JP2004340070A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2004340070A
JP2004340070A JP2003139284A JP2003139284A JP2004340070A JP 2004340070 A JP2004340070 A JP 2004340070A JP 2003139284 A JP2003139284 A JP 2003139284A JP 2003139284 A JP2003139284 A JP 2003139284A JP 2004340070 A JP2004340070 A JP 2004340070A
Authority
JP
Japan
Prior art keywords
filter
cylinder
internal combustion
intake air
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003139284A
Other languages
English (en)
Inventor
Tomoyoshi Ogo
知由 小郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003139284A priority Critical patent/JP2004340070A/ja
Publication of JP2004340070A publication Critical patent/JP2004340070A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】フィルタ再生制御において減速フューエルカット中に機関への燃料供給を感知したときは、機関への吸入空気を遮断することで機関回転数の上昇を防止する。
【解決手段】フィルタに排気を流通させつつ、フィルタに堆積した微粒子を酸化除去しているときに減速フューエルカットが実行された場合に、内燃機関への燃料供給、すなわち異常を感知したときは内燃機関への吸入空気を遮断する。排気通路に設置したフィルタを高温に維持してフィルタに堆積した微粒子を酸化除去する微粒子除去手段と、フィルタの温度を検出する温度検出手段と、微粒子除去手段により微粒子の酸化除去を実行しているときに、温度検出手段により検出される温度が所定温度を超えないように、気筒内に導入される吸気量を制御する吸入空気量制御手段と、燃料噴射手段の異常を検出する異常検出手段を有する。
【選択図】 図5

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の制御装置に関する。
【0002】
【従来の技術】
自動車等の車両に搭載される内燃機関、特にディーゼル機関では、排気中に含まれる浮遊粒子状物質である煤に代表される微粒子の除去が重要な課題である。このため、大気中に微粒子が放出されないようにディーゼルエンジンの排気系に微粒子の捕集を行うパティキュレートフィルタ(以下、単に「フィルタ」とする)を設ける技術が周知である。このフィルタにより排気中の微粒子が捕集され大気中へ放出されることを防止することができる。
【0003】
しかし、捕集した微粒子がフィルタに堆積するとフィルタの目詰まりを発生させることがある。この目詰まりが発生すると、フィルタ上流の排気の圧力が上昇し、内燃機関の出力低下やフィルタの毀損を誘発する虞がある。このようなときには、フィルタ上に堆積した微粒子を燃焼させて酸化除去する必要がある。通常このような微粒子の酸化除去は、微粒子がフィルタ上に所定量以上堆積したときに、排気温度を上昇させることにより実行する。
【0004】
ことろが、微粒子の酸化除去中に車両が減速に移行すると、内燃機関の吸入空気量が減少するのに伴って、フィルタに流入する排気量(空気量)が減少する。このような場合は、フィルタに流入してフィルタ中の微粒子の燃焼熱を持ち去るのに必要な空気量が不足する。したがって、フィルタの温度が急上昇して過熱する場合があり、このような過熱によってフィルタが溶損する虞がある。
【0005】
上述のように、フィルタに流入する空気量が減少したときに、排気の流量を制御して触媒(フィルタ)温度を調整することは、例えば特許文献1に記載されている。この発明は、フィルタが過熱する事態が予想されたときは排気流量を制御して触媒温度を調整するものである。
【0006】
【特許文献1】
特開2002−106325号公報
【0007】
【発明が解決しようとする課題】
上記の特許文献1に記載の発明では、排気流量を制御して触媒温度を調整する場合には、例えば内燃機関の搭載車両の減速によって機関に供給される燃料がカットされるときでも、一定量以上の排気流量を確保するためにスロットル弁を開けざるを得ない。
【0008】
ところが、スロットル弁を開けると、気筒内に燃料を供給する燃料噴射ノズルの故障等が原因で、不意に燃料が気管内に供給されたときには、機関回転数が上昇して車両が運転者の意図に反して加速される等の事態が予想されるので、このような事態を避ける必要がある。
【0009】
本発明は上記の事情に鑑みてなされたもので、フィルタ再生制御において内燃機関の減速フューエルカット中に機関への燃料供給を感知したときは、機関への吸入空気を遮断することで機関回転数の上昇を防止するようにした内燃機関の制御装置を提供することを技術的課題とする。
【0010】
【課題を解決するための手段】
上記課題を達成するために、本発明は、フィルタに排気を流通させつつ、フィルタに堆積した微粒子を酸化除去しているときに減速フューエルカットがされた場合に、内燃機関への燃料供給を感知したときは、内燃機関への吸入空気を遮断するものである。
【0011】
すなわち、気筒内に燃料を噴射する燃料噴射手段と、
排気通路に設置したフィルタと、
このフィルタを高温に維持してフィルタに堆積した微粒子を酸化除去する微粒子除去手段と、
前記フィルタの温度を検出する温度検出手段と、
前記微粒子除去手段により、微粒子の酸化除去を実行しているときに前記温度検出手段により検出される温度が所定温度を超えないように、気筒内に導入される吸気量を制御する吸入空気量制御手段と、を備えた内燃機関の制御装置であって、
前記燃料噴射手段の異常を検出する異常検出手段をさらに有し、微粒子除去中における減速フューエルカット時に燃料噴射手段の異常を検出した際は、前記吸入空気量制御手段により気筒内に導入される吸入空気を遮断することを特徴とする。
【0012】
本発明によれば、機関の減速フューエルカット中であっても、フィルタの過熱を防止するためにフィルタ内に空気を流通させる場合に、万一、噴射弁の故障等によって不意に燃料が供給されたとしても、機関に流入する空気を遮断して供給燃料の燃焼を阻止することができる。
【0013】
なお、ここで吸入空気を遮断することは、内燃機関の気筒へ流入する吸入空気を皆無にすることが最も好ましいが、意図しない異常な燃焼を生じさせない程度であれば僅かな空気流入まで完全に除く趣旨ではない。
【0014】
上記フィルタとしては、NOx吸蔵剤を担持したものとすることができる。そのようなものとして、酸化雰囲気中では排気中のNOxを吸収し還元雰囲気中有では吸収したNOxを放出するNOx吸蔵剤を担時し、かつ排気中の微粒子を一時期捕集し、所定温度領域では前記捕集した微粒子を酸化除去することが可能なものが例示できる。しかし、フィルタはこれに限られるものではなく、フィルタの温度を高温にして堆積した微粒子を酸化除去するものであれば,ディーゼルパティキュレートフィルタ等の他のものであってもよい。
【0015】
本発明では、前記温度検出手段により検出された前記フィルタの温度が上昇したときに、前記燃料噴射手段が異常であると判断することが可能である。かかる場合は、本来、フューエルカットが実施されて燃料の供給が停止されているはずであり、フィルタの温度の上昇はこれに反して燃料が供給されたことを意味する。
【0016】
また、前記吸入空気量制御手段は各気筒内に設けられた吸気弁であり、前記異常検出手段は前記燃料噴射手段が異常である気筒を判別し、この気筒の吸気弁を閉じることで気筒内に導入される吸入空気を遮断するようにしてもよい。
【0017】
この場合は、各気筒に燃料噴射手段の異常を検知する異常検知手段として、例えばHCセンサ等を設けることができる。
【0018】
このようにすれば各気筒毎に異常が検知でき、燃料噴射手段が異常である気筒のみ吸入空気が遮断され、全ての気筒内に導入される吸入空気が遮断されることはない。すなわち、内燃機関全体としては吸入空気の流れを確保してフィルタに流通する排気の流れを保持しつつ、燃料噴射手段が異常であるとされた気筒では燃焼が生じないようにすることが可能となる。したがって、フィルタの過熱を防止するとともに、機関回転数の上昇や車両の予期しない加速を防ぐことができる。
【0019】
上記のように本発明によれば、減速フューエルカット中に燃料供給を感知したときは、機関への吸入空気を遮断することで燃料の燃焼を阻止して、機関回転数上昇による車両の加速を防止することができる。
【0020】
【発明の実施の形態】
以下、本発明に係る制御装置の具体的な実施態様を図面に基づいて説明する。
(実施の形態1)
図1は、本実施の形態に係る装置を適用する内燃機関1とその吸排気系の概略構成を示す図である。
【0021】
図1に示す内燃機関1は、4つの気筒2を有する水冷式の4サイクル・ディーゼル機関である。
【0022】
内燃機関1は、各気筒2の燃焼室に直接燃料を噴射する燃料噴射弁3を備えている。各燃料噴射弁3は、燃料を所定圧まで畜圧する畜圧室(コモンレール)4と接続されている。#1から#4の各気筒2には、それぞれHCセンサ40が設けられ、各気筒2内に存在するHC濃度を検出することが可能になっている。
【0023】
前記コモンレール4は、燃料供給管5を介して燃料ポンプ6と連通し、この燃料ポンプ6から吐出された燃料は、コモンレール4にて所定圧まで畜圧されて各気筒2の燃料噴射弁3へ分配される。
【0024】
内燃機関1には、吸気枝管8が接続されており、吸気枝管8の各枝管は、各気筒2の燃焼室と吸気ポート(図示省略)を介して連通している。
【0025】
前記吸気枝管8は吸気管9に接続され、吸気枝管8の直上流に位置する部位には、この吸気管9内を流通する吸気の流量を調節する吸気絞り弁(Dスロットル)13が設けられている。この吸気絞り弁13には、ステップモータ等で構成されてこの吸気絞り弁13を開閉駆動する吸気絞り用アクチュエータ14が取り付けられている。
【0026】
また、吸気管9の上流に設置したエアフローメータ11と前記吸気絞り弁13との間に位置する吸気管9には、排気のエネルギを駆動源として作動する遠心過給機(ターボチャージャ)15のコンプレッサハウジング15aが設けられている。
【0027】
一方、内燃機関1には、排気枝管18が接続され、この各枝管が排気ポートを介して各気筒2の燃焼室と連通している。
【0028】
前記排気枝管18は、前記遠心過給機15のタービンハウジング15bと接続されている。前記タービンハウジング15bは、排気管19と接続され、この排気管19は、下流にて大気へと通じている。
【0029】
排気管19の途中には、図3に示すような吸蔵還元型NOx触媒を担持したパティキュレートフィルタ(以下、単にフィルタという。)20が設けられている。
【0030】
フィルタ20は、例えばコージェライトのような多孔質材料から形成されており、交互に栓52,53によって一端が塞がれた排気流入通路50内に流入した排気は図3(B)において矢印で示されるように周囲の隔壁54内を通って隣接する排気流出通路51内に流出する。
【0031】
この実施の形態では、各排気流入通路50及び各排気流出通路51に周壁面、すなわち各隔壁54の両側表面上および隔壁54内の細孔内壁面上には、例えばアルミナからなる担体の層が形成されており、この担体上に吸蔵還元型NOx触媒が担持されている。フィルタ20は、例えば、アルミナを担体とし、その担体上に、カリウム(K)、ナトリウム(Na)、リチウム(Li)、もしくはセシウム(Cs)等のアルカリ金属と、バリウム(Ba)もしくはカルシウム(Ca)等のアルカリ土類と、ランタン(La)もしくはイットリウム(Y)等の希土類とから選択された少なくとも1つと、白金(Pt)等の貴金属とを担持して構成することができる。
【0032】
このフィルタ20より上流の排気管19には、フィルタ20に流入する排気の温度に対応した電気信号を出力する排気温度センサ24が取り付けられるとともに、フィルタ20の下流には、フィルタ20から流出する排気温度を同様に検出する第2排気温度センサ25が設けられている。
【0033】
なお、前記フィルタ20は、排気中の微粒子を一時期捕集し、フィルタが所定温度になったときに捕集した微粒子を酸化除去するタイプのものであれば、NOx触媒を担持しないものや、また他のものであってもよい。
【0034】
ところで、内燃機関1が希薄燃焼運転されている場合は、内燃機関1から排出される排気の空燃比がリーン雰囲気となり排気の酸素濃度が高くなるため、排気中に含まれる窒素酸化物(NOx)が前記NOx触媒に吸蔵されることになるが、内燃機関1の希薄燃焼運転が長期間継続されると、NOx触媒のNOx吸蔵能力が飽和する。
【0035】
従って、内燃機関1が希薄燃焼運転されている場合は、NOx触媒のNOx吸蔵能力が飽和する前にNOx触媒に流入する排気中の酸素濃度を低下させるとともに還元剤の濃度を高め,NOx触媒に吸蔵された窒素酸化物(NOx)を放出及び還元させる。このように酸素濃度を低下させる方法としては、気筒2内への燃料噴射時期や回数の変更等の方法がある。
【0036】
また、前記したフィルタ20より下流の排気管19には、この排気管19内を流通する排気の流量を調節する排気絞り弁21が設けられている。この排気絞り弁21には、ステップモーター等で構成されてこの排気絞り弁21を開閉駆動する排気絞り用アクチュエータ22が取り付けられている。
【0037】
以上述べたように構成された内燃機関1には、この内燃機関1を制御するための電子制御ユニット(ECU:Electronic Unit)35が併設されている。このECU35は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。
【0038】
ECU35には、エアフローメータ11,排気温度センサ24,クランクポジションセンサ33,アクセル開度センサ36等の各種センサが電気配線を介して接続され、上記した各種センサの出力信号が入力されるようになっている。
【0039】
一方、ECU35には、燃料噴射弁3等が電気配線を介して接続され、上記した各部をECU35が制御することが可能になっている。
【0040】
ここで、ECU35は、図3に示すように、双方向性バス350によって相互に接続された、CPU351と、ROM352と、RAM353と、バックアップRAM354と、入力ポート356と、出力ポート357とを備えるとともに、前記入力ポート356に接続されたA/Dコンバータ(A/D)355を備えている。
【0041】
前記出力ポート357は、燃料噴射弁3等と電気配線を介して接続され、CPU351から出力される制御信号を、前記した燃料噴射弁3等等へ送信する。
【0042】
前記ROM352は、フィルタ20に捕集された微粒子(パティキュレートマター、Particulate Matter)を燃焼除去するための微粒子燃焼制御ルーチン、フィルタ20に燃料を供給して吸蔵されたNOxを放出させるNOx浄化制御ルーチン、フィルタ20のSOx被毒を解消する被毒解消制御ルーチン、その他、燃料噴射弁3を制御するための燃料噴射制御ルーチン等のアプリケーションプログラムを記憶している。
【0043】
前記ROM352は、上記したアプリケーションプログラムに加え、各種の制御マップを記憶している。前記制御マップは、例えば、本願発明のフィルタ再生制御の実行のための微粒子排出量マップ、微粒子酸化量マップの他、内燃機関1の運転状態と基本燃料噴射量(基本燃料噴射時間)との関係を示す燃料噴射量制御マップ、内燃機関1の運転状態と基本燃料噴射時期との関係を示す燃料噴射時期制御マップ、等である。
【0044】
前記RAM353は、各センサからの出力信号やCPU351の演算結果等を格納する。バックアップRAM354は、内燃機関1の運転停止後もデータを記憶可能な不揮発性のメモリである。
【0045】
前記CPU351は、前記ROM352に記憶されたアプリケーションプログラムに従って動作して、燃料噴射弁制御、NOx浄化制御、フィルタ再生制御、被毒解消制御、等を実行する。
【0046】
また、フィルタ再生制御では、CPU351は、内燃機関1の運転状況を検出して、内燃機関1から排出される微粒子の量とフィルタ20での微粒子の酸化量とに基づいて、フィルタ20に堆積している微粒子の量を算出する。以下、フィルタ20に堆積している微粒子の堆積量の算出について具体的に説明する。
【0047】
第1に、微粒子の堆積量は次のようにして算出する。
【0048】
CPU351は、一定のサンプリング時間毎(例えば、1秒毎)の内燃機関1の回転数Neと燃料噴射量Qを読み込む。回転数Neは、上述のようにクランクポジションセンサ33がパルス信号を出力する時間的な間隔に基づいて算出され、燃料噴射量Qは、燃料噴射量制御マップに基づいて噴射された燃料噴射量である。
【0049】
次に、前記サンプリング時間毎の回転数Neと燃料噴射量Qから微粒子排出量マップに基づいて微粒子の排出量を求める。
【0050】
さらに、CPU351は、所定期間における微粒子の排出量の合計を、所定期間内のサンプリング時間毎の微粒子の排出量を積算することによって算出する。
【0051】
また、微粒子の酸化量は、次のようにして求められる。
【0052】
上記のサンプリング時間毎のフィルタ20の温度Tを計測する。この温度Tは排気温度センサ24により測定された温度を用いる。
【0053】
次いで、微粒子酸化量マップから求められる微粒子の酸化速度、すなわち単位時間あたりの微粒子の酸化量に基づいて前記サンプリング時間毎の微粒子の酸化量を算出する。さらに所定期間における微粒子の酸化量の合計を、所定期間内のサンプリング時間毎の微粒子の酸化量を積算することで算出する。
【0054】
さらに、前記の微粒子の排出量の合計から微粒子の酸化量の合計を除することで、フィルタ20での所定期間における微粒子の堆積量が求められる。
【0055】
なお、前記フィルタ20の上流側と下流側の排気管19内の圧力の差異を検出するために、図1に示すように、フィルタ20の上流の排気管19と接続する第1の接続管37a及びフィルタ20の下流の排気管19と接続する第2の接続管37bを備えた差圧センサ37を設けてもよい。この場合は、差圧センサ37が検出するフィルタ20の前後の排気管19内の差圧が所定値以上となったときは、フィルタ20に一定量以上の微粒子が堆積したものと推定することができる。したがって、微粒子の堆積量を求める場合には、前者の方法に替えてこの方法を採用し、または前者の方法とともにこの方法を採用して微粒子の堆積量の算出がより精緻に行われるようにしてもよい。
【0056】
次に、CPU351は、この微粒子の堆積量がROM42に記憶した所定のしきい値を超えているかどうかを判断する。
【0057】
この堆積量が前記しきい値を越えていなければ、フィルタ20の再生制御は必要ないものと判断する。
【0058】
他方、前記堆積量がこのしきい値を越えている場合は、直ちにフィルタ再生制御を実行する。このフィルタ再生制御では、CPU351が、微粒子が燃焼し得る温度域まで排気温度を高めるべく排気昇温制御を実行する。なお、前記しきい値は、フィルタ20に堆積している微粒子が燃焼した場合にフィルタ20の過熱が生じない範囲の量であるか否かに基づいて決定される。
【0059】
排気昇温制御の実行方法としては、燃料噴射量を増量させると同時に排気絞り弁21を所定量開弁する方法、通常の燃料噴射(主燃料噴射)に加えて各気筒2の膨脹行程時に追加の燃料噴射(膨脹行程噴射)を行う方法、主燃料噴射及び膨脹行程噴射の燃料量を増加させると同時に、排気絞り弁21を所定量閉弁する方法、主燃料噴射に加えて各気筒2の排気行程時に追加の燃料噴射(排気行程噴射)を行うことで未燃の燃料をフィルタ20へ供給して燃料させる方法などを例示することができる。
【0060】
特に、フィルタ20が触媒を担持したものである場合は、CPU351は、各気筒2の膨張行程時に燃料噴射弁3から副次的に燃料を噴射させることで、それらの未燃燃料成分をフィルタ20において酸化させ、その酸化の際に発生する熱によってフィルタ20の床温を高めることが可能である。
【0061】
但し、フィルタ20が過剰に昇温された場合、フィルタ20の熱劣化が誘発される虞があるため、排気温度センサ24の出力信号値に基づいて副次的な噴射燃料量及び添加燃料量がフィードバック制御されるようにすることが好ましい。
【0062】
上記のようにしてフィルタ再生制御が実行されると、フィルタ20に堆積していた微粒子が燃焼し、これがフィルタ20から除去されてフィルタ20の微粒子の捕集能力が再生される。
【0063】
一方、フィルタの再生制御中に車両が減速に移行すると、フューエルカットに伴い内燃機関1の吸入空気量が減少し、かつ気筒2への燃料の供給が減少する。したがって、フィルタ20に流入する排気量(空気量)も減少することになる。かかる場合には、このフィルタに堆積していた微粒子が燃焼熱を持ち去るのに必要な流入空気量が不足する。
【0064】
そこで、上記のような場合には、フィルタ20における排気の流量を増加させてフィルタ温度を調整する必要があるので、吸気絞り弁13を開けざるを得ない。
【0065】
このような状況で、万一、気筒2内に燃料を供給する燃料噴射弁2やその制御機構の故障等が原因で、燃料が気筒2内に供給されたときには、機関回転数が上昇し、車両が運転者の意志に反して加速する等の事態が予想される。
【0066】
本実施の形態では、そのような事態を回避するために、先ず上記のようなフィルタ20の再生制御の実行中にフィルタ20に流入、流出するそれぞれの排気の温度を検出する。これらの排気温度は、排気温度センサ24及び第2排気温度センサ25によって計測される。このとき、フィルタ20の出口側の排気温度が、おの入口側の排気温度よりも高いときは、フィルタ20にHCが供給され、その酸化反応による熱が発生してフィルタ20の温度が上昇したことが推測できる。したがって、このような場合には何らかの異常で、気筒2に燃料が供給されているものと判断する。
【0067】
または、フィルタ20に設けた温度センサ(図示せず)によってフィルタ20の温度を直接計測し、この温度の上昇が検知されたときは気筒2に燃料が供給されているものと判断することもできる。
【0068】
上記のような場合には、直ちに吸気絞り弁13を閉じて、内燃機関1に吸入空気が供給されないようにこれを遮断する。このような吸入空気の遮断によって意図せずに供給された燃料が燃焼することを阻害することができる。よって、不意に車両が加速する等の不測の事態を回避することができる。
【0069】
次に、ECUで処理されるフィルタ再生におけるフィルタ過熱及び異常燃焼回避制御を、図4に示すフローチャートに基づいて説明する。
【0070】
このフローチャートを実行するルーチンは、予めROM352に記憶されており、CPU351によって所定時間毎(例えば、クランクポジションセンサ33がパルス信号を出力する度)に繰り返し実行されるルーチンである。
【0071】
ステップS101では、CPU351はフィルタの再生制御が行われているか否かを判断する。否定的判定がされたときは、この制御を一旦終了する。
【0072】
肯定的判定がされたときは、ステップS102に進んで内燃機関1が減速しているか否か、すなわち内燃機関1の運転状態が、フューエルカットが行われる吸入空気量の減少領域であるか否かを判断する。
【0073】
ステップS102で否定的判定がされたときは、この制御を一旦終了する。
【0074】
ステップS102で肯定的判定がされたときは、吸気絞り弁13で空気量を調整して、フィルタ20に流入する排気を所定量以上確保してフィルタ20が過熱されるのを防止する。ここで排気を所定量以上確保するとは、フィルタ再生制御においてフィルタに流入する排気による熱の持ち去りによってフィルタ20が過熱しない程度の吸入空気量を確保することである。そのため、吸気絞り弁13を開く方向に制御する。
【0075】
続いて、ステップS103に進み、気筒2への燃料供給が検知されるか否かを判断する。否定的判定がされたときは、所定の吸入空気量を確保するために吸気絞り弁13の開度を一定に保持して、この制御を一旦終了する。
【0076】
肯定的判定がされたときには、CPU351は吸気絞り弁13を全閉として吸入空気量を絞り、供給された燃料が気筒2内で燃焼することを回避する。
【0077】
このような制御によれば、減速フューエルカット中に燃料供給を感知したときは吸入空気が遮断され、機関回転数上昇につながる気筒2内での燃料の燃焼を回避することができる。
(実施の形態2)
実施の形態2では、フィルタ20の再生制御中に内燃機関1が減速され、フューエルカットがされている場合、いずれかの気筒2への燃料供給がされたときには、燃料供給が行われた気筒2が、#1から#4のいずれであるかを判別するものとした。
【0078】
この気筒2の判別は、#1から#4の各気筒2にそれぞれ設けたHCセンサ40によって行う。このHCセンサ40が、フューエルカットがされる減速時において相当濃度のHCを検出したときは、その気筒2に燃料供給がされたものと判断することができる。そして、この燃料供給を行った燃料噴射弁3を備える気筒2を特定し、この気筒2については、図3に示す吸気弁10を全閉状態とする。
【0079】
上記のように機関運転中に吸気弁10を全閉状態に保持するため、吸気弁10の開閉タイミングをクランク軸の回転に同期させることなく、ECU35が、吸気弁10を独立して制御することが可能な可変動弁機構を採用する。そのような機構としては、いわゆる電磁駆動弁や、その他の公知のバルブタイミングの可変機構を用いることができる。このようにすれば、異常が検出された燃料噴射弁3を備えた吸気弁10を全閉状態に保持することができる。
【0080】
以上のようにして、異常が検出された気筒2への吸入空気の導入が遮断されるので、供給された燃料が燃焼することが阻止される。
【0081】
次に、ECU35で処理されるこの実施の形態2におけるフィルタ過熱及び異常燃焼回避制御を、図5に示すフローチャートに基づいて説明する。
【0082】
ステップS201では、CPU351はフィルタの再生制御が行われているか否かを判断する。否定的判定がされたときは、この制御を一旦終了する。
【0083】
一方、肯定的判定がされたときは、ステップS202に進んで内燃機関1が減速されているか否か、すなわち内燃機関1の運転状態が吸入空気量の減少領域であるか否かを判断する。
【0084】
ステップS202で否定的判定がされたときは、この制御を一旦終了する。
【0085】
反対に、ステップS202で肯定的判定がされたときは、吸気絞り弁13で空気量を調整して、フィルタ20に流入する排気を所定量以上確保する。
【0086】
続いて、ステップS203に進み、否定的判定がされたときは吸気絞り弁13の開度を一定に保持して、この制御を一旦終了する。
【0087】
次に、ステップS204では燃料供給がされている気筒2があるか否かを判断し、その気筒を判別し特定する。
【0088】
ステップS204で、否定的判定がされたときには、この制御を一旦終了する。
【0089】
肯定的判定がされたときは、ステップS205に進み、CPU351は燃料が供給されている気筒2の吸気弁10を全閉とする。
【0090】
このような実施の形態2の制御によれば、フィルタ20の過熱防止のために必要な吸入空気量を確保しながら、意図されない燃料供給による内燃機関1の回転数上昇を防止できる利点がある。
【0091】
なお、上記の発明の実施の形態で述べたフィルタ20は、いわゆるパティキュレートフィルタに酸化触媒を担持したものとしてもよい。
【0092】
【発明の効果】
以上のように本発明によれば、気筒内に燃料を供給する燃料噴射弁の故障等が原因で、内燃機関の減速フューエルカット中に、気筒内へ不意に燃料が供給された場合であっても、気筒への吸入空気を遮断することで機関回転数の上昇を防止することができる。したがって、機関回転数の上昇に伴って車両が加速する等の事態を回避することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る内燃機関の概略構成図である。
【図2】ECUの内部構成を示すブロック図である。
【図3】一つの気筒と吸気弁を示す図である。
【図4】フィルタの構造を示す図であり、(A)は、フィルタの排気流入方向に直交する方向の断面を示す図である。(B)は、排気流入方向に沿う方向の断面を示す図である。
【図5】本発明の実施の形態1による制御実行フローを示すフローチャート図である。
【図6】本発明の実施の形態2による制御実行フローを示すフローチャート図である。
【符号の説明】
1・・・・内燃機関
2・・・・気筒
3・・・・燃料噴射弁
4・・・・コモンレール
5・・・・燃料供給管
6・・・・燃料ポンプ
8・・・・吸気枝管
9・・・・吸気管
10・・・吸気弁
14・・・吸気絞り用アクチュエータ
18・・・排気枝管
19・・・排気管
20・・・フィルタ
21・・・排気絞り弁
22・・・排気絞り用アクチュエータ
24・・・排気温度センサ
25・・・第2排気温度センサ
33・・・クランクポジションセンサ
35・・・ECU
36・・・アクセル開度センサ
37・・・差圧センサ
40・・・HCセンサ

Claims (3)

  1. 気筒内に燃料を噴射する燃料噴射手段と、
    排気通路に設置したパティキュレートフィルタと、
    このパティキュレートフィルタの温度を上昇させてパティキュレートフィルタに堆積した微粒子を酸化除去する微粒子除去手段と、
    前記パティキュレートフィルタの温度を検出する温度検出手段と、
    前記微粒子除去手段により微粒子の酸化除去を実行しているときに前記温度検出手段により検出される温度が所定温度を超えないように、気筒内に導入される吸気量を制御する吸入空気量制御手段と、を備えた内燃機関の制御装置であって、
    前記燃料噴射手段の異常を検出する異常検出手段をさらに有し、微粒子の酸化除去中における減速ヒューエルカット時に燃料噴射手段の異常を検出した際は、前記吸入空気量制御手段により気筒内に導入される吸入空気を遮断することを特徴とする内燃機関の制御装置。
  2. 前記温度検出手段により検出された前記フィルタの温度が昇
    したときに前記燃料噴射手段が異常であると判断することを特徴とする請求項1に記載の内燃機関の制御装置。
  3. 前記吸入空気量制御手段は各気筒内に設けられた吸気弁であり、前記異常検出手段は前記燃料噴射手段が異常である気筒を判別し、この気筒の吸気弁を閉じることで気筒内に導入される吸入空気を遮断することを特御とする請求項1または2に記載の内燃機関の制御装置。
JP2003139284A 2003-05-16 2003-05-16 内燃機関の制御装置 Pending JP2004340070A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003139284A JP2004340070A (ja) 2003-05-16 2003-05-16 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003139284A JP2004340070A (ja) 2003-05-16 2003-05-16 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2004340070A true JP2004340070A (ja) 2004-12-02

Family

ID=33528423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003139284A Pending JP2004340070A (ja) 2003-05-16 2003-05-16 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP2004340070A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126464A1 (en) * 2005-05-25 2006-11-30 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle, and vehicle incorporating the same
DE102018114753A1 (de) 2017-06-20 2018-12-20 Suzuki Motor Corporation Abgasreinigungssystem für Verbrennungsmotor
DE102018113179A1 (de) 2017-08-31 2019-02-28 Suzuki Motor Corporation Abgasreinigungssystem für einen Verbrennungsmotor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126464A1 (en) * 2005-05-25 2006-11-30 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle, and vehicle incorporating the same
DE102018114753A1 (de) 2017-06-20 2018-12-20 Suzuki Motor Corporation Abgasreinigungssystem für Verbrennungsmotor
DE102018114753B4 (de) 2017-06-20 2022-05-12 Suzuki Motor Corporation Abgasreinigungssystem für Verbrennungsmotor
DE102018113179A1 (de) 2017-08-31 2019-02-28 Suzuki Motor Corporation Abgasreinigungssystem für einen Verbrennungsmotor
DE102018113179B4 (de) 2017-08-31 2022-12-22 Suzuki Motor Corporation Abgasreinigungssystem für einen Verbrennungsmotor

Similar Documents

Publication Publication Date Title
US7721534B2 (en) Control method for an exhaust gas purification system and an exhaust gas purification system
JP4592504B2 (ja) 排気浄化装置
JP4673226B2 (ja) 排気ガス浄化方法及び排気ガス浄化システム
JP3979437B1 (ja) 排気ガス浄化システムの制御方法及び排気ガス浄化システム
EP1978219B1 (en) Exhaust gas purification method and exhaust gas purification system
JP3992057B2 (ja) 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP2004124855A (ja) 内燃機関の排気浄化装置
JP2007205240A (ja) 排気ガス浄化システムの制御方法及び排気ガス浄化システム
WO2007010701A1 (ja) 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP2008274835A (ja) 酸化触媒の劣化診断装置
EP1637717B1 (en) Exhaust gas cleaning method and exhaust gas cleaning system
JP3896870B2 (ja) 内燃機関の排気浄化装置
JP2005291175A (ja) 内燃機関の排気浄化装置
JP4276472B2 (ja) 内燃機関の触媒劣化判定装置
JP3757853B2 (ja) 排気浄化装置の再生制御方法
JP2004190667A (ja) 内燃機関の排気浄化装置
JP4333160B2 (ja) 内燃機関の排気浄化システム
JP3858779B2 (ja) 排気ガス浄化装置
JP2004285947A (ja) 内燃機関の排気浄化装置
JP4365724B2 (ja) 排気浄化装置
JP5320994B2 (ja) 排気ガス浄化方法と排気ガス浄化システム
JP2004340070A (ja) 内燃機関の制御装置
JP4070687B2 (ja) 排気浄化装置
JP2007023876A (ja) 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP2004162612A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106