16 | 2005-02-10 | Toyota Motor Corp | 内燃機関の排気処理装置 |
-
2003
- 2003-05-22 JP JP2003145304A patent/JP2004346838A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005036662A (ja) * | 2003-07-16 | 2005-02-10 | Toyota Motor Corp | 内燃機関の排気処理装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4911249B2 (ja) | 内燃機関の制御装置 | |
JP4502038B2 (ja) | 内燃機関の制御システム | |
JP2871615B2 (ja) | 内燃機関の排気浄化装置 | |
CN108240265B (zh) | 用于内燃机的控制装置 | |
JP2007239493A (ja) | 過給機付き内燃機関 | |
JP2013119832A (ja) | 内燃機関の制御装置 | |
JP2010270651A (ja) | 内燃機関の制御装置 | |
JP4650364B2 (ja) | NOx触媒の劣化検出装置 | |
JP4583402B2 (ja) | 内燃機関の制御装置 | |
JP2004340065A (ja) | 水素エンジン用制御装置 | |
JP2008240675A (ja) | 内燃機関の制御装置 | |
JP4117120B2 (ja) | 内燃機関の制御装置 | |
JP2007162481A (ja) | 過給機付き内燃機関 | |
JP2004346838A (ja) | 内燃機関の排気浄化装置 | |
JP3912488B2 (ja) | 多気筒内燃機関の空燃比制御装置 | |
JP5741408B2 (ja) | 内燃機関の制御装置 | |
JP4023216B2 (ja) | 内燃機関の排気浄化装置 | |
JP2005016396A (ja) | 内燃機関の触媒暖機システム | |
JP4524929B2 (ja) | 内燃機関の排気浄化装置 | |
WO2023223504A1 (ja) | 三元触媒の酸素ストレージ量制御方法および装置 | |
JP2007077857A (ja) | 内燃機関の運転モード制御装置 | |
JP5886002B2 (ja) | 内燃機関の制御装置 | |
JP2007218199A (ja) | 内燃機関の制御装置 | |
JP5723747B2 (ja) | 内燃機関の制御装置 | |
JP2006070855A (ja) | 内燃機関の点火時期制御装置 |